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Abstract
This work is devoted to the construction of a uniform asymptotics in the dimension
of the matrix n tending to infinity of all eigenvalues in the case of a seven-diagonal
Toeplitz matrix with a symbol having a zero of the sixth order, while the cases of
symbols with zeros of the second and fourth orders were considered earlier. On the
other hand, the results obtained refine the results of the classical work of Parter and
Widom on the asymptotics of the extreme eigenvalues. We also note that the obtained
formulas showed high computational efficiency both in sense of accuracy (already for
relatively small values of n) and in sense of speed.

Keywords Toeplitz matrices · Eigenvectors · Asymptotic expansions

Mathematics Subject Classification 15B05 · 15A18

1 Introduction

Let a(t) be a Lebesgue integrable function defined on the unit circle T = {t ∈ C :
|t | = 1}. We denote by Tn(a) the Toeplitz matrix Tn(a) := (a j−k)

n−1
j,k=1, where n ∈ N

is a natural number, and al denotes the l-th coefficient of the Fourier series of the

Dedicated to Ilya Spitkovsky on his occasion of his 70th birthday.

Communicated by Estelle Basor.

B I. Voronin
Voronin.ilia.math@gmail.com

1 MCCME (Moscow Center for Continuous Mathematical Education), Moscow, Russia

2 Center of Fundamental Mathematics, MIPT (Moscow Institute of Physics and Technology),
Moscow, Russia

3 SMI of VSC RAS (South Mathematical Institute of Vladikavkaz Scientific Center of Russian
Academy of Sciences), Vladikavkaz, Russia

4 Departamento de Matemáticas, CINVESTAV del IPN, Mexico City, Mexico

5 Regional Mathematical Center of the Southern Federal University, Rostov-on-Don, Russia

0123456789().: V,-vol 

http://crossmark.crossref.org/dialog/?doi=10.1007/s43036-024-00374-1&domain=pdf
http://orcid.org/0009-0002-9704-9777


   79 Page 2 of 37 M. Barrera et al.

function a. Note that the Toeplitz matrix can be viewed as an operator from a finite
dimensional vector space. The function a(t) is called the symbol of the Toeplitz matrix
(Toeplitz operator) Tn(a). This paper is devoted to finding asymptotic formulas for
the eigenvalues of the Toeplitz matrix with the symbol a(t) = (t − 2 + 1

t )
3.

Toeplitz matrices, as well as closely related Toeplitz operators, have been inten-
sively studied for various classes of symbols over the past, about a hundred years [7,
8, 13, 19, 20]). The importance of this subject is largely due to the numerous applica-
tions of Toeplitz matrices in numerical methods of differential and integral equations,
probability theory, statistical physics (see, for example, [10, 11, 14, 15]). As men-
tioned above, this work is devoted to finding asymptotic formulas for the eigenvalues
of the Toeplitz matrix with the symbol a(t) = (t − 2 + 1

t )
3. Toeplitz matrices with

this symbol are self-adjoint matrices. However, the study of non-self-adjoint Toeplitz
matrices, whose symbol is the cube of the linear Laurent polynomial and it has a
five-power derivative at the end of the interval equal to zero, can also be reduced to
this case. We note that all the asymptotic formulas for the eigenvalues obtained in this
paper, in essence, admit an uniform estimate for the remainder term, with respect to
the number of eigenvalue. It should be said that the symbol under consideration has
specific properties: it is a real, symmetric function, and the first five derivatives of
the symbol are equal to zero at the point t = 1. The last condition, namely the van-
ishing of the first five derivatives, significantly complicates the problem of finding an
asymptotic formula for the eigenvalues, since in this case the general researchmethods
developed in the previous works are inapplicable (see works [2–6, 9], which present
general approaches to finding the asymptotics of the eigenvalues for various classes
of Toeplitz matrices). In addition, the case we are considering is more complicated
than that considered in the work [1]. It should be mentioned that our asymptotic for-
mulas give a better approximation for the first eigenvalues than the classical formulas
obtained by Parter [16]. Note that although we are considering a special case of the
symbol described above, nevertheless, it seems to us, the method we use can also be
applied to study the asymptotic formulas of Toeplitz matrices with arbitrary symbol
defined above mentioned properties. In other words, we hope that the methods devel-
oped in this article can also be extended to Toeplitz band matrices with an arbitrary
real symmetric symbol that allows its derivatives to vanish up to the fifth order at some
marked point.

Our investigation is based on the formula for the determinant of the Toeplitz matrix,
obtained in [12] and after some transformations of this formula we reduce the finding
of eigenvalues to solving ordered set of n equations. Each of these equations has
a unique solution. We present an iterative algorithm and an asymptotic formula for
quickly calculating the eigenvalues and exploring their location. The formulas which
we use are different for the cases of even and odd eigenvalues. This fact follows from
the specificity of the formula for the determinant of the Toeplitz matrix [12]. Note that
the use of the fixed point method it possible to calculate eigenvalues with any given
accuracy and obtain a very high speed of convergence to the exact value. We note
also that the asymptotic formulas that we obtained in this article make it possible to
calculate approximately the eigenvalues with high accuracy of large Toeplitz matrices
(with size greater than 106 × 106) with the considered symbol, in the case when no
other numerical methods are applicable.
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The paper is organized as follows. Section2 contains the main results of the work.
Section3 contains some auxiliary results. Section4 contains the proof of our main
results, and Sect. 5 gives numerical examples illustrating the effectiveness of the
results.

2 Main results

In this section, we will present the main results of the article. We formulate a theorem
describing an asymptotic formula for the eigenvalues of a Toeplitz matrix with the
symbol mentioned above. The eigenvalues are calculated as the values of the function
g(ϕ) = a(eiϕ), where a(t) = (t − 2 + 1

t )
3, for fixed values of the argument ϕ.

Furthermore, the function g(ϕ) = a(eiϕ) = − (
2 sin ϕ

2

)6 defined on [0, 2π ] takes the
minimum value at the point π equal to m = −26 and has the following properties:

(i) The function g : [0, 2π ] → R, has range [m, 0], g(ϕ − π) = g(ϕ) for ϕ > π

and g(1)(ϕ) < 0 for ϕ ∈ (0, π).
(ii) g(π) :=m, g(1)(π) = 0, and g(2)(π) > 0.
(iii) g(0) = 0, g(k)(0) = 0 (k = 1, . . . , 5), and g(6)(0) < 0.

Thus, the structure of the asymptotic formula for the eigenvalues is such that this
formula is a refinement, on the one hand, of Szego’s limit theorem, which describes
the limit spectrum of Toeplitzmatrices as the image of the unit circleT under the action
of the symbol, and on the other, as mentioned in the introduction, is a refinement of
the results of Spitzer and Schmidt [19], which give the same answer in self-adjoint as
Szego’s limit theorem [8, 18].

Note that the problem is solved with respect to the variable ϕ, from which the
eigenvalues λ are expressed by a simple substitution λ = g(ϕ). Let’s introduce some
functions. All functions will be defined on the interval ϕ ∈ (0, π).

β(ϕ) := arccos (1 − (1 − cosϕ)e
2π i
3 ), γ (ϕ) = β(ϕ),

c(ϕ) := �(β(ϕ)), b(ϕ) := �(β(ϕ)).
(2.1)

C1(ϕ) := sin(γ )

sin(ϕ)
e

π i
3 , C2(ϕ) := sin(β)

sin(ϕ)
e
2π i
3 ,

B(ϕ) := �
(
sin (β)

sin (ϕ)
e

−π i
3

)
, C(ϕ) := − �

(
sin (β)

sin (ϕ)
e

−π i
3

)
.

(2.2)

Arccos is multivalued function, β(ϕ) is one of its regular branches. The existence of
this branch when ϕ ∈ (0, π) will be shown in the Sect. 3.

Theorem 2.1 Let λ = g(ϕ). Then the equation det Tn(a − g(ϕ)) = 0 is equivalent to
the following set of equations:

ϕ = 2

n + 3
[π j + arctan f (ϕ, n)] , (2.3)
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j ∈
{
1, 2, . . . ,

[
n + 1

2

]}

and

ϕ = 2

n + 3

[
π j + π

2
+ arctan h(ϕ, n)

]
, (2.4)

j ∈
{
1, 2, . . . ,

[n
2

]}
.

where

f (ϕ, n) = C1(ϕ) tan

(
n + 3

2
γ

)
− C2(ϕ) tan

(
n + 3

2
β

)
,

h(ϕ, n) = −C1(ϕ)
1

tan

(
n + 3

2
γ

) + C2(ϕ)
1

tan

(
n + 3

2
β

)
(2.5)

Remark 2.1 Note that the functions f (ϕ, n) and h(ϕ, n) are real-valued and can be
written as:

f (ϕ, n) = 2
B(ϕ) sin ((n + 3)c(ϕ)) + C(ϕ) sinh ((n + 3)b(ϕ))

cos ((n + 3)c(ϕ)) + cosh ((n + 3)b(ϕ))
,

h(ϕ, n) = 2
−B(ϕ) sin ((n + 3)c(ϕ)) + C(ϕ) sinh ((n + 3)b(ϕ))

− cos ((n + 3)c(ϕ)) + cosh ((n + 3)b(ϕ))
.

Let us introduce the following notation:

F = F(ϕ, j, n) = 2

n + 3
[π j + arctan f (ϕ, n)] , (2.6)

H = H(ϕ, j, n) = 2

n + 3

[
π j + π

2
+ arctan h(ϕ, n)

]
. (2.7)

Theorem 2.2 If n is sufficiently large then

(i) For any j ∈ {1, . . . , [ n+1
2 ]} the Eq. (2.3) has exactly one root ϕ2 j−1 on the inter-

val (π(2 j−1)
n+3 ,

π(2 j+1)
n+3 ). Moreover, the solution can be found using the recursive

formula ϕ
(k+1)
2 j−1 = F(ϕ

(k)
2 j−1, n), where ϕ

(0)
2 j−1 = d1, j := 2π j

n+3 , and we can write
the following estimate:

∣∣∣ϕ(k)
2 j−1 − ϕ2 j−1

∣∣∣ ≤ 5π

n + 3
(0.62)k, (2.8)
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If at the same time j >
ln(2(n + 3))

π
+ 1

2
,

∣∣∣ϕ(k)
2 j−1 − ϕ2 j−1

∣∣∣ = O

(
1

(n + 3)k+1

)
, (2.9)

where k is iteration number.
(ii) For any j ∈ {1, . . . , [ n2 ]} the Eq. (2.4) has exactly one root ϕ2 j on the interval

(
2π j
n+3 ,

2π( j+1)
n+3 ). Moreover, the solution can be found using the recursive for-

mula ϕ
(k+1)
2 j = H(ϕ

(k)
2 j , n), where ϕ

(0)
2 j = d2, j := π(2 j+1)

n+3 , and we can write the
following estimate:

∣∣∣ϕ(k)
2 j − ϕ2 j

∣∣∣ ≤ 5π

n + 3
(0.62)k . (2.10)

If at the same time j >
ln(2(n + 3))

π

∣∣
∣ϕ(k)

2 j − ϕ2 j

∣∣
∣ = O

(
1

(n + 3)k+1

)
, (2.11)

where k is iteration number.

Let q := n+3
2 . Recall that the parameter d1, j := d2 j−1 = 2π j

n+3 . Then ϕ can be repre-
sented as ϕ = d1, j + u

q , and Eq. (2.3) can be rewritten as:

u = arctan f

(
d1, j + u

q
, n

)
, (2.12)

where u ∈ (−π
2 , π

2 ). Recall that the parameter d2, j := d2 j = π(2 j+1)
n+3 , so if ϕ =

d2, j + w
q , then Eq. (2.4) can be rewritten as:

w = arctan h

(
d2, j + w

q
, n

)
, (2.13)

where w ∈ (−π
2 , π

2 ).

Theorem 2.3 Let a(t) = (t−2+ 1
t )

3 and n is sufficiently large. If j >
2 ln(n + 3)

π
+1

then

(i)

ϕ2 j−1 = d1, j + 2u∗
1, j

n + 3
+ 4u∗

2, j

(n + 3)2
+ O

(
1

n3

)
, (2.14)
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where

u∗
1, j = arctan

(−i
(
C1

(
d1, j

) + C2
(
d1, j

)))
(2.15)

and

u∗
2, j = −i

C ′
1(d1, j ) + C ′

2(d1, j )

1 + (−iC1
(
d1, j

) − iC2
(
d1, j

))2 u
∗
1, j . (2.16)

(ii)

ϕ2 j = d2, j + 2w∗
1, j

n + 3
+ 4w∗

2, j

(n + 3)2
+ O

(
1

n3

)
, (2.17)

where

w∗
1, j = arctan

(−i
(
C1

(
d2, j

) + C2
(
d2, j

)))

and

w∗
2, j = −i

C ′
1(d2, j ) + C ′

2(d2, j )

1 + (−iC1
(
d2, j

) − iC2
(
d2, j

))2w∗
1, j .

Theorem 2.4 Let j <
2 ln(n + 3)

π
+ 1. Then

ϕ2 j−1 = 2π j

n + 3
+ O

((
j

(n + 3)

)3
)

, (2.18)

and

ϕ2 j = π(2 j + 1)

n + 3
+ 2w∗

1

n + 3
+ O

((
j

(n + 3)

)3
)

(2.19)

where w∗
1, j is the unique solution to the equation

w1 = arctan

⎛

⎝ 2(−1) j+1 cos (w1)

(−1) j sin (w1) + cosh
(
(qd2, j + w1)

√
3
)

⎞

⎠ (2.20)

on the interval (−π
2 , π

2 ).

Theorem 2.5 Let a(t) = (t − 2 + 1
t )

3. Then starting from some n
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(i) If j >
2 ln(n + 3)

π
+ 1 then

λ
(n)
2 j−1 = g(d1, j ) + g′(d1, j )

2u∗
1, j

n + 3

+4u∗
2, j g

′(d1, j ) + 2(u∗
1, j )

2g′′(d1, j )
(n + 3)2

+ O

(
1

n3

)
, (2.21)

and

λ
(n)
2 j = g(d2, j ) + g′(d2, j )

2w∗
1, j

n + 3

+4w∗
2, j g

′(d2, j ) + 2(w∗
1, j )

2g′′(d2, j )
(n + 3)2

+ O

(
1

n3

)
, (2.22)

where u∗
1, j , u

∗
2, j ,w

∗
1, j andw∗

2, j are defined in the same way as in the Theorem 2.3.

(ii) If j <
2 ln(n + 3)

π
+ 1 then

λ
(n)
2 j−1 = g(d1, j ) + O

(
j3

n3

)
, (2.23)

λ
(n)
2 j = g(d2, j ) + g′(d2, j )

2w∗
1, j

n + 3
+ 2(w∗

1, j )
2g′′(d2, j )

(n + 3)2
+ O

(
j3

n3

)
, (2.24)

where w∗
1, j is defined in the same way as in the Theorem 2.4.

The following result gives us the asymptotic formulas for the extreme eigenvalues
near zero.

Theorem 2.6 Let g(ϕ) = a(eiϕ) = − (
2 sin ϕ

2

)6
and j = o(n

2
3 ) as n → ∞.

(i) If j >
2 ln(n + 3)

π
+ 1, then

λ
(n)
2 j−1 = −d61, j + 1

4
d81, j − 3

√
3

2

d71, j
n + 3

+ �1(n, j), (2.25)

λ
(n)
2 j = −d62, j + 1

4
d82, j − 3

√
3

2

d72, j
n + 3

+ �2(n, j), (2.26)

where |�1(n, j)| ≤ M1

(
d51, j
n3

+ d101, j

)
, |�2(n, j)| ≤ M1

(
d52, j
n3

+ d102, j

)
where the

constant M1 does not depend on j and n.
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(ii) If j <
2 ln(n + 3)

π
+ 1, then

λ
(n)
2 j−1 = −d61, j + O(d81, j ), (2.27)

λ
(n)
2 j = − ((2 j + 1)π + 2w∗

1, j )
6

(n + 3)6
+ O(d82, j ), (2.28)

where w∗
1, j is defined in the same way as in the Theorem 2.4.

Similar formulas can be written for broader applicability conditions.

Remark 2.2 Let g(ϕ) = a(eiϕ) = − (
2 sin ϕ

2

)6 and j
n → 0 as n → ∞.

(i) If j >
2 ln(n + 3)

π
+ 1, then

λ
(n)
2 j−1 = −d61, j + 1

4
d81, j + �3(n, j), (2.29)

λ
(n)
2 j = −d62, j + 1

4
d82, j + �4(n, j), (2.30)

where |�3(n, j)| ≤ M2

(
d71, j
n + d101, j

)
, |�4(n, j)| ≤ M2

(
d72, j
n + d102, j

)
where the

constant M2 does not depend in j and n.

(ii) If j <
2 ln(n + 3)

π
+ 1, then

λ
(n)
2 j−1 = −d61, j + O(d81, j ), (2.31)

λ
(n)
2 j = − ((2 j + 1)π + 2w∗

1, j )
6

(n + 3)6
+ O(d82, j ), (2.32)

where w∗
1, j is defined in the same way as in the Theorem 2.4.

3 Chebyshev polynomial

To solve this problem,we need to solve the equation det Tn(a − g(ϕ)) = 0,ϕ ∈ (0, π).
To find the determinant we will use the results obtained in the paper [12]. Let’s define
Chebyshev polynomials {Qn}, {Un}, {Vn}, {Wn}, which satisfy the same recurrent
formula

Qn+1(x) = 2xQn(x) − Qn−1(x), n = 1, 2, . . .
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and the different initial conditions are:

Q0(x) = U0(x) = 1, 2Q1(x) = U1(x) = 2x,

W0(x) = V0(x) = 1, W1(x) = V1(x) + 2 = 2x + 1.

It is easy to check that these polynomials satisfy the following conditions

Qn(cos θ) = cos nθ, Un(cos θ) = sin (n + 1)θ

sin θ
,

Vn(cos θ) = cos (n + 1
2 )θ

cos θ
2

, Wn(cos θ) = sin (n + 1
2 )θ

sin 1
2θ

.

(3.1)

In [12], for the generating polynomial a(t) = ∑r
k=−r akt

k , where ar �= 0, ak = a−k ,
the following theorem was proved.

Theorem 3.1 ([12, Theorem 1]) Let ξ j and 1
ξ j

be the (distinct) zeros of the polynomial

g1(t) = tr a(t). Then, for all p ≥ 1 det T2p equals

a2pr
2r(r−1)

×

∣∣∣∣
∣∣∣

Vp(α1) . . . Vp(αr )
...

. . .
...

Vp+r−1(α1) · · · Vp+r−1(αr )

∣∣∣∣
∣∣∣

∏
1≤i≤ j≤r (α j − αi )

×

∣∣∣∣
∣∣∣

Wp(α1) . . . Wp(αr )
...

. . .
...

Wp+r−1(α1) · · · Wp+r−1(αr )

∣∣∣∣
∣∣∣

∏
1≤i≤ j≤r (α j − αi )

and det T2p+1 equals

(−1)r a2p+1
r

2r(r−2)
×

∣
∣∣∣∣∣∣

Up(α1) . . . Up(αr )
...

. . .
...

Up+r−1(α1) · · · Up+r−1(αr )

∣
∣∣∣∣∣∣

∏
1≤i≤ j≤r (α j − αi )

×

∣
∣∣∣∣∣∣

Qp+1(α1) . . . Qp+1(αr )
...

. . .
...

Qp+r (α1) · · · Qp+r (αr )

∣
∣∣∣∣∣∣

∏
1≤i≤ j≤r (α j − αi )

,

where αk = 1
2 (ξk + 1

ξk
) (k = 1, . . . , r) are the zeros of the polynomial h1(x) =

a0 + 2
∑r

k=1 akQk(x).

In our case g1(t) = (t2 − 2t + 1)3 − λt3, taking into account that λ = g(ϕ) =
(2 cosϕ − 2)3 it is easy to get that:

α1 = cosϕ,

α2 = 1 + (cosϕ − 1)e
2π i
3 ,

α3 = 1 + (cosϕ − 1)e
−2π i
3 .

Now we introduce auxiliary functions that are defined on the interval ϕ ∈ [0, π ]:

Bc = Bc(ϕ) =
√
cos2 ϕ − 3 cosϕ + 3 = |α2|, (3.2)
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ψc = ψc(ϕ) = arctan

√
3(cosϕ − 1)

3 − cosϕ
= arg(α2), (3.3)

Bs = Bs(ϕ) = |(1 − α2
2)

1
2 | = 4

√
(1 − cosϕ)2(7 − 4 cosϕ + cos2 ϕ), (3.4)

ψs = ψs(ϕ) = arg ((1 − α2
2)

1
2 ) = 1

2

(

π + arctan

√
3(3 − cosϕ)

(−1 − cosϕ)

)

. (3.5)

Obviously, (1− α2
2)

1
2 has two regular branches, and in formula (3.5) we have chosen

one of them.

Lemma 3.1 Let ϕ ∈ [0, π ]. Then
1. Bs(ϕ) is increasing function, and Bs(ϕ) ∈ [0, 2 4

√
3].

2. ψs(ϕ) is decreasing function, and ψs(ϕ) ∈ [π
4 , π

3 ].
3. Bc(ϕ) is increasing function, and Bc(ϕ) ∈ [1,√7].
4. ψc(ϕ) is decreasing function, and ψc(ϕ) ∈ [− arctan

√
3
2 , 0].

5. Bc cos (ψc) − Bs sin (ψs) > 0.
6. Bc cos (ψc) + Bs sin (ψs) > 0.

Proof To prove the first four points, we differentiate the corresponding functions, and
decompose them into multipliers. The values at the edges of the interval are found by
simple substitution:

B ′
s = sin (ϕ)(9 − 7 cos (ϕ) + 2 cos2 (ϕ))

2(1 − cos (ϕ))
1
2 (7 − 4 cos (ϕ) + cos2 (ϕ))

3
4

> 0. (3.6)

So, the function Bs(ϕ) is increasing.

ψ ′
s = −

√
3 sin (ϕ)

2(7 − 4 cos (ϕ) + cos2 (ϕ))
< 0. (3.7)

So, the function ψs(ϕ) is decreasing.

B ′
c = sin (ϕ)(3 − 2 cos (ϕ))

2
√

(3 − 3 cos (ϕ) + 3 cos2 (ϕ))
> 0. (3.8)

So, the function Bc(ϕ) is increasing.

ψ ′
c = −

√
3 sin (ϕ)

2(3 − 3 cos (ϕ) + cos2 (ϕ))
< 0. (3.9)

So, the function ψc(ϕ) is decreasing.
To prove points 5 and 6 we show that Bc > Bs and cos (ψc) > sin (ψs), from which
the statement of this item will follow. Since Bc > 0 and Bs > 0, therefore Bc > Bs

is equivalent to B4
c − B4

s > 0.

B4
c − B4

s = 2 − cos2 ϕ > 0.
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Now we show that cos (ψc) > sin (ψs). cos (ψc) = sin (π
2 + ψc), at the same time,

from the points (2 and 4), it follows that (π
2 + ψc) and ψs , are in the first quadrant, so

sin (π
2 + ψc) > sin (ψs) is equivalent to π

2 + ψc − ψs > 0. It’s not hard to get that

ψ ′
c − ψ ′

s = −
√
3 sin (ϕ)(4 − cos (ϕ))

2(7 − 4 cos (ϕ) + cos2 (ϕ))(3 − 3 cos (ϕ) + cos2 (ϕ))
< 0.

Which means π
2 + ψc − ψs > π

2 + ψc(π) − ψs(π) = π
2 − arctan

√
3
2 − π

4 > 0, so
cos (ψc) > sin (ψs). This means that the statement (5) is true. From the statements
(1–4), it follows that both terms in the expression Bc cos (ψc)+Bs sin (ψs) is positive,
which means that the statement(6) is also true. �

Next, we show that there are such regular functions β = β(ϕ) and γ = γ (ϕ),
ϕ ∈ (0, π ] which will satisfy the equations:

cosβ = 1 + (cosϕ − 1)e
2π i
3 = α2,

cos γ = 1 + (cosϕ − 1)e
−2π i
3 = α3.

(3.10)

To do this, it is enough to show that each of the multifunctions E2 = −i Log(α2 +
i(1 − α2

2)
1
2 ) and E3 = −i Log(α3 + i(1 − α2

3)
1
2 ) has at least one regular branch for

ϕ ∈ (0, π ]. Given the notation (3.2)–(3.5), it is not difficult to make sure that

α3 = Bce
−iψc = α2

and also

(1 − α2
3)

1
2 = Bse

−iψs .

Note that in this case, we choose one of the two regular branches. With this in mind,
it is sufficient to show that each of the functions Ẽ2 = −i Log(B̃ceiψ̃c + i B̃seiψ̃s ) and
Ẽ3 = −i Log(B̃ce−iψ̃c + i B̃se−iψ̃s ), has at least one regular branch for ϕ ∈ �ε.

Lemma 3.2 There is such a region � ⊃ (0, π ] that the multifunctions

Ẽ2 = −i Log(B̃ce
iψ̃c + i B̃se

iψ̃s )

and

Ẽ3 = −i Log(B̃ce
−iψ̃c + i B̃se

−iψ̃s )

have regular branches β̃(ϕ) and γ̃ (ϕ) in this region.

Proof Since the functions B̃c, ψ̃c, B̃s, ψ̃c are regular in �̂, the function B̃ceiψ̃c +
i B̃seiψ̃s is also regular in �̂ and continuously extendable to a point ϕ = 0. Since
the interval [0, π ] is compact and taking into account assertion 5 of the Lemma 3.1,
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it follows that there exists a simply connected region �β((0, π ] ⊂ �β ⊂ �̂) such

that for all ϕ ∈ �β �(B̃ceiψ̃c + i B̃seiψ̃s ) > 0 and hence B̃ceiψ̃c + i B̃seiψ̃s �= 0,
so the multifunction Ẽ2 have a regular branch in �β , moreover, these branches are
continuously extended to the point ϕ = 0. The function Log has an infinite number
of regular branches, but to choose one of them, it is enough to determine its value at
one point, let’s put β̃(ϕ) = 0. Similarly, the multifunction Ẽ3 have a regular branch
in some simply connected region �γ ((0, π ] ⊂ �γ ⊂ �̂), with the value γ̃ (0) = 0.
Let’s put � = �β ∩ �γ , so (0, π ] ∈ � and the lemma is proved. �
Remark 3.1 In Lemma 2.1 we not only proved the existence of regular branches for the
functions Ẽ2 and Ẽ3 but also chose specific branches β(ϕ) and γ (ϕ)which satisfy the
equalities (3.10), and are regular on the interval (0, π ] and continuous on the interval
[0, π ] and

cos (β) = Bce
iψc ,

sin (β) = Bse
iψs ,

cos (γ ) = Bce
−iψc ,

sin (γ ) = Bse
−iψs .

(3.11)

4 Proof of themain results

Lemma 4.1 Let ϕ ∈ [0, π ] and ϕ small enough. Then

1. c = 1
2ϕ − 1

16ϕ
3 + O(ϕ5).

2. b =
√
3
2 ϕ −

√
3

48 ϕ3 + O(ϕ5).

Proof

(cosβ)′ = −β ′ sin β,

so

β ′ = − (cosβ)′

sin β
,

from where it is not difficult to get that

β ′ = sin ϕ

sin β
e
2π i
3 . (4.1)

Similarly, we find derivatives up to the fifth order. To reduce expressions, we will use
the fact that sin2 t = 1 − cos2 t , as well as the formula (2.1). As a result, we get

β ′′ =
√
3(1 − cos (ϕ))2

sin3 (β)
e

π i
6 . (4.2)
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β ′′′ =
√
3e

5π i
6 (1 − cos(ϕ))2 sin(ϕ)

sin5 (β)

[
1 + (1 − cosϕ)e

2π i
3

]
, (4.3)

β(4) = −
√
3i(1 − cos(ϕ))4

sin7 (β)
[
−1 + (4 + 5 cosϕ)e

2π i
3 + (2 − cosϕ − cos2 ϕ)e

−2π i
3

]
, (4.4)

β(5) =
√
3e

π i
6 (1 − cos(ϕ))4 sin(ϕ)

sin9 (β)
[
4 − 9 cos(ϕ) + 3 cos2(ϕ) + cos3(ϕ) + (−9 + 18 cos ϕ)e

2π i
3

+(21 − 6 cosϕ − 15 cos2 ϕ)e
−2π i
3

]
. (4.5)

From where it is easy to get

β ′+(0) = lim
ϕ→0+0

β ′ = e
π i
3 , (4.6)

β ′′+(0) = lim
ϕ→0+0

β ′′ = 0. (4.7)

β ′′′+ (0) = −3

8
−

√
3

8
i, (4.8)

β
(4)
+ (0) = 0, (4.9)

lim
ϕ→0+0

β(5) = 15

16
−

√
3

4
i . (4.10)

Since β(5) is continuous on the interval (0, π ] and its limit is finite as ϕ → 0, it is
bounded on (0, π ]. Taking into account (4.6), (4.7), (4.8) and (4.9) if ϕ ∈ (0, π ]:

β(ϕ) = ϕ

(
1

2
+

√
3i

2

)

− ϕ3

(
3

48
+

√
3i

48

)

+ O(ϕ5). (4.11)

From where we get the statement of the Lemma. �
Proof of Theorem 2.1 If n = 2p then by Theorem 3.1 we have

det(T2p(a − g(ϕ))) = 1

26
×

∣∣∣∣
∣∣

Vp(cosϕ) Vp(cosβ) Vp(cos γ )

Vp+1(cosϕ) Vp+1(cosβ) Vp+1(cos γ )

Vp+2(cosϕ) Vp+2(cosβ) Vp+2(cos γ )

∣∣∣∣
∣∣

(cos γ − cosβ)(cos γ − cosϕ)(cosβ − cosϕ)

×

∣∣∣∣∣∣

Wp(cosϕ) Wp(cosβ) Wp(cos γ )

Wp+1(cosϕ) Wp+1(cosβ) Wp+1(cos γ )

Wp+2(cosϕ) Wp+2(cosβ) Wp+2(cos γ )

∣∣∣∣∣∣

(cos γ − cosβ)(cos γ − cosϕ)(cosβ − cosϕ)
.
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(4.12)

It is easy to check that for ϕ ∈ (0, π) cosϕ, cos γ , cosβ are pairwise distinct, which
means that the equation det (T2p(a − g(ϕ))) = 0 is equivalent to the equation:

∣
∣∣∣∣∣

Vp(cosϕ) Vp(cosβ) Vp(cos γ )

Vp+1(cosϕ) Vp+1(cosβ) Vp+1(cos γ )

Vp+2(cosϕ) Vp+2(cosβ) Vp+2(cos γ )

∣
∣∣∣∣∣

×
∣∣
∣∣∣∣

Wp(cosϕ) Wp(cosβ) Wp(cos γ )

Wp+1(cosϕ) Wp+1(cosβ) Wp+1(cos γ )

Wp+2(cosϕ) Wp+2(cosβ) Wp+2(cos γ )

∣∣
∣∣∣∣
= 0. (4.13)

Taking into account the properties (3.1), the Eq. (4.13) will take the form:

∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣

cos ((p + 1
2 )ϕ)

cos ϕ
2

cos ((p + 1
2 )β)

cos β
2

cos ((p + 1
2 )γ )

cos γ
2

cos ((p + 3
2 )ϕ)

cos ϕ
2

cos ((p + 3
2 )β)

cos β
2

cos ((p + 3
2 )γ )

cos γ
2

cos ((p + 5
2 )ϕ)

cos ϕ
2

cos ((p + 5
2 )β)

cos β
2

cos ((p + 5
2 )γ )

cos γ
2

∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣

×

∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

sin ((p + 1
2 )ϕ)

sin ϕ
2

sin ((p + 1
2 )β)

sin β
2

sin ((p + 1
2 )γ )

sin γ
2

sin ((p + 3
2 )ϕ)

sin ϕ
2

sin ((p + 3
2 )β)

sin β
2

sin ((p + 3
2 )γ )

sin γ
2

sin ((p + 5
2 )ϕ)

sin ϕ
2

sin ((p + 5
2 )β)

sin β
2

sin ((p + 5
2 )γ )

sin γ
2

∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

= 0. (4.14)

It is not difficult to check that sin(ϕ) �= 0, sin(β) �= 0 and sin(γ ) �= 0 if ϕ ∈ (0, π).
Then, since n = 2p, the set of solutions to the Eq. (4.14) coincides with the union of
the sets of solutions to the equations:

∣∣∣
∣∣∣∣

cos ( n+1
2 ϕ) cos ( n+1

2 β) cos ( n+1
2 γ )

cos ( n+3
2 ϕ) cos ( n+3

2 β) cos ( n+3
2 γ )

cos ( n+5
2 ϕ) cos ( n+5

2 β) cos ( n+5
2 γ )

∣∣∣
∣∣∣∣
= 0 (4.15)

and

∣∣
∣∣∣∣∣

sin ( n+1
2 ϕ) sin ( n+1

2 β) sin ( n+1
2 γ )

sin ( n+3
2 ϕ) sin ( n+3

2 β) sin ( n+3
2 γ )

sin ( n+5
2 ϕ) sin ( n+5

2 β) sin ( n+5
2 γ )

∣∣
∣∣∣∣∣
= 0. (4.16)
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If n = 2p + 1, similar reasoning will lead to the same Eqs. (4.15) and (4.16). In the
formula (4.15), instead of the first and third lines, we write down their half sum and
half difference, then we get:

∣∣
∣∣∣∣∣

cos ( n+1
2 ϕ) cos ( n+1

2 β) cos ( n+1
2 γ )

cos ( n+3
2 ϕ) cos ( n+3

2 β) cos ( n+3
2 γ )

cos ( n+5
2 ϕ) cos ( n+5

2 β) cos ( n+5
2 γ )

∣∣
∣∣∣∣∣
= 0 ⇔

∣∣
∣∣∣∣∣

cos ( n+3
2 ϕ) cosϕ cos ( n+3

2 β) cosβ cos ( n+3
2 γ ) cos γ

cos ( n+3
2 ϕ) cos ( n+3

2 β) cos ( n+3
2 γ )

sin ( n+3
2 ϕ) sin ϕ sin ( n+3

2 β) sin β cos ( n+3
2 γ ) sin γ

∣∣
∣∣∣∣∣
= 0 ⇔

∣∣∣∣∣∣
∣

0 cos ( n+3
2 β)[cosβ − cosϕ] cos ( n+3

2 γ )[cos γ − cosϕ]
cos ( n+3

2 ϕ) cos ( n+3
2 β) cos ( n+3

2 γ )

sin ( n+3
2 ϕ) sin ϕ sin ( n+3

2 β) sin β sin ( n+3
2 γ ) sin γ

∣∣∣∣∣∣
∣
= 0

(4.17)

Let us expand the determinant over the first column and denote for brevity q = n+3
2

sin (qϕ) sin ϕ cos (qβ) cos qγ )[cosβ − cosϕ − cos γ + cosϕ] =
cos (qϕ)[cos (qβ) sin (qγ ) sin γ [cosβ − cosϕ]
− cos (qγ ) sin (qβ) sin β[cos γ − cosϕ]]

From where we get

tan(qϕ)

=
cos (qβ) sin (qγ ) sin γ

[cosβ − cosϕ]
[cosβ − cos (γ )] − cos (qγ ) sin (qβ) sin β

[cos γ − cosϕ]
[cosβ − cos (γ )]

sin ϕ cos (qβ) cos (qγ )

(4.18)

It is not difficult to make sure that

cos (β) − cos (γ ) = (cos (ϕ) − 1)
√
3i,

cos (ϕ) − cos (β) = (cos (ϕ) − 1)

(
3

2
−

√
3i

2

)

,

cos (ϕ) − cos (γ ) = (cos (ϕ) − 1)

(
3

2
+

√
3i

2

)

.
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So:

cos (β) − cos (ϕ)

cos (β) − cos (γ )
= 1

2
+

√
3i

2
= e

π i
3 ,

cos (γ ) − cos (ϕ)

cos (β) − cos (γ )
= −1

2
+

√
3i

2
= e

2π i
3 .

(4.19)

Then

tan qϕ = C1(ϕ) tan (qγ ) − C2(ϕ) tan (qβ) (4.20)

where C1(ϕ) = sin γ

sin ϕ
e

π i
3 , C2(ϕ) = sin β

sin ϕ
e
2π i
3 .

Similarly, the second set of formulas is obtained (2.5) �
Lemma 4.2 Let ϕ ∈ [0, π ]. Then
1. c(ϕ) is increasing function.
2. b(ϕ) is increasing function.
3. c′(ϕ) is decreasing function, and c′(0) = 1

2 , c
′(π) = 0.

4. b′(ϕ) is decreasing function, and b′(0) =
√
3
2 , b′(π) = 0.

5. c(ϕ)
ϕ

is decreasing function.

6. b(ϕ)
ϕ

is decreasing function, b(ϕ)
ϕ

> 0.5.

7. Bc
Bs

is decreasing function.

8. Bs
sin (ϕ)

is increasing function.

Proof It follows from the Eq. (4.1) that

c′(ϕ) = �(β ′) = sin ϕ

Bs
cos

(
2π

3
− ψs

)
,

b′(ϕ) = �(β ′) = sin ϕ

Bs
sin

(
2π

3
− ψs

)
.

Since ψs(ϕ) ∈ (π
4 , π

3 ), then c′(ϕ) > 0, b′(ϕ) > 0 so the functions a(ϕ) and b(ϕ)

are increasing. From the formula (4.2) and also taking into account the fact that ψs ∈
(π
4 , π

3 ) we will get

c′′ =
√
3(1 − cos (ϕ))2

B3
s

cos
(π

6
− 3ψs

)
< 0,

b′′ =
√
3(1 − cos (ϕ))2

B3
s

sin
(π

6
− 3ψs

)
< 0,

so the functions c′(ϕ) and b′(ϕ) are decreasing. From the formula (4.6) it follows that

c′(0) = 1
2 and b

′(0) =
√
3
2 .Well c′(π) and b′(π) can be found by a simple substitution.
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Find the derivative of the function b(ϕ)
ϕ

and show that it is negative.

(
b(ϕ)

ϕ

)′
= b′(ϕ)ϕ − b(ϕ)

ϕ2 .

In order to prove that this derivative is negative, it is sufficient to show that b′(ϕ)ϕ −
b(ϕ) < 0.

(b′(ϕ)ϕ − b(ϕ))′ = b′′(ϕ)ϕ < 0.

We obtain that b′(ϕ)ϕ − b(ϕ) ≤ b(0) = 0, this means that b(ϕ)
ϕ

is decreasing function

and b(ϕ)
ϕ

>
b(π)
π

. From Lemma 3.2 and equality (3.11) we will get that β(ϕ) =
−i ln(Bceiψc + i Bseiψs ). Taking into account the Lemma 3.1 we will get:

β(π) = −i ln
(
2 − √

3i + i(
4
√
12 + 4

√
12i)

)
= −i ln

(
(

4
√
4 − 4

√
3)( 4

√
4 + 4

√
3i)

)

= −i ln e
ln

(
(
4√4− 4√3)

√√
4+√

3
)
+i arctan 4

√
3
4

= arctan 4

√
3

4
− i ln

(
(

4
√
4 − 4

√
3)

√√
4 + √

3

)
. (4.21)

Since b(ϕ) = �β(ϕ), a simple check shows that

b(π)

π
=

− ln
(
(

4
√
4 − 4

√
3)

√√
4 + √

3
)

π
> 0.5.

So the statement (6) is true. The statement (5) is proved similarly.

Since Bc
Bs

> 0, decreasing Bc
Bs

is equivalent to decreasing B4
c

B4
s
. By taking the derivative

of the function B4
c

B4
s
and expand into factors we get that:

(
B4
c

B4
s

)′
= −2 sin (ϕ)(3 − 3 cos (ϕ) + cos2 (ϕ))(2 − cos (ϕ))(3 + cos (ϕ))

(1 − cos (ϕ))3(7 − 4 cos (ϕ) + cos2 (ϕ))2
< 0.

This means that the function Bc
Bs

decreases.

Since Bs
sin (ϕ)

> 0, increasing Bs
sin (ϕ)

is equivalent to decreasing B4
s

sin4 (ϕ)
. By taking the

derivative of the function B4
s

sin4 (ϕ)
and expand into factors we get that:

(
B4
s

sin4 (ϕ)

)′
= 6(3 − cos (ϕ))(1 − cos (ϕ))3

sin5 (ϕ)
> 0.

This means that the function Bs
sin(ϕ)

increases. �
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Lemma 4.3 For a sufficiently large n

1. If ϕ ∈
[

π

n + 3
, π

)
then

|F ′(ϕ, n)| < 0.62,

also

|F ′(ϕ, n)| = O
(
e− (n+3)ϕ

2

)
+ O

(
1

n + 3

)
,

and in particular if ϕ >
2 ln(2(n + 3))

n + 3
then

|F ′(ϕ, n)| = O

(
1

n + 3

)
.

2. If ϕ ∈
[

2π

n + 3
, π

)
then

|H ′(ϕ, n)| < 0.62,

also

|H ′(ϕ, n)| = O
(
e− (n+3)ϕ

2

)
+ O

(
1

n + 3

)
,

and in particular if ϕ >
2 ln(2(n + 3))

n + 3
then

|H ′(ϕ, n)| = O

(
1

n + 3

)
.

Proof Let’s put for brevity the entries q = n+3
2 , then

F(ϕ, n, j) = F(ϕ, n) := 1

q
[π j + arctan ( f (ϕ, n))] ,

where

f (ϕ, n) = C1(ϕ) tan (qγ ) − C2(ϕ) tan (qβ) ,

so

F ′(ϕ, n) = 1

q

f ′(ϕ, n)

1 + f 2(ϕ, n)
.
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1

q
f ′(ϕ, n) = 1

q
( f1 + f2), (4.22)

where

f1 = qγ ′C1

cos2 qγ
− qβ ′C2

cos2 qβ
, f2 = C ′

1(ϕ) tan (qγ ) − C ′
2(ϕ) tan (qβ)

Consider
f1
q
. Taking into account the formulas (4.1), (2.2) and taking into account

that γ ′ = β ′ we get that

C1γ
′ = e

−π i
3 , C2β

′ = e
4π i
3 . (4.23)

Then

f1
q

= 1

cos2 qγ
e

−π i
3 − 1

cos2 qβ
e
4π i
3 .

Let’s estimate n+3
2 b(ϕ). From Lemmas 4.2, 4.1 and condition ϕ ∈ [ π

n+3 , π) it follows,
that for sufficiently large n

n + 3

2
b(ϕ) ≥ n + 3

2
b

(
π

n + 3

)
=

√
3π

4
+ o

(
1

n + 3

)
< 1.36. (4.24)

f1
q

≤
∣∣∣∣

2

cos2 qγ

∣∣∣∣ =
∣∣∣∣∣

8
(
eqb+iqa + e−qb−iqa

)2

∣∣∣∣∣

=
∣∣∣∣

8

e2qb+2iqa

∣∣∣∣

∣∣∣∣
1

(1 + e−2qb−2iqa)2

∣∣∣∣ ≤
∣∣∣∣

8

e2qb

∣∣∣∣

∣∣∣∣
1

(1 − e−2qb)2

∣∣∣∣

= O(e−2qb) (4.25)

In particular, due to the decreasing function in the formula (4.25), as well as taking
into account (4.24), an estimate can be made

∣
∣∣∣
f1
q

∣
∣∣∣ < 0.61. (4.26)

Consider the expression
f2(ϕ, n)

1 + f 2(ϕ, n)
and show its limitation. Let’s first estimate

| tan (qγ ) | = | tan (qβ) |, as well as � = arg(tan (qβ)) = − arg(tan (qγ )).

tan (qβ) = sin(qβ)

cos(qβ)
= sin(qβ) cos(qγ )

cos(qβ) cos(qγ )
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= sin(q(β − γ )) + sin(q(β + γ ))

cos(q(β − γ )) + cos(q(β + γ ))
= sin(2qbi) + sin(2qc)

cos(2qbi) + cos(2qc)

= sin(2qc) + i sinh(2qb)

cosh(2qb) + cos(2qc)
(4.27)

From where, taking into account (4.24), we get:

| tan (qβ) | =
√
sinh2(2qb) + sin2(2qc)

cosh(2qb) + cos(2qc)
< 1.2, | tan (qβ) | > 0.8 (4.28)

| tan(�)| = sinh(2qb)

| sin(2qc)| > 7.5. (4.29)

Given that sinh(2qb) > 0, we get that

∣∣∣
π

2
− �

∣∣∣ <
π

10
. (4.30)

From the formula (4.23) and the formula (4.2), it is not difficult to get

C ′
2 =

(
1

β ′ e
4π i
3

)′
= − β ′′

(β ′)2
e
4π i
3 =

√
3(1 − cos(ϕ))

(1 + cos(ϕ)) sin(β)
e
7π i
6 . (4.31)

Similarly

C ′
1 =

(
1

γ ′ e
−π i
3

)′
= − γ ′′

(γ ′)2
e

−π i
3 =

√
3(1 − cos(ϕ))

(1 + cos(ϕ)) sin(γ )
e

−π i
6 . (4.32)

Taking into account the evaluation of (4.28) we get:

| f2| =
√
3(1 − cos(ϕ))

(1 + cos(ϕ))Bs
| tan (qγ ) |ei( 7π6 +ψs−�)

−
√
3(1 − cos(ϕ))

(1 + cos(ϕ))Bs
| tan (qβ) |ei( −π

6 −ψs+�)

=
√
3(1 − cos(ϕ))

(1 + cos(ϕ))Bs
| tan (qγ ) |

(
ei(

7π
6 +ψs−�) − ei(

−π
6 −ψs+�)

)

≤ 2.4 ·
√
3(1 − cos(ϕ))

(1 + cos(ϕ))Bs
(4.33)

1 + f 2 = 1 +
(
sin(γ )

sin(ϕ)
e

π i
3 tan(qγ ) − sin(β)

sin(ϕ)
e
2π i
3 tan(qβ)

)2

= 1 + B2
s

sin2(ϕ)
| tan(qβ)|2(ei( π

3 −ψs−�) − ei(
2π
3 +ψs+�))2

= 1 + B2
s

sin2(ϕ)
| tan(qβ)|24 sin2

(π

6
+ ψs + �

)
. (4.34)
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Consider 2 cases. If ϕ ∈ [ π
n+3 ,

π
2 ] then

∣
∣∣∣

f2
1 + f 2

∣
∣∣∣ ≤ 2.4 ·

√
3(1 − cos(ϕ))

(1 + cos(ϕ))Bs
. (4.35)

And it is limited, since the right side of the expression (4.35) tends to 0 when ϕ → 0,
and at other points the denominator does not turn to 0.
If ϕ ∈ (π

2 , π ],
∣
∣
∣
∣

f2
1 + f 2

∣
∣
∣
∣ ≤ 2.4 ·

√
3(1 − cos(ϕ))

(1 + cos(ϕ))Bs

sin2(ϕ)

B2
s

1

| tan(qβ)|24 sin2 (
π
6 + ψs + �

) (4.36)

Since on the interval [ π
n+3 ,

π
2 ] B2

s is delimited from 0, and from the estimate (4.28)
and also taking into account point 2 of the Lemma 3.1 we obtain that

∣∣∣∣
f2

1 + f 2

∣∣∣∣ ≤ V0
sin2(ϕ)

(1 + cos(ϕ))

1

sin2
(

π
6 + ψs + �

)

→ V0
1

2 sin2
(

π
6 + π

4 + �0
) , when ϕ → π. (4.37)

Then, from the estimate (4.30), we obtain the boundedness of this expression on the
interval (π

2 , π ]. Thus

1

q

f2
1 + f 2

= O

(
1

q

)
(4.38)

Considering now (4.25), (4.26) and the fact that for sufficiently large n O
(
1
q

)
< 0.01

we obtain the statement of the first part of the theorem. For the function H ′(ϕ, n) the
proof is similar. �
Proof of the Theorem 2.2 To solve the Eqs. (2.3) and (2.4), we apply Fix PointMethod.
Put

ϕ
(0)
2 j−1 = d2 j−1, ϕ

(k+1)
2 j−1 = F(ϕ

(k)
2 j−1, n) (4.39)

and

ϕ
(0)
2 j = d2 j , ϕ

(k+1)
2 j = H(ϕ

(k)
2 j , n), (4.40)

where

dl = π(l + 1)

n + 3
, l = 1, 2, . . . , n.
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Since for real x arctan(x) ∈ (−π
2 , π

2 ) then according to the formulas (2.6), (2.7)

∀k ∈ N F(ϕ
(k)
2 j−1, n) ∈ (

π(2 j−1)
n+3 ,

π(2 j+1)
n+3 ) and H(ϕ

(k)
2 j , n) ∈ (

2π j
n+3 ,

2π( j+1)
n+3 ), and

therefore for each fixed j , the mapping defined by the formula (4.39) maps the interval
(
π(2 j−1)
n+3 ,

π(2 j+1)
n+3 ) to the same interval, and for each fixed j the mapping defined by

the formula (4.40) maps the interval (
2π j
n+3 ,

2π( j+1)
n+3 ) to the same interval. To get an

estimate in the k-iteration, we will use the mean value theorem.

∣∣
∣ϕ(k+1)

2 j−1 − ϕ
(k)
2 j−1

∣∣
∣ =

∣∣
∣F(ϕ

(k)
2 j−1, n) − F(ϕ

(k−1)
2 j−1 , n)

∣∣
∣ = |F ′(θ(k)

2 j−1, n)|
∣∣
∣ϕ(k)

2 j−1 − ϕ
(k−1)
2 j−1

∣∣
∣ ,

where θ
(k)
2 j−1 some number lying between ϕ

(k)
2 j−1 and ϕ

(k−1)
2 j−1 . If we denote L2 j−1 :=

max |F ′(ϕ, n)|, ϕ ∈ (
π(2 j−1)
n+3 ,

π(2 j+1)
n+3 ) then

∣∣
∣ϕ(k+1)

2 j−1 − ϕ
(k)
2 j−1

∣∣
∣ ≤ L2 j−1

∣∣
∣ϕ(k)

2 j−1 − ϕ
(k−1)
2 j−1

∣∣
∣ ≤ Lk

2 j−1

∣∣
∣ϕ(1)

2 j−1 − ϕ
(0)
2 j−1

∣∣
∣ ≤ Lk

2 j−1
π

n + 3
.

If L2 j−1 < 1, then from Fixed Point Theory it follows that exists a point ϕ2 j−1 such
that ϕ2 j−1 = F(ϕ2 j−1, n), moreover:

∣
∣∣ϕ(k)

2 j−1 − ϕ2 j−1

∣
∣∣ ≤

+∞∑

l=k

∣
∣∣ϕ(l)

2 j−1 − ϕ
(l+1)
2 j−1

∣
∣∣ ≤

+∞∑

l=k

Ll
2 j−1

π

n + 3
= Lk

2 j−1

1 − L2 j−1

π

n + 3
. (4.41)

Similar reasoning for ϕ
(k)
2 j . If L2 j := max |H ′(ϕ, n)| < 1, ϕ ∈ (

2π j
n+3 ,

2π( j+1)
n+3 ), then

there exists a point ϕ2 j such that ϕ2 j = H(ϕ2 j , n), moreover:

∣
∣∣ϕ(k)

2 j − ϕ2 j

∣
∣∣ ≤ Lk

2 j

1 − L2 j

π

n + 3
. (4.42)

Introduce a new function:

F1(ϕ, n, j) = F1(ϕ, n) = ϕ − F(ϕ, n).

Then for any fixed j Eq. (2.3) can be rewritten as

F1(ϕ, n) = 0. (4.43)

From the Lemma 4.3 it follows that for sufficiently large n F ′
1(ϕ, n) = 1− F ′(ϕ, n) >

0. Therefore, the function F ′
1(ϕ, n) is increasing. Furthermore

F

(
π(2 j − 1)

n + 3
, n

)
= π(2 j − 1)

n + 3
− 2

n + 3

[
π j − arctan

(
f

(
π(2 j − 1)

n + 3

))]

= 2

n + 3

[
−π

2
+ arctan

(
f

(
π(2 j − 1)

n + 3

))]
< 0, (4.44)
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and

F

(
π(2 j + 1)

n + 3
, n

)
= π(2 j + 1)

n + 3
− 2

n + 3

[
π j − arctan

(
f

(
π(2 j + 1)

n + 3

))]

= 2

n + 3

[
π

2
+ arctan

(
f

(
π(2 j − 1)

n + 3

))]
> 0. (4.45)

Therefore, the equation has exactly one root on the interval (π(2 j−1)
n+3 ,

π(2 j+1)
n+3 ). From

the Lemma 4.3 and the inequality (4.41) it follows the estimates (2.8) and (2.9). The
second part of the theorem is proved similarly. �
Proposition 1 Let the function G(x, q) = G(x) be differentiable on the interval

(η1, η2)and∃A < 1 : ∀x and ∀q |G ′(x, q)| < A.Let |G∗(x, q)−G(x, q)| ≤ M1
1

q2
,

where M1 is a constant independent of q. Then if x1 = x1(q) is the root of the equation

G∗(x, q) = x (4.46)

found up to O

(
1

q2

)
, and x0 = x0(q) is the root of the equation

G(x, q) = x, (4.47)

then x1(q) − x0(q) = O

(
1

q2

)
.

Proof Let x2 = x2(q) be the root of the Eq. (4.46) then

|x2 − x0| = |G∗(x2) − G(x0)| ≤ |G(x2) − G(x0)|
+M1

1

q2
= |G ′(ξ)(x2 − x0)| + M1

1

q2
, (4.48)

where ξ is some number between x2 and x0, whence

|x2 − x0| = M1

1 − G ′(ξ)

1

q2
≤ M1

1 − A

1

q2
. (4.49)

Since x2(q) is the root of Eq. (4.46) then |x2(q) − x1(q)| ≤ M2
1

q2
where M2 is a

constant independent of q. As a consequence

|x1 − x0| ≤
(

M1

1 − A
+ M2

)
1

q2
= O

(
1

q2

)
.

�
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Remark 4.1 A statement similar to Proposition 1 will be true if O

(
1

q2

)
is replaced

everywhere by O

(
j2

q2

)
, where

j

q
→ 0 when q → ∞.

Proof of the Theorem 2.3 Denote by jm the smallest j for which the inequality j >
2 ln(n + 3)

π
+ 1 is satisfied. Let d1, j = π j

q . Since 2b > ϕ, as shown in the 6 of the

Lemma 4.2, then

e2qb > eqϕ > eπ jm− π
2 > e2 ln(2q)+ π

2 > 4q2.

In this case

tan((qγ )) = −i
1 − e−2qb−i2qc

1 + e−2qb−i2qc = −i(1 + O(e−2qb)) = −i + O

(
1

q2

)
.

tan((qβ)) = −i
1 − e−2qb+i2qc

1 + e−2qb+i2qc = −i(−1 + O(e−2qb)) = −i + O

(
1

q2

)
.

Then the Eq. (2.12) can be rewritten as:

u = arctan

(
−iC1

(
d1, j + u

q

)
− iC2

(
d1, j + u

q

)
+ O

(
1

q2

))
(4.50)

From where we get that there is some θ1, j ∈ R : |θ1, j | < | uq | such that:

u = arctan
(−i(C1

(
d1, j

) + C2
(
d1, j

)
)
) − i

C ′
1(d1, j ) + C ′

2(d1, j )

1 + (−iC1
(
d1, j

) − iC2
(
d1, j

))2
u

q

+�(d1, j + θ1, j )
u2

q2
+ O

(
1

q2

)
, (4.51)

where �(ϕ) = 1
2 [arctan(−i(C1 + C2))]′′ (ϕ).

Since �(ϕ) is bounded at ϕ ∈ [0, π ] we get that

u = arctan
(−i(C1

(
d1, j

) + C2
(
d1, j

)
)
)

−i
C ′
1(d1, j ) + C ′

2(d1, j )

1 + (−iC1
(
d1, j

) − iC2
(
d1, j

))2
u

q
+ O

(
1

q2

)
. (4.52)

Let u = u1+ u2
q where u1 and u2 boundedwith respect to the parameterq theEq. (4.52)

takes the form:

u1 + u2
q

= arctan
(−i(C1

(
d1, j

) + C2
(
d1, j

)
)
) − i

C ′
1(d1, j ) + C ′

2(d1, j )

1 + (−iC1
(
d1, j

) − iC2
(
d1, j

))2
u1
q

+O

(
1

q2

)
.
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Let

u∗
1, j = arctan

(−i(C1
(
d1, j

) + C2
(
d1, j

)
)
)
,

and

u∗
2, j = −i

C ′
1(d1, j ) + C ′

2(d1, j )

1 + (−iC1
(
d1, j

) − iC2
(
d1, j

))2 u
∗
1, j .

then the proposition 1 implies the assertion of the first part of the theorem. The second
part of the theorem is proved in a similar way. �

For brevity, we define the functions X (1)
1 = X (1)

1 (u1, j, n) and X (2)
1 =

X (2)
1 (w1, j, n):

X (1)
1 = C1(d1, j ) tan

(
n + 3

2
γ (d1, j ) + γ ′(d1, j )u1

)

−C2(d1, j ) tan

(
n + 3

2
β(d1, j ) + β ′(d1, j )u1

)
,

X (2)
1 = − C1(d2, j )

tan

(
n + 3

2
γ (d2, j ) + γ ′(d2, j )w1

) + C2(d2, j )

tan

(
n + 3

2
β(d2, j ) + β ′(d2, j )w1

) .

Lemma 4.4 Let a(t) = (t − 2 + 1
t )

3. If j ≤ 2 ln(n + 3)

π
+ 1 then starting from some

n

1.

ϕ2 j−1 = d1, j + 2u∗
1, j

n + 3
+ 4u∗

2, j

(n + 3)2
+ O

(
1

n3

)
, (4.53)

where u∗
1, j is the solution of equation u1 = arctan (X (1)

1 (u1)) and u∗
2, j =

R(1)(u∗
1, j ) is bounded with respect to the parameter n (see proof of the lemma).

2.

ϕ2 j = d2, j + 2w∗
1, j

n + 3
+ 4w∗

2, j

(n + 3)2
+ O

(
1

n3

)
, (4.54)

where w∗
1, j is the solution of equation w1 = arctan (X (2)

1 (w1)) and w∗
2, j =

R(2)(w∗
1, j ) is bounded with respect to the parameter n (see proof of the lemma).
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Proof Consider the Eq. (2.12). We will find a solution to this equation in the form

u = u1 + u2
q
, where u1 and u2 are bounded with respect to the parameter q.

C1(ϕ) = C1

(
d1, j + u

q

)
= C1(d1, j ) + C ′

1(d1, j )
u

q
+ O

(
1

q2

)

= C1(d1, j ) + C ′
1(d1, j )

u1
q

+ O

(
1

q2

)

qγ (ϕ) = qγ

(
d1, j + u

q

)
= qγ (d1, j ) + γ ′(d1, j )u + γ ′′(d1, j )u2

2q
+ O

(
1

q2

)

= qγ (d1, j ) + γ ′(d1, j )u1 +
[

γ ′(d1, j )u2 + γ ′′(d1, j )u21
2

]
1

q
+ O

(
1

q2

)

tan qγ = tan
(
qγ (d1, j ) + γ ′(d1, j )u1

) +
γ ′(d1, j )u2 + γ ′′(d1, j )u21

2
cos2(qγ (d1, j ) + γ ′(d1, j )u1)

1

q
+ O

(
1

q2

)

Then we have the following:

C1 tan qγ = C1(d1, j ) tan
(
qγ (d1, j ) + γ ′(d1, j )u1

) +
[

C1(d1, j )γ ′′(d1, j )u21
2 cos2(qγ (d1, j ) + γ ′(d1, j )u1)

+ tan
(
qγ (d1, j ) + γ ′(d1, j )u1

)
C ′
1(d1, j )u1

+ C1(d1, j )γ ′(d1, j )u2
cos2(qγ (d1, j ) + γ ′(d1, j )u1)

]
1

q
+ O

(
1

q2

)

Similarly

C2 tan qβ = C2(d1, j ) tan
(
qβ(d1, j ) + β ′(d1, j )u1

)

+
[

C2(d1, j )β ′′(d1, j )u21
2 cos2(qβ(d1, j ) + β ′(d1, j )u1)

+ tan
(
qβ(d1, j ) + β ′(d1, j )u1

)
C ′
2(d1, j )u1 + C2(d1, j )β ′(d1, j )u2

cos2(qβ(d1, j ) + β ′(d1, j )u1)

]
1

q
+ O

(
1

q2

)

Then the Eq. (2.12) can be written as

u1 + u2
q

= arctan

(
X (1)
1 +

(
X (1)
2 + X (1)

3 u2
) 1

q
+ O

(
1

q2

))
,

where

X (1)
1 = C1(d1, j ) tan

(
qγ (d1, j ) + γ ′(d1, j )u1

) − C2(d1, j ) tan
(
qβ(d1, j ) + β ′(d1, j )u1

)

X (1)
2 =

[
C1(d1, j )γ ′′(d1, j )u21

2 cos2(qγ (d1, j ) + γ ′(d1, j )u1)
+ tan

(
qγ (d1, j ) + γ ′(d1, j )u1

)
C ′
1(d1, j )u1

]
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−
[

C2(d1, j )β ′′(d1, j )u21
2 cos2(qβ(d1, j ) + β ′(d1, j )u1)

+ tan
(
qβ(d1, j ) + β ′(d1, j )u1

)
C ′
2(d1, j )u1

]

(4.55)

and

X (1)
3 = C1(d1, j )γ ′(d1, j )

cos2(qγ (d1, j ) + γ ′(d1, j )u1)
− C2(d1, j )β ′(d1, j )

cos2(qβ(d1, j ) + β ′(d1, j )u1)

from where we get

u1 + u2
q

= arctan X (1)
1 + X (1)

2 + X (1)
3 u2

1 + (X (1)
1 )2

1

q
+ O

(
1

q2

)
. (4.56)

Let ũ∗
1, j be the root of the equation,

u1 = arctan X (1)
1 (4.57)

and ũ∗
2, j be the root of the equation

u2 = X (1)
2 + X (1)

3 u2

1 + (X (1)
1 )2

.

It is easy to get

ũ∗
2, j = X (1)

2

1 + (X (1)
1 )2 − X (1)

3

= R(1)(ũ∗
1, j ). (4.58)

Similarly for the Eq. (2.13) let’s put

w1 = arctan X (2)
1 (4.59)

and

w̃∗
2, j = X (2)

2

1 + (X (2)
1 )2 − X (2)

3

= R(2)(w̃∗
1, j )

where

X (2)
1 = − C1(d2, j )

tan
(
qγ (d2, j ) + γ ′(d2, j )u1

) + C2(d2, j )

tan
(
qβ(d2, j ) + β ′(d2, j )u1

)

X (2)
2 =

[
C1(d2, j )γ ′′(d2, j )w2

1

2 sin2(qγ (d2, j ) + γ ′(d2, j )w1)
− C ′

1(d2, j )w1

tan
(
qγ (d2, j ) + γ ′(d2, j )w1

)

]
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−
[

C2(d2, j )β ′′(d2, j )w2
1

2 sin2(qβ(d2, j ) + β ′(d2, j )w1)
− C ′

2(d2, j )w1

tan
(
qβ(d2, j ) + β ′(d2, j )w1

)

]

X (2)
3 = C1(d2, j )γ ′(d2, j )

sin2(qγ (d2, j ) + γ ′(d1, j )w1)
− C2(d2, j )β ′(d2, j )

sin2(qβ(d2, j ) + β ′(d2, j )w1)

then the proposition 1 implies the assertion of the lemma. �

Proof of the Theorem 2.4 As d1, j = 2π j

n + 3
= O

(
j

q

)
taking into account Lemma 4.1

it is not difficult to obtain that γ = d1, j e− π i
3 + O

(
j3

q3

)
, β = d1, j e

π i
3 + O

(
j3

q3

)
.

Then

C1(d1, j ) = 1 + O

(
j2

q2

)

, C2(d1, j ) = −1 + O

(
j2

q2

)

(4.60)

tan(qγ (d1, j ) + γ ′(d1, j )u1) = tan

(

qd1, j e
− π i

3 + u1e
− π i

3 + O

(
j3

q2

))

,

tan(qβ(d1, j ) + β ′(d1, j )u1) = tan

(

qd1, j e
π i
3 + u1e

π i
3 + O

(
j3

q2

))

.

(4.61)

Then, taking into account the fact that d1, j = π j
q we get:

X (1)
1 = C1(d1, j ) tan

(
qγ (d1, j ) + γ ′(d1, j )u1

) − C2(d1, j ) tan
(
qβ(d1, j ) + β ′(d1, j )u1

)

= tan

(
qd1, j e

− π i
3 + u1e

− π i
3 + O

(
j3

q2

))

+ tan

(
qd1, j e

π i
3 + u1e

π i
3 + O

(
j3

q2

))
+ O

(
j2

q2

)

= 2 sin
(
qd1, j + u1

)

cos
(
qd1, j + u1

) + cosh
(
(qd1, j + u1)

√
3
) + O

(
j3

q2

)

= 2(−1) j sin (u1)

(−1) j cos (u1) + cosh
(
(qd1, j + u1)

√
3
) + O

(
j3

q2

)
. (4.62)

Whencewe obtain that u∗
1, j = 0 is a solution to the Eq. (4.57) up to O

(
j3

q2

)
. Consider

X (1)
2 and X (1)

3 . By analogy with the estimates (4.28) and (4.26), we obtain that in the

formula (4.55) all factors in front of u1 are limited, and since u1 = u∗
1, j + O

(
j3

q2

)
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then

X (1)
2 = 0 + O

(
j3

q2

)
. (4.63)

Also using a similar estimate as in the formula (4.26) and equality (4.23) we obtain

|X (1)
3 | ≤ 2

|C1(d1, j )γ ′(d1, j )|
| cos2 (

qγ (d1, j ) + γ ′(d1, j )
) | = 2

1

| cos2 (
qγ (d1, j ) + γ ′(d1, j )

) | ≤ 0.61 < 1.

(4.64)

Then for u∗
2, j = 0, we get that |u∗

2, j − ũ∗
2, j | = O

(
j3

q2

)
. Taking into account the

remark 4.1 we get

ϕ2 j−1 = d1, j + O

(
j3

q3

)
. (4.65)

From similar reasoning, taking into account the fact that qd2, j = π j + π
2

X (2)
1 = −2 sin

(
qd2, j + w1

)

− cos
(
qd2, j + w1

) + cosh
(
(qd2, j + w1)

√
3
) + O

(
j3

q2

)

= 2(−1) j+1 cos (w1)

(−1) j sin (w1) + cosh
(
(qd2, j + w1)

√
3
) + O

(
j3

q2

)
(4.66)

Let us assume that w∗
1, j is a solution to Eq. (4.59), taking into account the equality

(4.66). Since the expressions C1(d2, j )γ ′′(d2, j ),C2(d2, j )β ′′(d2, j ),C ′
1(d2, j ),C

′
2(d2, j )

are O
(

j
q

)
and in the expression for X (2)

2 they are multiplied by limited functions, we

get that X (2)
2 = O

(
j
q

)
and as a consequence w∗

2 = 0 + O
(

j
q

)
. Then

ϕ2 j = d2, j + w∗
1

q
+ O

(
j3

q3

)
.

�

Proof of the Theorem 2.5 If j >
2 ln(n + 3)

π
+ 1 then

λ
(n)
2 j−1 = g(ϕ(n)

2 j−1) = g

(

d1, j + 2u∗
1, j

n + 3
+ 4u∗

2, j

(n + 3)2
+ O

(
1

q3

))

= g(d1, j ) + g′(d1, j )
(
2u∗

1, j

n + 3
+ 4u∗

2, j

(n + 3)2
+ O

(
1

q3

))
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+1

2
g′′(d1, j )

(
2u∗

1, j

n + 3
+ 4u∗

2, j

(n + 3)2
+ O

(
1

q3

))2

+ O

(
1

q3

)
.

Expanding the brackets and leaving the terms of order nomore than O
(

1
q3

)
, we obtain

a statement of the theorem for λ
(n)
2 j−1. The rest of the cases are obtained similarly. �

Proof of Theorem 2.6 Consider the case when j >
2 ln(n + 3)

π
+ 1. We know that

λ
(n)
m = g(ϕ(n)

m ) for all m and n. Given that q = n+3
2 and ϕ

(n)
2 j−1 = di, j + u∗

1, j
q + u∗

2, j

q2
+

O
(

1
q3

)
we get

λ
(n)
2 j−1 = −26 sin6

(
di, j
2

+ u∗
1, j

2q
+ u∗

2, j

2q2
+ O

(
1

q3

))

.

Taking Lemma 4.1 and equalities (2.2) into account, it is easy to obtain that

−i(C1
(
d1, j

) + C2
(
d1, j

)
) =

√
3

8
d21, j + O(d41, j ).

Then from equalities (2.15) and (2.16) we get that

u1, j =
√
3

8
d21, j + O(d41, j ), u2, j = O(d31, j ). (4.67)

And as a consequence

λ
(n)
2 j−1 = −26 sin6

(
d1, j
2

+
√
3

16

d21, j
q

+ O

(
d4

q

)
+ O

(
1

q3

))

.

Since sin x = x − 1
6 x

3 + O(x5), x → 0, a simple calculation shows that

λ
(n)
2 j−1 = −26

(
d1, j
2

+
√
3

16

d21, j
q

− 1

48
d31, j + O

(
d51, j

)
+ O

(
1

q3

))6

= −d61, j + 1

4
d81, j − 3

√
3

4

d71, j
q

+O
(
d101, j

)
+ O

(
d51, j
q3

)

.

Since j = o(n2/3) then for sufficiently large n the residual terms in the resulting
asymptotic expansion are significantly smaller than those taken into account. The rest
of the cases are obtained similarly. �
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Proof of Remark 2.2 The proof is similar to the proof of the Theorem 2.5. �

5 Numerical experiments

All numerical experiments were carried out in the Maple mathematical package. In
all calculations, all values were set with 50-decimal approximation. The exact value
of the eigenvalues means the eigenvalues calculated using the predefined function of
Maple.

In this paper, finding the eigenvalues was reduced to solving two sets of equations
(depending on the parity of the eigenvalues). Each of the equations is solved with
respect to the parameter ϕ and has a single root ϕm , and each such root corresponds to
a single eigenvalue, which can be found by a simple substitution λm = g(ϕm). Here
m is the number of eigenvalues that are ordered in ascending order of the module.

Theorem 2.2 makes it possible to calculate ϕm using the Fix Point Method. At the
k -th iteration, the approximate value of the root depending on the parity is found by
the formulas (2.3) and (2.4).

ϕ
(k)
2 j−1 = 2

n + 3

[
π j + arctan f (ϕ(k−1)

2 j−1 , n)
]

ϕ
(k)
2 j = 2

n + 3

[
π j + π

2
− arctan h(ϕ

(k−1)
2 j , n)

]

The Table 1 shows the dependence of the error �ϕm = |ϕ(k)
m − ϕm | on the iteration

number k. And also an error is given for the corresponding eigenvalue |�λm = λ
(k)
m −

λm |, where λ
(k)
m = g(ϕ(k)

m ). In the experiment, the matrix size is n = 200. This
dependence was considered for three eigenvalues m = 1, 100, 200.

The paper also presents asymptotics formulas (2.14), (2.17), (2.18) and (2.20) for
the roots of ϕm . Denote

ϕ∗
2 j−1 = d1, j + 2u∗

1, j

n + 3
+ 4u∗

2, j

(n + 3)2
, (5.1)

ϕ∗
2 j = d2, j + 2w∗

1, j

n + 3
+ 4w∗

2, j

(n + 3)2
, (5.2)

where d1, j := 2π j
n+3 , d2, j := π(2 j+1)

n+3 , and values u∗
1, j , u

∗
2, j , w

∗
1, j , w

∗
2, j are calculated

by different formulas depending on the number of the corresponding eigenvalue. If

j >
2 ln(n + 3)

π
+ 1 then

u∗
1, j = arctan

(−i(C1
(
d1, j

) + C2
(
d1, j

)
)
)
, (5.3)

u∗
2, j = −i

C ′
1(d1, j ) + C ′

2(d1, j )

1 + (−iC1
(
d1, j

) − iC2
(
d1, j

))2 , (5.4)

w∗
1, j = arctan

(−i(C1
(
d2, j

) + C2
(
d2, j

)
)
)
, (5.5)
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Table 1 Dependence of the error on the number of iterations

k 1 2 3 4 5

m = 1 �ϕ 3.6 × 10−8 6.3 × 10−10 1.1 × 10−11 1.9 × 10−13 3.3 × 10−15

�λ 6.2 × 10−15 1.1 × 10−16 1.9 × 10−18 3.2 × 10−20 5.6 × 10−22

m = 100 �ϕ 2.8 × 10−5 1.6 × 10−7 8.8 × 10−10 5 × 10−12 2.8 × 10−14

�λ 6.6 × 10−4 3.7 × 10−6 2.1 × 10−8 1.2 × 10−10 6.8 × 10−13

m = 200 �ϕ 1.1 × 10−4 8 × 10−7 5.8 × 10−9 4.2 × 10−11 3 × 10−13

�λ 1.7 × 10−4 1.2 × 10−6 8.7 × 10−9 6.3 × 10−11 4.5 × 10−13

k 6 7 8 9 10

m = 1 �ϕ 5.7 × 10−17 1 × 10−18 1.7 × 10−20 2.3 × 10−22 5.1 × 10−24

�λ 9.7 × 10−24 1.7 × 10−25 2.9 × 10−27 5.1 × 10−29 8.8 × 10−31

m = 100 �ϕ 1.6 × 10−16 9.1 × 10−19 5.2 × 10−21 2.9 × 10−23 1.7 × 10−25

�λ 3.8 × 10−15 2.2 × 10−17 1.2 × 10−19 7 × 10−22 4 × 10−24

m = 200 �ϕ 2.2 × 10−15 1.6 × 10−17 1.1 × 10−19 8.3 × 10−22 6 × 10−24

�λ 3.3 × 10−15 2.4 × 10−17 1.7 × 10−19 1.2 × 10−21 9 × 10−24

w∗
2, j = −i

C ′
1(d2, j ) + C ′

2(d2, j )

1 + (−iC1
(
d2, j

) − iC2
(
d2, j

))2 , (5.6)

and |ϕm − ϕ∗
m | = O( 1

n3
).

If j ≤ 2 ln(n + 3)

π
+ 1 then u∗

1, j = 0, u∗
2, j = 0, w∗

2, j = 0 and w∗
1, j -solution of the

equation

w1 = arctan

⎛

⎝ 2(−1) j+1 cos (w1)

(−1) j sin (w1) + cosh
(
(qd2, j + w1)

√
3
)

⎞

⎠ , (5.7)

and |ϕm − ϕ∗
m | = O(

j3

n3
). The Table 2 shows the dependence of the maximum error

�ϕ∗ = max[
m+1
2

]
> j̃n

|ϕm−ϕ∗
m | and themaximum relative error�rϕ

∗ = max[
m+1
2

]
> j̃n

∣∣∣ϕm−ϕ∗
m

ϕm

∣∣∣

depending on the size of the matrix n. Where j̃n = 2 ln(n + 3)

π
+ 1. Similarly for

the corresponding eigenvalues, where λ∗
m = g(ϕ∗

m), �λ∗ = max[
m+1
2

]
> j̃n

|λm − λ∗
m | and

�rλ
∗ = max[

m+1
2

]
> j̃n

∣∣∣λm−λ∗
m

λm

∣∣∣.

A similar dependence is given in the Table 3, only in this case the maximum is
found over all numbers m for which m ≤ j̃n
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Table 2 Maximum error when using the formulas (5.1), (5.2) when
[
m+1
2

]
>

2 ln(n+3)
π + 1

n 32 64 128 256 512 1024

�ϕ∗ 1.5 × 10−4 2.2 × 10−5 3 × 10−6 3.9 × 10−7 5 × 10−8 6.2 × 10−9

�rϕ
∗ 5 × 10−5 7.2 × 10−6 9.6 × 10−7 1.2 × 10−7 1.6 × 10−8 2 × 10−9

�λ∗ 5.2 × 10−3 7.5 × 10−4 1 × 10−4 1.3 × 10−5 1.6 × 10−6 2.1 × 10−7

�rλ
∗ 1.3 × 10−4 1.9 × 10−5 2.6 × 10−6 3.3 × 10−7 4.2 × 10−8 5.3 × 10−9

Table 3 Maximum error when using the formulas (5.1), (5.2) when
[
m+1
2

]
≤ 2 ln(n+3)

π + 1

n 32 64 128 256 512 1024

�ϕ∗ 0.5 × 10−3 9.1 × 10−4 1.5 × 10−4 2.5 × 10−5 3.1 × 10−6 4.8 × 10−8

�rϕ
∗ 7.8 × 10−3 2.4 × 10−3 7.1 × 10−4 2 × 10−4 5.1 × 10−5 1.4 × 10−5

�λ∗ 2.6 × 10−3 3.9 × 10−5 4.3 × 10−7 3.9 × 10−9 1.6 × 10−11 1.2 × 10−13

�rλ
∗ 4.4 × 10−2 1.4 × 10−2 4.2 × 10−3 1.2 × 10−3 3 × 10−4 8.5 × 10−3

Table 4 Maximum error when using the formulas (5.8) and (5.9)

n 32 64 128 256 512 1024

�λ̂ 3 × 10−2 4.6 × 10−3 6.2 × 10−4 8 × 10−5 1 × 10−5 1.3 × 10−6

�r λ̂ 4.4 × 10−2 1.4 × 10−2 4.3 × 10−3 1.2 × 10−3 3 × 10−4 8.6 × 10−5

Theorem 2.5 presents formulas (2.21) and (2.22) for eigenvalues. Let ’s put

λ̂2 j−1 = g(d1, j ) + g′(d1, j )
2u∗

1, j

n + 3
+ 4u∗

2, j g
′(d1, j ) + 2(u∗

1, j )
2g′′(d1, j )

(n + 3)2
, (5.8)

λ̂2 j = g(d2, j ) + g′(d2, j )
2w∗

1, j

n + 3
+ 4w∗

2, j g
′(d2, j ) + 2(w∗

1, j )
2g′′(d2, j )

(n + 3)2
, (5.9)

where, u∗
1, j , u

∗
2, j , w

∗
1, j , w

∗
2, j , are from the formulas (5.3)–(5.7) described above in this

section.
The Table 4 shows the dependence of the maximum error �λ̂ = max

1≤ j≤n
|λ̂m − λm |

of eigenvalues and the maximum relative error �r λ̂ = max
1≤ j≤n

∣∣∣ λ̂m−λm
λm

∣∣∣ of eigenvalues

depending on the size of the matrix n. Where λ̂m are calculated using the formulas
(5.8) and (5.9). In this case, the maximum is taken for all eigenvalues.

The Theorem 2.6 presents asymptotic formulas for the eigenvalues of λm , provided

thatm = o(n
2
3 ). Let’s check Theorem 2.6 if the eigenvaluewith the numberm depends

on n as follows: m = [3 ln(n + 3)], where [x] is the rounding of the number x to an

integer value. In this case, the eigenvalue can be found up to O(
ln5(n+3)

n8
) by the
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Table 5 Error when using the formulas (5.10) and (5.11)

n 32 64 128 256 512 1024

m 11 13 15 17 19 21

�λ̄ 1.7 × 10−2 1.6 × 10−4 8.9 × 10−7 3.6 × 10−9 1.2 × 10−11 3.2 × 10−14

�r λ̄ 1.4 × 10−2 2.3 × 10−3 2.9 × 10−4 3.3 × 10−5 3.5 × 10−6 3.5 × 10−7

formulas

λ̄2 j−1 = −d61, j + 1

4
d81, j − 3

√
3

2

d71, j
n + 3

, (5.10)

λ̄2 j = −d62, j + 1

4
d82, j − 3

√
3

2

d72, j
n + 3

. (5.11)

The Table 5 shows the dependence of the error �λ̄m = |λ̄m − λm | of eigenvalues and
the relative error �r λ̄m =

∣∣∣ λ̂m−λm
λm

∣∣∣ of eigenvalues depending on the size of the matrix

n. Where λ̄m are calculated using the formulas (5.10) and (5.11).
By the Theorem 2.6, if m is a constant, the eigenvalues can be cleared using the

formulas (2.27) and (2.28). Let ’s put

λ
(n)
2 j−1 = − (2π j)6

(n + 3)6
, (5.12)

λ
(n)
2 j = − ((2 j + 1)π + 2w∗

1, j )
6

(n + 3)6
, (5.13)

where w∗
1, j - solution of the Eq. (5.7).

Let us compare our results with the results of the well-knownworks of Seymour Parter
devoted to the asymptotics of the first eigenvalues in the case when the symbol of the
Toeplitz matrix has a singularity of power order (see [16, 17]). Consider the class of
functions g satisfying: In [16] the author considered the class of functions g satisfying:

(a) g is real, continuous, and periodic with period 2π ; min g = g(0) = m∗ and ϕ = 0
is the only value of ϕ (mod 2π) for which this minimum is attained.

(b) If g satisfies (a), then it has continuous derivatives of order 2k (k ∈ N) in some
neighborhood of ϕ = 0 and g(2k)(0) = σ 2 > 0 is the first non-vanishing derivative
of g at ϕ = 0.

Theorem 5.1 ([17, Theorem 1]) Let g be a function which satisfies Conditions (a) and
(b). Let λν,n(ν = 1, 2, . . . n) be the eigenvalues of Tn(a) arranged in nondecreasing
order. For fixed ν, as n → ∞ we have

λν,n = m∗ + σ 2

(2α)!�ν

(
1

n2α

)
+ o

(
1

n2α

)
,
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where the numbers �ν are the eigenvalues arranged in nondecreasing order of

[

−
(

d

dx

)2
]α

U − �U = 0, 0 ≤ x ≤ 1

with boundary conditions

(
d

dx

)i

U (0) =
(

d

dx

)i

U (1), i = 0, 1, . . . , α − 1.

Let g1(ϕ) = −g(ϕ) = (2 sin ϕ
2 )6. Notice that g1 satisfies Conditions (a) and (b)

withm∗ = 0, α = 3 and g(6)
1 (0) = 720 > 0. Therefore, from Theorem 5.1 in our case

we get

λm = −�m

(
1

n6

)
+ o

(
1

n6

)
(n → ∞). (5.14)

To find �m it is also convenient to consider two cases when m is even and odd. After
finding �m , the formula (5.14) will split into two cases and take the form

λ2 j−1 = − (2π j)6

n6
+ +o

(
1

n6

)
, (5.15)

λ2 j = − ((2 j + 1)π + 2w∗
1, j )

6

n6
+ o

(
1

n6

)
, (5.16)

where w∗
1, j - solution of the Eq. (5.7). Note that formulas (5.15), (5.16) differ from

formulas (2.27) and (2.28) in the denominator of the main part, and have a greater
error. In addition, we proved in Theorem 2.6 that the remainder term (2.27)–(2.28) has

a uniform estimate respect to n if quantitym = o(n
2
3 ), while it was shown inwork [17]

that formula (5.14) is valid for a fixed number m. Next, we will compare the error of
the formulas (5.12) and (5.13) with the formulas s (5.15), (5.16). The Table 6 shows the

dependence of the error �λ̃m =
∣∣∣λ̃m − λm

∣∣∣, relative error �r λ̃m =
∣∣∣ λ̃m−λm

λm

∣∣∣, where

λ̃m calculated by the formulas (2.27) and (2.28), and the error �λ
(p)
m =

∣∣
∣λ(p)

m − λm

∣∣
∣,

relative error �rλ
(p)
m =

∣∣∣∣
λ

(p)
m −λm

λm

∣∣∣∣ when using formulas (5.15), (5.16). In this case, the

number of the eigenvalue m was fixed. The dependence is based on the size of the
matrix n. The experiment was carried out at m = 1, 2, 3, 6.

Acknowledgements Thiswork is funded byRSCF-21-11-00283.M.Barrera and S.Grudskywas supported
by the CONACYT project “Ciencia de Frontera” FORDECYT-PRONACES/61517/2020 and S. Grudsky
by Regional Mathematical Center of the Southern Federal University with the support of the Ministry of
Science and Higher Education of Russia, Agreement 075-02-2024-1427.



Asymptotics of the eigenvalues of seven-diagonal... Page 37 of 37    79 

References

1. Barrera, M., Grudsky, S.M.: Asymptotics of eigenvalues for pentadiagonal symmetric Toeplitz matri-
ces. In: Large Truncated ToeplitzMatrices, Toeplitz Operators, andRelated Topics, pp. 51–77. Springer
International Publishing, Cham (2017)

2. Batalshchikov,A.A.,Grudsky, S.M., Stukopin,V.A.:Asymptotics of eigenvalues of symmetric Toeplitz
band matrices. Linear Algebra Appl. 469, 464–486 (2015)

3. Batalshchikov, A.A., Grudsky, S.M., Malisheva, I.S., Mihalkovich, S.S., Ramírez de Arellano, E.,
Stukopin, V.A.: Asymptotics of eigenvalues of large symmetric Toeplitz matrices with smooth simple-
loop symbols. Linear Algebra Appl. 580, 292–335 (2019)

4. Bogoya, J.M., Böttcher, A., Grudsky, S.M.: Asymptotics of individual eigenvalues of a class of large
Hessenberg Toeplitz matrices. In: Recent Progress in Operator Theory and Its Applications, pp. 77–95.
Springer, Basel (2012)

5. Bogoya, J.M., Böttcher, A., Grudsky, S.M., Maximenko, E.A.: Eigenvalues of Hermitian Toeplitz
matrices with smooth simple-loop symbols. J. Math. Anal. Appl. 422(2), 1308–1334 (2015)

6. Bogoya, J.M., Grudsky, S.M.,Maximenko, E.A.: Eigenvalues ofHermitian Toeplitzmatrices generated
by simple-loop symbols with relaxed smoothness. In: Large Truncated Toeplitz Matrices, Toeplitz
Operators, and Related Topics, pp. 179–212. Springer International Publishing, Cham (2017)

7. Böttcher, A., Grudsky, S.M.: Spectral Properties of Banded Toeplitz Matrices. Society for Industrial
and Applied Mathematics, Philadelphia (2005)

8. Böttcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices. Springer, New York
(1999)

9. Böttcher, A., Grudsky, S.M., Maksimenko, E.A.: Inside the eigenvalues of certain Hermitian Toeplitz
band matrices. J. Comput. Appl. Math. 233(9), 2245–2264 (2010)

10. Deift, P., Its, A., Krasovsky, I.: Toeplitz matrices and Toeplitz determinants under the impetus of the
Ising model: some history and some recent results. Commun. Pure Appl. Math. 66(9), 1360–1438
(2013)

11. Deift, P., Its, A., Krasovsky, I.: Eigenvalues of Toeplitz matrices in the bulk of the spectrum. Bull. Inst.
Math. Acad. Sin. (N.S.) 7, 437–461 (2011)

12. Elouafi,M.: On a relationship betweenChebyshev polynomials and Toeplitz determinants. Appl.Math.
Comput. 229, 27–33 (2014)

13. Grenander, U.: Toeplitz Forms and Their Applications. AMS Chelsea Pub. (2001)
14. Kadanoff, L.P.: Spin-spin correlations in the two-dimensional Ising model. Il Nuovo Cim. B Ser. 10

44(2), 276–305 (1966)
15. McCoy, B., Wu, T.: The Two-Dimensional Ising Model. Harvard University Press, Cambridge (1973)
16. Parter, S.V.: Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations.

Trans. Am. Math. Soc. 99(1), 153–153 (1961)
17. Parter, S.V.: On the extreme eigenvalues of truncated Toeplitz matrices. Bull. Am. Math. Soc. 67(2),

191–196 (1961)
18. Savage, L.J., Grenander, U., Szego, G.: Toeplitz forms and their applications. J. Am. Stat. Assoc.

53(283), 763 (1958)
19. Schmidt, P., Spitzer, F.: The Toeplitz matrices of an arbitrary Laurent polynomial. Math. Scand. 8, 15

(1960)
20. Widom, H.: Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz

determinants in the case of nonvanishing index. Oper. Theory Adv. Appl. 48 (1990)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.


	Asymptotics of the eigenvalues of seven-diagonal Toeplitz matrices of a special form
	Abstract
	1 Introduction
	2 Main results
	3 Chebyshev polynomial
	4 Proof of the main results
	5 Numerical experiments
	Acknowledgements
	References


