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Abstract
We introduce and study the Lipschitz injective hull of Lipschitz operator ideals 
defined between metric spaces. We show some properties and apply the results to 
the ideal of Lipschitz p-nuclear operators, obtaining the ideal of Lipschitz quasi 
p-nuclear operators. Also, we introduce in a natural way the ideal of Lipschitz 
Pietsch p-integral operators and show that its Lipschitz injective hull coincide with 
the ideal of Lipschitz p-summing operators defined by Farmer and Johnson. Finally, 
we consider both ideals as Lipschitz operator ideals between a metric space and a 
Banach space, showing that these ideals are not of composition type. Their maximal 
hull and minimal kernel are also studied.
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1  Introduction

Inspired by the work of Farmer and Johnson [10], where the notion of p-summing lin-
ear operator is extended to the Lipschitz setting, many authors have introduced different 
notions of Lipschitz operators between pointed metric spaces which, in some sense, 
extend different kind of ideals of (linear) operators between Banach spaces (see e.g. 
[1–3, 8] and the references therein). On the other hand, given a Banach linear operator 
ideal, Stephani in [16] defined a procedure which assign new Banach operator ideals 
from a given one, named the injective hull. In the present work, we extend this notion to 
the Lipschitz case. This is, we define the Lipschitz injective hull of a Lipschitz operator 
ideal between pointed metric spaces. We give some properties of this procedure and 
apply our results to the Lipschitz ideal of p-nuclear operators defined in [8], obtaining 
the class of quasi p-nuclear Lipschitz operators.

The article is divided as follows. In Sect. 1 we introduce and study the Lipschitz 
injective hull of Lipschitz operator ideals defined between pointed metric spaces. We 
give some characterizations (which can be seeing as a generalization of the linear 
case) and apply our results to some known Lipschitz operator ideals. We show that 
the Lipschitz injective hull of the Lipschitz p-integral operators (defined in [10]) and 
Lipschitz Pietsch p-integral operators (see definition below) coincide with the Lipschitz 
p-summing operators of Farmer and Johnson. We also introduce the ideal of Lipschitz 
quasi p-nuclear operators between pointed metric spaces and show that it coincide with 
the Lipschitz injective hull of the ideal of Lipschitz p-nuclear operators. In Sect. 2 we 
deal with the ideal of Lipschitz quasi p-nuclear operators and Lipschitz Pietsch p-inte-
gral operators between a pointed metric space and a Banach space. We show that both 
ideals are not of composition type, implying that they cannot be obtained from linear 
Banach operator ideals. We show that the maximal hull of the Lipschitz quasi p-nuclear 
operators coincide with the ideal of p-summing operators and also we characterize the 
minimal kernel of the Lipschitz Pietsch p-integral operators. Finally, we compare the 
Lipschitz injective hull procedure with the injective hull procedure of Banach Lipschitz 
operator ideals, defined in [3, Definition 2.2]. We use our results to show that both pro-
cedure are, in general, different.

Our notation is standard. X and Y will be pointed metric spaces with a 
base point denoted by 0 and the metric will be denoted by d. We denote by 
BX = {x ∈ X ∶ d(x, 0) ≤ 1} . Also, E and F will stand for Banach spaces over the same 
field � (either ℝ or ℂ ) with dual spaces E∗ and F∗ . A Banach space E will be considered 
as pointed metric spaces with distinguished point 0 and distance d(x, x�) = ‖x − x�‖ . 
With Lip0(X, Y) we denote the set of all Lipschitz mappings from X to Y such that maps 
0 to 0 and we put

In particular, Lip0(X,E) is the Banach space of all Lipschitz mappings T from X 
to E that vanish at 0, under the Lipschitz norm Lip(⋅) . When E = � , Lip0(X,�) is 
denoted by X# and it is called the Lipschitz dual of X. We consider BX# endowed 
with the pointwise topology. Is well known that, with this topology, BX# is a compact 
Hausdorff space. The space of all linear operators from E to F is denoted by L(E,F) 

Lip(T) = inf{C > 0 ∶ d(T(x), T(x�)) ≤ Cd(x, x�); ∀x, x� ∈ X}.
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and it is a Banach space with the usual supremum norm. It is clear that L(E,F) is a 
subspace of Lip0(E,F) and, in particular, E∗ is a subspace of E# . Let p ≥ 1, we write 
p′ the conjugate index of p, that is 1∕p + 1∕p� = 1 . As usual, when p = 1, p� = ∞ . 
For a Banach space E,  �p(E) denotes the Banach space of all absolutely p-summa-
ble sequences (xn)n in E with the norm ‖(xn)n‖p = (

∑∞

n=1
‖xn‖p)

1

p.
All the other relevant terminology and preliminaries as well as the definitions 

of the ideals that we will use are given in corresponding sections. For the theory 
(Banach) of operator ideals we refer to the book of Pietsch [13] and for the theory of 
Lipschitz mappings to the book of Weaver [18].

2 � Lipschitz injective hull of Lipschitz operator ideals between metric 
spaces

Before start, as far as we know, there are different notions of Lipschitz operator ide-
als between pointed metric spaces which we may consider, (see for instance [1, Defi-
nition 5.2], [6, Proposition 6.3] and [7, Definition 1.1]). Although our results and 
examples fits in all the definition we know, we are going to specify the notion that 
we are going to use. By an ideal of Lipschitz maps ILip between pointed metric 
spaces we mean an assignment for each pair of pointed metric spaces X and Y of a 
family of mappings ILip(X, Y) ⊂ Lip0(X, Y) , together with a real-valued function 
‖ ⋅ ‖ILip which satisfies: 

1.	 If Y = E is a Banach space, then for any f ∈ X# and e ∈ E , the map 
fe ∶ x ↦ f (x)e ∈ ILip(X,E).

2.	 For every T ∈ ILip(X, Y), Lip(T) ≤ ‖T‖ILip.
3.	 The ideal property: If R ∈ Lip0(U,X) , T ∈ ILip(X, Y) and S ∈ Lip0(Y ,V) , then 

STR ∈ ILip(U,V) and ‖STR‖ILip ≤ Lip(S)‖T‖ILipLip(R).

Following [16, Satz 4.1], for a Banach operator ideal A , a linear operator T ∶ E → F 
belongs to the injective hull of A , Ainj , if there is a Banach space G and a linear 
operator S ∈ A(E,G) such that ‖Tx‖ ≤ ‖Sx‖ for all x ∈ E . The operator ideal Ainj is 
a Banach operator ideal endowed with the norm

Now, we propose a definition of the injective hull of a Lipschitz operator ideal which 
extend that introduced by Stephani for the linear case.

Definition 1.1  Let ILip be a Lipschitz operator ideal between pointed metric spaces. 
For pointed metric spaces X and Y, a Lipschitz operator T ∈ Lip0(X, Y) belongs to 
the Lipschitz injective hull of ILip if there exists a pointed metric space Z and a Lip-
schitz operator S ∈ ILip(X, Z) such that d(Tx, Tx�) ≤ d(Sx, Sx�) for all x, x� ∈ X . The 
class of all operators from X to Y which belongs to the Lipschitz injective hull of ILip 
will be denoted by ILinj

Lip
(X, Y).

‖T‖Ainj = inf{‖S‖A ∶ S ∈ A(E,G) with ‖Tx‖ ≤ ‖Sx‖,∀x ∈ E}.
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For any Lipschitz operator ideal ILip , we may assign to ILinj
Lip

 a real valued func-
tion ‖ ⋅ ‖

I
Linj

Lip

 as follows. For pointed metric spaces X and Y and T ∈ I
Linj

Lip
(X, Y),

Since the proof of the next proposition follows in the same way as in the linear case 
we omit it.

Proposition 1.1  Let ILip be a Lipschitz operator ideal between metric spaces.

(a)	 I
Linj

Lip
 together with ‖ ⋅ ‖

I
Linj

Lip

 is a Lipschitz operator ideal.
(b)	 ILip ⊂ I

Linj

Lip
 and ‖ ⋅ ‖

I
Linj

Lip

≤ ‖ ⋅ ‖ILip.
(c)	 (I

Linj

Lip
)Linj = I

Linj

Lip
 and ‖ ⋅ ‖

(I
Linj

Lip
)Linj

= ‖ ⋅ ‖
I
Linj

Lip

.

In particular, we say that a Lipschitz operator ideal is injective if it coincide 
with its Lipschitz injective hull. Before give our first characterization of injec-
tive Lipschitz operator ideal, recall that every metric space X is isometric to a 
subset of �∞(� ) for some set �  (see for instance [5, Lemma 1.1]). The embed-
ding is a Lipschitz map denoted by �L

X
∶ X ⟶ �∞(� ) . In the case of X being a 

pointed metric space, one may consider a isometry which maps 0 to 0, denoted by 
�
L0
X

∶ X ⟶ �∞(� ).
The following result can be seen as generalization of a well known characteriza-

tion of the injective hull of a Banach linear operator ideal, which first appear in [16].

Proposition 1.2  Let ILip be a Lipschitz operator ideal between pointed metric spaces 
and let T ∈ Lip0(X, Y) . The following are equivalent.

	 (i)	 For all (or some) Lipschitz 1-injective metric space Z and all isometric embed-
ding � ∶ Y ⟶ Z we have �T ∈ ILip(X, Z).

	 (ii)	 �
L0
Y
T ∈ ILip(X,�∞(� )).

	 (iii)	 T ∈ I
Linj

Lip
(X, Y).

Moreover,

Proof  Since �∞(� ) is a Lipschitz 1-injective metric space (see [5, Lemma 1.1 (b)]), 
is clear that (i) implies (ii). Now suppose that (ii) holds. Since �L0

Y
∶ Y → �∞(� ) is an 

isometric embedding, for all x, x� ∈ X we have that d(Tx, Tx�) = d(�
L0
Y
Tx, �

L0
Y
Tx�) . 

Then (iii) follows. Moreover, ‖T‖
I
Linj

Lip

≤ ‖�L0
Y
T‖ILip . Finally we show that (iii) implies 

(i). Fix Z a Lipschitz 1-injective metric space and take � ∶ Y ⟶ Z an isometric 

‖T‖
I
Linj

Lip

=

inf{‖S‖ILip ∶ S ∈ ILip(X, Z) with d(Tx, Tx�) ≤ d(Sx, Sx�), ∀x, x� ∈ X}.

‖T‖
I
Linj

Lip

= ‖�L0
Y
T‖ILip = inf{‖�T‖ILip ∶ Z and � ∶ Y → Z as in (i)}.
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embedding and 𝜀 > 0 . There exist a metric space W and a Lipschitz operator 
S ∈ ILip(X,W) such that d(Tx, Tx�) ≤ d(Sx, Sx�) for all x, x� ∈ X and 
‖S‖ILip ≤ (1 + �)‖T‖

I
Linj

Lip

 . Consider M = S(X) which is a subset of W and define the 
function U ∶ M → Y  as Uw = Tx if w = Sx . Routine arguments shows that U is well 
defined and a Lipschitz function with Lip(U) ≤ 1 . Since �U ∶ M ⟶ Z is Lipschitz 
and Z is a Lipschitz 1-injective metric space, there exists a Lipschitz function 
Ũ ∶ W → Z such that Lip(Ũ) ≤ 1 and Ũ|M = �U [5, Proposition  1.2]. Then, for 
x ∈ X , we have

Since ILip is a Lipschitz operator ideal, we conclude that �T ∈ ILip(X, Z) . Moreover,

and the proof follows. 	�  ◻

Farmer and Johnson introduced the concept of Lipschitz p-summing and Lip-
schitz p-integral operators [10], extending the p-summing and p-integral linear 
operators to the Lipschitz case. For pointed metric spaces X and Y, a mapping 
T ∈ Lip0(X, Y) is called Lipschitz p-summing, 1 ≤ p < ∞ , if there exists a con-
stant C > 0 such that regardless of the choice of points x1,… , xn, x

�
1
,… , x�

n
 in X

In this case we put �L
p
(T) = inf {C ∶ satisfying (1)} . The set of all Lipschitz p-sum-

ming operators from X to Y is denoted by �L
p
(X, Y) . On the other hand, the mapping 

T ∈ Lip0(X, Y) is said to be Lipschitz p-integral, 1 ≤ p < ∞ , if there exists a prob-
ability measure space (�,�,�) and two Lipschitz mappings A ∈ Lip0(Lp(�), (Y

#)∗) 
and B ∈ Lip0(X, L∞(�)) such that the following diagram commute 

X
T

B

Y
kY (Y #)∗

L∞(µ)
ip

Lp(µ),

A

 where ip ∶ L∞(�) ⟶ Lp(�) is the canonical mapping and kY ∶ Y ⟶ (Y#)∗ is 
the evaluation map kY (y)(g) = g(y) , for y ∈ Y  and g ∈ Y# . The set of all Lipschitz 
p-integral mappings from X to Y is denoted by ℑL

p
(X, Y) . With each T ∈ ℑL

p
(X, Y) 

we associate its Lipschitz p-integral quantity, iL
p
(T) = inf{Lip(A)Lip(B)}, where the 

infimum is taken over all �, A and B as above.
It is well known that in the linear case, the injective hull of p-integral and 

Pietsch p-integral operators (also known as strictly p-integral operators) coincides 

�Tx = �USx = ŨSx.

‖�T‖ILip = ‖Ũ◦S‖ILip ≤ Lip(Ũ)‖S‖ILip ≤ (1 + �)‖T‖
I
Linj

Lip

,

(1)
n∑
i=1

(d(Txi, Tx
�
i
))p ≤ Cp sup

f∈BX#

n∑
i=1

|f (xi) − f (x�
i
)|p.
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with ideal of p-summing operator. So now, we introduce the class of Lipschitz 
Pietsch p-integral operators in a natural way. Then we show that this last result 
can be extended to the Lipschitz case.

Definition 1.2  Let X and Y be pointed metric spaces and 1 ≤ p < ∞ . A Lipschitz 
mapping T ∈ Lip0(X, Y) is Lipschitz Pietsch p-integral if there is a probabil-
ity measure space (�,�,�) and two Lipschitz mappings A ∈ Lip0(Lp(�), Y) and 
B ∈ Lip0(X, L∞(�)) giving rise to the following commutative diagram: 

X

B

T
Y

L∞(µ)
ip

Lp(µ).

A

 The class of all Lipschitz Pietsch p-integral mappings from X to Y is denoted by 
PℑL

p
(X, Y) . Also, the Lipschitz Pietsch p-integral function piL

p
(T) of T is the infi-

mum of Lip(A)Lip(B), taken over all factorization as above.
It follows from the definition that the Lipschitz Pietsch p-integral operators 

are a Lipschitz operator ideal. Also, note that a Lipschitz map T ∈ Lip0(X, Y) is 
p-integral if and only if kYT ∶ Y → (Y#)∗ is Lipschitz Pietsch p-integral. Also, 
from the factorization of Lipschitz p-summing operators obtained in [10, Theo-
rem 1], a map T is Lipschitz p-summing if and only if �L0

Y
T ∶ X → �∞(� ) is Lip-

schitz Pietsch p-integral. Summarizing, as an application of Proposition 1.2 we 
obtain the following result.

Proposition 1.3  Let 1 ≤ p < ∞ , then

Moreover, for any pointed metric spaces X and Y and T ∈ �L
p
(X, Y) , we have

The notion of quasi p-nuclear operator was introduced by Persson and 
Pietsch in [12]. For 1 ≤ p < ∞ , a linear map T between Banach spaces E and 
F is said to be quasi p-nuclear if there exists a sequence (x∗

n
)n in �p(E

∗) such 
that ‖Tx‖ ≤ ‖�x∗

n
(x)

�
n
‖p for all x ∈ E . This class, which is denoted by QNp , 

endowed with the norm �Q
p

 defined as the infimum of ‖(x∗
n
)n‖p taken over all the 

sequences (x∗
n
)n satisfying the above inequality, became a Banach operator ideal. 

Now, we extend this notion to the Lipschitz case.

Definition 1.3  Let X and Y be pointed metric spaces and 1 ≤ p < ∞ . A map-
ping T ∈ Lip0(X, Y) is called Lipschitz quasi p-nuclear if there exists a sequence 
(fn)n ∈ �p(X

#) such that

(
PℑL

p

)Linj

= (ℑL
p
)Linj = �L

p
.

‖T‖(PℑL
p
)Linj = ‖T‖(ℑL

p
)Linj = �L

p
(T).
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for all x, x� ∈ X . In such case, we put

We denote by QNL
p
(X, Y) the space of all quasi p-nuclear Lipschitz mappings 

between pointed metric spaces X and Y.

The next proposition is clear and we omit the proof.

Proposition 1.4  For 1 ≤ p < ∞ , QNL
p

 is a Lipschitz operator ideal.

The rest of this section is devoted to show that most of the properties of linear 
quasi p-nuclear operators can be extended to the Lipschitz setting. First, recall 
that the ideal of linear quasi p-nuclear operators coincide with injective hull of 
the Banach operator ideal of p-nuclear operators [12, Satz 38]. On the other hand, 
the Lipschitz p-nuclear operators were introduced by Chen and Zheng in [8] and 
can be extended in a verbatim way to Lipschitz maps between pointed metric 
spaces. For pointed metric spaces X and Y, a Lipschitz mapping T ∈ Lip0(X, Y) is 
called Lipschitz p-nuclear, if there exist two Lipschitz mappings A ∈ Lip0(�p, Y) 
and B ∈ Lip0(X,�∞) and a sequence � ∈ �p such that the following diagram 
commute

where D� ∶ �∞ ⟶ �p is the diagonal operator induced by the sequence � ∈ �p . 
The set of all Lipschitz p-nuclear operators from X to Y is denoted by NL

p
(X, Y) . To 

the class NL
p
(X, Y) we will assign the function �L

p
 defined, for T ∈ Np(X, Y) , as the 

infimum of Lip(A)‖�‖pLip(B) over all factorizations as in (3). It follows that NL
p

 is 
Lipschitz operator ideal.

Now we are ready to give our first characterization of Lipschitz quasi p-nuclear 
operators.

Theorem 1.1  Let X and Y be pointed metric spaces and 1 ≤ p < ∞ . For a mapping 
T ∈ Lip0(X, Y) , the following are equivalent.

(2)d(T(x), T(x�)) ≤
(

∞∑
n=1

|fn(x) − fn(x
�)|p

) 1

p

�QL
p
(T) = inf

⎧
⎪⎨⎪⎩

�
∞�
n=1

Lip(fn)
p

�1∕p

∶ (fn)n satisfying (2)

⎫
⎪⎬⎪⎭

X
T

B

Y

∞
Dλ

p

A (3)
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	 (i)	 T ∈ QNL
p
(X, Y)

	 (ii)	 There exist subsets M ⊂ �∞ with 0 ∈ M and N ⊂ �p with 0 ∈ N , a sequence 
� ∈ �p and two Lipschitz maps A ∈ Lip0(N, Y) and B ∈ Lip0(X,M) such that 
following diagram commute

X

B

T
Y

M
Dλ

N

A

 where D� is the diagonal operator.
	 (iii)	 For all (or some) Lipschitz 1-injective pointed metric space Z and all isometric 

embedding � ∶ Y ⟶ Z , �T ∈ NL
p
(X, Z).

	 (iv)	 There exist a pointed metric space Z together with a Lipschitz operator 
S ∈ NL

p
(X, Z) such that d(Tx, Tx�) ≤ d(Sx, Sx�) for all x, x� ∈ X.

Moreover,

Proof  The proof follows in an analogous way of that of the linear case. We 
sketch the proof. Suppose that T is a Lipschitz quasi p-nuclear and fix 𝜀 > 0 . 
There exists a sequence (fn)n ∈ �p(X

#) with ‖(Lip(fn))n‖p ≤ (1 + �)�QL
p
(T) such 

that d(Tx, Tx�) ≤ (
∑∞

n=1
�fn(x) − fn(x

�)�p) 1

p for all x, x� ∈ X . Define the mapping 

B ∈ Lip0(X,�∞) by Bx ∶=
(
fn(x)∕Lip(fn)

)
n
 and set M = B(X) . Note that 0 ∈ M and 

that Lip(B) ≤ 1 . Also, set � = (Lip(fn))n , which belongs to �p , and N = D�(B(X)) 
which is a subset of �p containing 0. Finally, define the operator A ∶ N → Y  
by A� = Tx , if � = D�(Bx) . The reader may check that A is a well-defined Lip-
schitz mapping with A(0) = 0 and Lip(A) ≤ 1. Then is clear that T = AD�B and 
Lip(A)Lip(B)‖�‖p ≤ ‖�‖p ≤ (1 + �)�QL

p
(T) . Then (ii) follows.

Suppose that (ii) holds and take a Lipschitz 1-injective pointed metric space Z 
and an isometric embedding � ∶ Y → Z . For 𝜀 > 0 , take a factorization of T as in 
statement (ii), with Lip(A) = Lip(B) = 1 and ‖�‖p ≤ (1 + �) inf{Lip(A)Lip(B)‖�‖p} , 
where the infimum is taken over all the factorization. To see that the mapping �T  is 
Lipschitz p-nuclear, note that by [5, Proposition 1.2] we can extend the Lipschitz 
operator �A to a Lipschitz mapping Ã ∈ Lip0(�p, Z) such that Lip(A) = 1 . Also, 
extend B to B̃ ∶ X → �∞ and, since the diagonal operator D� is defined over all �∞ , 
we obtain that �T = ÃD�B̃ , implying that �T ∈ NL

p
(X, Z) and

and (iii) follows. From Proposition 1.2 we get that (iii) is equivalent to (iv).

�QL
p
(T) = inf{Lip(A)Lip(B)‖�‖p} = �L

p
(�T) = inf{�L

p
(S)}.

�L
p
(�T) ≤ Lip(A)‖�‖pLip(B) ≤ (1 + �) inf{Lip(A)Lip(B)‖�‖

p
},
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Finally, suppose that (iv) holds. Take a Lipschitz operator S ∈ NL
p
(X, Z) as in (3) 

and, for 𝜀 > 0 , factorize S as S = AD�B with A ∈ Lip0(�p, Y) and B ∈ Lip0(X,�∞) , 
Lip(A) = Lip(B) = 1 and ‖�‖p ≤ (1 + �)�L

p
(S) . For all x, x� ∈ X we have that

Here, (e∗
n
)n stands for the sequence of coordinate functional on �∞ . Denoting by 

fn = �ne
∗
n
B , it follows that (fn)n ∈ �p(X

#) , which implies that T is quasi p-nuclear 
and �QL

p
(T) ≤ ‖�‖p ≤ (1 + �)�L

p
(S) . The proof conclude. 	�  ◻

As a direct consequence of Proposition 1.2 and Theorem 1.1 we have the following 
results which extend the results of the linear case.

Proposition 1.5  For 1 ≤ p < ∞ , the Lipschitz quasi p-nuclear operators coincide 
with the Lipschitz injective hull of the Lipschitz p-nuclear operators. This is

Corollary 1.1  Let X and Y be pointed metric spaces such that Y is Lipschitz 1-injec-
tive. For 1 ≤ p < ∞ , a Lipschitz mapping T ∈ Lip0(X, Y) is quasi p-nuclear if and 
only if T is Lipschitz p-nuclear. Moreover, �QL

p
(T) = �L

p
(T).

In [12, Satz 43] it is shown that every quasi p-nuclear operator is p-summing and 
that the quasi p-nuclear norm and the p-summing norm coincide. We have an analo-
gous results in the Lipschitz setting.

Proposition 1.6  Let X and Y be pointed metric spaces and 1 ≤ p < ∞ . If a Lipschitz 
operator T ∈ QNL

p
(X, Y) , then T ∈ �L

p
(X, Y) . Moreover, �L

p
(T) = �QL

p
(T).

Proof  Take T ∈ QNL
p
(X, Y) and fix 𝜀 > 0 . Choose a sequence (fn)n ∈ �p(X

#) with 

‖(fn)n‖p ≤ �QL
p
(T) + � such that d(Tx, Tx�) ≤ (

∑∞

n=1
�fn(x) − fn(x

�)�p) 1

p , for all 
x, x� ∈ X . Define the probability measure � on BX# by � =

∑∞

n=1
�n�n where 

�n =
�Lip(fn)�p
‖(fn)n‖pp  and �n is the Dirac measure at fn∕Lip(fn) for n ≥ 1 . We have

d(Tx, Tx�) ≤ d(AD�Bx,AD�Bx
�)

≤ Lip(A)‖D�(Bx − Bx�)‖p
=

�
∞�
n=1

��ne∗n(Bx − Bx�)�p
� 1

p

=

�
∞�
n=1

��ne∗n(Bx) − �ne
∗
n
(Bx�)�p

� 1

p

.

(NL
p
)Linj = QNL

p
and ‖ ⋅ ‖(NL

p
)Linj = �QL

p
(⋅).
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Consequently, by the Pietsch domination theorem for the class �L
p
 ([10, Theo-

rem 1]), T is Lipschitz p-summing and �L
p
(T) ≤ ‖(fn)n‖p ≤ �QL

p
(T) + � . Then it fol-

lows that �L
p
(T) ≤ �QL

p
(T) . To see the equality of the norms, note that as in the same 

way that Farmer and Johnson noticed in the proof of [10, Theorem  2], the quasi 
p-nuclear and the p-summing norm of an operator can be obtained by considering 
just finite metric subsets of X. This means that for T ∈ QNL

p
(X, Y),

where iX0
∶ X0 → X is the inclusion map. Hence, the proof will follow if we show 

that �QL
p
(TiX0

) = �L
p
(TiX0

) for every X0 finite metric space.
Now, by Theorem 1.1, �QL

p
(TiX0

) = �L
p
(�
L0
Y
TiX0

) . By [8, Theorem 4.1], since X0 is a 
finite metric space and the range of the Lipschitz operator �L0

Y
TiX0

 is the Banach space 
�∞(� ) , the Lipschitz p-nuclear and Lipschitz p-integral norms coincide. This is

Since by Proposition  1.3 and Proposition  1.5 Lipschitz p-summing operators and 
Lipschitz quasi p-nuclear operators coincides with the Lipschitz injective hull of 
Lipschitz p-integral operators and of Lipschitz p-nuclear operators respectively, 
by Proposition 1.2 we obtain the equality �L

p
(TiX0

) = �Q
p
(TiX0

) which completes the 
proof. 	�  ◻

We finish this section by showing another property of Lipschitz quasi p-nuclear 
operators which can be seen as an extension of the linear case. Recall that, for 
1 ≤ p < ∞ a linear operator T ∶ E → F is p-compact in the sense of Sinha and 
Karn [15] if there exists a sequence (yn)n ∈ �p(F) such that

The p-compact norm of a p-compact operator is �p(T) = inf{‖(yn)n‖p ∶ (4) holds } . 
In [9, Corollary 3.4], was established the relation between p-compact operators and 

d(Tx, Tx�) ≤
�

∞�
i=1

�fn(x) − fn(x
�)�p

� 1

p

=‖(fn)n‖p
�

∞�
n=1

�Lip(fn)�p
‖(fn)n‖p

�����
fn(x)

Lip(fn)
−

fn(x
�)

Lip(fn)

�����

p
� 1

p

=‖(fn)n‖p
�
�B

X#

�f (x) − f (x�)�pd�(f )
� 1

p

.

𝜈QL
p
(T) = sup

X0 ⊂ X

X0 finite

𝜈QL
p
(TiX0

) and 𝜋L
p
(T) = sup

X0 ⊂ X

X0 finite

𝜋L
p
(TiX0

),

�L
p
(�
L0
Y
TiX0

) = iL
p
(�
L0
Y
TiX0

).

(4)T(BE) ⊂

{
∞∑
n=1

𝛼nyn ∶ (𝛼n)n ∈ B
�p�

}
.



1251The Lipschitz injective hull of Lipschitz operator ideals…

quasi p-nuclear operators. A linear operator T ∶ E → F is quasi p-nuclear if and 
only if its adjoint T∗ ∶ F∗

→ E∗ is p-compact and ‖T‖QNp
= �p(T

∗).
On the other hand, for T ∈ Lip0(X, Y) , we will consider the Lipschitz adjoint of 

T, defined by Sawashima [14], but extended to the metric space setting. That is, 
T# ∈ L(Y#,X#) is the linear operator given by T#(g) = g T  for all g ∈ Y#.

Proposition 1.7  Let X and Y be pointed metric spaces and 1 ≤ p < ∞ . For an 
operator T ∈ Lip0(X, Y) , if T# ∶ Y#

⟶ X# is a p-compact linear operator, then 
T ∈ QNL

p
(X, Y) and �QL

p
(T) ≤ �p(T

#).

Proof  Notice first that, for any y, y� ∈ Y  , d(y, y�) = supg∈B
Y#
|g(y) − g(y�)| . The supre-

mum is attained when we consider the Lipschitz function gy(z) = d(z, y) − d(y, 0) , 
z ∈ Y  . In particular, for all x, x� ∈ X we have

Now, suppose that T# is p-compact and take 𝜀 > 0 . Choose a sequence (fn)n ∈ �p(X
#) 

such that T#(BY# ) ⊂ {
∑∞

n=1
𝛼nfn ∶ (𝛼n)n ∈ B

�p�
} and ‖(fn)n‖p ≤ � + �p(T

#) . For a 
fixed g ∈ BY# there exists a sequence (�n)n ∈ B

�p�
 , such that T#g =

∑∞

n=1
�nfn . An 

application of Hölder’s inequality reveals that

By taking the supremum over all g ∈ BY# we obatin that T ∈ QNL
p
(X, Y) with 

�QL
p
(T) ≤ ‖(fn)n‖p ≤ � + �Q

p
(T#) and the proof follows. 	�  ◻

3 � Lipschitz injective hull of Banach Lipschitz operator ideals 
between a metric space and a Banach space

Now we center our study in the case when the Lipschitz operators are consider 
from a pointed metric spaces to Banach spaces. We decided to consider this case 
in a different section because the theory of Lipschitz operator ideals between 
a pointed metric space and a Banach space is richer. First of all, in the litera-
ture, there just one definition of Lipschitz operator ideal between pointed met-
ric space and Banach space that is considered. Following [3] or [6] a Lipschitz 

d(Tx, Tx�) = sup
g∈BY#

|g(Tx) − g(Tx�)| = sup
g∈BY#

|(T#g)(x) − (T#g)(x�)|.

|(T#g)(x) − (T#g)(x�)| =|
∞∑
n=1

�nfn(x) −

∞∑
i=1

�nfn(x
�)|

=|
∞∑
n=1

�n(fn(x) − fn(x
�)|

≤
(

∞∑
n=1

|fn(x) − fn(x
�)|p

) 1

p

.
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operator ideal between a pointed metric space and Banach space ILip is a subclass 
of Lip0 such that for every pointed metric space X and every Banach space E the 
components

satisfy 

	 (i)	 ILip(X,E) is a linear subspace of Lip0(X,E).
	 (ii)	 For any f ∈ X# and e ∈ E , the map fe ∶ x ↦ f (x)e ∈ ILip(X,E).
	 (iii)	 The ideal property: if S ∈ Lip0(Y ,X) , T ∈ ILip(X,E) and w ∈ L(E,F) , then the 

composition wTS is in ILip(Y ,F).

A Lipschitz operator ideal ILip is a normed (Banach) Lipschitz operator ideal if 
there is ‖ ⋅ ‖ILip ∶ ILip ⟶ [0,+∞[ that satisfies 

	 (i’)	 For every pointed metric space X and every Banach space E, the pair 
(ILip(X,E), ‖ ⋅ ‖ILip ) is a normed (Banach) space and Lip(T) ≤ ‖T‖ILip for all 
T ∈ ILip(X,E).

	 (ii’)	 ‖Id
�
∶ � ⟶ �‖ILip = 1 , where Id

�
 is the identity map of �.

	(iii’)	 If  S ∈ Lip0(Y ,X) ,  T ∈ ILip(X,E) and w ∈ L(E,F) ,  the inequality 
‖wTS‖ILip ≤ Lip(S)‖T‖ILip‖w‖ holds.

Note that the concept of Lipschitz operator ideal between pointed metric spaces 
that we consider in the previous section and Banach Lipschitz operator ideal 
between a pointed metric space and a Banach space may be different. First of 
all, the condition of ILip(X,E) being a vector space has no sense if we consider 
Lipschitz ideal between pointed metric spaces. So, as first glance, there could be 
a Lipschitz operator ideal between pointed metric spaces which are not a Lip-
schitz operator ideal between a pointed metric space and a Banach space. Also, 
in the case of Lipschitz operator ideal between pointed metric spaces, the ideal 
property allows outer composition by Lipschitz maps, meanwhile now we con-
sider just linear maps. If the Banach Lipschitz operator ideal between a pointed 
metric space and a Banach space that the ideal property is considered with both 
Lipschitz operator, it is said to be a strong Lipschitz operator ideal (see [1, Defi-
nition 5.1] and [6, Definition 6.1]).

However, in our case, all the ideals we consider in Section 1 are also Banach 
Lipschitz operator ideals. The proof is straightforward and we omit it.

Proposition 2.1  Let 1 ≤ p < ∞ , then (QNL
p
, �QL

p
) and (PℑL

p
, piL

p
) are a Banach Lip-

schitz operator ideal.

Under some requirements, the notion of Lipschitz quasi p-nuclear operator can 
be consider as generalization of the concept of linear quasi p-nuclear operator, as 
the following result shows.

ILip(X,E) ∶= Lip0(X,E) ∩ ILip
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Proposition 2.2  Let 1 ≤ p < ∞ , E and F Banach spaces and T ∈ L(E,F) . If T is a 
quasi p-nuclear linear operator then T is Lipschitz quasi p-nuclear. The converse is 
true if E is separable. Moreover, the norms �QL

p
 and �Q

p
 coincide.

Proof  The first implication follows from the inclusion �p(E
∗) ⊂ �p(E

#) . For the 
converse, suppose that E is separable and T is Lipschitz quasi p-nuclear. We con-
sider the linear isometry �F ∶ F ⟶ �∞(BF∗ ) , then by Theorem  1.1, the mapping 
�FT ∶ E → �∞(BF∗ ) is a linear operator which is Lipschitz p-nuclear operator with 
�L
p
(�FT) = �QL

p
(T) . Since E is separable and �∞(BF∗ ) is a dual space, by [8, Theo-

rem 2.1], �FT  is a p-nuclear linear operator, with �p(�FT) = �L
p
(�FT) , which implies 

that T is a quasi p-nuclear linear operator with �Q
p
(T) = �QL

p
(T) . The proof is fin-

ished. 	�  ◻

In analogy with the linear case, in [6, Definition 2.5] was introduced the con-
cept of maximal hull, meanwhile in [17, Definition 4.3] was introduced the con-
cept of minimal kernel of a Lipschitz Banach operator ideal. Loosely speaking, 
for a Banach Lipschitz operator ideal ILip , the maximal hull (ILip)max and the min-
imal kernel Imin

Lip
 are the biggest and the smallest Banach Lipschitz operator ideals 

which coincide with ILip over finite pointed metric spaces and finite dimensional 
Banach spaces.

Following [6], given a Banach Lipschitz operator ideal ILip , a pointed met-
ric space X and a Banach space E, a Lipschitz map T ∈ Lip0(X,E) belongs to 
Imax
Lip

(X,E) if

where the supremum is taken over all pointed finite metric subset X0 of X and every 
cofinite subspace L of E. Here �X

X0
∶ X0 → X and QE

L
∶ E → L denotes the inclusion 

of X0 into X and QE
L
 the natural quotient map from E to L, respectively. Is worth 

mention that, as far as we know, there is no explicit definition of the minimal kernel 
of a Lipschitz Banach operator ideal. However, both (the maximal hull and the mini-
mal kernel of ILip ) can be determined as the only Banach Lipschitz operator ideals 
such that

for every finite metric space X0 and any finite dimensional Banach space N and, 
if JLip is a Banach Lipschitz operator ideal such that JLip(X0,N) = ILip(X0,N) for 
every finite metric space X0 and any finite dimensional Banach space N, then

for all pointed metric space X and Banach space E.

Proposition 2.3  Let 1 ≤ p < ∞ . Then

sup{‖QE
L
◦T◦𝜄X

X0
‖ILip} < ∞,

Imin
Lip

(X0,N) = ILip(X0,N) = Imax
Lip

(X0,N) isometrically,

Imin
Lip

(X,E) ⊂ JLip(X,E) ⊂ Imax
Lip

(X,E),
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(a)	 (QNL
p
)max = �L

p
 isometrically.

(b)	 (PℑL
p
)min = (N L

p
)min isometrically.

Proof  First recall that the p-summing Lipschitz operator ideal is maximal Lip-
schitz operator ideal (see [6, Page  600]). Then by Proposition  1.6 we have that 
QNL

p
(X0,N) = �L

p
(X0,N) for every finite metric space X0 and for every finite dimen-

sional space N. Thus, an application of [6, Lemma 2.4] completes the proof of (a). 
To see (b), take N a finite dimensional space. Since N = N∗∗ is 1-complemented in 
(N#)∗ , for every pointed metric space X, the equality PℑL

p
(X,N) = ℑL

p
(X,N) holds, 

in particular for X0 a finite pointed metric space. By [8, Theorem  4.1], we have 
PℑL

p
(X0,N) = N L

p
(X0,N) for every finite metric space X0 and every finite dimen-

sional space N. Then the second equality holds. 	�  ◻

In [3, Definition 3.1], was introduced a technique to construct a (Banach) Lip-
schitz operator ideal from a (Banach) linear operator ideal using the linearization of 
Lipschitz maps, that we now describe briefly.

For a pointed metric space X, Banach space E and an operator T ∈ Lip0(X,E) , 
there exists a unique linear map TL ∶Æ(X) ⟶ E such that T = TL�X and 
‖TL‖ = Lip(T) , where Æ(X) stands for the Arens-Eells space Æ(X), introduced 
in [4] and �X ∶ X → Æ(X) is the canonical Lipschitz injection. The operator TL is 
referred to as the linearization of T (see for instance [18, Theorem 2.2.4 (b)]). The 
correspondence T ⟷ TL establishes an isometric isomorphism between the Banach 
spaces Lip0(X,E) and L(Æ(X),E). In particular, the spaces X# and Æ(X)∗ are iso-
metrically isomorphic.

The Arens-Eells space is also known as the Lipschitz-free Banach space of a met-
ric space X. For more of this space, we refer the reader to the manuscript [11] and 
the reference therein.

Now, let A be a linear Banach operator ideal. A Lipschitz mapping 
T ∈ Lip0(X,E) belongs to the composition Lipschitz operator ideal A◦Lip0 if its 
linearization TL belongs to A(Æ(X),E). Moreover, A◦Lip0 endowed with the norm 
‖T‖A◦Lip0

= ‖TL‖A is a Banach Lipschitz operator ideal. This way to obtain a 
Banach Lipschitz operator ideal from a Banach operator ideal is called composition 
method and the Lipschitz Banach operator ideals obtained in this way are called ide-
als of composition type.

In [3], the authors introduced the injective hull of a Banach Lipschitz operator 
ideal. For this, recall that for a Banach space E, we may consider the linear isometry 
�E ∶ E ⟶ �∞(BE∗ ) . Then, following [3, Definition  2.2], for a Banach Lipschitz 
operator ideal ILip , a pointed metric space X and a Banach space E, a Lipschitz oper-
ator T ∶ X → E belongs to Iinj

Lip
(X,E) if and only if �ET  belongs to ILip(X,�∞(BE∗ )) 

with ‖T‖
I
inj

Lip

= ‖�ET‖ILip . If ILip is a Lipschitz operator ideal, then Iinj
Lip

 is also a Lip-
schitz operator ideal and

I
inj

Lip
⊂ I

Linj

Lip
.
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In general, the equality does not hold. To show this, first we need the following 
propositions which are of interest for themselves.

The first result describe the injective hull of a Banach Lipschitz operator ideal 
of composition type.

Proposition 2.4  Let A be a Banach linear operator ideal. Then

In particular, if ILip is a Banach Lipschitz operator ideal of composition type, then 
so is also Iinj

Lip
.

Proof  Fix X and E and take T ∈ (A◦Lip0)
inj(X,E) . Consider the following diagram 

X
T

δX

E
ιE

∞(BE∗)

Æ(X)

TL

(ιET )L

 Note that, since �E ∶ E → �∞(BE∗ ) is a linear operator, the uniqueness of the lin-
earization maps gives that (�ET)L = �ETL ∈ A(Æ(X),�∞(BE∗ )) . Then, we have that 
T ∈ (A◦Lip0)

inj(X,E) if and only if �ET ∈ (A◦Lip0)(X,𝓁∞(BE∗ )) if and only if 
(�ET)L ∈ A(Æ(X),�∞(BE∗ )) . This is equivalent to the fact that operator �ETL belongs 
to A(Æ(X),�∞(BE∗ )) , or, in other words, to TL ∈ Ainj(Æ(X),E). But this last is, by 
definition the same to T ∈ Ainj

◦Lip0(X,E) . The isometry follows in the same way. 	
� ◻

From the definitions it is straightforward to see that, for 1 ≤ p < ∞ the 
inclusions

holds, where QNp and Pℑp stands for the Banach linear operators ideals of quasi 
p-nuclear and Pietsch p-integral operators. However, the equality is not true in gen-
eral, for both cases. Moreover, we have

Proposition 2.5  For 1 ≤ p < ∞ , the Lipschitz Banach operator ideals QNL
p

 and PℑL
p
 

are not of composition type.

Proof  Recall that from [17, Proposition 3.18] we have that �L
p
 is not of composition 

type and that, by Proposition 2.3, (QNp)
max = �L

p
 . Then if QNL

p
 were of composi-

tion type, by [17, Proposition 4.1] we obtain that �L
p
 is of composition type, arriving 

to a contradiction.
To see that PℑL

p
 is not of composition type follows with the same pattern. Recall 

that from [17, Proposition  4.13] that (NL
p
)min is not of composition type and that, 

(A◦Lip0)
inj = Ainj

◦Lip0 isometrically.

QNp◦Lip0 ⊂ QNL
p

and Pℑp◦Lip0 ⊂ PℑL
p
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by Proposition 2.3, (PℑL
p
)min = (NL

p
)min . If PℑL

p
 were of composition type, by [17, 

Theorem 4.8] (NL
p
)min is also of composition type, which is also a contradiction. 	�  ◻

Moreover, in order to compare QNL
p
 with Banach Lipschitz operator ideals of com-

position type, we have

Proposition 2.6  Let 1 ≤ p < ∞ , then

	 (i)	 NL
p
⊂ (Np◦Lip0)

Linj.
	 (ii)	 QNL

p
⊂ (Np◦Lip0)

Linj.

Proof  First, fix a pointed metric space X, a Banach space E and take T ∈ NL
p
(X,E) . 

Then there exist two Lipschitz operators A ∈ Lip0(X, c0) , B ∈ Lip0(�p,E) and a 
diagonal operator D�(c0,�p) such that T = BD�A , where � ∈ �p . If we consider the 
operator U = D�A , since D� is a p-nuclear linear operator, by [3, Proposition 3.2] 
U ∈ Np◦Lip0(X,𝓁p) . Thus, for all x, x� ∈ X we have

and then (i) follows.
Now, (ii) follows from (i) in combination with Proposition  1.1 and Proposi-

tion 1.5. 	� ◻

To finalize the article, we use our results to show that the Lipschitz injective hull 
procedure and the injective hull procedure of Banach Lipschitz operator ideals, defined 
in [3, Definition 2.2] are, in general, different.

Proposition 2.7  Let 1 ≤ p < ∞ . Then (Np◦Lip0)
inj ⊊ (Np◦Lip0)

Linj and the inclusion 
is strict.

Proof  If (Np◦Lip0)
inj = (Np◦Lip0)

Linj , then by Proposition  2.6 (ii), we obtain that 
QNL

p
⊂ (Np◦Lip0)

inj which, by Proposition 2.4 give that QNL
p
⊂ QNp◦Lip0 . Since 

the other inclusion always holds, we obtain that QNL
p
= QNp◦Lip0 , which contra-

dicts Proposition 2.5. 	�  ◻
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