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Abstract
For a compact metric space (M, d), LipM denotes the Banach algebra of all complex-
valued Lipschitz functions on (M, d). Motivated by a classical result of de Leeuw, we
give a canonical construction of a compact Hausdorff space M̂ and a continuous sur-
jection π : M̂ → M which may viewed as a metric analogue of the unit sphere bundle
over aRiemannianmanifold. It is shown that, for eachn ≥ 1 the continuousHochschild
cohomology Hn(LipM,C(M̂)) has the infinite rank as a LipM-module, if the metric
space (M, d) admits a local geodesic structure, for example, if M is a compact Rie-
mannian manifold or a non-positively curved metric space. Here C(M̂) denotes the
algebra of all complex-valued continuous functions on M̂ . On the other hand, if the
coefficient C(M̂) is replaced with C(M), then it is shown that H1(LipM,C(M)) = 0
for each compact Lipschitz manifold M .

Keywords Lipschitz algebra · Hochschild cohomology · De Leeuw map · Tangent
bundle · Stone–Čech compactifications
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1 Introduction, main result and preliminaries

For a Banach algebra A and a Banach A-bimodule X , let Cn(A, X) be the continuous
n-cochains of A to X

Cn(A, X) = {
f : An → X | f is a bounded n-linear map

}
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with C0(A, X) = X . The coboundary operator δn : Cn(A, X) → Cn+1(A, X) is
defined by

δn f (a1, . . . an+1) = a1 · f (a2, . . . , an+1) +
n∑

i=1

(−1)i f (a1, . . . , aiai+1, . . . , an+1)

+(−1)n+1 f (a1, . . . , an) · an+1 (1.1)

for f ∈ Cn(A, X) and a1, . . . , an+1 ∈ A. Then δn+1 ◦ δn = 0 and Zn(A, X) =
Ker δn ⊃ Bn(A, X) = Im δn−1. The continuous Hochschild cohomology of A with
coefficient X is defined by Hn(A, X) = Zn(A, X)/Bn(A, X) (see [1,5,6]). When A
is a commutative Banach algebra, Cn(A, X) is a left A-module by the action

(a · f )(a1, . . . , an) = a · f (a1, . . . , an), f ∈ A, a, a1, . . . , an ∈ A

and the coboundary operator δn : Cn(A, X) → Cn+1(A, X) is an A-module homo-
morphism, which induces a left A-module structure on Hn(A, X).

For a Banach algebra A and a Banach A-bimodule X , a bounded linear operator
D : A → X is called a derivation if it follows the Leibniz rule:

D(ab) = a · Db + Da · b, a, b ∈ A. (1.2)

The space of all continuous derivations A → X is denoted by D(A, X). An inner
derivation is a derivation D : A → X defined by Da = a · x − x · a (a ∈ A) for
some x ∈ X . The first cohomology H1(A, X) is isomorphic to the space of derivations
modulo the inner derivations.

The present paper studies continuous Hochschild cohomologies of Lipschitz alge-
bras over compact metric spaces. For a compact metric space (M, d), let LipM be the
Banach algebra of all complex-valued Lipschitz functions f : M → Cwith the norm

‖ f ‖L = ‖ f ‖∞ + L( f )

where ‖ f ‖∞ = supp∈M | f (p)|, the sup norm, and

L( f ) := sup

{ | f (x) − f (y)|
d(x, y)

| x, y ∈ X , x 	= y

}
,

the Lipschitz constant of f . In a previous paper [8] the author proved that, for each
n ≥ 1, Hn(LipM,C) is an infinite dimensional C-linear space when M contains a
certain point-sequence which converges to a point p ∈ M . Here C is endowed with a
LipM-bimodule structure given by:

f · z = z · f = f (p)z, f ∈ LipM, z ∈ C. (1.3)

The above result relies only on the local geometry of M at p and a question arises
whether the same holds if the coefficientC is replaced with an appropriate continuous
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function algebra over M with a LipM-module structure. The present paper gives an
answer to the question.

For a compact metric space (M, d), let M̃ = M × M\�M , where �M =
{(x, x) | x ∈ M} ⊂ M × M . Let β M̃ be the Stone–Čech compactification of M̃
(see [20]). Since M × M is another compactification of M̃ , there exists a contin-
uous surjection π : β M̃ → M × M such that π |π−1(M̃) : π−1(M̃) → M̃ is a
homeomorphism. Let

M̂ = π−1(�M)

with the restriction of the map π, π |M̂ : M̂ → �M .
(1.4)

The restriction π |M̂ is also denoted by π : M̂ → �M . In what follows we identify the
space �M with M via the diagonal map �M : M → �M and the map (�M )−1 ◦ π

is also denoted by π : M̂ → M . As will be explained in Sect. 3, the space M̂ may
be regarded as an analogue of the unit sphere bundle of the tangent bundle over a
Riemannian manifold. For a point ω ∈ M̂ , a point derivation Dω : LipM → C is
defined as an analogue of the directional derivative of smooth functions.

The Banach space C(M̂) of all complex-valued continuous functions on M̂ with
the sup norm admits a Banach LipM-bimodule structure given by

( f · ϕ)(ω) =(ϕ · f )(ω) = f (π(ω))ϕ(ω),

f ∈ LipM, ϕ ∈ C(M̂), ω ∈ M̂ .
(1.5)

Our first result is on the continuousHochschild cohomologyH∗(LipM,C(M̂)). Amap
γ : [a, b] → M of the interval [a, b] to a metric space (M, d) is called a geodesic if
d(γ (s), γ (t)) = |s − t | for each s, t ∈ [a, b]. By abuse of terminology the image of
γ , denoted by Imγ , is also called a geodesic.

Definition 1.1 Ametric space (M, d) is said to satisfy the condition (G) if there exists
a positive number δ > 0 such that

(∗) for each x, y ∈ M with d(x, y) ≤ δ, there exists a unique geodesic γxy :
[0, d(x, y)] → M such that γxy(0) = x, γxy(d(x, y)) = y.

Besides Riemannian manifolds, all CAT(κ) metric spaces (see [3]) are examples of
spaces satisfying the condition (G).

Theorem 1.2 Let (M, d) be a compact metric space satisfying the condition (G). Then
for each n ≥ 1, the cohomology Hn(LipM,C(M̂)) has the infinite LipM-rank in the
sense that, for each N ≥ 1, there exist LipM-linearly independent N elements in
Hn(LipM,C(M̂)).

The main result of [8] may be viewed as a local version of the above theorem. The
above theorem should also be compared with the homological dimension theorems of
Ogneva [14,15],Kleshchev [10] and Pugach [18]; the global homological dimension of
the Frechét algebra C∞(M) of the smooth functions on a smooth manifold M is equal
to dim M [14,15], while the global homological dimension of Cn(M) of the Banach
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algebra of the Cn-functions on M is infinity for each n, 1 ≤ n < ∞. A long standing
open problem is to decide the global homological dimension ofC([0, 1]) = C0([0, 1])
[5, Chap.V, section 2.5].

Our proof is conceptually motivated by the classical Hochschild–Kostant–
Rosenberg theorem [13,16,17]. The space D(LipM,C(M̂)) of all derivations
LipM → C(M̂) is a LipM-module under the action

( f · D)g(ω) = f (π(ω))Dg(ω), f , g ∈ LipM, ω ∈ M̂ .

We take the n-fold exterior product ∧n
LipMD(LipM,C(M̂)) of the LipM-module

D(LipM,C(M̂)), define ahomomorphism
n :∧n
LipMD(LipM,C(M̂)) → Hn(LipM,

C(M̂)) by


n(D1 ∧ · · · ∧ Dn)(a1, . . . , an) = det((Dia j )1≤i, j≤n),

D1, . . . , Dn ∈ D(LipM,C(M̂)), a1, . . . , an ∈ LipM (1.6)

and prove that the image Im
n contains arbitrarily large number of LipM-linearly
independent elements of Hn(LipM,C(M̂)) when the space M satisfies the condition
(G). The notion of alternating n-cocycle due to Johnson [7] plays the crucial role in
the proof.

The above idea naturally leads to the study of the cohomology with C(M)-
coefficient Hn(LipM,C(M)). The situation is rather different than that of the
smooth-function setup and we prove the following theorem. A homeomorphism
h : S1 → S2 between metric spaces (S1, d1) and (S2, d2) is called a bi-Lipschitz
homeomorphism (a lipeomorphism in [11]) if h and h−1 are both Lipschitz maps. A
topological embedding α : D → M of a metric space D into a metric space M is
called a bi-Lipschitz embedding if α : D → Imα is a bi-Lipschitz homeomorphism.
Throughout Rm is assumed to be endowed with the standard Euclidean metric. Let
Dm = {x ∈ R

m | ‖x‖ ≤ 1} and intDm = {x ∈ Dm | ‖x‖ < 1}.
Theorem 1.3 Let (M, d) be a compact metric space such that, for each point p ∈ M,
there exists a bi-Lipschitz embedding α : Dm(p) → M of Dm(p) into M (m(p) may
depend on p) such that p ∈ α(Dm) and α(intDm(p)) is open in M. Then we have

H1(LipM,C(M)) = D(LipM,C(M)) = 0.

In particular the conclusion holds for each compact Lipschitz manifold M.

Theorem 1.2 is proved in Sect. 2 and Theorem 1.3 is proved in Sect. 3 after devel-
oping the sphere-bundle-analogue mentioned above.

The rest of this section fixes notation and recalls some basic results. For a compact
metric space (M, d), let π : M̂ → �M be the map defined in (1.4). For a Lipschitz
function f : M → C, let � f : M̃ → C be the function defined by

� f (x, y) = f (x) − f (y)

d(x, y)
, (x, y) ∈ M̃ .
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By the Lipschitz condition, � f is a bounded continuous function on M̃ and hence
admits the unique extension, called the de Leeuw map [2,4,19,22]

β� f : β M̃ → C,

to the Stone-Čech compactification of M̃ which restricts to the map

�̂ f := β� f |M̂ : M̂ → C (1.7)

on the space M̂ . This defines a pairing �̂ : M̂ × LipM → C by

�̂(ω, f ) = �̂ f (ω), ω ∈ M̂, f ∈ LipM

such that

|�̂(ω, f )| ≤ L( f ) ≤ ‖ f ‖L , ω ∈ M̂, f ∈ LipM . (1.8)

It is convenient to introduce the notation

Dω f = �̂ f (ω), ω ∈ M̂, f ∈ LipM . (1.9)

The map �̂ (or Dω in the above notation) induces two maps

D : LipM → C(M̂), T : M̂ → (LipM)∗

defined by

Df (ω) = Dω f = �̂ f (ω),

T (ω)( f ) = Dω f = �̂ f (ω), ω ∈ M̂, f ∈ LipM . (1.10)

Observe that (1.8) guarantees that T (ω) ∈ (LipM)∗ for each ω ∈ M̂ . The map D is a
‖ · ‖L − ‖ · ‖∞-bounded linear operator and T is continuous if (LipM)∗ is endowed
with the weak*-topology. We use the map D in the proof of Theorem 1.2 and T will
be used in the discussion on the space M̂ in Sect. 3. It follows from the proof of [19,
Theorem 9.8] that D : LipM → C(M̂) satisfies

D( f g) = (π∗g)Df + (π∗ f )Dg, f , g ∈ LipM, (1.11)

that is, D is a derivation of LipM to the LipM-module C(M̂) (cf. 1.5). A point
derivation D : LipM → C at a point p ∈ M is a bounded linear functional on LipM
such that

D( f g) = f (p)Dg + g(p)Df , f , g ∈ LipM .
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The space of all point derivations at p is denoted byDp(LipM). The next result, which
also follows from of [19, Theorem 9.8], explains the role of the operator defined by
(1.9).

Theorem 1.4 (cf. [19, Theorem 9.8] ) Let (M, d) be a compact metric space and let
π : M̂ → M be the map defined in (1.4).

1. For each p ∈ M and for eachω ∈ π−1(p) ⊂ M̂, Dω : LipM → C is a continuous
point derivation at p.

2. The weak ∗-closure of the linear span of {Dω | ω ∈ π−1(p)} is equal to the space
Dp(LipM).

We use the classical extension theorem of McShane [12].

Theorem 1.5 [12] Let (K , d) be a metric space and let E be a subset of K . For each
bounded real-valued Lipschitz function f : E → R, there exists a Lipschitz function
F : K → R such that

1. F |E = f ,
2. ‖F‖∞ = ‖ f ‖∞ and L(F) = L( f ).

Next we recall the notion of alternating cocycles due to Johnson. LetSn be the nth
symmetric group. For a Banach algebra A and aBanach A-bimodule X , the continuous
n-cochains Cn(A, X) is an Sn-module by the action

(σ F)(a1, . . . , an) = F(aσ(1), . . . , aσ(n)), σ ∈ Sn, a1, . . . , an ∈ A.

An n-chain F is said to be alternating if σ F = (sgnσ)F , where sgn σ denotes the
signature of σ ∈ Sn . The subspace of all continuous alternating n-cocycles is denoted
by Zn

alt(A, X). An n-chain F ∈ Cn(A, X) is called an n-derivation if

F(a1, . . . , ai−1, bi ci , ai+1, . . . , an)

= bi · F(a1, . . . , ai−1, ci , ai+1, . . . , an)

+F(a1, . . . , ai−1, bi , ai+1, . . . , an) · ci (1.12)

for each i = 1, . . . , n and for each a1, . . . , ai−1, ai+1, . . . , an, bi , ci ∈ A.

Theorem 1.6 [7, Theorem 2.3, Propostion 2.9, Corollary 2.10]Let A be a commutative
Banach algebra and let X be a symmetric Banach A-bimodule.

1. An n-cochain F ∈ Cn(A, X) is an alternating n-cocycle if and only if it is an
alternating n-derivation.

2. The restriction qn|Zn
alt(A, X) : Zn

alt(A, X) → Hn(A, X) of the natural quotient
map qn : Zn(A, X) → Hn(A, X) to Zn

alt(A, X) is injective.
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2 Proof of Theorem 1.2

This section is devoted to prove Theorem 1.2. The proof is divided into several steps.
In Step 1, we give a construction of derivations LipM → C(M̂). Step 2 supplies a
construction of Lipschitz functions associated with a convergent point-sequence of
M . Step 3 proves the theorem for n = 1 and the proof for n > 1 will be given in Step
4.

We start with a general discussion on maps induced on the Stone–Čech compactifi-
cation of a space. Let M be a compact metric space and let π : β M̃ → M × M
be the continuous surjection defined in (1.4) with the restriction π : M̂ → M
(recall the identification M ≈ �M). Let N be a closed, hence compact, neighbor-
hood of the diagonal set �M and let F : N → N be a continuous map such that
F(�M) = F−1(�M) = �M . Let Ñ = N\�M and let F̃ = F |Ñ : Ñ → Ñ be
the restriction of F . The map F̃ admits a unique extension β F̃ : β Ñ → β Ñ . Since
N is another compactification of Ñ , there exists the canonical continuous surjection
πN : β Ñ → N such that πN |π−1

N (Ñ ) : π−1
N (Ñ ) → Ñ is a homeomorphism. Notice

that β F̃ is the unique map such that

β F̃ |π−1
N (Ñ ) = π−1

N ◦ F̃ ◦ πN |π−1
N (Ñ ). (2.1)

Lemma 2.1 1. We have the inclusion

M̂ = π−1(�M) ⊂ β Ñ ⊂ β M̃

and πN = π |β Ñ .
2. πN ◦ β F̃ = F ◦ πN .

3. The restriction β F̃ |M̂ of β F̃ to M̂ induces a map F̂ : M̂ → M̂ such that π ◦ F̂ =
(F |�M) ◦ π .

Proof 1. Since N is closed in M , Ñ is closed in M̃ and by [20, Proposition 1.48],
the Stone-Čech compactification β Ñ is the closure of Ñ in β M̃ : β Ñ = cl

β M̃ Ñ .

In particular β Ñ ⊂ β M̃ and we have πN = π |β Ñ . It follows from this that
π−1(�M) ⊂ β Ñ .

2. We have from (2.1) that πN ◦ β F̃ |π−1
N (Ñ ) = F̃ ◦ πN |π−1

N (Ñ ) and the desired
equality follows from the denseness of π−1

N (Ñ ) in β M̃ .
3. is a direct consequence of (1) and (2).

��
For a map F : N → N as above, we define a bounded linear map F∗D : LipM →

C(M̂) by

((F∗D) f )(ω) = DF̂(ω)
f , ω ∈ M̂, f ∈ LipM .
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Lemma 2.2 If F |�M = id�M, then the operator F∗D : LipM → C(M̂) is a deriva-
tion.

Proof It suffices to verify the Leibniz rule. Fix Lipschitz functions f , g ∈ LipM
and a point ω ∈ M̂ . We have, by (1.11), the assumption F |�M = id�M and (3) of
Lemma 2.1, the following equalities:

((F∗D) f g)(ω) = DF̂(ω)
f g

= π∗ f (F̂(ω))DF̂(ω)
g + π∗g(F̂(ω))DF̂(ω)

f

= f (π(F̂(ω))DF̂(ω)
g + g(π(F̂(ω))DF̂(ω)

f

= f (π(ω))(F∗D)g(ω) + g(π(ω))(F∗D) f (ω).

Recalling the LipM-module structure of C(M̂) ((1.5)) we obtain the conclusion. ��
Proof of Theorem 1.2 Step 1. Let (M, d) be a compact metric space satisfying the con-
dition (G) with a positive number δ > 0 that meets the condition (∗) of Definition 1.1.
We may and will assume that δ < 1. Let

W = {(x, y) | d(x, y) ≤ δ} (2.2)

and for each (x, y) ∈ W , let γxy be the unique geodesic joining x with y. In what
follows it is convenient to take the parametrization of γxy as

γxy :
[
−d(x, y)

2
,
d(x, y)

2

]
→ M, γxy

(
−d(x, y)

2

)
= x, γxy

(
d(x, y)

2

)
= y.

Also let mxy = γxy(0), the midpoint of x and y. For w(x, y) = d(x, y)/2, the above
parametrization of γxy is given by

γxy : [−w(x, y), w(x, y)] → M . γxy(−w(x, y)) = x, γxy(w(x, y)) = y.

Wemake a convention that γxx = mxx = {x} andw(x, x) = 0. Let κ : [0, δ] → [0, 1]
be the function defined by

κ(t) = t/δ, t ∈ [0, δ]. (2.3)

It satisfies

κ−1(0) = {0}, κ−1(1) = {δ}, κ ′(t) > 0. (2.4)

The argument in Step 1 depends only on (2.4) and the explicit form (2.3) will be used
in later steps. Let H : W → W be the map defined by

H(x, y) = (
γxy(−w(x, y)κ(w(x, y))), γxy(w(x, y)κ(w(x, y)))

)
, (x, y) ∈ W .

(2.5)
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Let ξ(x, y) = γxy(−w(x, y)κ(w(x, y))) and η(x, y) = γxy(w(x, y)κ(w(x, y))) so
that H(x, y) = (ξ(x, y), η(x, y)). The map H has the following properties.

(a) For each (x, y) ∈ W , we have

(a.1) the points ξ(x, y), η(x, y) are on the geodesic γxy ,
(a.2) mξ(x,y)η(x,y) = mxy ,
(a.3) w(ξ(x, y), η(x, y)) = d(ξ(x, y),mxy) = d(η(x, y),mxy) = κ(w(x, y))

w(x, y),
(a.4) γξ(x,y)η(x,y) = γxy |[−κ(w(x, y))w(x, y), κ(w(x, y))w(x, y)].
(b) H |�M = id�M , H |∂W = id∂W and H−1(�M) = H(�M) = �M ,
(c) If d(x, y) < δ, then limn→∞ Hn(x, y) = (mxy,mxy), where Hn denotes the

n-fold iteration of H .

��
Proof (a.1)–(a.3) are direct consequences of the definition. (a.4) follows from the
uniqueness of the geodesic joining ξ(x, y) and η(x, y). (b) follows from the def-
inition (2.5) and (2.4). Note that d(x, y) = δ if (x, y) ∈ ∂W . To verify (c)
let wi = w(Hi (x, y)). By induction we can see directly that wi+1 < wi and
κ(wi+1) < κ(wi ) due to (2.4). Then we see from (a.3) that

wi+1 = κ(wi )wi = κ(wi )κ(wi−1) · · · κ(w1)w1

≤ κ(w1)iw1.

Since w(x, y) = d(x, y)/2 ≤ δ/2 < 1, we have κ(w1) = κ(w(x, y)) < 1 and
limi w

i = 0. This and (a.2) imply the condition (c).
We apply Lemma 2.1 to themap H : W → W defined on the closed neighbourhood

W of �M and obtain a sequence of linear operators

{
(Hn)∗D : LipM → C(M̂) | n ≥ 1

}
.

We see from Lemma 2.2 and the condition (b) that (Hn)∗D is a derivation. Our goal
is to prove that the above forms a LipM-linearly independent sequence of derivations.
Step 2. Fix a point p of M and take a geodesic γ : [0, δ] → M such that γ (0) = p.
Take a sequence S0 = {xk, yk | k ≥ 1} of points on the geodesic Imγ which satisfies
the following conditions:

(d.1) limk xk = limk yk = p, xk 	= yk for each k,
(d.2) d(x1, p) < δ and, for each k ≥ 1, d(xk+1, p) < d(yk, p) < d(xk, p),
(d.3) for each k ≥ 1, d(xk+1, yk+1) < d(xk, yk).

For a fixed integer N ≥ 1, we examine the sequence {H ν(xk, yk) | k ≥ 1, 1 ≤ ν ≤ N }
of points of W . The following statements are consequences of (a)–(c) above and will
be used later.

(e) For each k, the geodesic γxk yk is the geodesic segment in γ joining xk and yk ,
denoted by xk yk for simplicity.
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(f) For i ≥ 0, let (xik, y
i
k) = Hi (xk, yk) with (x0k , y

0
k ) = (xk, yk). Then the points

xi+1
k and yi+1

k are on the geodesic xik y
i
k so that d(xik,mk) ↓ 0 and d(yik,mk) ↓ 0

as i → ∞.

The next lemma describes a general procedure to find a Lipschitz function that
detects the derivation (Hi )∗D.

Lemma 2.3 (cf. [8, Lemma 2.2]) Under the above notation, for each N ≥ 1 and for
each i ∈ {1, . . . , N }, there exist an integer k0 ≥ 1 and a real-valued Lipschitz function
f ∈ LipM such that

1. L( f ) = 1,
2. for each k ≥ k0 we have |� f (xik, y

i
k)| ≥ 1/4 for each i = 1, . . . , N,

3. for each k ≥ k0 and for each j ∈ {1, . . . , N }with j 	= i , we have� f (x
j
k , y j

k ) = 0.

Proof First we make some preliminary estimates on the distance d(xik, y
j
� ). Let dk =

d(xk, yk), wk = w(xk, yk) = dk/2 and mk = mxk yk . Also for j ≥ 1, let w
j
k =

d(x j
k , y j

k )/2 = d(x j
k ,mk) = d(y j

k ,mk). Under this notation we have

w
j
k = δ(wk/δ)

2i (2.6)

In fact, w1
k = κ(w(xk, yk))w(xk, yy) = w2

k/δ, and w
j+1
k = κ(w

j
k )w

j
k = δ−1(w

j
k )

2,
from which (2.6) follows by an induction. Let

ε
j
k = d(x j

k , x j+1
k )

d(xk, yk)
= d(x j

k , x j+1
k )

dk
, j ≥ 0. (2.7)

We have by (2.6)

ε
j
k = 1

dk

(
d

(
x j
k ,mk

)
− d

(
x j+1
k ,mk

))

= 1

dk
δ
(wk

δ

)2 j (
1 −

(wk

δ

)2 j )
. (2.8)

Let rk = wk/δ. We use (2.8) to see

ε
j
k

ε
j−1
k

= (rk)
2 j−1 · 1 − r2

j

k

1 − r2
j−1

k

for each j ≥ 1. Since wk = d(xk, yk)/2 < d(xk, p)/2 ≤ δ/2, we see 0 < rk < 1 and
thus, for each j ≥ 1, we obtain

lim
k→∞

ε
j
k

ε
j−1
k

= 0.
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Also by (d.1) we see limk wk = 0. Take a large k0 ≥ 1 such that

ε
j
k

ε
j−1
k

≤ 1, k ≥ k0, 1 ≤ j ≤ N and

rk = wk/δ ≤ 1/2, k ≥ k0.
(2.9)

Fix an integer N ≥ 1, let SNk = {x j
k , y j

k | 0 ≤ j ≤ N } and SN = ∪k≥k0 S
N
k ∪ {p}.

We fix i ∈ {1, . . . , N } and define a function f : SN → [0,∞) by:

f (p) = 0,

f (xik) = εikdk = d
(
xik, x

i+1
k

)
, (see (2.7))

f (yik) = 0,
f (x j

k ) = f (y j
k ) = 0, k ≥ k0, 0 ≤ j ≤ N , j 	= i .

(2.10)

We first verify that the function f is a Lipschitz function on SN with the Lipschitz
constant 1 which satisfies the condition (2) and (3).

In order to estimate

� f (x
i
k, x

j
� ) = f (xik) − f (x j

� )

d(xik, x
j
� )

,

we may assume that k ≤ �. First we observe

� f (x
i
k, x

i+1
k ) = f (xik) − f (xi+1

k )

d(xik, x
i+1
k )

= 1 (2.11)

and by (2.9)

0 ≤ � f (x
i
k, x

i−1
k ) = f (xik) − f (xi−1

k )

d(xik, x
i−1
k )

= εik

εi−1
k

≤ 1. (2.12)

For j with 0 ≤ j ≤ i−2,we see d(xik, x
j
k ) = d(xik, x

i−1
k )+d(xi−1

k , x j
k ) ≥ d(xik, x

i−1
k )

by (f). Hence we have by (2.12),

0 ≤ � f (x
i
k, x

j
k ) = f (xik) − f (x j

k )

d(xik, x
j
k )

≤ f (xik)

d(xik, x
i−1
k )

≤ 1 (2.13)

Similarly by using (2.11) we have for j with i + 2 ≤ j ≤ N ,

0 ≤ � f

(
xik, x

j
k

)
≤ 1. (2.14)
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Next we estimate � f (xik, x
j
� ) for � > k. By definition |� f (xik, x

i
�)| = |εikdk−εi�d�|

d(xik ,x
i
�)

, and
we see

εikdk ≥ εi�d�.

In fact, we have, by (2.8), εikdk = δr2
i

k (1 − r2
i

k ) and εi�d� = δr2
i

� (1 − r2
i

� ). Also by

(2.9) we have r� = w�/δ ≤ wk/δ = rk ≤ 1/2 and hence r2
i

� ≤ r2
i

k ≤ 1/2, from
which we obtain the desired inequality.

Also by (d.2) we have d(xik, x
i
�) = d(xik, x

i+1
k )+d(xi+1

k , xi�) ≥ d(xik, x
i+1
k ). Hence

we obtain, by (2.11),

|� f (x
i
k, x

i
�)| = |εikdk − εi�d�|

d(xik, x
i
�)

= εikdk − εi�d�

d(xik, x
i
�)

≤ εikdk

d(xik, x
i
�)

≤ εikdk

d(xik, x
i+1
k )

= 1. (2.15)

Similarly we have for � > k,

|� f (xik, x
j
� )| ≤ 1, 0 ≤ j ≤ N , j 	= i

|� f (xik, y
j
� )| ≤ 1, 0 ≤ j ≤ N .

(2.16)

Combining (2.11)–(2.16), we obtain L( f ) = 1 on SN .

In order to prove (2), we estimate � f (xik, y
i
k) = εikdk

d(xik ,y
i
k )
. First we see

d(xik, y
i
k) = d(xk .yk) −

i−1∑

j=0

(
d(x j

k , x j+1
k ) + d(y j

k , y j+1
k )

)

= d(xk, yk) − 2
i−1∑

j=0

ε
j
k dk = dk

⎛

⎝1 − 2
i−1∑

j=0

ε
j
k

⎞

⎠ . (2.17)

Using (2.8) with dk = 2wk , we compute

2
i−1∑

j=0

ε
j
k = δ

wk

i−1∑

j=0

r2
j

k (1 − r2
j

k ) = δ

wk

(
rk − r2

i

k

)
.

Hence we obtain, by wk = δrk (see 2.9),

2dk

i−1∑

j=0

ε
j
k = dk

δ

wk

(
rk − r2

i

k

)
= dk

(
1 − r2

i−1
k

)

and by (2.17), we have
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d(xik, y
i
k) = dkr

2i−1
k .

Thus we obtain

� f (x
i
k, y

i
k) = εikdk

dkr
2i−1
k

= r2
i

k (1 − r2
i

k )

r2
i−1

k

δ

dk

= rk
dk

δ(1 − r2
i

k ) = wk(1 − r2
i

k )

dk

= (1 − r2
i

k )/2.

Using r2
i

k = (
wk
δ

)2
i ≤ wk

δ
≤ 1/2 we see that the last term of the above is at least 1/4.

Hence we obtain

� f (x
i
k, y

i
k) ≥ 1/4, (2.18)

which proves (2). (3) directly follows from the definition (2.10). Finally we apply
Theorem 1.5 to the above f to obtain a Lipschitz extension f̄ : M → R such that
L( f̄ ) = L( f ) = 1, the desired condition (1). The function f̄ satisfies (2) and (3) as
well. This completes the proof of lemma. ��
Step 3.We prove the theorem for n = 1. SinceC(M̂) is a symmetric LipM-module, we
have H1(LipM,C(M̂)) = D(LipM,C(M̂)). In order to prove that D(LipM,C(M̂))

has the infinite LipM-rank, we take the map H : M × M → M × M in Step 1, fix an
integer N ≥ 1 and consider the N derivations

H∗D, . . . , (HN )∗D : LipM → C(M̂),

and assume that, for ϕ1, . . . , ϕN ∈ LipM , the equality

N∑

j=1

ϕ j (π(ω))(H j )∗Dω f = 0 (2.19)

holds for each ω ∈ M̂ and for each f ∈ LipM . We fix i ∈ {1, . . . , N } and show
that ϕi ≡ 0. Pick an arbitrary point p ∈ M , take a geodesic γ , choose a sequence
{xk, yk | k ≥ 1} of points on γ such that

γ : [0, δ] → M, with γ (0) = p and
the sequence {xk, yk | k ≥ 1} satisfies (d.1)-(d.3), (2.20)

and apply Lemma 2.3 to find an integer k0 ≥ 1 and a Lipschitz function f satisfying
the conditions of the lemma.

Let ω be an accumulation point of the set {(xk, yk) | k ≥ k0} ⊂ βW̃ . Then π(ω), as
a point ofM×M , is an accumulation point of the set {(xk, yk) | k ≥ k0} ⊂ M×M , that
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is, the singleton (p, p). Recalling the identification M ≈ �M via the diagonal map,
we have π(ω) = p. Also Ĥ j (ω) = (β H̃ j )(ω) = (β H̃) j (ω) is an accumulation point
of {H j (xk, yk) = (x j

k , y j
k ) | k ≥ k0}. This and the conditions 2 and 3 of Lemma 2.3

imply

DĤi (ω) f = β� f (Ĥ i (ω)) ≥ 1/4 and
DĤ j (ω) f = β� f (Ĥ j (ω)) = 0, 1 ≤ j ≤ N , j 	= i .

Therefore from (2.19) we have

0 =
N∑

j=1

ϕ j (π(ω))((H j )∗D)ω f = ϕi (p)DĤi (ω)
f

which shows ϕi (p) = 0 as required.
This completes the proof of the theorem for n = 1.

Step 4. This step finishes the proof of theorem, proving the case n > 1, by carrying
out the idea stated in Sect. 1. Rather than considering the homomorphism 
n in
(1.6), we proceed directly as follows. Let Zn

alt(LipM,C(M̂)) be the space of the
alternating n-cocycles on LipM with coefficient C(M̂). By Theorem 1.3 we have an
injection Zn

alt(LipM,C(M̂)) → Hn(LipM,C(M̂)) and thus it suffices to prove that
Zn
alt(LipM,C(M̂)) has the infinite LipM-rank.
Fix an arbitrary integer N ≥ 1. For ν = 1, . . . , N and i = 1, . . . , n, let

Hν,i = H (ν−1)n+i : W → W

and define the n-cochain dν ∈ Cn(LipM,C(M̂)) by

dν(a1, . . . , an)(ω) = det
(
(H∗

ν,i D)a j (ω)
) = det

(
(DĤν,i (ω)

a j )1≤i, j≤n

)
.

(2.21)

It follows from the definition that dν is an alternating cochain. ByLemma2.2, DĤν,i
(ω)

is a derivation, fromwhich it follows that dν is an n-derivation. Thus by (1) of Theorem
1.6 we see that dν is an alternating cocycle: dν ∈ Zn

alt(LipM,C(M̂)).
Assume that, for ϕ1, . . . , ϕN ∈ LipM , the equality

N∑

ν=1

ϕν(π(ω))dν(a1, . . . , an)(ω) = 0 (2.22)

holds for each ω ∈ M̂ and for each a1, . . . , an ∈ LipM . We fix μ ∈ {1, . . . , N } and
show ϕμ ≡ 0. Take an arbitrary point p of M and choose a geodesic γ and a sequence
{xk, yk | k ≥ 1} as in (2.20). Applying Lemma 2.3 we obtain an integer k0 ≥ 1 and a
sequence { f j | 1 ≤ j ≤ n} of Lipschitz functions such that
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L( f j ) = 1, 1 ≤ j ≤ n,

|� f j (Hμ, j (xk, yk))| ≥ 1/4, k ≥ k0, 1 ≤ j ≤ n, (2.23)

� f j (Hμ,t (xk, yk)) = 0, k ≥ k0, 1 ≤ t ≤ n, t 	= j, (2.24)

� f j (Hν,t (xk, yk)) = 0, k ≥ k0, 1 ≤ ν ≤ N , ν 	= μ, 1 ≤ t ≤ n. (2.25)

Let ω be an accumulation point of {(xk, yk) | k ≥ k0} ⊂ W̃ . As in Step 3, we see
π(ω) = p and Ĥν,i (ω) is an accumulation point of {Hν,i (xk, yk) | k ≥ k0} for each ν

and i with 1 ≤ ν ≤ N , 1 ≤ i ≤ n. Thus by (2.23) and (2.24) we find a nonzero ci
such that

DĤμ,i (ω)
f j = �̂ f j (Ĥν,i (ω)) = β� f j (Ĥν,i (ω)) = δi j ci .

Also by (2.25) DĤν,i (ω)
f j = 0 for each ν 	= μ. Hence by (2.22) we have

0 =
N∑

ν=1

ϕν(π(ω))dν(a1, . . . , an)(ω)

= ϕμ(π(ω))dμ( f1, . . . , fn)(ω) = ϕμ(p)c1 · · · cn,

which implies ϕμ(p) = 0 as desired.
This completes Step 4 and hence completes the proof of the theorem. ��

3 The space M̂ and Proof of Theorem 1.3

Here we compare the point derivation Dω for a point ω ∈ M̂ [see (1.9) and Theo-
rem 1.4] with the derivation by tangent vectors of compact smooth manifolds. The
comparison indicates that the space M̂ maybe regarded, to certain extent, as aLipschitz
analogue of the unit sphere bundle of a Riemannian manifold.

Let (M, g) be a compact Riemannian manifold with the metric d induced by g. By
the compactness of M , there exists a δ > 0 such that, for each pair p, q of points of M
with d(p, q) ≤ δ, there exists a unique geodesic γpq : [0, d(p, q)] → M such that

γpq(0) = p, γpq(d(p, q)) = q, ‖γ̇pq(t)‖ ≡ 1. (3.1)

As in (2.2), let W = {(p, q) ∈ M × M | d(p, q) ≤ δ} and let W̃ = W\�M . By
Lemma 2.1, we have the inclusion M̂ ⊂ βW̃ ⊂ β M̃ and the canonical surjection
πW : βW̃ → W is the restriction of π : β M̃ → M × M . In what follows πW is
simply denoted by π : βW̃ → W . Let τ : T M → M be the tangent bundle of
M and let SM = {v ∈ T M | ‖v‖ = 1}, the unit sphere bundle. We define a map
V : W̃ → SM by

V (p, q) = γ̇qp(0) ∈ SpM, (p, q) ∈ W̃ . (3.2)
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By the uniqueness of the geodesic γqp (3.1), the map V is a well-defined continu-
ous map to the compact space SM and hence extends uniquely to the Stone-Čech
compactification: βV : βW̃ → SM which restricts to:

V̂ := βV |M̂ : M̂ → SM .

As in Sect. 1, let �M : M → �M ⊂ M × M be the diagonal map. We have

Lemma 3.1 We have the equality

�M ◦ τ ◦ V̂ = π.

Proof For a point ω ∈ M̂ ⊂ βW̃ there exists a net (pα, qα)α of points of W̃ such that
limα(pα, qα) = ω in βW̃ . By the continuity of βV we have

V̂ (ω) = lim
α

V (pα, qα) = lim
α

γ̇qα pα (0).

Noticing τ(γ̇qα pα (0)) = qα , we have

�M (τ (V̂ (ω))) = �M

(
lim
α

τV (pα, qα)
)

=
(
lim
α

qα, lim
α

qα

)
.

On the other hand π(ω) = limα(pα, qα) = (limα pα, limα qα). Since ω ∈ π−1(�M)

we have by [19, Lemma 9.6] that limα pα = limα qα . Hencewe have�M (τ (V̂ (ω))) =
π(ω), as desired. ��

In Sect. 1 the map T : M̂ → (LipM)∗ was defined by (T (ω))( f ) = Dω f for
ω ∈ M̂, f ∈ LipM . The map is continuous when (LipM)∗ is endowed with the
weak*-topology. Restricting T (ω) to the subspace C1(M) of LipM consisting of the
C1-functions on M we obtain a composition

T : M̂ → (LipM)∗ → (C1(M))∗

which is continuous when (C1(M))∗ is endowed with the weak*-topology. On the
other hand we have a map θ : SM → (C1(M))∗ given by

(θ(v))( f ) = v f , v ∈ SM, f ∈ C1(M). (3.3)

See [21, 1.21] for the action of tangent vectors on C1-functions. The map θ is related
to the map T by the next lemma. For ξ ∈ (C1(M))∗ and f ∈ C1(M), ξ( f ) is also
denoted by 〈ξ, f 〉.
Lemma 3.2 1. θ ◦ V̂ = T , that is, for each ω ∈ M̂ and for each f ∈ C1(M), we

have

Dω f = V̂ (ω) f .

2. Im θ = Im T .



156 K. Kawamura

Proof 1. For a point ω ∈ M̂ take a net ((pα, qα))α of points of W̃ such that ω =
limα((pα, qα)). By the continuity of θ , we have, for each f ∈ C1(M),

〈(θ ◦ V̂ )(ω), f 〉 = 〈θ(lim
α

V (pα, qα)), f 〉
= lim

α
〈θ(γ̇qα pα (0)), f 〉 = lim

α
γ̇qα pα (0) f

= lim
α

d

dt

∣∣
t=0 f (γqα pα (t)).

The complex-valued function f is written as f = u + iv for real-valued C1-
functions u and v. Applying the mean value theorem to u and v, we have

f (pα) − f (qα) = f (γqα pα (d(qα, pα))) − f (γqα pα (0))

=
(
d(u ◦ γqα pα )

dt
(ρα) + i

d(v ◦ γqα pα )

dt
(σα)

)
d(pα, qα)

(3.4)

for some ρα, σα ∈ (0, d(pα, qα)). Sinceω ∈ M̂ we have again by [19, Lemma 9.6]
that limα d(pα, qα) = 0. By (3.4) we have

� f (pα, qα) = d(u ◦ γqα pα )

dt
(ρα) + i

d(v ◦ γqα pα )

dt
(σα) (3.5)

Taking the limit in (3.5) and using limα( d
dt u ◦ γqα pα )(ρα) = ( d

dt u ◦ γqα pα )(0),
limα( d

dt v ◦ γqα pα )(σα) = ( d
dt v ◦ γqα pα )(0), we have

Dω f = �̂ f (ω) = lim
α

� f (pα, qα)

= lim
α

d( f ◦ γqα pα )

dt
(0) = V̂ (ω) f .

This proves (1).
2. From (1) we see ImT ⊂ Imθ . In order to prove the reverse inclusion, let v ∈ SpM

with ‖v‖ = 1 and take the geodesic γv : [0, δ] → M such that

γv(0) = p, γ̇v(0) = v.

Note that the point (γv(t), p) is in W̃ for each t ∈ (0, δ]. Using ‖γ̇v‖ ≡ 1, we see
d(γv(t), p) = t . Thus for each f ∈ C1(M) and for each t ∈ (0, δ],

� f ((γv(t), p)) = f (γv(t)) − f (γv(0))

d(γv(t), p)

= 1

d(γv(t), p)

d( f ◦ γv)

dt
(ρt ) · d(γv(t), p)

= d( f ◦ γv)

dt
(ρt )
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for some ρt ∈ (0, t). Let ω ∈ M̂ be an accumulation point of {(γv(t), p) | t ∈
(0, δ]}. Since the net ( d( f ◦γv)

dt (ρt ))t∈(0,δ] converges to d( f ◦γv)
dt (0) = γ̇ (0) f = v f ,

we have

Dω f = �̂ f (ω) = v f ,

as desired.
��

In view of these lemmas we may regard M̂ as a Lipschitz-analogue of the unit
sphere bundle SM of a Riemannian manifold M . Let �(M, SM) be the space of
smooth sections of the bundle τ : SM → M

�(M, SM) = {σ : M → SM | τ ◦ σ = idM }

and let � : �(M, SM) → D(C1(M),C(M)) be the map defined by

�(σ)( f )(p) = σ(p) f , σ ∈ �(M, SM), f ∈ C1(M), p ∈ M . (3.6)

A standard argument shows that the image Im� is non-zero and finitely generated as a
C1(M)-module. The map � yields the map θ in Lemma 3.2 when localized at a point
p: To be more precise, let εp : �(M, SM) → SpM and ep : D(C1(M),C(M)) →
Dp(M) be the evaluation maps defined by

εp(σ ) = σ(p), σ ∈ �(M, SM),

ep(D)( f ) = (Df )(p), D ∈ D(C1(M),C(M)), f ∈ C1(M).
(3.7)

Then we have

ep ◦ � = θ ◦ εp.

Here the similarity between the spaces M̂ and SM breaks down: every continuous
map σ : M → M̂ of a path-connected compact metric space M must be a con-
stant map, because the space M̂ = β M̃\M̃ , being a remainder of the Stone–Čech
compactification of a non-psuedo-compact Lindelöf space M̃ , contains no metrizable
compact connected subsets which are not singletons [9] and hence the image σ(M)

must be a singleton. In particular there exists no continuous map σ : M → M̂ such
that π ◦ σ = idM for such a space. This prevents us from defining a map which
corresponds to � (3.6) to obtain elements of D(LipM,C(M)). More strongly, The-
orem 1.3 states that there exists no non-zero derivations LipM → C(M) when M
is a compact Lipschitz manifold. Combining [8, Theorem 3.5] we see that the map
ep : D(LipM,C(M)) → Dp(M) that corresponds to (3.7) reduces to the trivial map
0 → (an ∞-dimensional space).

The rest of this section is devoted to the proof of Theorem 1.3. First the theorem
is proved for M = [0, 1]m ⊂ R

m and the result is combined with Theorem 1.5 to
prove the general case. We start with several lemmas. For simplicity let I = [0, 1].
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For i ∈ {1, . . . , n} and a ∈ int I , the subspace H = {(t1, . . . , tm) ∈ Im | ti = a} is
called a coordinate section. For two points x, y ∈ Im , xy denotes the segment joining
x with y. For a subset S of Im , intS denotes the interior of S in Im . Notice that for
each derivation D : LipM → C(M) we have

Dc = 0 (3.8)

for each constant function c ∈ LipM .

Lemma 3.3 For a ∈ int I and i = 1, . . . ,m, let Ha,i = {(t1, . . . , tm) ∈ Im | ti = a}
be a coordinate section of Im and let

Ha,i
+ = {(t1, . . . , tm) ∈ Im | ti ≥ a}, Ha,i

− = {(t1, . . . , tm) ∈ Im | ti ≤ a}.

For a Lipschitz function f ∈ LipIm with f |Ha,i ≡ 0, let

f+(x) =
{

f (x) if x ∈ Ha,i
+ ,

0 if x ∈ Ha,i
− ,

(3.9)

and

f−(x) =
{

f (x) if x ∈ Ha,i
− ,

0 if x ∈ Ha,i
+ .

(3.10)

Then f+ and f− are Lipschitz functions such that f = f+ + f− and f+ · f− = 0.

Proof Let x ∈ Ha,i
+ and y ∈ Ha,i

− and take the point m ∈ xy ∩ Ha,i . We have

| f+(x) − f+(y)|
‖x − y‖ = | f+(x)|

‖x − y‖ ≤ | f+(x)|
‖x − m‖ ≤ L( f ).

Thus f+ is a Lipschitz function. Similarly f− is a Lipschitz function. The last equalities
follow directly from the definition. ��
Lemma 3.4 Let D : LipIm → C(Im) be a derivation and let B be a convex body in
Im. For each f ∈ LipIm with f |B ≡ 0, we have D f |B ≡ 0.

Proof Let g(x) = d(x, Im\B), x ∈ Im . It is straightforward to see

g ∈ LipIm, g−1(0) = Im\B, f g ≡ 0. (3.11)

Restricting the equality 0 = D( f g) = f · Dg + g · Df to intB, we obtain

(g|intB) · (Df |intB) = 0

and hence Df |intB = 0. By the continuity of Df we have Df |B = 0. ��
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Lemma 3.5 Let H be a coordinate section of Im and let D : LipIm → C(Im) be a
derivation. For each function f ∈ LipM with f |H ≡ 0, we have D f |H ≡ 0.

Proof We may assume H = Ha,m = {(t1, . . . , tm−1, a) | ti ∈ I , 1 ≤ i ≤ m − 1} for
some a ∈ int I . Let H+ = Ha,i

+ , H− = Ha,i
− , and let f ∈ LipM with f |H ≡ 0. We

see that the functions f+ and f− defined by (3.9) and (3.10) are Lipschitz such that
f = f+ + f−, f+ f− = 0 due to Lemma 3.3. From the equality 0 = D( f+ f−) =
f+Df− + f−Df+ we see

f (x)Df−(x) = 0, x ∈ H+, (3.12)

f (y)Df+(y) = 0, y ∈ H−. (3.13)

We take an arbitrary p ∈ H and prove Df (p) = 0 by considering two cases.
Case 1. There exists an ε > 0 such that, for the rectangular neighbourhood Bε =∏m
i=1[pi − ε, pi + ε], we have either

f |Bε ∩ H+ ≡ 0 or f |Bε ∩ H− ≡ 0.

Applying Lemma 3.4 to the convex body Bε ∩ H+ or Bε ∩ H−, we conclude Df |Bε ∩
H+ ≡ 0 or Df |Bε ∩ H− ≡ 0. In particular we have Df (p) = 0.

Case 2. There exist two sequences (xk)k≥1 and (yk)k≥1 such that

(i) xk ∈ H+, yk ∈ H− and f (xk) 	= 0 	= f (yk) for each k ≥ 1,
(ii) limk xk = limk yk = p.

By (3.12), (3.13) and (i) above, we have Df−(xk) = Df+(yk) = 0 for each k and
hence by continuity of Df± we see Df−(p) = Df+(p) = 0. Then we see Df (p) =
Df+(p) + Df−(p) = 0.

Since p is an arbitrary point of H we have Df |H ≡ 0. ��
Remark 3.6 The above lemma holds also for m = 1 in which case H is a singleton in
int I .

Proof of Theorem 1.3 Step 1. As before let I = [0, 1]. First we prove the theorem for
M = Im by induction on m.

(i) m = 1. Let D : LipI → C(I ) be a derivation, let f ∈ LipI , and take a point
p ∈ int I . Let f p : I → C be the function defined by f p(t) = f (t)− f (p), t ∈ I .
By (3.8) we have Dfp = Df . Since f p(p) = 0, we have (Dfp)(p) = 0 by
Lemma 3.5 and Remark 3.6. Thus we obtain Df (p) = Dfp(p) = 0. Since p is
an arbitrary point of int I we see by continuity that Df ≡ 0 on I .

(ii) Assume that theorem holds for m and let D : LipIm+1 → C(Im+1) be a deriva-
tion. Take a point a = (a1, . . . , am+1) ∈ int Im+1 and take the coordinate section
H = {(t1, . . . , tm, am+1) | ti ∈ I , 1 ≤ i ≤ m}. The space H is isometric to Im and
the inclusion of H into Im+1 is denoted by ι : H → Im+1. Let R : Im+1 → H
be the projection defined by

R(t1, . . . , tm+1) = (t1, . . . , tm, am+1), (t1, . . . , tm+1) ∈ Im+1.
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The map R is a Lipschitz map. We define an operator d : LipH → C(H) by
d = ι∗ ◦ D ◦ R∗ which is explicitly given by

d f = D( f ◦ R)|H , f ∈ LipH .

We show that d is a derivation. Indeed using R|H = idH we have

d( f g) = D( f g ◦ R)|H = D(( f ◦ R) · (g ◦ R))|H
= ( f ◦ R|H) · D(g ◦ R)|H + (g ◦ R|H) · ( f ◦ R)|H
= f D(g ◦ R)|H + gD( f ◦ R)|H = f dg + gd f .

By the inductive hypothesis and the isometry H ≡ Im we see d = 0. Thus for
each h ∈ LipH , we have

dh = D(h ◦ R)|H = 0. (3.14)

For an arbitrary f ∈ LipIm+1, consider the function g f given by

g f = f − ( f |H) ◦ R

which is a Lipschitz function on Im+1 such that g f |H ≡ 0. By Lemma 3.5 we
see (Dg f )|H ≡ 0 and thus by (3.14) we have

Df |H = D(( f |H) ◦ R)|H = 0.

In particular Df (a) = 0. Since a is an arbitrary point of int I we see by continuity
of Df that Df ≡ 0 on Im+1.
This finishes the inductive step and Step 1 is completed.

Step 2. For a proof of general M , we use the next lemma. The standard Euclidean
metric on Im is denoted by ρ.

Lemma 3.7 Let D : LipM → C(M) be a derivation. Let α : Im → M be a bi-
Lipschitz embedding of Im into a compact metric space (M, d) such that α(int Im) is
open in M. For each f ∈ LipM with f |α(Im) ≡ 0, we have D f |α(Im) ≡ 0.

Proof For an ε ∈ (0, 1), let ε Im = [ε, 1− ε]m . We define a function g : M → [0,∞)

by

g(x) =
{
d(α−1(x), Im\ε Im), if x ∈ α(Im),

0, if x /∈ α(Im).

Notice that

g|α(Im\ε Im) ≡ 0 (3.15)

and hence the above function is well-defined.
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In order to see that g is a Lipschitz function, first notice that t �→ d(t, Im\ε Im) is
a Lipschitz function on Im . Since α is a bi-Lipschitz embedding we see that g|α(Im)

is a Lipschitz function. This and (3.15) imply that g is a locally Lipschitz function.
By the compactness of M we conclude that g ∈ LipM (see [11, p. 85]). Also by the
definition g(q) 	= 0 for each q ∈ α(int(ε Im)).

For each f ∈ LipM with f |α(Im) ≡ 0, we have f g ≡ 0 and thus

0 = D( f g)|α(ε Im) = f · Dg|α(ε Im) + g · Df |α(ε Im) = g · Df |α(ε Im),

which implies Df |α(int(ε Im)) = 0. Since ε is an arbitrary number in (0, 1) we see
that Df |α(Im) ≡ 0. ��

In order to finish the proof of Theorem, let M be a compact metric space as in the
hypothesis and let D : LipM → C(M) be a continuous derivation. Fix a point p ∈ M .
Take a bi-Lipschitz embedding α : Im → M such that p ∈ α(Im) and α(int Im) is
open in M . First we show that there exists a Lipschitz map R : M → α(Im) such that
R|α(Im) = idα(Im ).

To show the above, let proj j : Im → I be the projection to the j-th factor (1 ≤
j ≤ m). The map proj j ◦ α−1 : α(Im) → I is a Lipschitz function and we apply
Theorem 1.5 to obtain a Lipschitz function r j : M → I such that r j |α(Im) =
proj j ◦ α−1. Define r : M → Im by r(x) = (r j (x))1≤ j≤m and let

R = α ◦ r : M → α(Im).

Then the map R is the desired Lipschitz map (see [11, Lemma 5.6]).
Take a function f ∈ LipM and let g f be the function given by

g f = f − (( f |α(Im)) ◦ R)

which is a Lipschitz function such that g f |α(Im) ≡ 0. By Lemma 3.7 we see
Dg f |α(Im) ≡ 0. Thus we see

Df |α(Im) = D
(
( f |α(Im)) ◦ R

) |α(Im). (3.16)

We notice that the Lipschitz homeomorphism α : Im → α(Im) induces algebraic
isomorphisms α∗ : Lip(Imα) → Lip(Im) and α∗ : C(α(Im)) → C(Im). It follows
from this and Step 1 that the derivation d : Lip(α(Im)) → C(Imα) defined by

dg = D(g ◦ R)|α(Im), g ∈ Lip(α(Im))

is the zero-homomorphism. It implies D( f |α(Im)◦R)|α(Im) = 0 for each f ∈ LipM .
Combining this with (3.16) we have Df |α(Im) = 0 and thus Df (p) = 0, as required.

This completes the proof of theorem. ��
For a compact metric space M as in Theorem 1.3 and n ≥ 2, take an alternating n-

cochain F ∈ Zn
alt(Lip(M),C(M)). By (1) of Theorem1.6, F is an n-derivation. Fixing

arbitrary Lipschitz functions f1, . . . , fn−1 ∈ Lip(M), we have the linear operator
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f �→ F( f1, . . . , fn−1, f ) that is a derivation due to (1.12). It follows from the proof
of Theorem 1.3 that the operator is zero and we conclude:

Corollary 3.8 Let M be a compact metric space as in Theorem 1.3. Then we have
Zn
alt(Lip(M),C(M)) = 0 for each n ≥ 2.

It is not known to the author whether the cohomology Hn(Lip(M),C(M)) is trivial
for each n ≥ 2 and for each compact metric space M in Theorem 1.3.
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