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Abstract
The aim of this work is to generalize the ultraholomorphic extension theorems from
V. Thilliez in the weight sequence setting and from the authors in the weight function
setting (of Roumieu type) to a mixed framework. Such mixed results have already
been known for ultradifferentiable classes and it seems natural that they have ultra-
holomorphic counterparts. In order to have control on the opening of the sectors in
the Riemann surface of the logarithm for which the extension theorems are valid we
are introducing new mixed growth indices which are generalizing the known ones for
weight sequences and functions. As it turns out, for the validity of mixed extension
results the so-called order of quasianalyticity (introduced by the second author for
weight sequences) is becoming important.
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1 Introduction

In the authors’ recent works [10,14] we have shown extension theorems in the ultra-
holomorphic weight function framework, in the first article for spaces of Roumieu type
and in the second one also for the Beurling type classes. Such results have already been
known before for the weight sequence approach, see [32]. In [14] we have transferred
Thilliez’s ideas to the weight function situation (by using ultradifferentiable Whitney
extension results) and in [10] we have used complex methods treated by Lastra, Malek
and the second author [18,19] in the single weight sequence approach.

In the ultradifferentiable setting also Whitney extension results involving two
weight sequences M and N and weight functions σ and ω are known in the liter-
ature. In the weight sequence case we refer to [7] for the Whitney jet mapping and
to [31] for the Borel mapping, in the weight function case see [5] for the Borel map-
ping and [17,24,25] for the general Whitney jet mapping. In our recent paper [13],
which has served as motivation for this article, by involving a ramification parameter
r ∈ N>0 we have generalized the mixed setting results from[31] to r -ramification
classes introduced in [30]. We have also generalized the Whitney extension results
from[7] by using a parameter r > 0 (see [13, Theorem 5.9]).

The possibility of an extension in these mixed settings has been characterized in
termsof growthproperties ofweight sequences and functions.We refer also toRemarks
3 and 4 where more (historical) explanations will be given.

From this theoretical point of view it seems natural to ask whether in the ultraholo-
morphic framework we can also prove extension results in the mixed settings and this
question will be treated in this present work. We will consider Roumieu type classes
in both the weight sequence and weight function setting. By inspecting the proofs of
the main results in [10,14,32] it has turned out that, up to our ability, only the complex
methods from [10] admit the possibility to generalize the result to a mixed situation,
see Remark 13 below for further details.

The existence of ultraholomorphic extension results is tightly connected to the
opening of the sectors where the functions are defined. In the previous results [10,12,
14,32] growth indices γ (M) and γ (ω) have been introduced to measure the maximum
size of these sectors, for a detailed study and comparison of these values we refer
to [11]. Then a similar notion is required in the mixed setting to obtain satisfactory
theorems. Therefore, motivated by the occurring mixed ramified conditions between
M and N and their associated weight functions ωM and ωN appearing in [13] the
definition of the mixed growth index for sequences γ (M, N ) and for weight functions
γ (σ, ω) has been given, see Sect. 3.1.

Under restrictions of the opening of the sectors in terms of these indices, we have
stated the main extension result, Theorem 2, for a pair of two given weight func-
tions, using the weight matrix tool described and used in [22,28]. Then the results are
transferred to the weight sequence case thanks to the associated weight functions.

Compared with the previous known extension results for weight functions (in the
ultraholomorphic setting) we will also treat ”exotic” cases here, more precisely: The
growth property ω(2t) = O(ω(t)) as t → +∞, denoted by (ω1) in this article, will
not be needed in general anymore in the mixed situation. This property is usually a
very basic assumption when working with (Braun–Meise–Taylor) weight functions ω
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and it is equivalent to having γ (ω) > 0 as shown by the authors in [10]. Moreover
(ω1) has also been used to have that the class defined by ω admits a representation by
using the so-called associated weight matrixΩ , see Sect. 2.5 for a summary. Our main
extension result Theorem 2 is formulated between ultraholomorphic classes defined
by weight matrices and we are able to treat such a general situation since in [10]
we have worked with weight functions and their associated weight matrices also in a
”nonstandard” setting, i.e. not assuming (ω1) necessarily. More detailed explanations
will be given in Remark 12 below. In Appendix A such nonstandard examples will be
constructed explicitly and underlining the different situation in our work here.

In the preceding extension results for one sequence, the opening of the sector
where the functions are defined is at most πγ (M). As it will be seen in Sect. 3, for
any sequences M and N satisfying standard assumptions the mixed index γ (M, N ) is
always belonging to the interval [γ (N ), μ(N )], where μ(N ) is denoting the so-called
order of quasianalyticity introduced by the second author, see [12,26]. We know that
even for strongly regular sequences N one can have γ (N ) < μ(N ) and the gap can
become as large as desired, see Remark 8. In these situations, we can provide an
extension map for any opening πγ with γ (N ) ≤ γ < μ(N ) by limiting the size
of the derivatives at the origin in terms of a smaller sequence M . Furthermore, this
sequence M can be chosen optimal in some sense, thanks to a modified version of
the technical construction in [23, Section 4.1]. Hence we can show that the Borel
map will be not surjective necessarily anymore but admitting a controlled loss of
regularity, so that μ(N ), usually related to the injectivity of the Borel mapping, does
have also a meaning associated with the surjectivity. For weight functions the situation
is analogous by introducing the order μ(ω) in Sect. 3.2.

The paper is organized as follows: First, in Sect. 2 all necessary notation and
conditions on weight sequences and functions used in this article will be introduced.
In Sect. 3wewill define and study the newmixed growth indices γ (M, N ) and γ (σ, ω)

and investigate also the connection of these values to the orders μ(N ) and μ(ω). In
Sects. 4 and 5 wewill transfer the results from [10] to the mixed settings and providing
only the necessary changes in the proofs, the main results will be Theorem 2 for
the general mixed weight function case, Corollary 1 for mixed Braun–Meise–Taylor
weight functions having (ω1) and Theorem 4 for the mixed weight sequence case. In
Sect. 6 we will prove mixed extension results fixing only the weight that defines the
function space for any sector with opening smaller than πγ (·), see Theorems 5 and
6. Finally, in the Appendix A, we are providing some (counter-)examples showing
γ (M, N ), γ (σ, ω) > 0, but such that all nonmixed indices γ (·) are vanishing, see
Theorem 7.

2 Ultradifferentiable classes defined by weight sequences and
functions

2.1 General notation

Throughout this paper we will use the following notation: We will write N>0 =
{1, 2, . . . } and N = N>0 ∪ {0}, moreover we put R>0 := {x ∈ R : x > 0}.
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2.2 Weight sequences

M = (Mk)k ∈ R
N

>0 is called a weight sequence, we introduce also m = (mk)k defined
by mk := Mk

k! and μk := Mk
Mk−1

, μ0 := 1. Similarly we will use this notation for
sequences N , S, L as well. M is called normalized if 1 = M0 ≤ M1 holds true which
can always be assumed without loss of generality.

For any given weight sequence M and r > 0 we will write M1/r := ((Mp)
1/r )p∈N.

(1) M is called log-convex, we will write (lc), if

∀ j ∈ N>0 : M2
j ≤ M j−1M j+1,

equivalently if (μp)p is nondecreasing. M is called strongly log-convex if (lc)
holds for the sequence m. If M is log-convex and normalized, then M and the
mapping j �→ (M j )

1/ j are nondecreasing, e.g. see [27, Lemma 2.0.4]. In this case
we get Mk ≥ 1 for all k ≥ 0 and

∀ k ∈ N>0 : (Mk)
1/k ≤ μk .

(2) M has moderate growth, denoted by (mg), if

∃ C ≥ 1 ∀ j, k ∈ N : M j+k ≤ C j+k M j Mk .

Wecan replace in this condition M bym and by M1/r (r > 0 arbitrary) by changing
the constant C .

(3) M is called nonquasianalytic, we write (nq), if

∞∑

p=1

1

μp
< ∞.

More generally, for arbitrary r > 0 we call M to be r -nonquasianalytic, denoted
by (nqr ), if

∞∑

p=1

(
1

μp

)1/r

< ∞,

and so M has (nqr ) if and only if M1/r has (nq).
(4) M has (γ1), if

sup
p∈N>0

μp

p

∑

k≥p

1

μk
< ∞.

In the literature (γ1) is also called “strongly nonquasianalyticity condition”.
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Due to technical reasons it is often convenient to assume several properties for M
at the same time and hence we define the class

M ∈ SR, if M is normalized and has (slc), (mg) and (γ1).

Using this notationwe see that M ∈ SR if and only ifm is a strongly regular sequence
in the sense of [32, 1.1] (and this terminology has also been used by several authors so
far, e.g. see [19,26]). At this point we want to make the reader aware that here we are
using the same notation as it has already been used by the authors in [10,14], whereas
in [32] and also in [11] the sequence M is precisely m in the notation in this work.

(5) For two weight sequences M = (Mp)p and N = (Np)p we write M ≤ N if
and only if Mp ≤ Np ⇔ m p ≤ n p holds for all p ∈ N (and similarly for the sequence
of quotients μ and ν) and write M�N if

∃ C1, C2 ≥ 1 ∀ p ∈ N : Mp ≤ C1C p
2 Np ⇐⇒ sup

p∈N>0

(
Mp

Np

)1/p

< +∞

and call them equivalent, denoted by M≈N , if

M�N and N�M .

In the relations above one can replace M and N simultaneously by m and n because
M�N ⇔ m�n.

Some properties for weight sequences are very basic and so we introduce for con-
venience the following set:

LC := {M ∈ R
N

>0 : M is normalized, log-convex, lim
k→∞(Mk)

1/k = +∞}.

It is well-known (e.g. see [23, Lemma 2.2]) that for any M ∈ LC condition (mg)
is equivalent to supp∈N

μ2p
μp

< ∞ and to supp∈N>0

μp+1

(Mp)1/p < ∞.

A prominent example are the Gevrey sequences Gr := (p!r )p∈N, r > 0, which
belong to the class SR for any r > 1.

2.3 Weight functions

A function ω : [0,+∞) → [0,+∞) is called a weight function (in the terminology
of [10, Section2.2]), if it is continuous, nondecreasing,ω(0) = 0 and limt→+∞ ω(t) =
+∞. If ω satisfies in addition ω(t) = 0 for all t ∈ [0, 1], then we call ω a normalized
weight function and for convenience we will write that ω has (ω0).

Given an arbitrary functionωwewill denote byωι the functionωι(t) := ω(1/t) for
any t > 0. Moreover, for r > 0, we put ωr to be the function given by ωr (t) := ω(tr ).

Moreover we consider the following conditions, this list of properties has already
been used in [28].

(ω1) ω(2t) = O(ω(t)) as t → +∞, i.e.∃ L ≥ 1 ∀ t ≥ 0 : ω(2t) ≤ L(ω(t)+1).
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(ω2) ω(t) = O(t) as t → +∞.
(ω3) log(t) = o(ω(t)) as t → +∞ (⇔ limt→+∞ t

ϕω(t) = 0, ϕω being the function
defined next).

(ω4) ϕω : t �→ ω(et ) is a convex function on R.
(ω5) ω(t) = o(t) as t → +∞.
(ω6) ∃ H ≥ 1 ∀ t ≥ 0 : 2ω(t) ≤ ω(Ht) + H .

(ωnq)
∫ +∞
1

ω(t)
t2

dt < +∞.

(ωsnq) ∃ C > 0 ∀ y > 0 : ∫ +∞
1

ω(yt)
t2

dt ≤ Cω(y) + C .

An interesting example is σs(t) := max{0, log(t)s}, s > 1, which satisfies all listed
properties except (ω6). It is well-known that the ultradifferentiable class defined by
using the weight t �→ t1/s coincides with the ultradifferentiable class given by the
weight sequence Gs = (p!s)p∈N of index s > 1.

For convenience we define the sets

W0 := {ω : [0,∞) → [0,∞) : ω has (ω0), (ω3), (ω4)},
W := {ω ∈ W0 : ω has (ω1)}.

For any ω ∈ W0 we define the Legendre–Fenchel–Young-conjugate of ϕω by

ϕ∗
ω(x) := sup{xy − ϕω(y) : y ≥ 0}, x ≥ 0,

with the following properties, e.g. see [6, Remark 1.3, Lemma 1.5]: It is convex and
nondecreasing, ϕ∗

ω(0) = 0, ϕ∗∗
ω = ϕω, limx→+∞ x

ϕ∗
ω(x)

= 0 and finally x �→ ϕω(x)
x and

x �→ ϕ∗
ω(x)

x are nondecreasing on [0,+∞). For any ω ∈ W we can assume w.l.o.g.
that ω is C 1 (see [6, Lemma 1.7]).

Let σ, τ be weight functions, we write σ�τ if τ(t) = O(σ (t)) as t → +∞ and
call them equivalent, denoted by σ∼τ , if σ�τ and τ�σ .

Motivated by the notion of a strong weight function given in [3]

ω will be called a strong weight, if ω ∈ W0 and in addition (ωsnq) is satisfied.

Note that for any weight function property (ωnq) implies (ω5) because
∫ +∞

t
ω(u)

u2
du ≥

ω(t)
∫ +∞

t
1

u2
du = ω(t)

t .
If ω satisfies any of the properties (ω1), (ω3), (ω4) or (ω6), then the same holds for

ωr , but (ω5), (ωnq) or (ωsnq) might not be preserved.
Concerning condition (ωnq) we point out that

∫ ∞

1

ωr (u)

u2 du =
∫ ∞

1

ω(ur )

u2 du = 1

r

∫ ∞

1

ω(v)

u2

dv

ur−1 = 1

r

∫ ∞

1

ω(v)

v1+1/r
dv, (1)

hence it makes sense to consider the following generalization (ωnqr
) (analogously to

(nqr )):

∫ ∞

1

ω(u)

u1+1/r
du < +∞.
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Then ωr has (ωnq) if and only if ω has (ωnqr
).

2.4 Weight matrices

For the following definitions see also [22, Section 4].
Let I = R>0 denote the index set (equipped with the natural order), a weight

matrix M associated withI is a (one parameter) family of weight sequencesM :=
{Mx ∈ R

N

>0 : x ∈ I }, such that

∀ x ∈ I : Mx is normalized, nondecreasing, Mx ≤ M y for x ≤ y.

For convenience we will write (M ) for this basic assumption onM . We call a weight
matrixM standard log-convex, denoted by (Msc), ifM has (M ) and

∀ x ∈ I : Mx ∈ LC .

Moreover, we put mx
p := Mx

p
p! for p ∈ N, and μx

p := Mx
p

Mx
p−1

for p ∈ N>0, μx
0 := 1.

A matrix is called constant if Mx≈M y for all x, y ∈ I .
Let M = {Mx : x ∈ I } and N = {N x : x ∈ J } be (M ). We write M {�}N

if

∀ x ∈ I ∃ y ∈ J : Mx�N y,

and call them equivalent, denoted by M {≈}N , ifM {�}N and N {�}M .

2.5 Weight matrices obtained by weight functions

We summarize some facts which are shown in [22, Section 5] and will be needed in
this work. All properties listed below will be valid for ω ∈ W0, except (3) for which
(ω1) is necessary.

(i) The idea was that to each ω ∈ W0 we can associate a (Msc) weight matrix Ω :=
{W l = (W l

j ) j∈N : l > 0} by

W l
j := exp

(
1

l
ϕ∗

ω(l j)

)
.

In general it is not clear that W x is strongly log-convex, i.e. wx is log-convex, too.
(ii) Ω satisfies

∀ l > 0 ∀ j, k ∈ N : W l
j+k ≤ W 2l

j W 2l
k . (2)

In case ω has moreover (ω1), Ω has also

∀ h ≥ 1 ∃ A ≥ 1 ∀ l > 0 ∃ D ≥ 1 ∀ j ∈ N : h j W l
j ≤ DW Al

j . (3)

(iii) Equivalent weight functions yield equivalent associated weight matrices.
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(iv) (ω5) holds if and only if limp→+∞(wl
p)

1/p = +∞ for all l > 0.

Moreover we have:

Remark 1 Let ω ∈ W0 be given, then ω satisfies

(a) (ωnq) if and only if some/each W l satisfies (nq),
(b) (ω6) if and only if some/each W l satisfies (mg) if and only if W l≈W n for each

l, n > 0. Consequently (ω6) is characterizing the situation when Ω is constant.

2.6 Associated weight functions!M and hM

Let M ∈ R
N

>0 (with M0 = 1), then the associated function ωM : R≥0 → R ∪ {+∞}
is defined by

ωM (t) := sup
p∈N

log

(
t p

Mp

)
for t > 0, ωM (0) := 0.

For an abstract introduction of the associated function we refer to [20, Chapitre I], see
also [15, Definition 3.1]. If lim inf p→∞(Mp)

1/p > 0, then ωM (t) = 0 for sufficiently

small t , since log
(

t p

Mp

)
< 0 ⇔ t < (Mp)

1/p holds for all p ∈ N>0. Moreover under

this assumption t �→ ωM (t) is a continuous increasing function, which is convex in
the variable log(t) and tends faster to infinity than any log(t p), p ≥ 1, as t → +∞.
limp→∞(Mp)

1/p = +∞ implies that ωM (t) < +∞ for each finite t which shall be
considered as a basic assumption for defining ωM .

For all t, r > 0 we get

ωr
M (t) = ωM (tr ) = sup

p∈N
log

(
tr p

Mp

)
= sup

p∈N
log

((
t p

(Mp)1/r

)r)
= rωM1/r (t), (4)

recalling M1/r
p = (Mp)

1/r .
We collect some well-known properties for ωM (e.g. see [10, Lem. 2.4] and [14,

Lem. 3.1]).

Lemma 1 Let M ∈ LC be given, then we get:

(i) ωM belongs always to W0.
(ii) If M satisfies (γ1), then ωM has (ωsnq) (which implies (ω1)).
(iii) M has (mg) if and only if ωM has (ω6).

Let M ∈ R
N

>0 (with M0 = 1) and put

hM (t) := inf
k∈N Mktk . (5)

The functions hM and ωM are related by

hM (t) = exp(−ωM (1/t)) = exp(−ωι
M (t)) ∀ t > 0, (6)
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since log(hM (t)) = infk∈N log(tk Mk) = − supk∈N − log(tk Mk) = −ωM (1/t) (e.g.
see also [7, p. 11]).

If M ∈ LC , then M has (mg) if and only if

∃ C ≥ 1 ∀ t > 0 : hM (t) ≤ hM (Ct)2, (7)

e.g. see [23, Lemma 2.4, Remark 2.5].
Starting with a weight function we recall the following consequence of (2), see

again [23, Remark 2.5].

Lemma 2 Let ω ∈ W0 be given and Ω = {W l : l > 0} the matrix associated with ω.
Then we have

∃ A ≥ 1 ∀ l > 0 ∀ s > 0 : hWl (s) ≤ hW 2l (As)2. (8)

2.7 Classes of ultraholomorphic functions

We introduce now the classes under consideration in this paper, see also [10, Section
2.5] and [14, Section 2.5]. For the following definitions, notation and more details we
refer to [26, Section 2]. Let R be the Riemann surface of the logarithm. We wish to
work in general unbounded sectors in R with vertex at 0, but all our results will be
unchanged under rotation, so we will only consider sectors bisected by direction 0:
For γ > 0 we set

Sγ :=
{

z ∈ R : | arg(z)| <
γπ

2

}
,

i.e. the unbounded sector of opening γπ , bisected by direction 0.
Let M be a weight sequence, S ⊆ R an (unbounded) sector and h > 0. We define

AM,h(S) := { f ∈ H (S) : ‖ f ‖M,h := sup
z∈S,p∈N

| f (p)(z)|
h p Mp

< +∞}.

(AM,h(S), ‖ · ‖M,h) is a Banach space and we put

A{M}(S) :=
⋃

h>0

AM,h(S).

A{M}(S) is called the Denjoy–Carleman ultraholomorphic class (of Roumieu type)
associated with M in the sector S (it is an (L B) space). Analogously we introduce the
space of complex sequences

ΛM,h :=
{

a = (ap)p ∈ C
N : |a|M,h := sup

p∈N
|ap|

h p Mp
< +∞

}
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and put Λ{M} := ⋃
h>0 ΛM,h . The (asymptotic) Borel map B is given by

B : A{M}(S) −→ Λ{M}, f �→ ( f (p)(0))p∈N,

where f (p)(0) := limz∈S,z→0 f (p)(z).
Similarly as for the ultradifferentiable case,we nowdefine ultraholomorphic classes

associated with a normalized weight function ω satisfying (ω3). Given an unbounded
sector S, and for every l > 0, we first define

Aω,l(S) :=
{

f ∈ H (S) : ‖ f ‖ω,l := sup
z∈S,p∈N

| f (p)(z)|
exp( 1l ϕ

∗
ω(lp))

< +∞
}

.

(Aω,l(S), ‖ · ‖ω,l) is a Banach space and we put

A{ω}(S) :=
⋃

l>0

Aω,l(S).

A{ω}(S) is called the Denjoy–Carleman ultraholomorphic class (of Roumieu type)
associated with ω in the sector S (it is an (L B) space). Correspondingly, we introduce
the space of complex sequences

Λω,l :=
{

a = (ap)p ∈ C
N : |a|ω,l := sup

p∈N
|ap|

exp( 1l ϕ
∗
ω(lp))

< +∞
}

and put Λ{ω} := ⋃
l>0 Λω,l . So in this case we get the Borel map B : A{ω}(S) −→

Λ{ω}.
Finally, we recall the ultraholomorphic function classes of Roumieu type defined by

a weight matrixM , introduced in [10, Section 2.5] and [14, Section 2.5] and inspired
by the analogous ultradifferentiable classes considered in [28, Section 7] and also
in [22, Section 4.2].

Given a weight matrixM = {Mx ∈ R
N

>0 : x ∈ R>0} and a sector S we may define
ultraholomorphic classes A{M }(S) of Roumieu type as

A{M }(S) :=
⋃

x∈R>0

A{Mx }(S),

and accordingly, Λ{M } := ⋃
x∈R>0

Λ{Mx }.
Let now ω ∈ W be given and letΩ be the associated weight matrix defined in Sect.

2.5 (i), then
A{ω}(S) = A{Ω}(S) (9)

holds as locally convex vector spaces. This equality is an easy consequence of [22,
Lemma 5.9 (5.10)] (see (3)) and the way how the seminorms are defined in these
spaces. As one also has Λ{ω} = Λ{Ω}, the Borel map B makes sense in these last
classes,B : A{Ω}(S) −→ Λ{Ω}.
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In any of the considered ultraholomorphic classes, an element f is said to be flat if
f (p)(0) = 0 for every p ∈ N, that is,B( f ) is the null sequence.

3 Mixed growth indices for extension results

3.1 The indices �(M,N) and �(�,!)

First, for r > 0 we introduce the following condition which will be denoted by (γr ),
see [30] for r ∈ N>0 and [32, Lemma 2.2.1] for r > 0:

sup
p∈N>0

(μp)
1/r

p

∑

k≥p

(
1

μk

)1/r

< +∞.

It is immediate that M has (γr ) if and only if M1/r has (γ1). In [32, Definition 1.3.5]
the growth index γ (M) has been introduced (for strongly regular sequences and using
a definition which is not based on property (γr ) directly). In [11, Thm. 3.11, Cor. 3.12]
we have shown for M ∈ LC that

γ (M) = sup{r > 0 : M satisfies (γr )}.

One can prove that M has (γr ) if and only if γ (M) > r (see [11, Cor. 3.12]).
Let M, N ∈ R

N

>0 with μp ≤ Cνp for some C ≥ 1 and all p ∈ N. For r > 0 we
introduce the following growth property: We write (M, N )γr if

sup
p∈N>0

(μp)
1/r

p

∑

k≥p

(
1

νk

)1/r

< +∞,

and the mixed growth index is defined by

γ (M, N ) := sup{r > 0 : (M, N )γr is satisfied}.

If none condition (M, N )γr holds true, then we put γ (M, N ) := 0. It is evident that
γ (M, M) = γ (M) is valid.

Remark 2 Let M, N ∈ LC with μp ≤ Cνp (note that w.l.o.g. we can take C = 1,
otherwise replace νp by ν̃p := Cνp).

(i) Given r > 0, for any 0 < r ′ < r we see that (M, N )γr implies (M, N )γr ′ , since
we can write

(μp)
1/r ′

p

∑

k≥p

(
1

νk

)1/r ′

= (μp)
1/r

p

∑

k≥p

(
1

νk

)1/r (
μp

νk

)(r−r ′)/(r ′r)

,

and μp ≤ Cνp ≤ Cνk for all 1 ≤ p ≤ k.
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(ii) Moreover, in (M, N )γr we can equivalently consider (μp)1/r

p

∑
k≥p+1

(
1
νk

)1/r

since

(μp)
1/r

p

∑

k≥p+1

(
1

νk

)1/r

≤ (μp)
1/r

p

∑

k≥p

(
1

νk

)1/r

≤ C1/r

p
+ (μp)

1/r

p

∑

k≥p+1

(
1

νk

)1/r

.

In order to see how these definitions have been motivated, we are describing next
the appearance of such (non-)mixed relations in the literature.

Remark 3 Condition (γ1) has appeared as (standard) condition (M3) in [15] and in
[21] where it has been used to characterize the validity of Borel’s theorem in the
ultradifferentiable weight sequence setting.

Condition (M, N )γ1 has appeared in the mixed weight sequence situations in [7]
(for the Whitney jet map) and in [31] for the Borel map. More precisely in [31] it has
turned out that the characterizing condition is not (M, N )γ1 directly, but does coincide
with this condition whenever M has (mg) (as it has been assumed in [7]), see also
Remark 6 below.

In [30], condition (γr ) has appeared (for r ∈ N>0) and it has also been used by
the authors in [12]. In these works (γr ) played a key-role proving extension theorems
for ultraholomorphic classes defined by weight sequences since one is working with
auxiliary ultradifferentiable-like function classes first defined in [30]. In [32, Lemma
2.2.1] this condition has been introduced for r > 0 arbitrary and a connection to the
value γ (M) has been given.

Finally, condition (M, N )γr has appeared in the recent work by the authors [13]
(mainly again for r ∈ N>0). There we have generalized the results from[31] to the
auxiliary ultradifferentiable-like function classes, moreover in [13, Theorem 5.9], we
have given a generalization of the ultradifferentiable Whitney extension results from
[7] involving a ramification parameter r > 0.

Nowwe turn to the weight function situation. Letω be a weight function and r > 0,
we write (ωγr ) if

∃ C > 0 ∀ t ≥ 0 :
∫ ∞

1

ω(tu)

u1+1/r
du ≤ Cω(t) + C

holds true. Using this growth property, by [11, Lemma 2.10, Theorem 2.11] we have

γ (ω) = sup{r > 0 : M satisfies (ωγr )},

with γ (ω) denoting the growth index used and introduced in [10], [14] (by considering
a different growth property of ω which is not based on (ωγr )). Note also that

1
γ (ω)

does
coincidewith the so-calledupper Matuszewska index, see [1, p. 66]. For amore detailed
study of γ (ω) and its connection to the indices studied in [1] we refer to Section 2 in
the authors’ recent work [11].
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Let ω, σ be weight functions with σ�ω (i.e. ω(t) = O(σ (t))) and r > 0, we write
(σ, ω)γr if

∃ C > 0 ∀ t ≥ 0 :
∫ ∞

1

ω(tu)

u1+1/r
du ≤ Cσ(t) + C,

and the mixed growth index is defined by

γ (σ, ω) := sup{r > 0 : (σ, ω)γr is satisfied}.

If none condition (σ, ω)γr holds true, then we put γ (σ, ω) := 0 and it is immediate
that γ (ω, ω) = γ (ω). It is also clear that (σ, ω)γr implies (σ, ω)γr ′ for all 0 < r ′ < r .

Similarly as before we are describing the appearance of such (non-)mixed relations
in the literature.

Remark 4 (ωγ1), which is precisely (ωsnq), has appeared forω = ωM in [15], and in [3]
this condition has been characterized in terms of the validity of the ultradifferentiable
Whitney extension theorem in the weight function setting.

The mixed condition (σ, ω)γ1 has been treated in [5] for the Borel map and in [24]
and [25] for the general Whitney jet map (see also [17] for compact convex sets). In
these works, condition (σ, ω)γ1 has been identified as the characterizing property.

Finally, in [13, Theorem 5.9] we have introduced (ωM , ωN )γr in order to prove a
generalization of the ultradifferentiable Whitney extension results from[7] (again by
involving a ramification parameter r > 0).

The next observation gives the connection between γ (N ) and γ (M, N ), resp.
between γ (ω) and γ (σ, ω).

Lemma 3 Let M, N ∈ LC be given with μp ≤ νp and ω, σ be weight functions with
σ�ω. Then we have

γ (N ) ≤ γ (M, N ), γ (ω) ≤ γ (σ, ω).

Proof First, if γ (N ) = 0, γ (ω) = 0, then the conclusion is clear. If these values are
strictly positive, then for any 0 < r < γ (N ), γ (ω)we get that (γr ) for N and (ωγr ) for
ω hold true and so also (M, N )γr and (σ, ω)γr are valid (for any M having μp ≤ νp,
σ having σ�ω). ��
Remark 5 The motivation of defining the mixed growth indices (especially for weight
functions) was arising by proving [13, Theorem 5.9].

First we wish to mention that in [7, Commentaires 32] it was observed (without
giving a proof) that there is a connection between (M, N )γ1 and (σ, ω)γ1 (under
suitable basic assumptions on M, N ): They have stated that (M, N )γ1 does imply
(ωM , ωN )γ1 and so generalizing [15, Prop. 4.4] to a mixed setting. In [24, Lemma
5.7] a detailed proof of this implication is given, and in [13, Lemma 5.7] we have
generalized this result by involving a ramification parameter r > 0.

We recall the next statementwhich has been shown in [13, Lemmas 5.7, 5.8] in order
to see howγ (M, N ) andγ (ωM , ωN ) are related. This result is the generalization of [11,
Corollary 4.6 (iii)] to the mixed setting.



Ultraholomorphic extension theorems in the mixed setting 1643

Lemma 4 Let M, N ∈ LC be given with μp ≤ νp (which is equivalent to μr
p ≤ νr

p
for all r > 0 and implies Mr ≤ Nr ). Assume that (M, N )γr holds true for r > 0.
Then the associated weight functions are satisfying

∃ C > 0 ∀ t ≥ 0 :
∫ ∞

1

ωN (tu)

u1+1/r
du ≤ CωM (t) + C,

i.e. (ωM , ωN )γr is satisfied (recall that M ≤ N implies ωN (t) ≤ ωM (t) for all t ≥ 0).
Consequently, for sequences M and N as assumed above, we always getγ (M, N ) ≤

γ (ωM , ωN ).
If M does have in addition (mg), then γ (M, N ) = γ (ωM , ωN ) holds true.

Remark 6 For themain results about the surjectivity of the Borel map in ramified ultra-
differentiable classes [13, Thm. 3.2, Thm. 4.2, Thm. 5.5] a weaker but characterizing
condition has to be considered. More precisely, in [31] the following condition has
been introduced (denoted by (∗) there):

∃ s ∈ N>0 : sup
p∈N>0

λ
M,N
p,s

p

∞∑

k=p

1

νk
< +∞,

with λ
M,N
p,s := sup0≤ j<p

(
Mp

s p N j

)1/(p− j)
.

In [13] we have generalized this condition to

∃ s ∈ N>0 : sup
p∈N>0

(λ
M,N
p,s )1/r

p

∞∑

k=p

(
1

νk

)1/r

< +∞,

denoted by (M, N )SVr (and used for r ∈ N>0 in the main results). Hence it seems to
be reasonable to define

γ (M, N )SV := sup{r ∈ R>0 : (M, N )SVr is satisfied}.

In general we only know that (M, N )γr implies (M, N )SVr , see [13, Lemma 2.4].
However, under the standard assumptions of the main results, that is M, N ∈ LC
with μp ≤ νp and such that M does have (mg), Lemma 4 combined with [13, Lemma
2.4 and (2.5)] yield

γ (ωM , ωN ) = γ (M, N ) = γ (M, N )SV.

We summarize several more properties.

Remark 7

(i) By definition it is clear that (M, N )γr if and only if (M1/r , N 1/r )γ1 , recalling

M1/r
p = (Mp)

1/r , N 1/r
p = (Np)

1/r .
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Similarly (σ, ω)γr holds true if and only if (σ r , ωr )γ1 for the weights ωr given by
ωr (t) = ω(tr ) and σ r (t) = σ(tr ), because

∫ ∞

1

ω((tu)r )

u2 du = 1

r

∫ ∞

1

ω(trv)

u2

dv

ur−1 = 1

r

∫ ∞

1

ω(trv)

v1+1/r
dv,

and then replace tr by t (see also (1)).
Summarizing, for all 0 < r < γ (M, N ) we get (M1/r , N 1/r )γ1 , whereas for all
0 < r < γ (σ, ω) we have (σ r , ωr )γ1 and so

∀ r > 0 : γ (Mr , Nr ) = rγ (M, N ), γ (σ 1/r , ω1/r ) = rγ (σ, ω), (10)

which generalizes this fact from γ (M) and γ (ω).
(ii) (σ, ω)γr implies

∫ ∞
1

ω(tu)

u1+1/r du ≥ ω(t)
∫ ∞
1

1
u1+1/r du = rω(t) (ω is nondecreasing).

(iii) The value p = 1 in (M, N )γr implies that N 1/r satisfies (nq), i.e. N has (nqr ).
The value t = 1 in (σ, ω)γr yields

∫ ∞
1

ω(u)

u1+1/r du ≤ C1 and the calculation in (i)
proves that ωr satisfies (ωnq), or (ωnqr

) for ω. Consequently (ω5) follows for ωr ,
too.

3.2 Orders of quasianalyticity�(N) and�(!)

In the ultraholomorphic weight sequence setting another important growth index is
known and related to the injectivity of the asymptotic Borel map, the so-called order
of quasianalyticity. It has been introduced in [26, Def. 3.3, Thm. 3.4], see also [9], [12]
and [11]. We use the notation from [11] to avoid confusion in the weight function case
below and to have a unified notation (coming from[1, p. 73]).

For given N ∈ LC we set

μ(N ) := sup{r ∈ R>0 :
∑

k≥1

(
1

νk

)1/r

< +∞} = sup{r ∈ R>0 : N has (nqr )} = 1

λ(νp)p

,

(11)

with λ(νp)p := inf
{
α > 0 : ∑

p≥1

(
1
νp

)α

< ∞
}
denoting the so-called exponent of

convergence of N , see [26, Prop. 2.13, Def. 3.3, Thm. 3.4] and also [12, p. 145].
If none (nqr ) holds true, then we put μ(N ) := 0. If M ∈ LC and M≈N , then

μ(M) = μ(N ) since each (nqr ) is stable under ≈.
A first immediate consequence is the following:

Lemma 5 Let M, N ∈ LC with μp ≤ Cνp, then

γ (M, N ) ≤ μ(N ).

Proof Note that for r > μ(N ) property (M, N )γr cannot be valid for any choice M
(see (i i i) in Remark 7). ��
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Remark 8 Lemmas 3 and 5 together yield

γ (N ) ≤ γ (M, N ) ≤ μ(N ).

Hence the mixed index γ (M, N ) can become crucial whenever γ (N ) < μ(N ) does
hold true. In general the gap between γ (N ) and μ(N ) can be as large as desired even
if N ∈ SR, see [11, Remark 4.13] and [8, Section 2.2.5] for more details.

According to this observation one can ask now the following question: Is it possible
to get extension results for values γ > 0 with γ (N ) ≤ γ < μ(N )? As we will see
in Sect. 5, for values γ < γ (M, N ) we can prove extension results in a mixed setting
between M and N but it is still not clear how large the gap between γ (M, N ) and
μ(N ) can be in general.

Given N ∈ LC and r > 0 we consider

∃ M ∈ LC , μp ≤ Cνp : sup
p∈N>0

(μp)
1/r

p

∑

k≥p

(
1

νk

)1/r

< +∞, (12)

and
sup{r ∈ R>0 : (12) is satisfied}. (13)

If for none r > 0 (12) holds true, then the sup in (13) equals 0. As commented in
Remark 2, given N ∈ LC and r > 0 with having (12) for some choice M ∈ LC ,
μp ≤ Cνp, then this M is sufficient to guarantee (12) for all 0 < r ′ < r as well.

In [26, Theorem 3.4] (see also (11)) it has been shown that for any N ∈ LC we
have

μ(N ) = lim inf
p→∞

log(μp)

log(p)
.

Thus for given N ∈ LC and 0 < r < μ(N ) we see that νp ≥ pr for all p ∈
N sufficiently large and Cνp ≥ pr for all p ∈ N by choosing C large enough.
Consequently, in (12) the choice M ≡ Gr , i.e. the Gevrey sequence with index r > 0,
does always make sense and the next result is becoming immediate:

Proposition 1 Let N ∈ LC be given, then

sup{r ∈ R>0 : (12) is satisfied} = μ(N ).

Proof If μ(N ) = 0, then we have obviously equality. So let now μ(N ) > 0.
First, if 0 < r < sup{r ∈ R>0 : (12) is satisfied}, then the choice p = 1 in (12)

immediately implies (nqr ) for N , hence r ≤ μ(N ) and so the first half is shown.
Conversely, let r < μ(N ) be given, then (12) is satisfied forμp = pr which can be

taken as seen above. Hence μ(N ) ≤ sup{r ∈ R>0 : (12) is satisfied} is also shown
and we are done. ��

A disadvantage of taking directly M ≡ Gr is that it is not clear that this precise
choice is optimal in the sense that it is the largest sequence μp ≤ Cνp admitting (12).
To obtain this optimal sequence we recall the following construction: In [23, Section
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4.1], which is based on an idea arising in the proof of [21, Proposition 1.1], it has been
shown that to each N ∈ LC satisfying (nq) we can associate a sequence SN with
good regularity properties which has been denoted by descendant.

For the reader’s convenience we recall now the construction in the following obser-
vation and are involving a ramification parameter r > 0 as well.

Remark 9 Let N ∈ LC be given and satisfying (nqr ), r > 0. Then there does exist a
sequence SN ,r , the so-called descendant of N 1/r defined by its quotients

σ
N ,r
k := τ r

1 k

τ r
k

, σ
N ,r
0 := 1,

with

τ r
k := k

(νk)1/r
+

∑

j≥k

(
1

ν j

)1/r

, k ≥ 1.

So SN ,r is depending on both given N and r > 0 and satisfies the following properties
(see [23, Lemma 4.2]):

(i) σ
N ,r
k ≥ 1 for all k ∈ N, s N ,r := (SN ,r

k /k!)k∈N ∈ LC (so SN ,r is strongly
log-convex),

(ii) there exists C > 0 such that σ N ,r
k ≤ C(νk)

1/r for all k ∈ N,
(iii) (SN ,r , N 1/r )γ1 , then γ (SN ,r , N 1/r ) ≥ 1,
(iv) if N enjoys (mg) (equivalently N 1/r does so for some/each r > 0), then SN ,r

does have (mg) too (r > 0 arbitrary).
(v) SN ,r is optimal/maximal in the following sense: If M ∈ LC is given with

μk ≤ C(νk)
1/r and (M, N 1/r )γ1 , then μk ≤ Dσ

N ,r
k follows.

We also have that C−1σ
N ,r
k ≤ (νk)

1/r ≤ Cσ
N ,r
k if and only if N 1/r does have

(γ1) resp. if and only if (N , N )γr .

We have that s N ,r ≤ Cs N ,r ′ ⇔ SN ,r ≤ C SN ,r ′
for all 0 < r ′ ≤ r (since r �→ τ r

k
is increasing for all k ∈ N fixed).

Unfortunately this construction is in general not well-behaved under applying ram-
ification, i.e. σ N ,r �= (σ N ,1)1/r .

Now we put
L N ,r := (SN ,r )r . (14)

Hence L N ,r ∈ LC and moreover

(a) ((L N ,r )1/r , N 1/r )γ1 , equivalently (L N ,r , N )γr holds true and so γ (L N ,r , N ) ≥ r ,
(b) λ

N ,r
k = (σ

N ,r
k )r ≤ Cνk for all k ∈ N and so (L N ,r , N )γr ′ for all 0 < r ′ < r as

well (see (i) in Remark 2),
(c) if M ∈ LC is given with μk ≤ Cνk and (M, N )γr , i.e. (M1/r , N 1/r )γ1 , then for

all k ∈ N, μk ≤ Dr (σ
N ,r
k )r = Drλ

N ,r
k and, consequently, L N ,r is maximal (up

to a constant) among all sequences satisfying μk ≤ Cνk and (M, N )γr ,
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(d) SN ,r has (mg) if and only if L N ,r does so.

According to the maximality (c) mentioned above, we point out that we have λ
N ,r
k =

(σ
N ,r
k )r ≥ kr for all k ∈ N, and so L N ,r ≥ Gr . Moreover, one can show that

limk→∞
λ

N ,r
k
kr = ∞ which implies

(
Gr

k

L N ,r
k

)1/k

→ 0 as k → +∞ and so L N ,r is

strictly larger than Gr .
As mentioned above, condition (mg) for N does always imply this property for

the descendant SN ,1 =: S. However we can obtain a precise characterization of this
growth behavior.

Lemma 6 Let N ∈ LC having (nq) be given and S := SN ,1 shall denote its descen-
dant. Then S does have (mg) if and only if

∃ C ≥ 1 ∀ k ∈ N>0 : ν2k

νk
≤ C + C

ν2k

2k

∑

j≥2k

1

ν j
. (15)

Proof Since S ∈ LC , this sequence has (mg) if and only if supk∈N
σ2k
σk

< ∞, e.g. see
[23, Lemma 2.2]. By the definitions given in Remark 9we get that σ2k ≤ Dσk ⇔ τk ≤
D
2 τ2k (with τk ≡ τ 1k ) which is equivalent to k

νk
+ ∑

j≥k
1
ν j

≤ D k
ν2k

+ D
2

∑
j≥2k

1
ν j

and so to having k
νk

+ ∑2k−1
j=k

1
ν j

≤ D k
ν2k

+ ( D
2 − 1)

∑
j≥2k

1
ν j
. So finally (mg) is

equivalent to

∃ D ≥ 1 ∀ k ∈ N>0 : ν2k

νk
+ ν2k

k

2k−1∑

j=k

1

ν j
≤ D + (

D

2
− 1)

ν2k

k

∑

j≥2k

1

ν j
. (16)

The sum on the left-hand side above is estimated by below by k
ν2k

and by above by k
νk

(since (νk)k is increasing). Hence (16) implies ν2k
νk

+ 1 ≤ D + (D − 2) ν2k
2k

∑
j≥2k

1
ν j

and so (15) with C = D − 1 follows, whereas (15) implies ν2k
νk

+ ν2k
k

∑2k−1
j=k

1
ν j

≤
ν2k
νk

+ ν2k
νk

≤ 2C + C ν2k
k

∑
j≥2k

1
ν j

and (16) follows with D := 4C . ��
Concerning the characterizing condition (15) we point out that (as expected) it is

obviously satisfied if N has (mg), i.e. supk∈N
ν2k
νk

< ∞, and moreover:

(i) The right-hand side in (15) is bounded if and only if (γ1) is valid for N since
for all k ≥ 1 we get ν2k

2k

∑
j≥2k

1
ν j

≥ 1
2

ν2k−1
2k−1

∑
j≥2k−1

1
ν j

− 1
2

ν2k−1
2k−1

1
ν2k−1

and so
ν2k−1
2k−1

∑
j≥2k−1

1
ν j

≤ 2 ν2k
2k

∑
j≥2k

1
ν j

+ 1
2k−1 .

(ii) In this case S is equivalent to N and so S has (mg) if and only if N has this
property.

(iii) Instead of having (15) one can study the more ”compact and easy to handle”
requirement

lim inf
k→∞

νk

k

∑

j≥2k

1

ν j
> 0. (17)
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Since (15) is equivalent to having 2
C ≤ 2 νk

ν2k
+ νk

k

∑
j≥2k

1
ν j

and (17) to νk
k

∑
j≥2k

1
ν j

≥
ε for some ε > 0 and all k ∈ N>0 we immediately get that (17) implies (15).

However, the converse is not clear in general: If N has in addition limk→∞ ν2k
νk

=
∞, i.e. (β0

2 ) in [21], then (15) still can be valid. But, as shown in [21, Proposition
1.1.(b), (β0

2 ) ⇒ (γ2)], this would yield limk→∞ νk
k

∑
j≥2k

1
ν j

= 0 and so making (17)
impossible.

We are now studying an example which shows that the characterization obtained
in Lemma 6 can hold true even if N does not have (mg).

Example 1 Put ν0 := 1 and

νk := 2p((p + 1)! − p!) = 2p p!p for p! ≤ k < (p + 1)!, p ∈ N≥1.

By definition we have N ∈ LC and

∑

j≥1

1

ν j
=

∞∑

l=1

(l+1)!−1∑

j=l!

1

ν j
=

∞∑

l=1

(l + 1)! − l!
2l l!l =

∞∑

l=1

1

2l
= 1,

which shows (nq).
N does not have (mg) because for any k ∈ N≥1 with k < (p+1)! ≤ 2k < (p+2)!,

p ≥ 1, we get ν2k
νk

= 2 (p+1)2

p which tends to infinity as k → ∞.
Finally let us show that (17) holds (and so (15)). Let now k ∈ N be given with

p! ≤ 2k < (p + 1)!, p ≥ 2. We split the sum

νk

k

∑

j≥2k

1

ν j
= νk

k

(p + 1)! − 2k

2p p!p + νk

k

∑

l≥p+1

(l + 1)! − l!
2l l!l = νk

k

(p + 1)! − 2k

2p p!p + νk

k

1

2p
,

and remark that both summands are nonnegative for all k ∈ N under consideration.
We study the second summand and distinguish between two cases. If k < p!, then

we have k ≥ p!/2 ≥ (p − 1)! and so

νk

k

1

2p
= 2p−1(p − 1)!(p − 1)

k

1

2p
≥ 1

2

(p − 1)!(p − 1)

p! = 1

2

p − 1

p
≥ 1

4
.

If p! ≤ k, then we can estimate by

νk

k

1

2p
= 2p p!p

k

1

2p
≥ p!p

(p + 1)! = p

p + 1
≥ 1

2
.

Thus the descendant S does have (mg). But since N violates this property, N cannot
be equivalent to S and so N does not satisfy (γ1).

Similarly, there does exist also an inverse construction concerning the descendant,
called the predecessor. However, this does not provide any new insight, see Remark
17.
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Analogously as in the weight sequence situation we can treat the weight function
case as well. First, inspired by the weight sequence approach in (11) and condition
(ωnqr

), we define now for any given weight function ω (as in Sect. 2.3) the order of
quasianalyticity by

μ(ω) := sup

{
r ∈ R>0 :

∫ ∞

1

ω(u)

u1+1/r
du < +∞} = sup{r ∈ R>0 : ω has (ωnqr

)

}
.

(18)
If none condition (ωnqr

) holds true, then we put μ(ω) := 0. If σ is another weight
function with ω∼σ ⇔ ωr∼σ r , then μ(ω) = μ(σ) follows since each condition
(ωnqr

) is stable under ∼.
This growth index likely will have an interpretation for the quasianalyticity of

classes of ultraholomorphic functions defined in terms of weight functions, more
precisely in order to prove analogous results to [12], see also [26] and [8].

Analogously to (12) for a given weight function ω and r > 0 we consider now

∃ σ, σ�ω, ∃ C > 0 ∀ t ≥ 0 :
∫ ∞

1

ω(tu)

u1+1/r
du ≤ Cσ(t) + C, (19)

and let
sup{r ∈ R>0 : (19) is satisfied}. (20)

If none (19) holds true, then the sup in (20) equals 0.
Let ω and r > 0 be given and assume that (19) holds with some σ , then the same

choice is sufficient to have (19) for all 0 < r ′ < r as well.
Lemma 5 turns now into:

Lemma 7 Let σ and ω be weight functions (in the sense of Section 2.3) with σ�ω.
Then we get

γ (σ, ω) ≤ μ(ω).

Proof For any r > μ(ω) we see that (ωnqr
) is violated and so (σ, ω)γr cannot be valid

for any choice σ (see (i i i) in Remark 7). ��
Remark 10 Lemmas 3 and 7 together yield

γ (ω) ≤ γ (σ, ω) ≤ μ(ω),

hence the mixed index γ (σ, ω) can become crucial whenever γ (ω) < μ(ω) does hold
true.

The next result is analogous to Proposition 1 and showing that μ(ω) is the upper
value for our considerations.

Proposition 2 Let ω be a weight function (in the sense of Section 2.3). Then we get

sup{r ∈ R>0 : (19) is satisfied} = μ(ω).
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Proof If μ(ω) = 0, then we have obviously equality. So let now μ(ω) > 0.
As commented in (i i i) in Remark 7, if (19) with r > 0 holds true, then ωr has

(ωnq) and consequently sup{r ∈ R>0 : (19) is satisfied} ≤ μ(ω).
Conversely, for each 0 < r < μ(ω), we have that there exist some t0 ≥ 1, ε > 0

and C ≥ 1 such that ω(t) ≤ Ct1/r−ε for all t ≥ t0. Thus for all t ≥ 0 we get:

∫ ∞

1

ω(tu)

u1+1/r
du = A +

∫ ∞

t0

ω(tu)

u1+1/r
du ≤ A + Ct1/r−ε

∫ ∞

t0

1

u1+ε
du ≤ A1 + Bt1/r ,

and so (19) holds true with σ(t) := t1/r . ��
As it happens for weight sequences, the choice σ(t) := t1/r is not optimal. For

each 0 < r < μ(ω) we can define the weight κωr , using here the notation

κω(t) :=
∫ ∞

1

ω(t y)

y2
dy = t

∫ ∞

t

ω(y)

y2
dy. (21)

A weight ω satisfies (ωsnq) (or (ωγ1)) if and only if κω∼ω. κω is called a heir in [24,

Defintion 3.14]. Thus (κ
1/r
ωr , ω)γr and more precisely κ

1/r
ωr is optimal (i.e. minimal),

up to a constant, among the weights satisfying requirement (19).
Note that κ

1/r
ωr is a weight function (in the sense of Sect. 2.3) and moreover (ω1),

(ω3), (ω4) can be transferred from ωr (so from ω) to κωr and so to κ
1/r
ωr (see Sect. 2.3).

The proof of [11, Theorem 2.11 (i) ⇒ (i i)] shows that κωr is concave. (i i) in Remark
7 yields κ

1/r
ωr (t) ≥ ω(t) for all t ≥ 0.

We are closing this section by establishing now the connection between μ(ω) and
μ(W l), with W l ∈ Ω and Ω denoting the matrix associated with ω.

Lemma 8 Let ω ∈ W0 (i.e. a normalized weight function with (ω3) and (ω4)), let
Ω = {W l : l > 0} be the matrix associated with ω. Then we obtain

∀ l > 0 : μ(ω) = μ(ωWl ) = μ(W l). (22)

In particular, if ω ≡ ωN for some given sequence N ∈ LC , then μ(ωN ) = μ(N ).

The last statement yields that, if even n ∈ LC holds true, then μ(ωN ) = μ(N ) =
μ(n) + 1 = μ(ωn) + 1.

Proof First, given r > 0, by the formula on p. 8 in [14] we know that the matrix
associated with the weight ωr coincides with the set {V l,r := (W l/r )1/r : l > 0}, i.e
taking the r -th root of the sequences belonging to Ω and making a re-parametrization
of the index (in terms of r ).

By [22, Cor. 5.8 (1)], which is based on the characterization given in [15, Lemma
4.1] (see also [29, Cor. 4.8]), applied to ωr we know that ωr satisfies (ωnq) if and only
if some/each V l,r does have (nq) and so by the definition of the growth indices given
in (11) and (18) we are done.

If ω ≡ ωN , then this follows immediately by recalling (4) and the definitions of
the growth indices. ��
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Remark 11 In [26, Def. 3.3, Thm. 3.4], by using the connection between μ(N ) and
the so-called exponent of convergence of a nondecreasing sequence of positive real
numbers tending to infinity (see [26, Prop. 2.13] and the references therein), for any
N ∈ LC we obtain μ(N̂ ) = μ(N ) + 1, N̂ := (p!Np)p∈N.

4 Optimal flat functions in themixed setting

4.1 Construction of outer functions

The aim of this paragraph is to obtain holomorphic functions in the right half-plane
of C whose growth is accurately controlled by two given weight functions ω and σ .
Since in the forthcoming sections we want to treat the weight sequence and weight
function case simultaneously we will transfer the general proofs from[10, Section 6]
to a mixed setting.

First we translate (σ, ω)γ1 into a property for σ ι and ωι (recall ωι(t) = ω(1/t)).
The next result should be compared with [10, Lemma 6.1] and [32, Lemma 2.1.1].

Lemma 9 Let ω and σ be weight functions. Then, one has (σ, ω)γ1 if, and only if,

∃ C ≥ 1 ∀ t > 0 :
∫ 1

0
−ωι(tu)du ≥ −C(σ ι(t) + 1).

The next statement recalls [10, Lemma 6.2], see also [32, Lemma 2.1.2].

Lemma 10 Let ω be a weight function. Then ω satisfies (ωnq) if and only if

∫ +∞

−∞
−ωι(|t |)
1 + t2

dt > −∞. (23)

In particular (23) holds true for each ω satisfying (σ, ω)γ1 (and σ some other possibly
quasianalytic weight).

In the next step we are generalizing [10, Lemma 6.3] to a mixed setting, the idea of
the construction in the proof is coming from[32, Lemma 2.1.3].

Lemma 11 Let ω and σ be two weight functions satisfying (σ, ω)γ1 . Then for all a > 0
there exists a function Fa which is holomorphic on the right half-plane H1 := {w ∈
C : �(w) > 0} ⊆ C and constants A, B ≥ 1 (large) depending only on the weights
ω and σ such that

∀ w ∈ H1 : B−a exp(−2aBσ ι(B−1�(w))) ≤ |Fa(w)| ≤ exp
(
−a

2
ωι(A|w|)

)
.

(24)

Proof We are following the lines of the proof of [10, Lemma 6.3], see also [32, Lemma
2.1.3] for the single weight sequence case. Since (σ, ω)γ1 is valid, the weight ω has to
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satisfy (ωnq). Hence for w ∈ H1 we can put

Fa(w) := exp

(
1

π

∫ +∞

−∞
−aωι(|t |)
1 + t2

i tw − 1

i t − w
dt

)
;

Lemma 10 implies immediately that Fa is a holomorphic function in H1. Since
Fa(w) = (F1(w))a , we need only consider in the proof a = 1 and put for simplicity
F := F1.

For w ∈ H1 write w = u + iv, hence u > 0. We have

log(|F(w)|) = 1

π

∫

R

−ωι(|t |) u

(t − v)2 + u2 dt = − 1

π
f ∗ gu(v),

where f (t) := ωι(|t |), gu(t) := u/(t2 + u2). f and gu are symmetrically nonincreas-
ing functions, hence the convolution too, and as argued in [10, Lemma 6.3] this means
that for w �→ log(|F(w)|) the minimum is attained on the positive real axis and we
have for all w ∈ H1:

log(|F(w)|) ≥ log(|F(�(w))|) = log(|F(u)|) = 1

π

∫

R

−ωι(|t |) u

t2 + u2 dt

= − 1

π
f ∗ gu(0).

For the left-hand side in (24) consider K > 0 (small) and get

π log(|F(u)|) =
∫

R

−ωι(|t |) u

t2 + u2 dt

=
∫

{t :|t |≥K u}
−ωι(|t |) u

t2 + u2 dt +
∫

{t :|t |≤K u}
−ωι(|t |) u

t2 + u2 dt .

The first integral is estimated by

∫

{|t |≥K u}
−ωι(|t |) u

t2 + u2 dt

≥ −ωι(K u)

∫

{|t |≥K u}
u

t2 + u2 dt = −ωι(K u)(π − 2 arctan(K ))

≥ −σ ι(K u)D(π − 2 arctan(K )) − D(π − 2 arctan(K )),

since t �→ −ωι(t) is nondecreasing and since by (σ, ω)γ1 we have σ�ω. Thus
−ωι(t) ≥ −D(σ ι(t) + 1) for some D ≥ 1 and all t > 0 follows.
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For the second integral we get

∫

{t :|t |≤K u}
−ωι(|t |) u

t2 + u2 dt =
∫

{s:|s|≤1}
−ωι(K u|s|) K

K 2s2 + 1
ds

≥ K
∫

{s:|s|≤1}
−ωι(K u|s|)ds,

since −ωι(K u|s|) ≤ 0 holds for any K , u > 0 and |s| ≤ 1. Let C ≥ 1 be the constant
appearing in Lemma 9, then

K
∫

{s:|s|≤1}
−ωι(K u|s|)ds ≥ 2K C(−σ ι(K u) − 1).

Now follow the lines of the proof in [10, Lemma 6.3] with−τ ι replaced by−σ ι which
is also nondecreasing. Thus the first estimate in (24) is shown.

The second estimate follows without any change like in [10, Lemma 6.3]. ��

4.2 Construction of optimal sectorially flat functions in themixed setting

Using the results from Sect. 4.1 the aim is now to transfer [32, Theorem 2.3.1] and
[10, Theorem 6.7] (see also [14, Theorem 5.4]) simultaneously to a mixed setting.

Theorem 1

(I) Let M, N ∈ LC be given such that μp ≤ νp and γ (M, N ) > 0 holds true.
Then for any 0 < γ < γ (M, N ) there exist constants K1, K2, K3, K4 > 0
depending only on M, N and γ such that for all a > 0 there exists a function Ga

holomorphic on Sγ and satisfying

∀ ξ ∈ Sγ : K −a
1 hM (K1|ξ |)2aK2 ≤ |Ga(ξ)| ≤ hN (K3|ξ |) aK4

2 . (25)

Moreover, if N has in addition (mg), then Ga ∈ A{N̂ }(Sγ ) with N̂ := (p!Np)p∈N
(and Ga is flat at 0).
If M has in addition (mg), then there exists K5 > 0 depending also on given a > 0
such that

∀ ξ ∈ Sγ : |Ga(ξ)| ≥ K −a
1 hM (K5|ξ |). (26)

(II) Let ω and σ be weight functions such that γ (σ, ω) > 0 holds true. Then for any
0 < γ < γ (σ, ω) there exist constants K1, K2, K3 > 0 depending only on σ , ω

and γ such that for all a > 0 there exists a function Ga holomorphic on Sγ and
satisfying

∀ ξ ∈ Sγ : K −a
1 exp(−2aσ ι(K2|ξ |)) ≤ |Ga(ξ)| ≤ exp

(
−a

2
ωι(K3|ξ |)

)
.

(27)
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Moreover, if ω is normalized and satisfies (ω3), then Ga ∈ A{Ω̂}(Sγ ) (and Ga is
flat at 0), more precisely

∀ ξ ∈ Sγ : |Ga(ξ)| ≤ hW 2/a (K ′
2|ξ |), (28)

where Ω = {W x : x > 0} shall denote the matrix associated with ω and Ω̂ :=
{Ŵ x = (p!W x

p )p∈N : x > 0}.
If σ ∈ W0, then there exist an index x > 0 and a constant K4 > 0 depending also
on a such that

∀ ξ ∈ Sγ : |Ga(ξ)| ≥ K4hSx (K2|ξ |), (29)

where Sx ∈ Σ , Σ the matrix associated with σ .

Proof We will give some more details for the proof of (I ) (following the lines of [32,
Theorem 2.3.1]).

(I ) Let a > 0 be arbitrary. Take s, δ > 0 such that γ < δ < γ (M, N ) and
sδ < 1 < sγ (M, N ).

By (10) we get sγ (M, N ) > 1 ⇔ γ (Ms, N s) > 1, hence, by Lemma 4 applied to
Ms and N s , we get γ (ωMs , ωN s ) > 1, too.

So we can use Lemma 11 for ωMs ≡ σ and ωN s ≡ ω and obtain a function Fa

holomorphic on the right half-plane and satisfying

∀ w ∈ H1 : B−a exp(−2aBωι
Ms (B−1�(w))) ≤ |Fa(w)| ≤ exp

(
−a

2
ωι

N s (A|w|)
)

.

(30)
Then put

Ga(ξ) = Fa(ξ s), ξ ∈ Sδ.

Note that, as sδ < 1, the ramification ξ �→ ξ s maps holomorphically Sδ into Sδs ⊆
S1 = H1, and so Ga is well-defined. We show that the restriction of Ga to Sγ ⊆ Sδ

satisfies the desired properties by proving that (25) holds indeed on the whole Sδ .
First we consider the lower estimate.
Let ξ ∈ Sδ be given, then �(ξ s) ≥ cos(sδπ/2)|ξ |s (since sδπ/2 < π/2). If B ≥ 1

denotes the constant coming from the left-hand side in (24) applied to the weight ωMs

(or see (30)), then

|Ga(ξ)| = |Fa(ξ s)| ≥ B−a exp(−2aBωι
Ms (B−1(�(ξ s))))

≥ B−a exp(−2aBωι
Ms (B−1 cos(sδπ/2)|ξ |s))

= B−a exp(−2aBωι
Ms ((B1|ξ |)s))

= B−a exp(−2aBsωι
M (B1|ξ |)) = B−ahM (B1|ξ |)2a Bs,

where we have put B1 := (B−1 cos(sδπ/2))1/s . We have used that ωι
Ms (t s) =

ωMs (1/t s) = sωM (1/t) = sωι
M (t) for all t, s > 0, see (4), and finally (6).

Now we consider the right-hand side in (24) respectively in (30) and proceed as
before. Let A be the constant coming from the right-hand side of (24) applied to ωN s ,
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so

|Ga(ξ)| = |Fa(ξ s)| ≤ exp
(
−a

2
ωι

N s (A|ξ |s)
)

= exp
(
−a

2
ωι

N s ((A1/s |ξ |)s)
)

= exp
(
−a

2
sωι

N (A1/s |ξ |)
)

= hN (A1/s |ξ |) sa
2 ,

and (25) has been proved for every ξ ∈ Sδ .
In order to show Ga ∈ A{N̂ }(Sγ ) we put in the estimate above A1 := A1/s and see

exp
(
−a

2
sωι

N (A1|ξ |)
)

= exp
(
−a

2
sωN (1/(A1|ξ |))

)
= hN (A1|ξ |)sa/2.

If we can show
∃ A2 ≥ 1 ∀ξ ∈ Sδ : |Ga(ξ)| ≤ hN (A2|ξ |), (31)

then by applying [10, Lemma 6.4 (i .1)] we see that Ga ∈ A{N̂ }(Sγ ) (and it is a flat
function at 0). Since hN ≤ 1, (31) holds true whenever sa

2 ≥ 1 ⇔ sa ≥ 2. But in
general we have to use (mg) for N and iterate (7) (applied for N ) l-times, l ∈ N chosen
minimal to ensure sa

2 ≥ 1
2l .

The proof of (26) follows analogously by iterating (mg) for M (if necessary) in
order to get rid of the exponent 2aK2.

(I I )Again leta > 0 be arbitrary but fixed, take s, δ > 0 such thatγ < δ < γ (σ, ω),
sδ < 1 < sγ (σ, ω) = γ (σ 1/s, ω1/s) and put

Ga(ξ) = Fa(ξ s), ξ ∈ Sδ,

where Fa is the function constructed in Lemma 11. We apply Lemma 11 to σ 1/s ≡ σ ,
ω1/s ≡ ω. Hence (27) holds true by following the lines in the proof of [10, Theorem
6.7] and replacing τ by ω for the right-hand side respectively τ by σ for the left-hand
side.

The remaining statements, in particular the estimate (29), follow analogously as in
the proof of [10, Theorem 6.7], replacing τ by ω or σ in the arguments. ��

5 Right inverses for the asymptotic Borel map in ultraholomorphic
classes in sectors

The aim of this section is to obtain an extension result in the ultraholomorphic classes
considered in a mixed setting for both the weight sequence and the weight function
approach following the proofs and techniques in [10, Section 7]. The existence of the
optimal flat functions Ga obtained in Theorem 1 will be the main ingredient in the
proof which is inspired by the same technique as in previous works of A. Lastra, S.
Malek and the second author [18,19] in the singleweight sequence approach. Although
for the general construction the weight functions σ and ω need not be normalized, we
are interested in working with the weight matrices associated with them, which will
be standard log-convex if we ask for normalization and (ω3) to hold.
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Note that any weight function may be substituted by a normalized equivalent one
(e.g. see [3, Remark 1.2 (b)]) and equivalence preserves the property (ω3), so it is no
restriction to ask for normalization from the very beginning.

Remark 12 An important difference to the complete approach in [10] is, see also the
comments given in the introduction in Section 7 there, that condition γ (ω) > 0 which
amounts to (ω1) as shown in [10, Lemma 4.2] will not be valid in general anymore
in the mixed situation. In the following we are only requiring γ (σ, ω) > 0 and recall
that γ (σ, ω) ≥ γ (ω) as shown above. An explicit example of this situation, having
γ (σ, ω) > 0 (as large as desired) and γ (ω) = γ (σ ) = 0 will be provided in the
Appendix A below. We are able to treat this situation by recognizing that in [10] we
have worked in a very general framework for weight functions and the assumption
γ (ω) > 0 can be replaced by γ (σ, ω) > 0 without causing problems.

Recall that (ω1) is standard in the ultradifferentiable setting and thus our techniques
make it possible to treat ”exotic” weight function situations as well.Moreover (ω1) has
also been used to have that the class defined by ω admits a representation by using the
associatedweight matrixΩ , see Sect. 2.5. Thus thewarranty that the ultraholomorphic
(and also the ultradifferentiable) spaces associatedwithω and its correspondingweight
matrix Ω coincide is not clear anymore, see the comments preceding (9).

Therefore the main and most general ultraholomorphic extension result Theorem 2
deals with a mixed situation between classes defined by (associated) weight matrices.
If one imposes (ω1) on the weights one is able to prove a mixed version of classes
defined by weight functions, see Corollary 1. Finally, in Theorem 4 we will treat the
mixed weight sequence case as well.

5.1 Preliminaries

We start with recalling [10, Lemma 7.1].

Lemma 12 Let σ and ω be normalized weight functions with γ (σ, ω) > 0 and such
that ω satisfies (ω3). Let Ω = {W x : x > 0} be the weight matrix associated with ω,
0 < γ < γ (σ, ω), and for a > 0 let Ga be the function constructed in Theorem 1. Let
us define the function ea : Sγ → C by

ea(z) := z Ga(1/z), z ∈ Sγ .

The function ea enjoys the following properties:

(i) z−1ea(z) is uniformly integrable at the origin, it is to say, for any t0 > 0 we have

∫ t0

0
t−1 sup

|τ |<γπ/2
|ea(teiτ )|dt < ∞.

(ii) There exist constants K > 0, independent from a, and C > 0, depending on a,
such that

|ea(z)| ≤ ChW 4/a

(
K

|z|
)

, z ∈ Sγ . (32)
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(iii) For ξ ∈ R, ξ > 0, the values of ea(ξ) are positive real.

Proof The proof is completely the same as for [10, Lemma 7.1], for (i) we apply the
right-hand side in (27), for (i i) we use (28) and (8) together with the definition given
in (5). ��

Analogously as in [10, Definition 7.2] we introduce now the moment function asso-
ciated with ea .

Definition 1 We define the moment function associated with the function ea (intro-
duced in the previous Lemma) as

ma(λ) :=
∫ ∞

0
tλ−1ea(t)dt =

∫ ∞

0
tλGa(1/t)dt .

From Lemma 12 and the definition of hW x in (5) we see that for every p ∈ N,

|ea(z)| ≤ C
K pW 4/a

p

|z|p
, z ∈ Sγ .

So, we easily deduce that the function ma is well defined and continuous in {λ :
�(λ) ≥ 0}, and holomorphic in {λ : �(λ) > 0}. Moreover, ma(ξ) is positive for every
ξ ≥ 0, and the sequence (ma(p))p∈N is called the sequence of moments of ea .

The next result is generalizing [10, Proposition 7.3], which is similar to Proposition
3.6 in [18], to a mixed setting.

Proposition 3 Let σ and ω be normalized weight functions with γ (σ, ω) > 0 and such
that both weights satisfy (ω3). Let Σ = {Sx : x > 0} and Ω = {W x : x > 0} be
the weight matrices associated with σ and ω respectively, and for 0 < γ < γ (σ, ω)

and a > 0 let Ga, ea, ma be the functions previously constructed. Then, there exist
constants C1, C2 > 0, both depending on a, such that for every p ∈ N one has

C1

(
K2

2

)p

S1/(2a)
p ≤ ma(p) ≤ C2K p

3 W 4/a
p , (33)

where K2 and K3 are the constants, not depending on a, appearing in (27).

Proof The proof follows the lines as in [10, Proposition 7.3] (based on the arguments
by O. Blasco in [2]). For the second estimate in (33) we use the second inequality in
(27) (and here also (2) is used); the first estimate in (33) follows by applying the first
inequality in (27). ��

5.2 Main extension results

Now we are able to formulate and proof the generalization of the main extension
result [10, Theorem 7.4].
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Theorem 2 Let σ and ω be normalized weight functions with γ (σ, ω) > 0 and such
that both weights satisfy (ω3) and 0 < γ < γ (σ, ω). Moreover we denote by Σ =
{Sx : x > 0} and Ω = {W x : x > 0} the weight matrices associated with σ and ω

respectively and consider the matrices Σ̂ = {Ŝx : x > 0} and Ω̂ = {Ŵ x : x > 0}
where Ŝx := (p!Sx

p)p∈N and Ŵ x := (p!W x
p )p∈N.

Then, there exists a constant k0 > 0 such that for every x > 0 and every h > 0,
one can construct a linear and continuous map

Eσ,ω
h : λ ∈ ΛŜx ,h �→ fλ ∈ AŴ 8x ,k0h(Sγ )

such that for every λ ∈ ΛŜx ,h one has B ◦ Eσ,ω
h (λ) = B( fλ) = λ. Consequently we

obtain the inclusion B(A{Ω̂}(Sγ )) ⊇ Λ{Σ̂}.

Proof Fix δ > 0 such that γ < δ < γ (σ, ω). Given λ = (λp)p∈N ∈ ΛŜx ,h , we have

|λp| ≤ |λ|Ŝx ,hh p p!Sx
p, p ∈ N0. (34)

We choose a = 1/(2x), and consider the function Ga , defined in Sδ , obtained in
Theorem 1 for such value of a, and the corresponding functions ea and ma previously
defined. Next, we consider the formal power series

f̂λ :=
∞∑

p=0

λp

p! z p

and its formal (Borel-like) transform

B̂a f̂λ :=
∞∑

p=0

λp

p!ma(p)
z p.

By the choice of a, (34) and the first part of the inequalities in (33), we deduce that

∣∣∣∣
λp

p!ma(p)

∣∣∣∣ ≤ |λ|Ŝx ,hh p p!Sx
p

C1 (K2/2)p p!Sx
p

= |λ|Ŝx ,h

C1

(
2h

K2

)p

, (35)

and so the series B̂a f̂λ converges in the disc of center 0 and radius K2/(2h) (not
depending on λ), where it defines a holomorphic function gλ. We set R0 := K2/(4h),
and define

fλ(z) :=
∫ R0

0
ea

(
u

z

)
gλ(u)

du

u
, z ∈ Sδ.

Byvirtue ofLeibniz’s theoremonanalyticity of parametric integrals, fλ is holomorphic
in Sδ .

Our next aim is to obtain suitable estimates for the difference between f and the
partial sums of the series f̂λ. As in the non-mixed setting, for given N ∈ N0 and z ∈ Sδ
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we have

fλ(z) −
N−1∑

p=0

λp
z p

p! =
∫ R0

0
ea

(
u

z

) ∞∑

p=0

λp

ma(p)

u p

p!
du

u

−
N−1∑

p=0

λp

ma(p)

∫ ∞

0
u p−1ea(u)du

z p

p! .

In the second integral wemake the change of variable v = zu, what results in a rotation
of the line of integration. By the estimate (32), one may use Cauchy’s residue theorem
in order to obtain that

z p
∫ ∞

0
u p−1ea(u)du =

∫ ∞

0
v pea

(
v

z

)
dv

v
,

which allows us to write the preceding difference as

∫ R0

0
ea

(
u

z

) ∞∑

p=0

λp

ma(p)

u p

p!
du

u
−

N−1∑

p=0

λp

ma(p)

∫ ∞

0
u pea

(
u

z

)
du

u

1

p!

=
∫ R0

0
ea

(
u

z

) ∞∑

p=N

λp

ma(p)

u p

p!
du

u
−

∫ ∞

R0

ea

(
u

z

) N−1∑

p=0

λp

ma(p)

u p

p!
du

u
.

Then, we have ∣∣∣∣∣∣
fλ(z) −

N−1∑

p=0

λp
z p

p!

∣∣∣∣∣∣
≤ | f1(z)| + | f2(z)|, (36)

where

f1(z) =
∫ R0

0
ea

(
u

z

) ∞∑

p=N

λp

ma(p)

u p

p!
du

u
, f2(z) =

∫ ∞

R0

ea

(
u

z

) N−1∑

p=0

λp

ma(p)

u p

p!
du

u
.

From (35) we deduce that

| f1(z)| ≤ |λ|Ŝx ,h

C1

∫ R0

0

∣∣∣∣ea

(
u

z

)∣∣∣∣
∞∑

p=N

(2hu

K2

)p du

u
= |λ|Ŝx ,h

C1

( 2h

K2

)N
∫ R0

0

∣∣∣∣ea

(
u

z

)∣∣∣∣
uN

1 − 2hu
K2

du

u

≤ 2|λ|Ŝx ,h

C1

( 2h

K2

)N
∫ R0

0

∣∣∣∣ea

(
u

z

)∣∣∣∣ uN−1 du, (37)

where in the last stepwehaveused that 0 < u < R0 = K2/(4h)wehave1−2hu/K2 >

1/2. In order to estimate f2(z), observe that for u ≥ R0 and 0 ≤ p ≤ N −1 we always
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have u p ≤ R p
0 uN /RN

0 , and so, using again (35) and the value of R0, we may write

∣∣∣∣∣∣

N−1∑

p=0

λpu p

p!ma(p)

∣∣∣∣∣∣
≤ |λ|Ŝx ,h

C1

uN

RN
0

N−1∑

p=0

( 2h

K2

)p
R p
0 ≤ 2|λ|Ŝx ,h

C1

( 4h

K2

)N
uN .

Then, we deduce that

| f2(z)| ≤ 2|λ|Ŝx ,h

C1

( 4h

K2

)N
∫ ∞

R0

∣∣∣∣ea

(
u

z

)∣∣∣∣ uN−1du. (38)

In order to conclude, it suffices then to obtain estimates for
∫ ∞
0 |ea(u/z)|uN−1du. For

this, note first that, by the estimates in (27),

∫ ∞

0

∣∣∣∣ea

(
u

z

)∣∣∣∣ uN−1du =
∫ ∞

0

u

|z|
∣∣∣Ga

( z

u

)∣∣∣ uN−1du

≤
∫ ∞

0

uN

|z| exp
(

−a

2
ω

(
u

K3|z|
))

du

= |z|N
∫ ∞

0
t N exp

(
−a

2
ω

(
t

K3

))
dt .

Now, we can follow the first part of the proof of [10, Proposition 7.3] to obtain that

∫ ∞

0

∣∣∣∣ea

(
u

z

)∣∣∣∣ uN−1du ≤ C2K N
3 W 4/a

N |z|N = C2K N
3 W 8x

N |z|N . (39)

Gathering (36), (37), (38) and (39), we get

∣∣∣∣∣∣
fλ(z) −

N−1∑

p=0

λp
z p

p!

∣∣∣∣∣∣
≤ 2C2|λ|Ŝx ,h

C1

(
4hK3

K2

)N

W 8x
N |z|N . (40)

A straightforward application of Cauchy’s integral formula yields that there exists a
constant r , depending only on γ and δ, such that whenever z is restricted to belong to
Sγ , one has that for every p ∈ N,

| f (p)(z)| ≤ 2C2|λ|Ŝx ,h

C1

(
4hK3r

K2

)p

p!W 8x
p .

So, putting k0 := 4K3r
K2

(independent from x and h), we see that fλ ∈ AŴ 8x ,k0h(Sγ )

and ‖ fλ‖Ŵ 8x ,k0h ≤ 2C2
C1

|λ|Ŝx ,h . Since the map sending λ to fλ is clearly linear, this
last inequality implies that the map is also continuous from ΛŜx ,h intoAŴ 8x ,k0h(Sγ ).
Finally, from (40) one may easily deduce thatB( fλ) = λ, and we conclude. ��
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Remark 13 We point out that by checking the proofs of the main extension results [32,
Theorem 3.2.1] and [14, Theorem 6.8] it seems to be not possible to transfer the
techniques there to a mixed setting. In these proofs the existence of a continuous
linear extension operator coming from the ultradifferentiable extension theorems is
used and it is sending the sequence λ to the function gλ (e.g. see [14, (6.12)]) which
belongs in a mixed situation to a space defined by a different weight sequence or
weight function.

Consequently, in the estimates of part (i i) in the proofs of [32, Theorem 3.2.1]
and [14, Theorem 6.8], one is not able to get rid of the quotients of associated functions
hM (·). This should be comparedwith the estimate (35) wherewe do not have to change
the weight structure and the proofs of the extension theorems in [7] and [24].

In order to prove the generalization of [10, Corollary 7.6] first we have to recall [10,
Theorem 5.3].

Theorem 3 Let ω ∈ W , i.e. a normalized weight satisfying (ω3), (ω4) and (ω1), Ω =
{W x : x > 0} be the weight matrix associated with ω and consider Ω̂ = {Ŵ x : x > 0}
where Ŵ x = (p!W x

p )p∈N. Then the following identities hold as locally convex vector
spaces for all sector S and for all x > 0:

A{Ω̂}(S) = A{ωŴ x }(S),

and the same equalities are valid for the corresponding sequence classes Λ. So,
A{Ω̂}(S) coincides with the space A{τ }(S) associated with τ = ωŴ x ∈ W .

Finally one gets γ (τ) = γ (ω) + 1 > 1.

Now we concentrate on the generalization of [10, Corollary 7.6].

Corollary 1 Let σ, ω ∈ W be given, so that γ (σ, ω) ≥ γ (ω) > 0, and let 0 < γ <

γ (σ, ω) and Σ = {Sx : x > 0} and Ω = {W x : x > 0} be the weight matrices
associated with σ and ω respectively and consider the matrices Σ̂ = {Ŝx : x > 0}
and Ω̂ = {Ŵ x : x > 0} where Ŝx = (p!Sx

p)p∈N and Ŵ x = (p!W x
p )p∈N.

Let τ1 ∈ W and τ2 ∈ W be the weight functions coming from Theorem 3 applied
to σ and ω respectively, so A{Σ̂}(Sγ ) = A{τ1}(Sγ ) and A{Ω̂}(Sγ ) = A{τ2}(Sγ ).

Then, for every l > 0 there exists l1 > 0 such that there exists a linear and
continuous map

Eτ1,τ2
l : λ ∈ Λτ1,l �→ fλ ∈ Aτ2,l1(Sγ ) (41)

such that for all λ ∈ Λτ1,l one has B ◦ Eτ1,τ2
l (λ) = B( fλ) = λ. Thus we have shown

that B(A{τ2}(Sγ )) ⊇ Λ{τ1}.

Proof Let T i := {T i,x : x > 0} be the weight matrix associated with the weight
function τi , i.e. T i,x

p := exp
( 1

x ϕ∗
τi
(xp)

)
for each x > 0 and p ∈ N, i = 1, 2.

Wemay apply (9) in order to deduce thatA{Σ̂}(Sγ ) = A{T 1}(Sγ ) andA{Ω̂}(Sγ ) =
A{T 2}(Sγ ) and, as it has already been remarked in [10, Corollary 7.6], we get
T 1{≈}Σ̂ , T 2{≈}Ω̂ .

For the rest of the proof we follow[10, Corollary 7.6] and use for the extension
Theorem 2. ��
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Remark 14 Of course, by the assumption on the weights in Corollary 1, we could
apply [10, Corollary 7.6] directly to the weights ω and/or σ because both have (ω1)

which is equivalent to haveγ (ω), γ (σ ) > 0 as shown in [11,Corollary 2.14]. Then [10,
Corollary 7.6] states that for every l > 0 there exists l1 > 0 such that there exists a
linear and continuous map

Eτi
l : λ ∈ Λτi ,l �→ fλ ∈ Aτi ,l1(Sγ ), (42)

with 0 < γ < γ (σ) for i = 1 and 0 < γ < γ (ω) for i = 2. Since in the mixed
setting we are interested in the situation where σ is (much) larger thanω, (42) yields in
particular an extensionΛτ1,l ⊆ Λτ2,l �→ fλ ∈ Aτ2,l1(Sγ ), 0 < γ < γ (ω). This should
be comparedwith (41), wherewe have such amixed extension for all 0 < γ < γ (σ, ω)

and since γ (σ, ω) ≥ γ (ω) (see Lemma 3) even here we can have a situation which is
not covered by [10, Corollary 7.6] since Aτ2,l1(Sγ ′) ⊆ Aτ2,l1(Sγ ) for γ ≤ γ ′.

Finally we treat the mixed weight sequence situation which is generalizing [10,
Remark 7.9]. Note that condition (mg) on the smaller weight sequence has also been
used in [7] and [13, Theorem 5.9].

Theorem 4 Let M, N ∈ LC be given such that μp ≤ Cνp, M satisfies (mg) and
finally γ (M, N ) > 0. We put M̂ = (p!Mp)p∈N and N̂ = (p!Np)p∈N and let 0 <

γ < γ (M, N )(= γ (ωM , ωN )).
Then, there exists a constant k1 > 0 such that for every h > 0, one can construct

a linear and continuous map

E M,N
h : λ ∈ ΛM̂,h �→ fλ ∈ AN̂ ,k1h(Sγ )

such that for every λ ∈ ΛM̂,h one has B ◦ E M,N
h (λ) = B( fλ) = λ. Thus we have

shown B(A{N̂ }(Sγ )) ⊇ Λ{M̂}.

Proof Weapply Theorem2 to σ ≡ ωM andω ≡ ωN . Recall that by the assumptions on
the weight sequences we have 0 < γ (M, N ) = γ (ωM , ωN ), see Lemma 4. Moreover
the matrix Σ associated with ωM is constant, see (i i i) in Lemma 1 and Remark 1,
and hence the matrix Σ̂ is constant, too. Theorem 2 provides now for all h1 > 0 an
extension map Eh1 : λ ∈ ΛŜ1/8,h1 �→ fλ ∈ AŴ 1,k0h1(Sγ ), k0 > 0 not depending on
h1.

We know that S1 ≡ M (e.g. see the proof of [29, Thm. 6.4]) and so S1/8≈M ⇔
Ŝ1/8≈M̂ . Hence ΛŜ1/8 = ΛM̂ , more precisely there exists some D ≥ 1 such that for
all h > 0 we get ΛM̂,h ⊆ ΛŜ1/8,Dh and so we have shown the desired statement with
universal k1 = k0D. ��
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6 Mixed extension results with only one fixed weight

6.1 Extension results where the weight sequence/function defining the function
space is fixed

Using the properties of the indexμ(N ) and the construction of the ramified descendant
of Sect. 3.2 we can now prove the following variant of Theorem 4.

Theorem 5 Let N ∈ LC be given with μ(N ) > 0 and let 0 < r < μ(N ). Assume
that (15) holds true for N 1/r . Then there does exist L ∈ LC having (mg) such that
for each 0 < γ < r we get: There exists a constant k1 > 0 such that for every h > 0,
one can construct a linear and continuous map

E L,N
h : a ∈ ΛL̂,h �→ fa ∈ AN̂ ,k1h(Sγ ), (43)

denoting L̂ = (p!L p)p∈N and N̂ = (p!Np)p∈N. Thus we have shown that
B(A{N̂ }(Sγ )) ⊇ Λ{L̂}.

The sequence L is maximal among those M ∈ LC satisfying μk ≤ Cνk and
(M, N )γr .

The important difference between Theorem 4 and this result is that, of course, L is
depending here on given r .

Proof Let 0 < γ < r < μ(N ) be given according to the requirements above. Then
we consider the sequence L N ,r defined via the descendant SN ,r in (14), see Sect. 3.2.

As seen there we have that (L N ,r , N )γr holds true which proves γ (L N ,r , N ) ≥ r >

γ . Moreover λ
N ,r
k ≤ Cνk and since N 1/r has (15), Lemma 6 yields (mg) for SN ,r and

so for L N ,r , too.
Thus we can apply Theorem 4 to M ≡ L N ,r and N and γ unchanged to obtain:

There exists a constant k1 > 0 such that for every h > 0, one can construct a linear

and continuous map E L N ,r ,N
h : a ∈ ΛL̂ N ,r ,h �→ fa ∈ AN̂ ,k1h(Sγ ) with L̂ N ,r =

(p!L N ,r
p )p∈N and so (43) follows by taking L ≡ L N ,r . ��

Remark 15 Let N ∈ LC be given with μ(N ) > 0. If N has in addition (mg), then
each SN ,r and L N ,r , 0 < r < μ(N ), share this property, see (iv) in Remark 9.

If N does not have (mg), then (15) for N 1/r can only hold true for values γ (N ) ≤
r < μ(N ): for 0 < r < γ (N ) the right-hand side in (15) is bounded by definition,

whereas supk∈N
(ν2k )

1/r

(νk )
1/r = ∞ since N 1/r does also not have (mg).

Using μ(ω) we can prove Theorem 5 for the weight function setting, so we have
the following variant of Theorem 2.

Theorem 6 Let ω be a normalized weight function with (ω3) and μ(ω) > 0. Then for
all 0 < r < μ(ω) there does exist a normalized weight function σ satisfying (ω3)

such that for each 0 < γ < r we get: There exists a constant k0 > 0 such that for
every x > 0 and every h > 0, one can construct a linear and continuous map

Eσ,ω
h : λ ∈ ΛŜx ,h �→ fλ ∈ AŴ 8x ,k0h(Sγ )
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such that for every λ ∈ ΛŜx ,h one has B ◦ Eσ,ω
h (λ) = B( fλ) = λ. Thus we have

shown that B(A{Ω̂}(Sγ ) ⊇ Λ{Σ̂} (by using for Σ̂ and Ω̂ the same notation as in
Theorem 2).

The function σ is chosen minimal among those normalized weight functions τ

satisfying (ω3), τ�ω (i.e. ω(t) = O(τ (t))) and enjoying (τ, ω)γr .

Proof According to this value r > 0 given, we consider the weight κ1/r
ωr (see (21)) and

so (κ
1/r
ωr , ω)γr is valid. Thisweight enjoys all properties likeω except normalization (by

definition). But normalization can be achieved w.l.o.g. by switching to an equivalent
weight (redefining κ

1/r
ωr near 0, e.g. see [3, Remark 1.2 (b)]) which will be denoted by

σ .
Thus γ (σ, ω) ≥ r > γ and we can apply Theorem 2 to these weights σ and ω and

the value γ and conclude. ��

Remark 16 Due to (22) one could try to restate Theorem 6 by applying Theorem 5 to
N ≡ W x , x > 0 arbitrary. However, once chosen γ < μ(ω) = μ(W x ) in Theorem 6
we obtain an extension for another weight function σ such that moving the index x we
are staying in the sameweight matrix associated with σ by the precise choice x �→ 8x .
So here we can take some uniform choice for all sequences inΩ (by obtaining aweight
matrix not depending on given x) which is not following by applying Theorem 5.

Remark 17 Naturally one might ask what happens in the dual situation, that is, fixing
the weight sequence or weight function that controls the derivatives at the origin.
However, in this case the inverse construction concerning the descendant, called the
predecessor, see [23, Remark 4.3], does not provide any new information, since the
bounds for the opening are the same as those that are known for the one level extension
theorem.
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A An example for having �(M,N),�(!M,!N) > 0 but
�(!M) = �(M) = �(N) = �(!N) = 0

The aim is to construct an explicit example such that Theorem 2 resp. Theorem 4
are valid but no further known extension result construct can be applied and so the
situation in this present work is not covered by the approach from [10] (and also not
from [14,32]). We will construct a pair of sufficient weight sequences M and N and
apply Theorem 4 to M and N directly, whereas Theorem 2 is applied to their associated
weights ωM ≡ σ and ωN ≡ ω.

First recall that (γ1) can be written in a different form. We say that M has (β1), if

∃ Q ∈ N>0 : lim inf
p→∞

μQp

μp
> Q,

and (β3) (see [28] and [4]), if

∃ Q ∈ N>0 : lim inf
p→∞

μQp

μp
> 1.

By[21, Proposition 1.1] condition (β1) is equivalent to (γ1) for log-convex M and for
this proof condition (nq), which is a general assumption in [21], was not necessary.We
have that M satisfies (β1) if and only if m satisfies (β3), for more precise information
concerning this relation we refer to the recent work [11].

The construction of the sequences is based on a generalization of [16, Example 3.3]
and we introduce M by using the quotient sequence (μk)k≥0 (with μ0 := 1 and set
Mk := ∏k

i=0 μi ).

Lemma 13 Let γ > 1 be given, then there exists a sequence M ∈ LC such that

(i) M does satisfy (nq), more precisely μk ≥ kγ for all k ∈ N and so even (nqγ−ε)

holds true for any ε > 0 (small),
(ii) μk ≤ kγ (2γ−1) for all k ∈ N,
(iii) M does not satisfy (β3) or equivalently M̂ = (p!Mp)p∈N does not satisfy (β1)

(and consequently M is not strongly nonquasianalytic too),
(iv) M does satisfy (mg).

Proof Let γ > 1 be given and for convenience we introduce also numbers α and β

by

γ > 1, β := 2γ (> 2), α := β − 1 = 2γ − 1(> γ > 1).

In [16, Example 3.3] the choices γ = 2, β = 4 and α = 3 have been considered (but
there (i i) has not been shown).

We define recursively two nondecreasing sequences (cn)n≥1 and (dn)n≥1 (of natural
numbers) as follows and �a� shall denote the lower integer part of a given real number
a > 0. We put

c1 := 1, dn := �cα/γ
n � + 1, cn+1 := �dγ

n � + 1,
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and introduce the weight sequence as follows:

μk :=
{

cα
n for cn ≤ k ≤ �cα/γ

n � = dn − 1
kβ

dγ
n

for dn ≤ k ≤ �dγ
n � = cn+1 − 1. ��

(i) and (ii) together tell us that M is lying between two Gevrey sequences. By
proving (i) one can verify that μ(M) = lim inf p→∞

log(μp)

log(p)
= γ holds true.

A slight variation of Lemma 13 yields the following.

Lemma 14 Let γ > 1 be given, then there exists a sequence M ∈ LC such that

(i) M does satisfy (nq), more precisely μk ≥ kγ for all k ∈ N and so even (nqγ−ε)

holds true for any ε > 0 (small),
(ii) μk ≤ k2γ

2
for all k ∈ N,

(iii) M does not satisfy (β3) or equivalently M̂ = (p!Mp)p∈N does not satisfy (β1)

(and consequently M is not strongly nonquasianalytic too),
(iv) M does not satisfy (mg).

Proof We use the same definition for (μk)k as before. Let γ > 1 be given and set now

γ > 1, β := 2γ + 1(> 3), α := β − 1 = 2γ (> γ > 1).

In fact any choice β > 2γ and α := β − 1 would be working for the following proof.
��

Again by construction μ(M) = lim infk→∞ log(μk )
log(k)

= γ holds true.
Using Lemma 13 we can now underline the importance of Theorem 2 and in par-

ticular of Theorem 4 as follows.

Theorem 7 There do exist sequences M and N satisfying all requirements from The-
orem 4 but such that γ (M) = γ (N ) = γ (ωM ) = γ (ωN ) = 0. Moreover we can
achieve γ (M, N ) to be as large as desired.

Proof We define M and N in terms of their quotients (μp)p and (νp)p coming from
Lemma 13 with parameters γ ′ and γ respectively and we require that

γ ′(2γ ′ − 1) ≤ γ ⇔ γ ′(2γ ′ − 1) − γ

r
≤ 0. (44)

Choosing 1 < γ ′ < γ subject to (44) it is straightforward to prove (M, N )γr for all
0 < r < γ . This implies γ (M, N ) ≥ γ > 0 and since μ(N ) = γ we get equality
by Lemma 5. Since γ > 1 can be chosen arbitrary large, γ (M, N ) = γ can be as
large as desired. Moreover one can easily verify μk ≤ νk , hence Lemma 4 implies
γ (ωM , ωN ) = γ (M, N ) = γ .

But γ (M) = γ (N ) = 0 holds true: (β1) or equivalently (γ1) is violated for both
sequences M̂ = (p!Mp)p and N̂ = (p!Np)p (by property (i i i)), and so γ (M) =
γ (N ) = 0. And this is equivalent to having γ (ωM ) = γ (ωN ) = 0, because both
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sequences have (mg), for a proof see [11, Section 4]. In particular we have seen that
neither M̂ ∈ SR nor N̂ ∈ SR and by the characterizations shown in [21], not any
to M̂ or N̂ equivalent sequence L can belong to classSR. ��

Let M and N denote the sequences from Theorem 7 above with parameters γ ′ > 1
and γ > 1 subject to (44). Then by applying Theorem 4 for any given 0 < δ <

γ (M, N ) there is k1 > 0 such that for every h > 0 there exists a continuous linear
extension map

E M,N
h : λ ∈ ΛM̂,h �→ fλ ∈ AN̂ ,k1h(Sδ).

Thus we have shown B(A{N̂ }(Sδ)) ⊇ Λ{M̂}.
This kind of extension result is not covered by the theory developed by the authors

in [10]. More precisely [10, Theorem 7.4] fails since γ (ωM ) = γ (ωN ) = 0 and also
the mixed setting from[10, Section 7.1] cannot be applied, neither to M nor to N
directly.

Note that both M and N have (mg), thus both matrices associated with ωM and ωN

are constant, see (i i i) in Lemma 1 and Remark 1. Now let M and N be the sequences
constructed in Lemma 14 with parameters γ ′ and γ respectively and here we require
that

2(γ ′)2 ≤ γ.

Again it is straightforward to check that (M, N )γr holds true for all 0 < r < γ which
implies γ (M, N ) ≥ γ > 0. Since μ(N ) = γ we again have γ (M, N ) = γ and by
having μp ≤ νp, Lemma 4 yields γ (ωM , ωN ) ≥ γ (M, N ) = γ .

But here neither M nor N does satisfy (mg) and we cannot apply Theorem 4
directly. But Theorem 2 applied to σ ≡ ωM and ω ≡ ωN with Σ denoting the matrix
associated with ωM and Ω the matrix associated with ωN , yields now the following
extension result:

For any given 0 < δ < γ (ωM , ωN ) there exists a constant k0 > 0 such that for
every x > 0 and every h > 0, one can construct a linear and continuous extension
map

EωM ,ωN
h : λ ∈ ΛŜx ,h �→ fλ ∈ AŴ 8x ,k0h(Sγ ).

Hence we have shown B(A{Ω̂}(Sγ )) ⊇ Λ{Σ̂}.
Note: Here, since (mg) is avoided, the associated matrices Σ and Ω , and hence Σ̂

and Ω̂ , are nonconstant but S1 ≡ M and W 1 ≡ N (see the arguments given in the
proof of Theorem 4). Also in this situation we get γ (M) = γ (N ) = 0 (by property
(i i i)) but it is not clear if also γ (ωM ) = γ (ωN ) = 0 (see [11, Corollary 4.6]). In such
a situation, even if γ (ωM ) > 0 and/or γ (ωN ) > 0, we obtain new information, see
Remark 14 above.

As mentioned in the introduction and in Remark 12 we have that starting directly
with a Braun–Meise–Taylor weight function ω with γ (ω) = 0 we do not have (ω1)

(as shown in [11, Corollary 2.14]). Hence a basic assumption in the whole theory of
ultradifferentiable functions defined in terms ofω, is violated from the very beginning.
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