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Abstract
A non compactness measure with values in the lattice of extended non negative real 
numbers [0,+∞] is introduced in the general setting of a Hausdorff topological vec-
tor space E. This generalizes the classical Kuratowski and Hausdorff non compact-
ness measures. In order to achieve this, we introduce the notions of basic and suf-
ficient collections of zero neighborhoods. We then show that our measure satisfies 
most of the properties of the classical non compactness measures. We particularly 
show that if E is locally p-convex for some 0 < p ≤ 1 , our measure is stable by the 
transition to the closed p-convex hull. This allows us to obtain, as applications, gen-
eralizations of the well-known three fixed point theorems, namely Schauder, Darbo, 
and Sadovskii’s ones in the setting of locally p-convex spaces. As another applica-
tion, we establish a quantification of Ascoli theorem in the space C(X, E) of vector-
valued continuous functions on a Hausdorff completely regular space with values in 
a topological vector space E, giving an alternative of Ambrosetti theorem initially 
stated in the metric spaces setting.
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1  Introduction

One of the main tools when seeking for fixed points of a self-map of a metric space 
X, in which no compactness is assumed, is the notion of non compactness measure. 
The first such a measure was introduced by Kuratowski in [12] for a bounded subset 
A of X. This can be thought of as a measurement of the lack of compactness of A and 
it is defined as follows:

where �(A) stands for the diameter of A.
A similar non compactness measure is the so-called Hausdorff (or ball) non com-

pactness measure � of A defined by:

where B(x,  r) is the ball centered at x with radius r. These two non compactness 
measures are equivalent in the sense that, for every bounded subset A of X,

In the setting of a locally convex space E, whose topology is given by a separating 
family ℙ of semi-norms, Sadovskii [19] introduced extensions of � and � taking their 
values in the set of non negative functions on ℙ , rather than non negative real num-
bers, as in the normed spaces case. These extensions, again denoted by � and � are 
the functions assigning to a bounded set A ⊂ E the mappings �(A) ∶ P ↦ �(A)(P) 
and P ↦ �(A)(P) respectively, where �(A)(P) (resp. �(A)(P) ) is defined by (1) (resp. 
(2)), the diameters (resp. the balls) being taken with respect to the semi-norm P.

Later, Kaniok [7] extended the definition of Sadovskii in the more general set-
ting of a topological vector space E, using zero neighborhoods in E instead of 
semi-norms. Recall that, for a given such neighborhood U, a set A ⊂ E is said to be 
U-small (or small of order U [16]), if A − A ⊂ U . For every A ⊂ E , the U-measures 
of non compactness �U(A) and �U(A) of A are defined as:

with inf � = +∞ . In case E is a normed space and U is the closed unit ball of E, �U 
and �U are nothing but the Kuratowski and Hausdorff measures of non compactness, 
respectively. Thus, if U  denotes a fundamental system of balanced and closed zero 
neighborhoods in E and FU  is the space of all functions � ∶ U → ℝ , endowed with 
the pointwise ordering, then, after Kaniok, the Kuratowski (resp. the Hausdorff) 
measure �(A) (resp. �(A) ) of a subset A of E is the function defined from U  into 
[0,+∞] by �(A)(U) = �U(A) (resp. �(A)(U) = �U(A)).

The invariance under the transition to the closed convex hull co(A) of the subset 
A ⊂ E is one of the main properties of the Kuratowski and the Hausdorff measures � 

(1)𝛼(A) = inf
{
r > 0,∃n ∈ ℕ,∃Ai ⊂ X with 𝛿(Ai) ≤ r and A ⊂ ∪n

i=1
Ai

}
,

(2)𝛽(A) = inf{r > 0 ∶ ∃n ∈ ℕ,∃x1,… xn ∈ X ∶ A ⊂ ∪n
i=1

B(xi, r)},

�(A) ≤ �(A) ≤ 2�(A).

(3)𝛼U(A) = inf
{
r > 0 ∶ A is covered by a finite number of rU-small sets Ai

}
,

(4)𝛽U(A) = inf
{
r > 0 ∶ ∃x1,… , xn ∈ E such that A ⊂ ∪n

i=1

(
xi + rU

)}
,
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and � . This property remains valid in the setting of locally convex spaces as shown by 
Sadovskii in [19, Theorem 1.2.3], and is the key of the proof of the classical Darbo and 
Sadovskii fixed point theorems.

In this paper, we introduce new non compactness measures, again denoted by � and 
� , generalizing to the setting of a topological vector space E the Kuratowski and the 
Hausdorff ones. As in the normed case, our measures take their values in [0,+∞] . We 
then establish some of their properties. In particular, we show that, if the space E is 
locally p-convex, 0 < p ≤ 1 , then these measures are invariant under the transition to 
the closed s-convex hull, 0 < s ≤ p . As applications, we first extend the Schauder, the 
Darbo, and the Sadovskii fixed point theorems to the locally p-convex setting. Up to 
our knowledge, particular attention has been given recently to the study of fixed point 
results for multi-valued maps defined on p-convex sets (see [5] and the references 
therein). The usual hypothesis that a multi-valued map has non empty p-convex values 
does not permit to derive directly the single-valued counterpart for these results when 
0 < p < 1 , since in this case the singletons fail to be p-convex. This is the case, for 
instance, for the p-convex version of Kakutani fixed point theorem given in [5, Corol-
lary 2.13]. Hence, an investigation of p-convex versions of the three above-mentioned 
fixed point theorems for single-valued maps remains of interest. A complete study of 
these versions has been recently achieved in [20, 21] in the particular setting of p-nor-
med spaces. Here, we extend this study to the general setting of locally p-convex spaces 
for the so-called Yanyan continuous maps (Sect. 3, Theorems 4, 5 and Corollary 1). 
However, whether the three theorems are still valid for continuous maps remains an 
open question.

A further application consists of a quantification of Ascoli theorem in the space of 
vector-valued continuous functions on a completely regular space, via an alternative 
version of Ambrosetti theorem.

After investigating in Sect. 1 non compactness measures with respect to a given zero 
neighborhood, we define, in Sect. 2, the non compactness measures � and � in a topo-
logical vector space E. In order to maintain the scalar character of these measures and 
to overcome some difficulties occurring when involving the whole set of zero neighbor-
hoods in E, we introduce the notions of basic and sufficient collections of zero neigh-
borhoods (Definition  1). Next, we show that several properties of non compactness 
measures extend naturally to ours.

In Sect. 3, using our measures, we obtain extensions of Schauder, Darbo and Sad-
ovskii fixed point theorems in the context of locally p-convex spaces. Our results gener-
alize recent fixed point theorems given by Xiao and Lu [20] and Xiao and Zhu [21] in 
complete p-normed spaces.

Section 4 is devoted to the quantification of Ascoli theorem using non compactness 
measures in C(X, E), the space of all continuous functions from a Hausdorff completely 
regular space X into a topological vector space E. Such a quantification was first given 
by Ambrosetti [1], by showing that, if X and E are two metric spaces with X compact, 
and D is a bounded and equicontinuous subset of C(X, E), then

(5)�̂(D) = sup
x∈X

�(D(x)),
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where D(x) ∶= {f (x) ∶ f ∈ D} , and � and �̂ stand for the standard Kuratowski meas-
ures of non compactness on the metric spaces E and C(X, E) respectively. Ascoli 
theorem is then the particular case where one of the sides of the equality (5) is zero. 
A general version of Ascoli theorem was given by Kelley [8, p. 234] taking X to be 
a Hausdorff or a regular k-space and E to be a Hausdorff uniform space. It states that 
a subset D of C(X, E) is compact in the topology of uniform convergence on com-
pacta if and only if D is closed, D(x) is relatively compact for each x ∈ X and D is 
equicontinuous on every compact subset of X. Here, we present a quantified version 
of Ascoli theorem in a different setting than Ambrosetti’s. More precisely, using our 
non compactness measure � , we give an extension of Ambrosetti theorem, letting X 
be a Hausdorff completely regular topological space and the range space E a Haus-
dorff topological vector space (see Theorem 7).

2 � Non compactness measures with respect to a zero neighborhood

Throughout this paper, and unless otherwise stated, E will denote a Hausdorff topo-
logical vector space over the field 𝕂 ∈ {ℝ,ℂ} , and p will be a real number with 
0 < p ≤ 1 . The set of all balanced zero neighborhoods in E is denoted by V0 . Recall 

that U ∈ V0 is said to be shrinkable, if it is absorbing, balanced, and rU ⊂ Ů , for 
every 0 < r < 1 ; here U stands for the closure of U and Ů for its interior. Any topo-
logical vector space admits a local base at zero consisting of shrinkable sets (see 
[10] or [6] for details).

Recall that a subset A of E is said to be p-convex if it satisfies 𝜆A + 𝜇A ⊂ A for 
all �,� ≥ 0 such that �p + �p = 1 . The case p = 1 is the usual case of a convex set. 
Note that if A is p-convex and contains 0, then it is s-convex for every positive s ≤ p . 
In particular, an absolutely p-convex set (i.e., a balanced and p-convex set) is abso-
lutely s-convex for every 0 < s ≤ p . Such a result fails if 0 ∉ A . Actually, a singleton 
{x} , x ∈ E ⧵ {0} , is convex but not s-convex, for any 0 < s < 1.

We will frequently use the fact that if A ⊂ E is p-convex, then

The p-convex hull of A ⊂ E , denoted by cop(A) is the smallest p-convex subset of E 
containing A. This is, equivalently, the set

The set co1(A) is simply denoted by co(A).
The topological vector space E is said to be a locally p-convex space, if E has a 

local base at zero consisting of p-convex sets. The topology of a locally p-convex 
space is always given by an upward directed family ℙ of p-semi-norms, where a 
p-semi-norm on E is any non negative real-valued and subadditive functional ‖ ‖p 
on E, such that ‖�x‖p = ���p‖x‖p for every x ∈ E , � ∈ � . If E is Hausdorff, then 
for every x ≠ 0 , there is some P ∈ ℙ such that P(x) ≠ 0 . Whenever the family ℙ is 

𝜆A + 𝜇A ⊂ p
√
𝜆p + 𝜇p A, 𝜆,𝜇 ≥ 0.

cop(A) =
⋃
n≥1

{
n∑
i=1

�ixi, 0 ≤ �i,

n∑
i=1

�
p

i
= 1, xi ∈ A

}
.
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reduced to a singleton, one says that (E, ‖ ‖p) is a p-semi-normed space. A p-normed 
space is a Hausdorff p-semi-normed space.

Notice that the case p = 1 is the usual locally convex case. Furthermore, a 
p-normed space is a metric vector space with the translation invariant metric 
dp(x, y) = ‖x − y‖p , x, y ∈ E . The classical Lebesgue spaces Lp(�) defined on a com-
plete measure space (�,M,�) , � being a positive measure on M  , are examples of 
p-normed spaces, where the p-norm is given by

If P is a continuous p-semi-norm on E, then the ball BP(0, s) ∶= {x ∈ E ∶ P(x) < s} 
is shrinkable, for every s > 0 . Indeed, if r < 1 and x ∈ rBP(0, s) , then there exists 
a net (xi)i ⊂ BP(0, s) such that rxi converges to x. By continuity of P, we get 
P(x) ≤ rps < s , saying that rBP(0, s) ⊂ BP(0, s) . More generally, it can be shown 
that every p-convex U ∈ V0 is shrinkable. From now on, denote by N0 the set of all 
shrinkable zero neighborhoods in E.

Throughout all the sequel, the results are presented for the Kuratowski type non 
compactness measure � . Similar arguments can be used to show their analogous for 
the Hausdorff type one � . Therefore, if W ∈ V0 , we will denote by �W the Kura-
towski type W-measure of non compactness as given by (3).

Notice that the properties 1–3 in the proposition below are mentioned in [7] with-
out proof.

Proposition 1  Let A,B ⊂ E , U,V ∈ V0 . Then the following assertions hold:

1. �U is semi-additive, i.e., �U(A ∪ B) = max(�U(A), �U(B)).

2. �rU(sA) =
|s|
|r|�U(A) , for every scalars r, s ≠ 0 . In particular, if rU ⊂ V ⊂ sU , 

then �U(A) = 0 if and only if �V (A) = 0.

3. If V + V ⊂ U , then �U(A + B) ≤ max(�V (A), �V (B)).

4. If V ⊂ U , then �U ≤ �V.

If U is shrinkable, then

5. �U = �
U

.

6. �U(A) = �U(A).

If U is p-convex for some 0 < p ≤ 1 , then

7. �U(A + B) ≤ p
√
�U(A)

p + �U(B)
p . In particular, if U is convex, i.e., p = 1 , then 

�U is algebraically semi-additive, i.e. �U(A + B) ≤ �U(A) + �U(B).

‖f‖p =
∫
�

�f (x)�pd�, f ∈ Lp(�).
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8. �U is uniformly continuous, in the sense that, for every 𝜀 > 0 , there 
exists W ∈ V0 such that, whenever A and B are W-close, we have either 
�U(A) = �U(B) = +∞ , or |𝛼U(A) − 𝛼U(B)| < 𝜀 , where A and B are said to be 
W-close, if A ⊂ B +W and B ⊂ A +W.

Proof  1. It is clear that �U(A ∪ B) ≤ max(�U(A), �U(B)) . For the converse, 
assume that 𝛼U(A ∪ B) < max(𝛼U(A), 𝛼U(B)) and choose a scalar r so that 
𝛼U(A ∪ B) < r < max(𝛼U(A), 𝛼U(B)) . Then there is a finite covering of both A and B 
by rU-small sets C1,… ,Cn . This contradicts r < max(𝛼U(A), 𝛼U(B)).

2. The homogeneity with respect to A follows easily. The second part derives 
from the fact that � ∈ SA(U) , if and only if, �

r
∈ SA(rU) , where SA(U) denotes 

the set of all r > 0 such that A is covered by finitely many rU-small sets. Now, if 
rU ⊂ V ⊂ sU , then 1

s
�U ≤ �V ≤

1

r
�U . Therefore, �U(A) = 0 if and only if �V (A) = 0.

3. Indeed, if �V (A) = +∞ or �V (B) = +∞ , the inequality is trivial. Now, if 
r > 𝛼V (A) and s > 𝛼V (B) , then there are rV-small sets (Ai)i=1,…,n and sV-small ones 
(Bj)j=1,…,m , such that A ⊂ ∪n

i=1
Ai and B ⊂ ∪m

J=1
Bj . Therefore, 

A + B ⊂ ∪i=1,…,n
j=1,…,m

(Ai + Bj) . But

Passing to the infimum on r and s, we get

4. Indeed, one has SA(V) ⊂ SA(U) . Therefore inf SA(U) ≤ inf SA(V).
5. The inequality �U ≥ �

U
 is due to 4. above. Assume, that for some C ⊂ E , 

𝛼U(C) > 𝛼
U
(C) and choose r and s so that 𝛼U(C) > s > r > 𝛼

U
(C) . Then there exist 

rU-small sets C1,… ,Cn covering C. But Ci − Ci ⊂ rU ⊂ sU . Then the Ci ’s are also 
sU-small. Hence �U(C) ≤ s , whereby �U(C) = �

U
(C).

6. Indeed, by (1) , �U(A) ≤ �U(A) . Assume that 𝛼U(A) < 𝛼U(A) and choose r > 0 , 
with 𝛼U(A) < r < 𝛼U(A) . Then there exist rU-small subsets A1,… ,Am of E, such 
that A ⊂ ∪m

i=1
Ai . Since Ai − Ai ⊂ rU , we get Ai − Ai ⊂ rU . Similarly, Ai − Ai ⊂ rU . 

But A ⊂ ∪m
i=1

Ai . Then �U(A) ≤ r , a contradiction.
7. Again, if �U(A) = +∞ or �U(B) = +∞ , the inequality is trivial. Now, assume 

r > 𝛼U(A) and s > 𝛼U(B) . Then there are rU-small sets (Ai)i=1,…,n and sU-small ones 
(Bj)j=1,…,m , such that A ⊂ ∪n

i=1
Ai and B ⊂ ∪m

J=1
Bj . Then

It follows that : �U(A + B) ≤ p
√
�U(A)

p + �U(B)
p.

(Ai + Bj) − (Ai + Bj) = (Ai − Ai) + (Bj − Bj)

⊂ rV + sV

⊂ max(r, s)(V + V)

⊂ max(r, s)U.

�U(A + B) ≤ max(�V (A), �V (B)) ≤ �V (A) + �V (B).

(Ai + Bj) − (Ai + Bj) = (Ai − Ai) + (Bj − Bj)

⊂ rU + sU

⊂ (rp + sp)
1

p U.
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8. Fix 𝜀 > 0 , and assume first that �U(B) = +∞ , while 𝛼U(A) < +∞ . Choose then 
W ∈ V0 , r > 𝛼U(A) , and 𝜀′ > 0 small enough so that W +W ⊂ U , p

√
rp + 𝜀�p < r + 𝜀 , 

and A and B are �′W-close. Then A is covered by finitely many rU-small sets 
A1,… ,An . For i = 1,… , n , set Bi ∶= B ∩ (Ai + ��W) . Then the sets Bi , i = 1… , n , 
constitute a covering of B. Moreover, for every b1, b2 ∈ Bi , there are a1, a2 ∈ Ai such 
that b1 − a1 ∈ ��W and b2 − a2 ∈ ��W . But then

It follows that Bi is (r + �)U-small. Hence �U(B) ≤ r + � , contradicting our asser-
tion on B. Therefore �U(B) and �U(A) are simultaneously finite or infinite. Now, 
by the foregoing proof, whenever 𝛼U(A) < r , we get �U(B) ≤ r + � . Therefore 
�U(B) ≤ �U(A) + � . Similarly, �U(A) ≤ �U(B) + � . Thus |�U(A) − �U(B)| ≤ � and �U 
is uniformly continuous. 	�  ◻

Note that in the context of non locally convex spaces, there is no hope for non 
compactness measures to be invariant under the transition to the convex hull, at least 
for classical concrete non compactness measures. For example if for 0 < p < 1 one 
defines the non compactness measure of a subset A of �p as in (1), the diameter �(A) 
being relative to the distance defined by the p-norm of �p , then �(Bp) ≤

p
√
2 , while 

�(co(Bp)) = +∞ , where Bp is the closed unit ball of �p . For co(Bp) is the whole 
space �p.

Our following main result establishes the analogous of such a property in the gen-
eral setting of locally p-convex spaces. As a first step, we show the property for the 
non compactness measure �U , when U is taken to be p-convex.

Theorem 1  If U ∈ V0 is p-convex for some 0 < p ≤ 1 , then �U(cos(A)) = �U(A) for 
every A ⊂ E and every 0 < s ≤ p.

Proof  Let A ⊂ E and s be such that 0 < s ≤ p . Since A ⊂ cos(A) , we clearly have 
�U(cos(A)) ≥ �U(A) . Assume 𝛼U(A) < 𝛼U(cos(A)) and choose r > 0 , so that 
𝛼U(cos(A)) > r > 𝛼U(A) . Then there exist rU-small sets A1,… ,An , n ≥ 1 , such that 
A ⊂ ∪n

i=1
Ai . Then, for each i, Ai ⊂ Ai + rU ⊂ cos(Ai) + rU . Since cos(Ai) + rU is 

s-convex, it follows that cos(Ai) ⊂ cos(Ai) + rU . Hence cos(Ai) − cos(Ai) ⊂ rU . We 
may then (and we will do) assume each Ai s-convex. Now, choose from each Ai 
some ai . Then Ai ⊂ ai + rU and, since U is a neighborhood of 0, there exists M > 0 , 
such that ai ∈ MU for every i = 1,… , n . Therefore 

b1 − b2 = (b1 − a1) + (a1 − a2) + (a2 − b2)

∈ 𝜀�W + 𝜀�W + rU

∈ 𝜀�U + rU

⊂
p
√
𝜀�p + rpU

⊂ (r + 𝜀)U.

∪n
i=1

Ai ⊂ MU + rU ⊂
s
√
Ms + rsU.
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If x belongs to cos(A) , then there are n ∈ ℕ and, for every 1 ≤ i ≤ n , 𝜇i > 0 and 
xi ∈ Ai , such that 

∑
i �

s
i
= 1 and x =

∑n

i=1
�ixi . For arbitrary 𝛿 > 0 , since the set 

P ∶= {(𝜆1,… , 𝜆n) ∈ ℝ
n, 𝜆i > 0 and

∑
i 𝜆

s
i
= 1} is precompact, there exist m ∈ ℕ 

and, for every j = 1,… ,m , �j ∶= (�
j

1
,… ,�

j
n) ∈ P , such that P ⊂ ∪m

j=1
(𝜇j + 𝛥(𝛿)) , 

with 𝛥(𝛿) ∶= {(𝜆1,… , 𝜆n) ∈ ℝ
n ∶ maxn

i=1
|𝜆i| < 𝛿} . Set, for every j ∈ {1,… ,m} , 

Sj ∶= �
j

1
A1 + �

j

2
A2 +…+ �

j
nAn . Then clearly Sj − Sj ⊂ rU , and there exists 

j ∈ {1,… ,m} , such that maxn
i=1

|𝜇i − 𝜇
j

i
| < 𝛿 . Therefore, for y ∶=

∑n

i=1
�
j

i
xi ∈ Sj , 

we have

Choosing � small enough, so that � s
√
n(Ms + rs) ≤ � , we conclude that cos(A) is cov-

ered by the sets Sj + �U . But for every a, b ∈ Sj and y, z ∈ U , we have 
(a + 𝜀y) − (b + 𝜀z) = (a − b) + 𝜀(x − y) ∈ rU + 𝜀

s
√
2U ⊂ r s

�
1 + 2

𝜀s

rs
U . Since � was 

arbitrary, Sj + �U is rU-small. But �U = �
U

 , then �U(cos(A)) ≤ r . This contradicts 
our assumption on r. 	�  ◻

3 � Basic and sufficient collections of zero neighborhoods and relative 
non compactness measures

In order to define a new non compactness measure in E, we introduce the notions of 
basic and sufficient collections of zero neighborhoods in a topological vector space. 
To do this, let us introduce an equivalence relation on V0 by saying that U is related 
to V, written URV  , if and only if there exist r, s > 0 such that rU ⊂ V ⊂ sU.

Definition 1  We say that C ⊂ V0 is a basic collection of zero neighborhoods (BCZN 
in short), if it contains at most one representative member from each equivalence 
class with respect to R . It will be said to be sufficient (SCZN in short), if it is basic 
and, for every V ∈ V0 , there exists some U ∈ C  and some r > 0 such that rU ⊂ V .

In the normed case, if f is a continuous functional on E, U ∶= {x ∈ E ∶ |f (x)| < 1} , 
and V is the open unit ball of E, then {U} is basic but not sufficient, but {V} is 
sufficient.

If (E, �) is a locally convex space, whose topology is given by an upward directed 
family ℙ of semi-norms, so that no two of them are equivalent, the collection (BP)P∈ℙ 
is a SCZN, where BP is the open unit ball of P.

x − y =

n�
i=1

�ixi −

n�
i=1

�
j

i
xi

=

n�
i=1

(�i − �
j

i
)xi

∈ � s
√
n(Ms + rs)U.
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Further, if W  is a fundamental system of zero neighborhoods in a topological 
vector space, then there exists an SCZN C  consisting of W  members.

Following an idea of [14], a subset A of E is called uniformly bounded with 
respect to a sufficient collection C  of zero neighborhoods, if there exists r > 0 such 
that A ⊂ rV , for every V ∈ C  . In the locally convex space Cc(X) ∶= Cc(X,�) , the 
set B∞ ∶= {f ∈ C(X) ∶ ‖f‖∞ ≤ 1} is uniformly bounded with respect to the SCZN 
{BK ,K ∈ K} , where BK is the (closed or) open unit ball of the semi-norm PK.

Lemma 1  If A is an arbitrary bounded set in E, then there exists a SCZN C  with 
respect to which A is uniformly bounded.

Proof  Fix a SCZN C0 . Since A is bounded, for every V ∈ C0 , there exists rV > 0 
such that A ⊂ rVV  . Now, take C ∶= {rVV ,V ∈ C0} . Then C  fulfills the required 
condition with r = 1 . 	�  ◻

We are now in a position to introduce a non compactness measure in the topological 
vector space E.

Definition 2  Let C  be a SCZN in E. For every A ⊂ E , we define the non compact-
ness measure of A with respect to C  as:

The semi-additivity of �C  , i.e. �C(A ∪ B) = max(�C(A), �C(B)) (hence, �C  is mono-
tone in the sense that A ⊂ B implies �C(A) ≤ �C(B) ) is readily derived from Proposi-
tion 1 (1). Let us show that �C  is regular, i.e. �C(A) = 0 if and only if A is a precom-
pact subset of E. If �C(A) = 0 and U ∈ V0 is arbitrary, since C  is a SCZN, there exists 
V ∈ C  and r > 0 such that V ⊂ rU . Therefore �U(A) ≤ r�V (A) = 0 . Hence A is cov-
ered by a finite number of U-small sets. Since U is arbitrary, A is precompact. Con-
versely, if A is precompact, then �U(A) = 0 , for every U ∈ V0 . In particular �U(A) = 0 
for every U ∈ C  . Hence �C(A) = 0.

Some properties are shared by all the �C’s. Indeed, if C  and C ′ are two SCZN, then, 
for every subset A of E, we have:

This derives from the definition of a SCZN and Proposition 1 (2). However, there 
may exist a bounded set A ⊂ E such that 𝛼C(A) < 𝛼�

C
(A) = +∞, as the following 

example shows.

Example 1  Take in E = Cc(ℝ) , the space C(ℝ) of all continuous func-
tions from ℝ into ℝ endowed with the topology of uniform conver-
gence on compact sets of ℝ , the collections C ∶= (Bn)n and C � ∶= (

1

n
B
n
)
n
 , 

where Bn ∶= {f ∈ C(ℝ), ‖f‖n ∶= sup�x�≤n �f (x)� ≤ 1} , n ∈ ℕ . Then, for 
A ∶= {f ∈ C(ℝ), |f (x)| ≤ 1, x ∈ ℝ} , we have �C(A) = 2 , while �C � (A) = +∞ . 

�C(A) = sup
U∈C

�U(A).

�C(A) = 0 if and only if ��

C
(A) = 0.
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Indeed, if 𝛼Bn
(A) < 2 holds for some n, then also 𝛼Bn

(A�) < 2 , where 
A� ∶= {fk ∶ k ∈ ℕ} and fk being defined on ℝ by:

Choose a real number r so that 𝛼Bn
(A�) < r < 2 . Then there exist rBn-small subsets 

S1,… , Sm of E covering A′ . At least one of these sets, say Si , contains infinitely 
many elements of A′ . But, whenever fh, fk ∈ Si are such that h < k , one has

This contradicts r < 2 . Hence �Bn
(A) ≥ 2 holds for every n. Since A ⊂ Bn and Bn is 

convex, we get �Bn
(A) = 2 for every n. This shows that �C(A) = 2 . But 

� 1

n
Bn

= n�Bn
(A) . We conclude that �C � (A) = +∞.

Similar properties as in Proposition 1 are obtained directly for the non compact-
ness measure �C∶

Proposition 2  Let C  be a SCZN in E consisting of shrinkable sets and A,B ⊂ E . 
Then, the following hold:

1.	 �C(A) = �C(A).
2.	 �C(sA) = |s|�C(A) , for every scalar s ≠ 0.
	   Moreover, if C  consists of p-convex sets for some 0 < p ≤ 1 , then
3.	 �C(A + B) ≤ p

√
�C(A)

p + �C(B)
p.

Some properties of subsets of E can be characterized through the non compactness 
measure.

Proposition 3  1. For every SCZN C  in E, a subset A of E is bounded if and only if 
𝛼U(A) < +∞ for every U ∈ C .
2. If a SCZN C  in E consists of p-convex sets for some 0 < p ≤ 1 and if A is C -uni-
formly bounded, then 𝛼C(A) < +∞.
3. If E is locally p-convex, then A is bounded if and only if there exists a SCZN C  
with 𝛼C(A) < +∞.

Proof  1. If A is bounded, then its balanced hull B and also C ∶= B − B are bounded. 
Therefore, for every U ∈ C  there is r > 0 such that C ⊂ rU . But A ⊂ B and 
B − B ⊂ rU . Therefore 𝛼U(A) ≤ r < +∞ . Conversely, for every U ∈ V0 , there exists 
V ∈ C  and 𝜌 > 0 satisfying V + V ⊂ 𝜌U . But 𝛼V (A) < +∞ . Then, there exists r > 0 
and rV-small subsets A1,… ,Am of E such that A ⊂ ∪m

i=1
Ai . Fix ai ∈ Ai arbitrarily. 

Then A ⊂ {ai, i = 1,…m} + rV  . But {ai, i = 1,…m} is bounded. Then there exists 

fk(x) =

⎧
⎪⎨⎪⎩

−1 ∶ x ≤
1

k+1

2k(k + 1)x − (2k + 1) ∶
1

k+1
< x ≤

1

k

1 ∶ otherwise.

r ≥
||||fk
(

1

h + 1

)
− fh

(
1

h + 1

)|||| = 2.
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s > r so that {ai, i = 1,… n} ⊂ sV  . It follows that A ⊂ s(V + V) ⊂ s𝜌U . Hence A is 
bounded in E.

2. If A is C -uniformly bounded, there exists r > 0 such that A ⊂ rU , U ∈ C  . 
Since rU − rU ⊂ r

p
√
2U for every U ∈ C  , �U(A) ≤ r

p
√
2 for every U ∈ C  . Hence 

𝛼C(A) ≤ r
p
√
2 < +∞.

3. Assume that E is locally p-convex and that A is bounded. Then by Lemma  1, 
there exists a SCZN C  consisting of p-convex sets such that A is C -uniformly 
bounded. Hence by (2), 𝛼C(A) < +∞ . For the converse, if 𝛼C(A) < r , for some r > 0 , 
then by (1), A is bounded. 	� ◻

We formulate our next main theorem stating the invariance of �C  under the 
closed s-convex hull in a Hausdorff locally p-convex space E, 0 < s ≤ p . This is 
a consequence of Theorem 1 and Proposition 1 (6). This shows that in the case 
s = p = 1 , �C  is a non compactness measure in the sense of Sadovskii [19] and 
Park [15]. This is

Theorem  2  Let C ⊂ V0 be a SCZN consisting of p-convex subsets in a Hausdorff 
topological vector space E. Then, �C(cosA) = �C(A) for every A ⊂ E and every 
0 < s ≤ p.

We conclude this section by the following proposition which is an extension of 
the well-known Cantor type intersection property of non compactness measures 
in the setting of metric spaces. The proof in this particular setting was given by 
Kuratowski [12].

Proposition 4  Let E be a Hausdorff topological vector space, C  a SCZN in E con-
sisting of shrinkable sets, and (An)n≥0 a decreasing sequence of non empty sets in 
E such that An0

 is complete for some n0 , and limn→∞ �U(An) = 0 for every U ∈ C  . 
Then ∩∞

n=0
An is non empty and compact.

Proof  With no loss of generality, we may assume that A0 is complete. Let 𝜀 > 0 and 
U ∈ C  . Since �U(An) → 0 , there exists N ∈ ℕ such that 𝛼U(An) < 𝜀 for every n ≥ N . 
Choose a sequence (xn) ⊂ E such that xn ∈ An for each n. Since �U(F) = 0 for every 
finite F ⊂ E , it follows, for every n ≥ N:

Since 𝜀 > 0 and U ∈ C  were arbitrary, �C
({

xn, n ≥ 0
})

= 0 , that is, 
{
xn, n ≥ 0

}
 is 

precompact, then relatively compact. Therefore (xn)n admits a cluster point x ∈ E . 
But Ak contains all the xn ’s but a finite number. Then x belongs to the closure of Ak 
for each k. Therefore ∩∞

n=0
An is non empty. Now, the compactness of ∩∞

n=0
An fol-

lows easily from the monotonicity, the closure invariance of �C  , and the fact that 
�U

(
An

)
→ 0 for every U ∈ C  . 	�  ◻

𝛼U
(
(xn)

)
= 𝛼U(

{
xn ∶ n ≥ N

}
)

≤ 𝛼U(AN) < 𝜀.
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4 � Application: Schauder, Darbo and Sadovskii‑type fixed point 
results in locally p‑convex spaces

In this section, we will use our results on the introduced non compactness measure to 
establish the versions of the well known Darbo and Sadovskii fixed point theorems for 
the so-called Yanyan continuous maps in the setting of locally p-convex spaces. Simi-
larly as with the normed case, the key idea is to come back to a compact set and to 
apply Schauder fixed point theorem. So, we need for this to establish a p-convex ver-
sion of Schauder fixed point theorem in our setting of locally p-convex spaces (Theo-
rem 4). This will present an extension of the following recent version established in the 
p-normed spaces setting.

Throughout this section, C will be a non empty subset of a Hausdorff topological 
vector space E.

Theorem 3  ([21, Theorem 2.13]) Let (E, ‖ ‖p) be a complete p-normed space and 
C be a compact s-convex subset of E, where 0 < s ≤ p . Then, every continuous map 
T ∶ C → C has a fixed point.

Let us say that, in a Hausdorff locally p-convex space (E, �) , a family ℙ of continu-
ous p-semi-norms on E is sufficient, if the collection {UP,P ∈ ℙ} is a SCZN, where UP 
denotes the open unit ball of P.

A map T ∶ C → C will be said to be lipschitzian, if there exists a sufficient family ℙ 
of p-semi-norms on E such that:

If LP < 1 for every P ∈ ℙ , then T is called a contraction on C. If there exists a suf-
ficient family ℙ of p-semi-norms on E, such that, for every P ∈ ℙ , T is continu-
ous from (C, �P) into (C, �P) , where �P is the topology induced on C by the single 
p-semi-norm P, we say that T is Yanyan-continuous. It is clear that a contraction is 
lipschitzian, a lipschitzian map is Yanyan-continuous, and that a Yanyan-continuous 
map is continuous. Moreover, in a normed space, every continuous map is Yanyan-
continuous, but need not be lipschitzian. Now, if we consider again the topological 
linear space Cc(ℝ) of Example 1, then the mapping T defined for every f ∈ C(ℝ) by 
T(f ) ∶= f 2 is Yanyan-continuous, but not lipschitzian. Indeed, the family (‖ ‖n)n of 
semi-norms defined in Example 1 is sufficient and satisfies

Restricting ourselves to the open ball Bn(g, r) ∶= {f ∈ C(ℝ) ∶ ‖f − g‖n < r} , for 
any r > 0 , we get:

whence the Yanyan-continuity of T at g and then on C(ℝ) since g is arbitrary. Now, 
if T were lipschitzian with respect to some sufficient family ℙ of semi-norms defin-
ing the topology of C(ℝ) , then for every P ∈ ℙ , there would exist MP > 0 , such that

∀P ∈ ℙ, ∃LP > 0, P(Tx − Ty) ≤ LPP(x − y), x, y ∈ C.

‖T(f ) − T(g))‖n ≤ ‖f + g‖n‖f − g‖n, f , g ∈ C(ℝ).

‖T(f ) − T(g)‖n ≤ (‖g‖n + r)‖f − g‖n,
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But for every n ≥ 1 , there exist Pn ∈ ℙ and a positive number R(n) such that

Choose g, f ∈ C(ℝ) , n ≥ 1 with ‖g‖n ≠ 0 , and f = �g , � ≠ 1 . Then, we have

As ‖g2‖n = ‖g‖2
n
≠ 0 , this means that

Since � ≠ 1 is arbitrary, this is impossible.
Notice at this point that, for every p-semi-norm P on a topological vector space E, 

the set kerP ∶= {x ∈ E ∶ P(x) = 0} is a (closed if P is continuous) vector subspace 
of E.

Our next main result is a Schauder-type fixed point theorem for Yanyan-continu-
ous maps in locally p-convex spaces.

Theorem 4  Let (E, �) be a Hausdorff locally p-convex space and C ⊂ E be a com-
pact and s-convex subset of E, with 0 < s ≤ p . Then, every Yanyan-continuous map 
T ∶ C → C has a fixed point.

For the proof, we need the following lemma.

Lemma 2  Let P be a continuous p-semi-norm on a Hausdorff topological vec-
tor space (E, �) , C a compact s-convex subset of E with 0 < s ≤ p , and T ∶ C → C 
a mapping. If T is P-continuous (i.e., ∀𝜀 > 0 , ∃𝜂 > 0 , such that P(Tx − Ty) ≤ � 
for every x, y ∈ C with P(x − y) < 𝜂 ), then there exists xP ∈ C , such that 
xP − TxP ∈ kerP.

Proof  It is easily shown that the quotient space E∕ kerP , endowed with the p-norm 
‖�(x)‖p ∶= P(x) , is a p-normed space, where � ∶ E → E∕ kerP stands for the 
canonical surjection. Thinking of �(C) as a subset of the completion Ê∕ kerP of 
E∕ kerP , we may assume that E∕ kerP is a complete p-normed space. For every 
x ∈ C , put T(�(x)) = �(Tx) . It follows from the P-continuity of T that T  is a con-
tinuous self map on �(C) . By continuity of P, � is continuous. Therefore �(C) is 
compact. But �(C) is also s-convex. Hence, by Theorem 3, there exists xP ∈ C such 
that T(�(xP)) = �(xP) , that is, xP − TxP ∈ kerP as desired. 	�  ◻

Proof of Theorem 4  Let ℙ be a sufficient family of p-semi-norms on E with respect to 
which T is Yanyan-continuous on C. By Lemma 2, there exists a family (xP)P∈ℙ ⊂ C 
with xP − TxP ∈ kerP for every P ∈ ℙ . Denote by AP , for P ∈ ℙ , the closure of the 
set

P(T(f ) − T(g)) ≤ MPP(f − g), f , g ∈ C(ℝ).

‖f‖n ≤ R(n)Pn(f ), f ∈ C(ℝ).

��2 − 1�‖g2‖n = ‖T(f ) − T(g)‖n ≤ R(n)Pn(T(f ) − T(g)) ≤ R(n)MPn
�� − 1�Pn(g).

�� + 1� ≤ R(n)MPn

‖g‖2
n

Pn(g).
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Since ℙ is sufficient, the collection (AP)P∈ℙ satisfies the finite intersection property. 
By compactness of C, the set A ∶= ∩{AP,P ∈ ℙ} contains at least an element x ∈ C . 
We claim that Tx = x . Otherwise, there would exist P ∈ ℙ such that P(Tx − x) > 0 . 
Choose � so that, 0 < 𝜂 < P(Tx−x)

2
 and whenever x, y ∈ C with P(x − y) ≤ � , we 

have P(Tx − Ty) < P(Tx−x)

2
 . Now, choose Q ∈ ℙ , so that P ≤ cQ , for some c > 0 and 

P(x − xQ) < 𝜂 . Then

This is absurd. 	�  ◻

Darbo [4] and Sadovskii [18] introduced the notions of set-contractions and 
condensing maps. They established their famous fixed point theorems in the 
setting of Banach spaces. Following them, if E is a Hausdorff locally p-convex 
space, we will say that a map T ∶ C → C is a set-contraction (resp. condensing), 
if there is some SCZN C  in E consisting of p-convex sets, such that:

(resp.          ∀U ∈ C, 𝛼U(T(A)) < 𝛼U(A), A ⊂ C with 𝛼U(A) > 0).
It is clear that a contraction on C is a set-contraction and a set-contraction on 

C is condensing.
Now, our next result is a Sadovskii-type fixed point theorem in the setting of 

locally p-convex spaces.

Theorem 5  Let C ⊂ E be a complete s-convex subset of a Hausdorff locally p-convex 
space E, with 0 < s ≤ p . If T ∶ C → C is Yanyan-continuous and condensing, then T 
has a fixed point.

Proof  Let C  be a sufficient collection of p-convex zero neighborhoods in E with 
respect to which T is condensing and fix U ∈ C  . Choose some x0 ∈ C and let F  
be the family of all closed s-convex subsets A of C with x0 ∈ A and T(A) ⊂ A . Note 
that F  is not empty since C ∈ F  . Let A0 = ∩A∈FA . Then A0 is a non empty closed 
s-convex subset of C, such that T(A0) ⊂ A0 . We shall show that A0 is compact. Let 
A1 = cos(T(A0) ∪ {x0}) . Since T(A0) ⊂ A0 and A0 is closed and s-convex, A1 ⊂ A0 . 
Hence, T(A1) ⊂ T(A0) ⊂ A1 . It follows that A1 ∈ F  and therefore A1 = A0 . By Prop-
osition 1 and Theorem 1, we get �U(T(A0)) = �U(A0) . Our assumption on T shows 
that �U(A0) = 0 . Since U was arbitrary, A0 is compact as desired. Now, the conclu-
sion follows from Theorem 4 applied to T ∶ A0 → A0 . 	�  ◻

CP ∶= {xQ,Q ∈ ℙ, and P ≤ cQ for some c > 0}.

P(Tx − x) ≤ P(Tx − TxQ) + P(TxQ − xQ) + P(xQ − x)

<
P(x − Tx)

2
+ cQ(TxQ − xQ) +

P(x − Tx)

2

= P(Tx − x).

∀U ∈ C,∃0 < kU < 1, 𝛼U(T(A)) ≤ kU𝛼U(A), A ⊂ C,
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Corollary 1  (Darbo-type fixed point theorem) Let C ⊂ E be a complete s-convex sub-
set of a Hausdorff locally p-convex space E, with 0 < s ≤ p . If T ∶ C → C is Yanyan 
continuous and a set-contraction, then T has a fixed point.

Notice that, if T is a contraction on C then it is both Yanyan continuous and a set-
contraction. In this case, the preceding corollary can be sharpened, with a standard 
proof as in Theorem 2.2 of [3], in the following way:

Theorem 6  (The contraction principle) Let C be a sequentially complete subset of 
a Hausdorff locally p-convex space E. If T ∶ C → C is a contraction on C , then T 
has a unique fixed point x∗ in C,  and the iterative sequence (Tnx) converges to x∗ for 
every x ∈ C.

The following two recent results are now particular cases of Theorem 5 and Cor-
ollary 1. The cases s = p = 1 are the standard Darbo and Sadovskii fixed point theo-
rems. Note that, for a p-normed space E (which is a metric space), � stands for the 
standard Kuratowski non compactness measure in E.

Corollary 2  (Sadovskii-type, [20, Theorem 4.3]) Let (E, ‖·‖p) be a complete p-nor-
med space and C be a bounded, closed and s-convex subset of E, where 0 < s ≤ p . 
Then, every continuous and �-condensing map T ∶ C → C has a fixed point.

Proof  Take in Theorem 5 C
{
Bp(0, 1)

}
 , where Bp(0, 1) stands for the closed unit ball 

of E, and note that it can be easily shown that �(A) =
(
�C(A)

)p for every A ⊂ E , and 
that T satisfies the conditions of Theorem 5. 	� ◻

Corollary 3  (Darbo-type, [20, Theorem 4.1]) Let (E, ‖ ⋅ ‖p) be a complete p-normed 
space and C be a bounded, closed and s-convex subset of E, where 0 < s ≤ p . Then, 
every map T ∶ C → C which is continuous and a set-contraction has a fixed point.

We conclude this section by the following open question to which it is alluded in 
the introduction, on the p-convex versions of the well-known Schauder, Darbo and 
Sadovskii fixed point theorems in the setting of locally p-convex spaces.

Question :  Can the Yanyan-continuity condition in Theorems 4, 5 and Corol-
lary 1 be weakened to continuity ?

5 � Noncompactness measure in C(X, E)

In this section, X will be a Hausdorff completely regular topological space, B 
will be the von Neumann bornology of E, i.e., the family of all bounded subsets 
of E, and K  an upward directed collection of compact subsets of X covering the 
whole X. The smallest such a family is S ∶= {F ⊂ X finite} and the largest is 
G ∶= {K ⊂ X compact} . The linear space of all continuous functions from X into 
E will be denoted by C(X, E). It will be endowed with the topology �K  of uniform 
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convergence on the elements of K  . A fundamental system of zero neighborhoods 
for �K  is given by the sets:

The topological vector space obtained by endowing C(X, E) with the topology �K  
will be denoted by CK(X,E) . In case K = S  (resp. K = G  ), we will rather write 
Cs(X,E) (resp. Cc(X,E)).

Recall that the topology of X is generated by the uniformity induced on X by 
C(X, [0, 1]), the space of all continuous functions from X into [0, 1]. In other terms, 
the topology of X is nothing but the initial topology associated to C(X, [0, 1]).

Now, let us associate to any collection C  of zero neighborhoods in E the 
collection

of zero neighborhoods in CK(X,E).

Lemma 3  If C  is a basic (resp. sufficient) collection of zero neighborhoods in E, 
then so is also the collection Ĉ  in CK(X,E) . Moreover, if U is a closed shrinkable 
zero neighborhood, then N(K, U) is also closed and shrinkable in CK(X,E).

Proof  Suppose that, for some K,K� ∈ K  and some zero neighborhoods U and U′ , 
there exist r, s > 0 such that rN(K,U) ⊂ N(K�,U�) ⊂ sN(K,U) . Then K = K� and 
URU′ , therefore, since C  is basic U = U� . Indeed, if some x ∈ K exists with x ∉ K� , 
then there is a continuous function g from X into [0, 1] such that g(x) = 1 and g is 
identically 0 on K′ . Let a ∈ E , with a ∉ sU . Then the function f ∶= g⊗ a defined 
by f (y) = g(y)a belongs to N(K�,U�) , but f (x) = a ∉ sU . Hence K = K� . Now, 
assume that there exists a ∈ U , with ra ∉ U� and denote by g the constant function 
g(y) = a . Then g ∈ N(K,U) , but rg(K�) = ra ∉ U� . This contradicts our assumption. 
Similarly, we show that U′ ⊂ sU . Hence U = U� , since C  is basic.

Now, assume C  is sufficient. Then, by the foregoing proof, Ĉ  is basic. Moreover, 
let W be a zero neighborhood in CK(X,E) . Then there exist a compact set K ∈ K  
and a zero neighborhood V in E such that N(K,V) ⊂ W . But there exist r > 0 and 
U ∈ C  , such that rU ⊂ V  . This leads to rN(K,U) ⊂ W.

Assume now that U ∈ V0 is closed and shrinkable, and K ∈ K  . 
Since the evaluation �x ∶ f ↦ f (x) is continuous from CK(X,E) into E, 
N(K,U) = ∩{�−1

x
(U), x ∈ K} is a closed zero neighborhood in CK(X,E) . 

Furthermore, for arbitrary 1 > r > 0 , we have rU = rU ⊂ Ů . Therefore, 

rN(K,U) = rN(K,U) = N(K, rU) ⊂ N(K, Ů) ⊂ N(K, Ů) . Hence N(K,  U) is shrink-
able. 	�  ◻

In the following, we let C  denote a SCZN in E. With no loss of generality, since 
every topological vector space admits a fundamental system of zero neighborhoods 
consisting of closed shrinkable and balanced sets, we may assume that C  consists 

N(K,U) ∶= {f ∈ C(X,E) ∶ f (K) ⊂ U}, K ∈ K, U ∈ N0.

Ĉ ∶= {N(K,U), K ∈ K, U ∈ C}
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also of such sets. Therefore, by Lemma 3, the associated collection Ĉ  consists also 
of closed shrinkable and balanced sets.

Let �̂C  be the non compactness measure in the space CK(X,E) defined by the 
SCZN Ĉ  . This is

where �̂N(K,U) stands for the N(K,U)-measure of non compactness in the space 
CK(X,E).

Next, we address the question whether the equality

holds for a subset D of C(X, E). Here D(x) ∶= {f (x) ∶ f ∈ D}.

Definition 3  A subset D ⊂ C(X,E) is said to be equicontinuous on a subset Y of 
X, if it is equicontinuous at each point of Y. It is said to be uniformly equicon-
tinuous on Y, if for every U ∈ N0 , there exist 𝜇 > 0 and finitely many functions 
g1, ..., gn ∈ C(X, [0, 1]) such that, whenever maxn

i=1
|gi(x) − gi(y)| < 𝜇 , with x, y ∈ Y  , 

we have f (x) − f (y) ∈ U for every f ∈ D.

Proposition 5  If D ⊂ C(X,E) is equicontinuous on a compact K ⊂ X , then D is uni-
formly equicontinuous on K.

Proof  Let V be an arbitrary zero neighborhood in E and choose U ∈ N0 such that 
U + U ⊂ V  . Since D is equicontinuous at every point of K, for every t ∈ K , there 
exists an open neighborhood �t of t in X such that:

By the complete regularity of X, there exists a function gt ∈ C(X, [0, 1]) such that 
gt(t) = 1 , and gt vanishes identically outside of �t . By compactness of K, there are 
n ∈ ℕ and t1, t2,… , tn ∈ K , so that K ⊂ ∪n

i=1
{gti >

3

4
} . Put � =

1

4
 and gi = gti . If 

x, y ∈ K satisfy max(|gi(x) − gi(y)|, i = 1,… , n) < 𝜂 , then there is i0 ∈ {1,… , n} , 
such that gi0(x) >

3

4
 . Since |gi0(x) − gi0(y)| < 1

4
 , it follows gi0(y) >

1

2
 , so that both x 

and y belong to �ti0
 . Therefore, using (6), for every f ∈ D we get

Hence, since x, y were arbitrary in K, D is uniformly equicontinuous on K. 	�  ◻

The following corollary is an immediate consequence of Proposition 5.

Corollary 4  If a subset D of C(X,  E) is equicontinuous on X, then it is uniformly 
equicontinuous on every compact K ⊂ X.

�̂C(D) = sup

K ∈ K

U ∈ C

�̂N(K,U)(D),

�̂C(D) = sup
K∈K

sup
x∈K

�C(D(x))

(6)f (t) − f (s) ∈ U, f ∈ D, s ∈ �t.

f (x) − f (y) = f (x) − f (ti0 ) + f (ti0 ) − f (y) ∈ U + U ⊂ V .
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Now, we are in a position to establish an alternative of Ambrosetti theorem in the 
general setting of topological vector spaces. This is our next main result:

Theorem 7  Let D be a subset of C(X, E). If D is equicontinuous on X, then the fol-
lowing equality holds:

In order to prove this result, we first give the following lemma:

Lemma 4  Let K be a compact subset of X, U a closed zero neighborhood in E, and 
D a subset of C(X, E). If D is equicontinuous on K, then the following equality holds:

Proof  If �̂N(K,U)(D) = +∞ , then obviously �̂N(K,U)(D) ≥ sup{�U(D(x)), x ∈ K} . 
Now, assume �𝛼N(K,U)(D) < +∞ and consider an arbitrary 𝜂 > �𝛼N(K,U)(D) . Then, there 
exist �N(K,U)-small subsets G1,… ,Gm of C(X, E) such that D ⊂ ∪m

i=1
Gi . Therefore, 

for x ∈ K , D(x) ⊂ ∪m
i=1

Gi(x) and Gi(x) − Gi(x) ⊂ 𝜂U . Hence �U(D(x)) ≤ � . It follows 
that �U(D(x)) ≤ �̂N(K,U)(D) , for every x ∈ K.

For the converse, it is clear that if sup{�U(D(x)), x ∈ K} = +∞ , then 
�̂N(K,U)(D) = sup{�U((D(x)), x ∈ K} . Assume now that sup{𝛼U(D(x)), x ∈ K} < +∞ 
and consider arbitrary 𝜂 > sup{𝛼U(D(x)) , x ∈ K} and zero neighborhoods 
V ,W ∈ N0 , such that V + V ⊂ W . By Proposition 5, D is uniformly equicontinuous 
on K. Therefore there exist 𝜇 > 0 and a finite subset F of C(X, [0, 1]), such that:

Now, for arbitrary x ∈ K , put Kx ∶= {t ∈ X ∶ |g(x) − g(t)| < 𝜇, g ∈ F} . This is an 
open subset of X containing x. Then the collection (Kx)x∈K is an open covering of K. 
By compactness, there are n ∈ ℕ and x1, x2,… , xn ∈ K , such that K ⊂ ∪n

i=1
Ki , with 

Ki ∶= Kxi
 . By the very definition of Ki and (7), we have

Now, for every x ∈ K , there is some i ∈ {1,… , n} such that x ∈ Ki . Therefore, due 
to (8), D(x) ⊂ D(xi) + V  . It follows that D(K) ⊂ ∪n

i=1
D(xi) + V  . As 𝜂 > 𝛼U(D(xi)) , 

i = 1… , n , there exist, m ∈ ℕ and �U-small subsets E1,… ,Em of E, such that 
∪n
i=1

D(xi) ⊂ ∪m
j=1

Ej . Let M be the set of all mappings from the set {1, 2,… , n} into 
the set {1, 2,… ,m} . Then M is a finite set and, clearly, D ⊂ ∪𝜇∈MD𝜇 , where 
D� ∶= {f ∈ D ∶ f (xi) ∈ E�(i), i = 1,… , n} . Moreover, the sets D� are �N(K,U)-
small. Indeed, if � ∈ M , f , g ∈ D� and x ∈ K are given, then there exists 
i ∈ {1,… , n} such that x ∈ Ki . By (8), f (x) − f (xi) ∈ V  and g(x) − g(xi) ∈ V  . Since 
E𝜇(i) − E𝜇(i) ⊂ 𝜂U , we get f (xi) − g(xi) ∈ �U . It follows that:

�̂C(D) = sup
K∈K

sup
x∈K

�C(D(x)).

�̂N(K,U)(D) = sup{�U(D(x)), x ∈ K}.

(7)(∀x, y ∈ K), (max
g∈F

|g(x) − g(y)| < 𝜇) ⟹ (f (x) − f (y) ∈ V , f ∈ D).

(8)
(
x ∈ Ki

)
⟹

(
f (x) − f (xi) ∈ V , f ∈ D

)
.
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Since this holds for x ∈ K and every W ∈ N0 , we get f (x) − g(x) ∈ �U = �U = �U , 
for U is closed. Hence D𝜇(i) − D𝜇(i) ⊂ N(K, 𝜂U) = 𝜂N(K,U) , saying that D� is 
�N(K,U)-small. It follows that � ≥ �̂N(K,U)(D) , achieving the proof. 	�  ◻

Proof of Theorem 7  By definition, �̂C(D) = sup

K ∈ K

U ∈ C

�̂N(K,U)(D) . Since D is equicon-

tinuous on X, it is uniformly equicontinuous on each compact K ⊂ X . Then, 
Lemma 4 yields

Then

as claimed. 	�  ◻

Since, in any topological vector space, a subset is precompact if and only its 
non compactness measure is zero, a first immediate corollary of Theorem 7 is the 
following:

Corollary 5  An equicontinuous subset D of C(X, E) is precompact in CK(X,E) if and 
only if D(x) is precompact in E, for every x ∈ X.

Notice here that, according to Corollary 5, an equicontinuous subset D of C(X, E) 
is precompact in Cs(X,E) if and only if it is so in Cc(X,E).

Actually, Corollary 5 can be improved, whenever X is a kK -space and E is a topo-
logical vector space. At this point, recall that the completely regular space X is said 
to be a kK -space, if a function f defined on X, with values in ℝ (or equivalently in 
any completely regular space), is continuous, provided its restriction to any K ∈ K  
is relatively continuous. Whenever K = G  , we get a so-called k

ℝ
-space (see [11] for 

further details on such spaces).
Let us denote by Lpc(CK(X,E),E) the topological vector space L(CK(X,E),E) 

of all linear continuous mappings defined on C(X, E) with values in E, endowed with 
the topology �pc of uniform convergence on the precompact subsets of CK(X,E) . A 
fundamental system of zero neighborhoods for �pc is given by the sets of the form

f (x) − g(x) = f (x) − f (xi) + f (xi) − g(xi) + g(xi)

− g(x) ∈ V + 𝜂U + V ⊂ W + 𝜂U.

�̂N(K,U)(D) = sup{�U(D(x)), x ∈ K}.

�̂C(D) = sup

K ∈ K

U ∈ C

sup
x∈K

�U(D(x))

= sup
K∈K

sup
x∈K

�C(D(x)),

N(D,U) ∶= {T ∈ L(CK(X,E),E) ∶ T(D) ⊂ U},
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D running over the set of precompact subsets of CK(X,E) and U over N0 . By � we 
will mean the evaluation map defined from X into L(CK(X,E),E) by �(x) = �x.

The following lemma can be deduced from Proposition 16 of [13] (see also 
Lemma 2.1 of [9], and [17] in the case E is locally convex). For the sake of com-
pleteness, we include a proof of it.

Lemma 5  Let X be a Hausdorff completely regular space and E a Hausdorff topo-
logical vector space. Then the evaluation map � ∶ X → Lpc(CK(X,E),E) is con-
tinuous if and only if every precompact subset of CK(X,E) is equicontinuous.

In particular, if X is a kK -space, every precompact subset of CK(X,E) is equicon-
tinuous on X.

Proof  Necessity: Let D be a �K -precompact subset of C(X, E), x0 an element of X, 
and U a zero neighborhood in E. Since � is continuous at x0 , there exists a neigh-
borhood �0 of x0 , such that �(x) − �(x0) ∈ N(D,U) , x ∈ �0 . This means that 
f (x) − f (x0) ∈ U for every f ∈ D and x ∈ �0 , showing that D is equicontinuous at 
x0 . Since x0 is arbitrary, D is equicontinuous on X.

Sufficiency: Choose arbitrarily x0 ∈ X , U ∈ N0 , and a �K -precompact set 
D ⊂ C(X,E) . By assumption D is equicontinuous. Therefore there exists a neigh-
borhood �0 of x0 , such that f (x) − f (x0) ∈ U , for every f ∈ D and x ∈ �0 . This is 
�(x) − �(x0) ∈ N(D,U) , showing that � is continuous at x0.

Now, choose arbitrary K ∈ K  , x0 ∈ K , and consider N(D, U), a zero neighbor-
hood in Lpc(CK(X,E),E) , where D is a precompact set in CK(X,E) and U ∈ V0 . 
Consider V ∈ V0 , such that V + V + V ⊂ U . Then, for the zero neighborhood 
N(K,  V) in CK(X,E) , there exist, m ∈ ℕ and f1,… , fm ∈ D , such that 
D ⊂ ∪

1≤j≤m
(fj + N(K,V)) . This means:

Since {f1,… , fm} is equicontinuous, there exists a neighborhood �0 of x0 , such that:

It derives from (9) and (10) that, for every f ∈ D there is some j ∈ {1,… ,m} such 
that for every x ∈ �0 ∩ K , we have:

This shows that the restriction to K of � is continuous at x0 then on K, since x0 was 
arbitrary. As X is a kK -space, � is continuous on X. We conclude by the first part of 
the lemma. 	�  ◻

(9)∀f ∈ D, ∃j ∈ {1,… ,m} ∶ f (x) − fj(x) ∈ V , x ∈ K.

(10)fj(x) − fj(x0) ∈ V , j = 1,… ,m, x ∈ �0.

𝛥(x)(f ) − 𝛥(x0)(f ) = f (x) − f (x0)

= f (x) − fj(x) + fj(x) − fj(x0) + fj(x0) − f (x0)

∈ V + V + V ⊂ U.
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Corollary 6  Let X be a Hausdorff completely regular kK -space, E a Hausdorff topo-
logical vector space, and D a subset of C(X, E). Then D is precompact in CK(X,E) 
if and only if it is equicontinuous on X and D(x) is precompact in E for every x ∈ X.

Proof  Since D is precompact in CK(X,E) , it is equicontinuous on X by Lemma 5. 
Hence, by Theorem 7, �C(D(x)) = 0 , for every x ∈ X . Therefore D(x) is precompact 
for every x ∈ X , whence the necessity. The sufficiency derives immediately again 
from Theorem 7. 	� ◻
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