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Abstract

We study classes of ultradifferentiable functions defined in terms of small weight
sequences violating standard growth and regularity requirements. First, we show that
such classes can be viewed as weighted spaces of entire functions for which the crucial
weight is given by the associated weight function of the so-called conjugate weight
sequence. Moreover, we generalize results from M. Markin from the so-called small
Gevrey setting to arbitrary convenient families of (small) sequences and show how the
corresponding ultradifferentiable function classes can be used to detect boundedness
of normal linear operators on Hilbert spaces (associated with an evolution equation
problem). Finally, we study the connection between small sequences and the recent
notion of dual sequences introduced in the Ph.D. thesis of J. Jiménez-Garrido.

Keywords Weight sequences - Associated weight functions - Growth and regularity
properties for sequences - Weighted spaces of entire functions - Boundedness of
linear operators

Mathematics Subject Classification 26A12 - 30D15 - 34G10 - 46A13 - 46E10 - 47B02

1 Introduction

Spaces of ultradifferentiable functions are sub-classes of smooth functions with certain
restrictions on the growth of their derivatives. Two classical approaches are commonly
considered; either the restrictions are expressed by means of a weight sequence M =
(M) pen, also called Denjoy—Carleman classes (e.g., see [10]), or by means of a

Communicated by Eva A. Gallardo-Gutierrez.

B4 Gerhard Schindl
gerhard.schindl@univie.ac.at

David Nicolas Nenning
david.nicolas.nenning@univie.ac.at

Fakultit fiir Mathematik, Universitdt Wien, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

) Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s43036-023-00294-6&domain=pdf
http://orcid.org/0000-0003-2192-9110

67 Page2of38 D. N. Nenning and G. Schindl

weight function w also called Braun—Meise—Taylor classes; see [3]. In this work, we
are exclusively dealing with the weight sequence approach.
More precisely (in the one-dimensional case) for each compact set K, the set

{ f(”)(x)

: eN, xekK 1.1
M, p x } (1.1)

is required to be bounded. Naturally, one can consider two different types of spaces:
For the Roumieu type, the boundedness of the set in (1.1) is required for some h > 0,
whereas for the Beurling type, it is required for all h > 0.

In the literature, standard growth and regularity conditions are assumed for M;
roughly speaking, one is interested in sufficiently fast growing sequences M to ensure
that M, is (much) larger than p! for all p € N. This is related to the fact that for
such sequences, the corresponding function spaces are lying between the real-analytic
functions and the class of smooth functions. Therefore, classes being (strictly) smaller
than the spaces corresponding to the sequence (p!) pen are excluded due to these basic
requirements. Moreover, the regularity condition log-convexity, i.e., (M.1) in [10],
is more or less standard and even M < LC is basic; see Sect.2.2 for the definition
of this set. (Formally, if log-convexity for M fails, then one might avoid technical
complications by passing to its so-called log-convex minorant.) The analogous notion
of log-concavity has not been used in the ultradifferentiable setting.

The (most) well-known examples are the so-called Gevrey sequences of type ¢ > 0
with G := p!* (or equivalently use My := pP®) and this one-parameter family
illustrates this behavior when considering different values of the crucial parameter o:
usually, in the literature, one is interested in « > 1 and the limiting case « = 1 for the
Roumieu type precisely yields the real-analytic functions. Indices 0 < o < 1 give a
non-standard setting and the corresponding function classes are tiny ("small Gevrey
setting”). At this point, let us make aware that we are using for the sequence M the

notation “including the factorial term” in (1.1), since, in the literature, occasionally
authors also deal with %, e.g., in [24], and so M in these works corresponds to
the sequence m in the notation used in this paper (see Example 2.5). On the other hand,
the crucial conditions on the sequences appearing in this work illustrate the relevance
of the difference between m and M; see the assumptions in Sect.4.4.

However, from an abstract mathematical point of view, it is interesting and makes
sense to study also ultradifferentiable classes defined by non-standard/small sequences

and to ask the following questions:

(i) What are the differences between such small classes and spaces defined in terms
of “standard sequences”?
(i) What is the importance of such small spaces and for which applications can they
be useful?
(iii) Can we transfer known results from the standard setting, e.g., the characterization
of inclusion relations for function spaces in terms of the corresponding weight
sequences, to small spaces?
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(iv) Does there exist a close resp. canonical relation between standard and non-standard
sequences, or more precisely: Can one construct from a given standard sequence
a small one (and vice versa)?

The aim of this article is to focus on these problems. Indeed, question (iv) has served
as the main motivation and the starting point for writing this work. Very recently, in
[5], we have introduced the notion of the dual sequence. For each given standard M,
e.g., if M € LC, it is possible to introduce the dual sequence D; see Appendix A for
precise definitions and citations. In [5], this notion and the relation between M and
D have been exclusively studied by considering growth and regularity indices (which
are becoming relevant in the so-called ultraholomorphic setting). The aim is now to
study further applications of this new notion and the conjecture is that for “nice large
standard sequences” M, the corresponding dual sequence D is a “convenient small
one” which allows to study a non-standard setting.

The literature concerning small ultradifferentiable function classes is non-
exhaustive, and to the best of our knowledge, we have only found works by M. Markin
treating the small Gevrey setting; see [12, 13], and [14]. More precisely, the goal there
has been: given a Hilbert space H and a normal (unbounded) operator A on H, then
consider the associated evolution equation

Y (1) = Ay(),

and one asks the following question: Is a priori known smoothness of all (weak)
solutions of this equation sufficient to get that the operator A is bounded? Markin has
studied this problem within the small Gevrey setting, i.e., it has been shown that if
each weak solution of this evolution equation belongs to some small Gevrey class, then
the operator A is bounded. To proceed, Markin considers (small) Gevrey classes with
values in a Hilbert space. Based on this knowledge, one can then study if, for different
small classes, Markin’s results also apply and if one can generalize resp. strengthen
his approach.

The paper is structured as follows: In Sect. 2, we introduce the notion of the so-called
conjugate sequence M* (see (2.3)), we collect and compare all relevant (non-)standard
growth and regularity assumptions on M and M*, and we define the corresponding
function classes.

In Sect. 3, we treat question (i) and show that classes defined by small sequences M
are isomorphic (as locally convex vector spaces) to weighted spaces of entire functions;
see the main result Theorem 3.4. Thus, we are generalizing the auxiliary result [14,
Lemma 3.1] from the small Gevrey setting; see Sect. 3.2 for the comparison. The crucial
weight in the weighted entire setting is given in terms of the so-called associated weight
wpy~* (see Sect.2.7) and so expressed in terms of the conjugate sequence M*.

As an application of this statement, concerning problem (iii) above, we characterize
for such small classes the inclusion relations in terms of the defining (small) sequences;
see Theorem 3.9. This is possible by combining Theorem 3.4 with the recent results
for the weighted entire setting obtained by the second author in [20].

Section 4 is dedicated to problem (ii) and the study resp. the generalization of
Markin’s results. We introduce more general families of appropriate small sequences
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and extend the sufficiency testing criterion for the boundedness of the operator A to
these sets.

Finally, in Appendix A, we focus on (iv) and show that dual sequences are serving
as examples for non-standard sequences, and hence, this framework is establishing a
close relation between known examples for weight sequences in the literature and small
sequences for which the main results in this work can be applied (see Theorem A.7
and Corollary A.8).

2 Definitions and notations
2.1 Basic notation
We write N := {0,1,2,...} and Nog := {1,2,...}. Given a multi-index o =

(a1, ..., 0q) € N, we set lo| := a1 + --- + ag. With &€, we denote the class of
all smooth functions and with H(C) the class of entire functions.

2.2 Weight sequences

LetM = (M), € RY

- 0> and we introduce also m = (m ), defined by m, :=

m=(p)pbyup:= _| , 0> 1,0 := 1. M is called normalized if 1 = My < M,

holds true. If Mo = 1, then M), = [[/_, p; forall p € N.
M is called log-convex, denoted by (Ic) and abbreviated by (M.1) in [10], if

VpeNyg: M SMp_1Mpy.

This is equivalent to the fact that w is non-decreasing. If M is log-convex and normal-
ized, then both M and p + (M)) 1/p are non-decreasing. In this case, we get M, > 1
for all p > 0 and

VpeN.g: (M7 <p,. 2.1)

Moreover, MyMy < My, forall p,qg € N.
In addition, for M = (M), € RY, it is known that

liminf 4, < lim 1nf(M )P < lim sup(M,, )!/P < lim sup Up. (2.2)

p—>+00 p—>+00 p—>—+oo p—>—+00

For convenience, we introduce the following set of sequences:
LC = {M e RY : M is normalized, log-convex, lim (M,)"/? = +oo} .
p—>+o0

We see that M € LC ifand only if 1 = po < @1 < ... withlim,_, 400 1) = +00
(see, e.g., [17, p. 104]) and there is a one-to-one correspondence between M and

w = (up)p by taking M), := 1_[1?:0 i
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M has moderate growth, denoted by (mg), if
IC>1Vp,geN: My, <CPHTIM,M,.
A weaker condition is derivation closedness, denoted by (dc), if
IA>1VpeN: My < APYIM, & ppyy < APTL
It is immediate that both conditions are preserved under the transformation (M),
(Mpp")p, s € R arbitrary. In the literature (mg) is also known under stability of

ultradifferential operators or (M .2) and (dc) under (M .2)’; see [10].
M has (81) (named after [16]) if

30 eNyg: hmmf > 0,
—+400 Mp

and (yp) if

sup — Z — < +o0.
p€N>() p k>p

In [16, Proposition 1.1], it has been shown that for M € LC, both conditions are equiv-
alent, and in the literature, ()) is also called ”strong non- quasianalyticity condition”.
In [10], this is denoted by (M .3). (In fact, there ’Lpp is replaced by 7 for p > 2 but
which is equivalent to having (y).)

A weaker condition on M is (83) (named after [22], see also [2]) which reads as
follows:

30 eNg: liminf 222 < 1.
p—>—+00 Mp

For two weight sequences M = (M) peny and N = (N)) peN, we write M < N if
M, < N, forall p € Nand M<N if

Mp 1/p
sup (—) < 400.
JZS\ ) Np

M and N are called equivalent, denoted by M~N, if
M=<N and N=<M.

Finally, we write M <IN, if

M A\LYP
lim <—P> =0.
p——+o0 Np
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In the relations above, one can replace M and N simultaneously by m and n, because
M=<N & m=<nand M<IN & m<n.
For any o > 0, we set

G* = (p!) pen-

Therefore, for o > 0, this denotes the classical Gevrey sequence of index/order «.

2.3 Classes of ultradifferentiable functions

Let M e RIEO, U C RY be non-empty open, and for K C R4 compact, we write

K ccUifK C U,ie, KisinU relatively compact. We introduce now the
following spaces of ultradifferentiable function classes. First, we define the (local)
classes of Roumieu type by

Emy(U) :={f €EWU): VK CCUIh>0: ||fllakn < +oo},
and the classes of Beurling type by
EamU) == {f €EW): YK CCUYh>0: | fllmxn < +00},

where we denote

| fllm.xn:= sup M
. o aeNd xeK hlalMlﬁtl

For a sufficiently regular compact set K (e.g., with smooth boundary and such that

K° =K)
Emn(K) = {f € EK) : | fllmx.n < +00}
is a Banach space, and so, we have the following topological vector spaces:

Ey(K) = lim Epy p(K),
h>0

and

Ep(U) = lim lim Ey p(K) = lim  Eppgy (K).
KCCU h>0 Kccu

Similarly, we get

Ey (K) := lim Epy p(K),
h>0

and
Ean(U) = lim lim Ey p(K) = lim  Eary (K).

KccU h>0 KccU

W Birkhauser
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The spaces &7y (U) and Ery (U) are endowed with their natural topologies w.r.t.
the above representations. We write £37) if we mean either £(37 or £pr) but not mixing
the cases. We omit writing the open set U if we do not want to specify the set where
the functions are defined and formulate statements on the level of classes.

Usually, one only considers real or complex-valued functions, but we can analo-
gously also define classes with values in Hilbert or even Banach spaces (for simplicity,
we assume in this case that the domain U is contained in R) by simply using

3

| fllm kn:= sup M
o peN,xeK hpMp

in the respective definition, i.e., only the absolute value of f () (x) is replaced by the
norm in the Banach space. Observe that the (complex) derivative of a function with
values in a Banach space is defined in complete analogy to the complex-valued case.
If we want to emphasize that the codomain is a Hilbert (or Banach) space H, we
write &1y1(U, H). In analogy to that also £(U, H) shall denote the H-valued smooth
functions on U.

Remark2.1 Let M, N € RIEO, the following is well known, see, e.g., [17, Prop. 2.12]:

() The relation M <IN implies Epuy S Evy with continuous inclusion. Similarly,
M= N implies &) € £y with continuous inclusion.

(x) If M € RIEO is log-convex (and normalized) and £ (R) € Evy(R) (as sets),
then by the existence of so-called M -characteristic functions, see [17, Lemma 2.9],
[25, Thm. 1] and the proof in [21, Prop. 3.1.2], we get M <IN as well.

2.4 Ultradifferentiable classes of entire functions

We shall tacitly assume that a holomorphic function on (an open subset of) C may
have values in a Hilbert or even Banach space. The main theorems of one variable
complex analysis (Cauchy integral formula, power series representation of holomor-
phic functions, etc.) hold mutatis mutandis, by virtue of the Hahn—Banach theorem,
just as in the complex-valued case.

First, let us recall that for any open (and connected) set U < R the space
E(Gl) (U, H) can be identified with H(C, H), the class of entire functions, and both
spaces are isomorphic as Fréchet spaces. The isomorphism = is given by

O No) 4
E:Eey(U,H) - H(C, H), fr E(f):= ZTZ ,
k=0 :

where x¢ is any fixed point in U. The inverse is given by restriction to U, and its
continuity follows easily from the Cauchy inequalities.
We apply the observation from Remark 2.1 to N = G'.

Lemma2.2 Let M € RIEO be given.

(i) IflimpﬁJroo(mp)l/f" =0, then Emy € &1y (= H(C)) with continuous inclusion.

) Birkhauser
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(ii) Let M be log-convex and normalized. Assume that
Eny(R) S Eg1(R)(E H(T))

holds (as sets), thenlim,_, , (mp)]/p = 0 follows. In particular, this implication
holds for any M € LC.

Moreover, in the situation of Lemma 2.2, the inclusion always has to be strict.
Thus, spaces & for sequences with lim,— 40 m}D/ P = 0 form classes of entire
functions. Subsequently, we show that those spaces are weighted classes of entire
functions and the weight is given by the associated weight function of the conjugate
weight sequence. We thoroughly define and investigate those terms in the following
sections. We remark that the definition of the conjugate sequence has been inspired

by the Gevrey case treated by M. Markin; see Example 2.5 and Sect.3.2.
2.5 Conjugate weight sequence
Let M € RIEO, then we define the conjugate sequence M* = (M) pen by

i ol
Mi=-—=—, peN, 2.3)

i.e., M* := m~! for short. Hence, for p > 1, the quotients pu* = (,u;)p are given by

/_L* = M;‘; = mp—l = p!Mp—l = i (24)
P My, mp (p—D'M, up

and we set u(’; := 1. By these formulas, it is immediate that there is a one-to-one
correspondence between M and M*.

2.6 Properties of conjugate weight sequences

We summarize some immediate consequences for M*. Let M, N € REO be given.

(1) First, we immediately have

VpeN: Mj*=M, M, M,=pl,

that is

M™* =M, M* M =G".

Moreover (see also the subsequent Lemma 2.6),
M*M < G'’xM, M<M* < M<G'?

W Birkhauser
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(ii)
(iii)
()

()

(%)
@iv)

)

(vi)

(vii)

and alternatively, the relation < can be replaced by <. We also get Mj = M, l
i.e., M* is normalized if and only if 1 = My > M;.

M =N holds if and only if N*<M*, and so, M~N if and only if M*~N*,

We get the following:

limp_>+oo(M[*,)l/p = +o0 holds if and only if lim,,_>+oo(m,,)l/p = 0 and this
implies £y S S(Gl) (with strict inclusion). If, in addition, M is log-convex (and
normalized), then all three assertions are equivalent; see Lemma 2.2.

If i, 400 (M) /7 = 400, then by % /p = M—lp (2.2) and Stirling’s formula,

we get both lim,, 4o i /p = 0 and lim,,_>+oo(m;)l/p =0.
lim ,, 1 o (m’%)!/P = +00 holds if and only if lim,,, 100 (M) "/? = 0.

M*islog-convex, i.e., “;H > ), forall p € N.g,if and only if m is log-concave,
that is
VpeNog: mh=mp impy & phy) = (0, 2.5)

which in turn is equivalent to the map p +— % being non-increasing.

Analogously as in [21, Lemma 2.0.4], we get: If a sequence S € RIEO is log-
concave and satisfies So = 1, then the mapping p +— (Sp)l/ ? is non-increasing.
Consequently, if M*islog-convex andif | = M = mo = Mo, then p > (m,)'/?
is non-increasing.

If M is log-convex (and having My = 1), then M* has (mg): In this case by [21,
Lemma2.0.6] forall p,q € N,weget M,M, < Mpy4 < mpmy < (’;qu!)!mpﬂ,

and so, mpmgy < 2P*9m,,. Hence, 1 21’+‘1M;M;‘ holds true.

M* has (dc) if and only if ,u; <Al & ML < AP, soif and only if
¥4
JA>1V : P
= peN: Mpiﬁ,

which can be considered as “dual derivation closedness”. Note that this property
is preserved under the mapping (M), — (M,p!*),, s € R arbitrary, and it is
mild: liminf ,_, ;oo 1tp/p > 0 is sufficient to conclude.

1op
Hp

liminf , 4 oo % > 1; similarly M* has (83) if and only if lim inf, 400 li‘TP >
P P
1

0

Using those insights, we may conclude the following.

M* has (B1), i.e., liminf , 1o > Q for some Q € Ny, if and only if

Lemma23 Let M € RIEO be given with 1 = My > M| and let M* be the conjugate
sequence defined via (2.3). Then:

(a)
(b)
(©)

M* € LC if and only if m is log-concave and 1imp%+oo(mp)1/1’ =0.

M* € LC implies Eyyy < E(Gl) with strict inclusion.

If, in addition, M is log-convex with 1 = Mo = M\, then the inclusion Ey (R) C
En(R) gives limp o0 (M;)I/P = +00. Moreover, M* has moderate growth.

) Birkhauser
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Remark 2.4 Let M € RIEO be given and we comment on the log-concavity and related
conditions (for the sequence m):

(a) If m is not log-concave but satisfies

(b)

IH>1Vl<p<q: “4<pke
q p

i.e., the sequence (i p/ p) peN., is almost decreasing, then the sequence L defined
in terms of the corresponding quotient sequence A = (1)) peN given by

Api=H" psup p=>1, Ao =1, (2.6)
a=p 4
satisfies .
Vvp>1: H'Ee e Hp 2.7
p p 14
Then, we get

(1) L and M are equivalent, and so, L* is equivalent to M*, too.

@ii) p+— 2o is non-increasing, i.e., [ is log-concave, and so L* is log-convex.

(i) If 1 = Mo > My, ie.,if uy < 1,thenl = Lo > Ly is valid, since L1 = X
i1 < 1 holds true. Thus, L* is normalized.

(iv) limp_s yoo(mp)!/P = 0 if and only if lim,_, 4o ()P = 0 (with [,
Ly/pY.

(v) Finally, if M is log-convex, then L shares this property: We have 1, < A1
if and only if p sup,-. , %" < (p+Dsup,s 4 % forall p > 1. When p > 1
is fixed, then clearly p’;—" <(p+ 1)% forallg > p + 1.If ¢ = p, then

IA

M M
Pt =pp < ppp = <p+1> <(p+1> sup =%,
q g>p+1 4

and so, the desired inequality is verified.

Summarizing, if M € R§0 satisfies 1 = My > M and limp_)+oo(mp)1/1’ =0,
then L* € LC; see (a) in Lemma 2.3. If M is in addition log-convex, then L has
this property too.

The definition (2.6) is motivated by [19, Lemma 8] and [9, Prop. 4.15].

If m is log-concave, then for any s > 0, also the sequence (m,/p!*) pen is log-
concave, because the mapping p — ’; £ is still non-increasing (see (2.5)). However,

for the sequence (p!*m ) pen, this is not clear in general.

Example 2.5 Let M = G* forsome 0 < s < 1; see [14]. (In fact, in [14] instead of G*,
the sequence (p”?¥) pen is treated but which is equivalent to G° by Stirling’s formula.)
Then,m = G* 1 with —1 <s —1 < 0, and so, m corresponds to a Gevrey sequence
with negative index. We get lim,_, 1 oo (m p)l/ P = (0 and m is log-concave. Moreover,
M* = G'~* and so clearly M* € LC.

®
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In particular, if s = %, then (G%)* — G2 and we prove the following statement

. . . 1 .
which underlines the importance of G2 (up to equivalence of sequences) w.r.t. the
action M — M*.

Lemma2.6 Let M € RIEO be given. Then, the following are equivalent:

(i) We have M<M*.
(ii)) We have

IC.h=1YpeN: M, <Ch’p,

ie, M<GY/2.
(iii) We have G2 M*.

The analogous equivalences are valid if M*<M resp. if relation < is replaced by
<. Thus, M~M* ifand only if M~G'/? and M = M* ifand only if M = G'/* = M*.
In particular, G2 = (Gl/z)* holds true.

Proof The equivalences follow immediately from the definition of M* in (2.3). 0O

2.7 Associated weight function

Let M € RIEO (with My = 1), then the associated function wy : R>g — R U {4-00}
is defined by

tP
wp (1) := sup log (—) fort > 0, wy(0) :=0.
peN MI’

For an abstract introduction of the associated function, we refer to [11, Chapitre I]; see
also[10, Definition 3.1]. If lim inf ,, . + o (M) /P > 0, then wy (t) = Ofor sufficiently

small ¢, since log (If,l—pp) < 0%t < (Mp)7holds forall p € N.o. Moreover, under

this assumption ¢ — wy(¢) is a continuous non-decreasing function, which is convex
in the variable log(#) and tends faster to infinity than any log(¢?), p > 1,ast — +o0.
lim 1 00(M)'/? = 400 implies that wy (f) < +oo for each # > 0 and which shall
be considered as a basic assumption for defining wy.

Given M € LC, then by [11, 1.8 III], we get that wps(t) = 0 on [0, w1].

Finally note that for M € LC, we have lim,_, o 1), = +00; see, e.g., [17, p.
104].

3 Ultradifferentiable classes as weighted spaces of entire functions
In Sect.2.4, we saw that ultradifferentiable classes &y with lim s 400 m},/ P=0
are classes of entire functions. Now, we go further and identify those classes with
weighted spaces of entire functions, where the weight is given by the associated weight
function of the conjugate weight sequence M*. To this end, let us first recall some

) Birkhauser
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notation already introduced in [20] (to be precise, in [20], the weighted spaces of
entire functions have only been defined for the codomain C, but everything can be
done completely analogously for H instead of C): Let H be a Hilbert space and let
v : [0, +00) — (0, +00) be a weight function, i.e., v is

(%) continuous,
(*) non-increasing, and
(%) rapidly decreasing, i.e., lim,_, ;o t*v(¢) = 0 for all k > 0.

Then, introduce the space

zeC

HP(C, H) = {f € H(C, H) || fllv := sup |l f(2)lv(z]) < +OO} :

We shall assume w.l.0.g. that v is normalized, i.e., v(t) = 1 fort € [0, 1] (if this is not
the case, one can always switch to another normalized weight w with HS°(C, H) =
HP(C, H)).

In the next step, we consider weight systems, see [20, Sect. 2.2] for more details.
For a non-increasing sequence of weights ¥V = (vu)neN_g, 1.€., Uy > V4 for all n,
we define the (LB)-space

HS(C. H) = lim HE(C. H),

nEN>o

and for a non-decreasing sequence of weights V= (Vn)neN.y» 1.€., Uy < Upyq for all
n, we define the Fréchet space

HE(C, H) == lim H(C, H).

nEN>0

Remark 3.1 In [20], the spaces are denoted by H°(C) instead of H{°(C, C). We use
'H to avoid any confusion with the Hilbert space H. In addition, HS°(C) shall denote
HP(C, C).

The following Lemma can be used to infer statements for HS°(C, H) from the
respective statements for H;°(C).

Lemma 3.2 Let H be a (complex) Hilbert space and v be a weight. Then
FEHPC H) &z (f(2),) € H(C) forall y € H.

Proof For the non-trivial part, take some f € H(C, H), such that |[{f(z), y)| <

Cyv(|z|) for every y € H. Then, this just means that {sz‘(zzl)) .z € C}
is weakly bounded (in H) which implies boundedness and this just means that
f € Hy(C, H). O

Remark 3.3 Of course, the same argument holds for a family of weights V or V.
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For a given weight v and ¢ > 0, we shall write v.(¢) := v(ct) and v°(t) := v(¢)€,
and set

Ve = (Ve)eeN.qs and Ve = (V1/c)ceN. s
and
= (V)cen. g, and V' = (0% en,

in particular V. and V¢ are non-increasing, and V. and V° are non-decreasing
sequences of weights, see again [20, Sect. 2.2].

Let M € RNO be given with My = 1, such that M is (Ic) and satisfies
limp— 100 (Mp)/P = +00 (see [20, Def. 2.4, Rem. 2.6]). Then, we denote by
M., M, M., and M* the respective sequences of weights defined by choosing
(1) := vy (1) = e~ (see [20, Rem. 2.7]). If we write A, N, N, and N*, we
mean the respective definition for another weight sequence N. Finally, we write (of
course) M* ., ... for the systems corresponding to the conjugate sequence M*.

Theorem3.4 Let M € RIEO with My = 1 > M be given, such that
limp_ o (mp)l/f7 = 0 and m is log-concave. Let I C R be an interval, then

(k)
Eswumeﬂw@ﬂ>fwmﬁ—zf(“<xw
k=0

is an isomorphism (of locally convex spaces) for any fixed xo € 1. Moreover, with the
same definition for E, also

E: S(M)(I,H) ad Hoo

is an isomorphism.

Remark 3.5 Before proving this main statement, we give the following observations:

(i) By Lemma 2.3, the assumptions on M imply M* € LC. It is easy to check that
any small Gevrey class, i.e., choosing M; = j!* for some « € [0, 1), satisfies the
assumptions of Theorem 3.4.

(ii)) Moreover, we comment in detail on the basic requirements for the sequence M in
Theorem 3.4:

(*) Note that both assumptions My = 1 > M; and log-concavity of m are not pre-
served under equivalence of weight sequences.
On the other hand, both isomorphisms in Theorem 3.4 are clearly preserved
under equivalence: Equivalent sequences yield the same ultradifferentiable func-
tion classes, equivalent conjugate sequences [recall (ii) in Sect.2.6], and finally
(by definition) also the same weighted entire function classes; see [20, Prop. 3.8].
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(%) Thus, we can assume more generally that M is equivalent to L € RIEO, such that
Lo =1 > Ly, limp4(,)"/? = 0, and [ is log-concave. In this situation,
we replace in the proof below M by L, m by [ and M* by L*. Recall that the
log-concavity for / can be ensured, e.g., if (i, /p) peN., is almost decreasing; see
Remark 2.4.

(x) Finally, note the following: Assume that M is equivalent to L € ]RIEO, such that
Lo = 1 > Lj and lim,_, 100(I)!/? = 0, but none of the sequences L being
equivalent to M has the property that [ is log-concave. Thus log-convexity for L*
fails for any L being equivalent to M. Then, both H (C H) and 'H°° ((C H)

coincide with the respective classes when L* is replaced by its log-convex mlnorant
(L*)IC; see [20, Rem. 2.6]. In this situation, the first part of the proof stays valid;
i.e., the operator E is still continuous. However, the second part fails in general;
more precisely for the equality just below (3.1) in the subsequent proof, the log-
convexity of the appearing conjugate sequence is indispensable, and without this

property, we can only bound F in terms of -2 =: L, > L,.

(L*)l"

Proof of Theorem 3.4 We start with the Roumieu case and assume w.l.o.g. that xo = 0.
Let us take f € Ey n(K, H) for some compact set K CC I with 0 € K and some
h > 0,1.e., thereis A(= || f | m.x 1), such that for all x € K and all k € N, we have

IO < Anf My
Then, we infer immediately that
+00 k +00

h
IEH @ <AZ “leff = AY Slalt < 2Aexpons (2h1z)).
k=0 k

Therefore, E maps €y (K, H) continuously into 'HU - (C, H) and this immedi-
ately implies continuity of E as a mapping defined on the inductive limit with respect
to h.

In the Beurling case, a function f € Ery (I, H) liesin Ey (K, H) forany h > 0,
and thus, the above reasoning immediately gives that E is continuous as a mapping
into H% (C, H).

Let us now show continuity of the inverse mapping, which is clearly given by
restricting an entire function to the interval /. Take some F € ngﬁ’k (C, H), then

IF ()| < Ae®m**IzD

for A = [|Fllvyu, > 0. Consider an arbitrary K CC I and let R > 1 be such that
K C [—R, R]. Then, take r > 2R, which ensures that K + B(0,r) C B(0, 2r) and
where B(0, r) denotes the ball around O of radius r. Then, by the Cauchy estimates,
we infer for suchr and all x € K andn € N

Wy (2kr)
IFD ) < AntS——. G.1)
r
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Since e@m* (1) = /C,—n* forr e [u), M:H) (see, e.g., [11, 1.8 III]), we may plug in some
roe [u)/2k), u;::I/(Zk)) in (3.1); for all n large enough, such that w};/(2k) > 2R
(thus depending on chosen compact K) and which is possible since M* € LC and so
lim,—, 10 i) = +00. Hence, we get

2kr)"
IFO @I < A Z = AQky M,

n
r n

For the remaining (finitely, say no) many integers n with ' /(2k) < 2R, we can
estimate

IF™ @) < CAQK)"M,,
where, e.g., C = no!ewM*(sz). Altogether, we have shown
NFlrlla g 26 < CUF Nlugge s

which proves continuity of the inverse mapping in both the Roumieu and the Beurling
case. O

H [e ] o0 oo oo
3.1 Comparison of ’Hi,ﬁc and ’HMc (resp. HWC and HM*“)

Let us quickly recall a recent result characterizing the equality of the two different
types of weighted spaces of entire functions; see [20, Thm. 5.4]. To this end, we need
one more condition for M

dL eN,p: liminf ———— > 1. 3.2)

In [23, Thm. 3.1], it has been shown that M € LC has (3.2) if and only if
wym(2t) = O(wp(t)) ast — +oo. 3.3)

Lemma 3.6 Let M € LC. Then, the following statements are equivalent:
(1) M has (mg) and satisfies (3.2),

(i) Hﬁc (C,H)= Hﬁc (C, H),

(iii) H%c (C,H)= H%c (C, H).

Proof In [20, Thm. 5.4], the result is shown for H = C. To get that (i) implies (ii) and
(iii) the proof of [20, Thm. 5.4] can be repeated and only the appearances of | - | (the
absolute value in C) have to be substituted by || - || (the norm in the Hilbert space H).

To get the other implications, i.e., that (ii) resp. (iii) implies (i), note that the respec-
tive equality in the Hilbert space-valued case implies the equality for the C-valued
case by observing that f € H;°(C)(= HS°(C, C)) if and only if, forany 0 # x € H,
we have z = f(z)x € H°(C, H). Therefore, we may apply [20, Thm. 5.4] and infer
@). m|
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Together with results from Sect. 2.6, we derive the following.

Corollary 3.7 Let M € RIEO be given and assume the following:

(%) M islog-convexwith 1 = My = M (i.e., both normalization and 1 = My > M),
(%) lim s yoomy/P =0,

(%) m is log-concave, and finally,

() for some Q € N>j, we have liminf,_, , lfi > L

op [N
Then

o
M*C((C’ H)7

H&c (C,H) = H&c (C, H), H% (C,HY=ZH

and E is an isomorphism between Epy(1, H) and Hj’&*c((c, H) resp. between

Emy(, H) and H;a*f((c, H). o

Proof By (v)in Sect.2.6, it follows that M* has (mg). By (vii) from Sect. 2.6, we infer
that M* has (B3), and thus, [23, Prop. 3.4] gives that M* has (3.2). Finally, observe
that M* € LC holds true: limpHJroom},/p = 0 implies limp%Jroo(M;)l/” = +o00
(see (iii) in Sect.2.6), log-convexity of M* follows from log-concavity of m (see (iv)
in Sect.2.6) and normalization of M* is immediate. Thus, we may apply Lemma 3.6

to M*. The rest follows from Theorem 3.4. O

Remark 3.8 Observe that the conditions of Lemma 3.6 hold if and only if &+ =
Elwp1> of. [2, Thm. 14], [17, Sect. 5] and [23, Prop. 3.4].

Note also that Corollary 3.7 applies, in particular, to all small Gevrey sequences
G%, 0 < a < 1; see the next section for its importance.

3.2 Aresult by Markin as a Corollary of Theorem 3.4

One of Markin’s core results in [1_4], Lemma 3.1, shows, in our setting the following:
For any o € [0, 1) and M;?‘ := jJ%, which is equivalent to G‘}‘ = j!* (i.e., the small

/(-

Gevrey sequence of order ) and with v(¢) := e , we obtain that

E : Egey(I, H) — H3(C, H)

is an isomorphism of locally convex vector spaces; and mutatis mutandis the same
holds in the respective Beurling case. With our preparation, this now is a corollary of
Theorem 3.4 together with the following observations:

e Corollary 3.7 applies to M = G¢,
° (Ga)* — Gl—a,
1 1 1
® wgl-« =tT-e ik, wgi-«(t) = O(T=), tT=« = O(wgi-«(t)) as t — 4-00.
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3.3 Characterization of inclusion relations for small weight sequences

In the theory of ultradifferentiable functions, the characterization of the inclusion
& S &y in terms of a growth property expressed in terms of M and N is studied.
Summarizing, we get the following, e.g., see [17, Prop. 2.12] and the literature citations
there; similar/analogous techniques have also been applied to the more general and
recent approaches in [17, Prop. 4.6] and [6, Sect. 4]:

() If M, N € RY with M<N, then Euy € Evy and Ery S Ewy with continuous
inclusion.

() If, in addition, M is normalized and log-convex, then &7y (R) € &y (R) (as sets)
yields M<N.
If M, N e LC,then Eup (R) € En)(R) (as sets and/or with continuous inclusion;
see the proof of [17, Prop. 4.6] and [6, Prop. 4.5, Rem. 4.6]) yields M<N.

Thus, for the necessity of M <N, standard regularity and growth assumptions for
M are required, and so far, it is not known what can be said for (small) sequences M
“beyond” this setting. Via an application of Theorem 3.4 and main results from [20],
we now may actually prove as a corollary an analogous statement.

First, let us recall [20, Thm. 3.14], where the following characterization is shown
(even under formally slightly more general assumptions on the weight N; see also [20,
Rem. 2.6]).

Theorem3.9 Let N € LC and M € ]RIEO, such that M satisfies My = 1 and
lim,,_>+oo(M ,,)1/ P = 400. Then, the following are equivalent:

(a) We have N<XM.
(b) We have

Hﬁc ©) c Hﬁc (©).
(c) We have

H%C ©) c H%c ©).

Thus, by combining Theorems 3.4 and 3.9, which we apply to N* and M*, we get
the following:
Theorem 3.10 Let M, N € RIEO be given and assume that

(*) 1=My> M, and 1 = Ny > Ny,
(%) M oo (mp) /P =1im s oo (n,)/P =0,
(*) both m and n are log-concave.

Then, the following are equivalent:

(i) We have M<N.
(ii) We have Epry € Eqvy with continuous inclusion.
(iii) We have Epy C Eny with continuous inclusion.
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Proof It remains to prove (ii), (iii) = (i). We use the inclusion in (ii) resp. in (iii) for
some compact interval 7, i.e., Ep1(1) € Enp(1). Then, the characterization shown
in Theorem 3.4 yields HM* ((C) C HN* ((C) resp. H°° (©) c ’HOO ((C) By the
assumptions on M, N, we get M*, N* € EC and then Theorem 3. 9 glves N*M*
which is equivalent to M <N (recall (ii) in Sect.2.6) and so (i) is shown. O

4 A criterion for boundedness of an operator on a Hilbert space

The aim of this section is to generalize results by M. Markin from [12, 13], and
[14] (obtained within the so-called small Gevrey setting) to a more general weight
sequence setting when considering appropriate families of small weight sequences.
(In fact, Markin considers instead of GP, 0 < B < 1, the sequence M f = JB but
which is equivalent to G# by Stirling’s formula. Since equivalence clearly preserves
the corresponding function spaces, his results immediately transfer to G# as well.)

Markin studies, for a Hilbert space H, and a normal (unbounded) operator A on H
the associated evolution equation

y'(t) = Ay(0) 4.1

and asks whether a priori known smoothness of all solutions of (4.1) yield boundedness
of the operator A.

For a detailed exposition of evolution equations on Hilbert spaces, we refer to
Chapters 1 (bounded case) and 4 (unbounded case) in [15].

4.1 Solutions for bounded operators

First, let us recall quickly the situation for bounded operators A. For those, the domain
is all of H. It is a classical result in this context that every solution y of (4.1) is of the
form

y(t) = 'y,

for some yo € H, where e'4 := Z,fog 2, AF and which converges locally uniformly
(with respect to ¢) in the norm topology on B(H) (the space of bounded operators on
H). Moreover, y can be extended to an entire function, such that

Iy (@) < MeCV!

for some constants M and C and all z € C. Thus, we may conclude the subsequent
statement.

(i) If A is abounded operator on H, then each solution y of (4.1) is an entire function
of exponential type.

On the other hand, we have the following:
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(i) As outlined by M. Markin in [12, 13] and [14], there exists an unbounded normal
operator A (that is actually not bounded on H), such that each (weak) solution of
(4.1) is an entire function.

4.2 Motivating question

Therefore, one may ask whether one can reverse the implication in (i), and if this is
possible to what extent one can weaken the assumption of exponential type. From (ii),
it is clear that one cannot get completely rid of any additional growth restriction!

Markin does exactly that in [14]. Let us first recall his approach and then
subsequently considerably extend it.

4.3 A generalization of Markin's results

The main result [ 14, Thm. 5.1] states that if each weak solution of (4.1) is in some small
Gevrey class, i.e., admitting a growth restriction expressed in germs of G* witha < 1,
then the operator A is necessarily bounded on H. This is of special interest, since, as
outlined in Sect. 3.2, every small Gevrey class can be identified with a weighted class
of entire functions.

Before we are able to generalize Markin’s result, we need some definitions: For a
densely defined operator A on H, we first set

C®(A) = ﬂ D(A™),

neN

where D(A") is the domain of A”, the n-fold iteration of A. Then, put
Emy(A) :={f €C®(A): IC,h >0 Vn e N|A" f|| < Ch"M,},
and the corresponding Beurling class is defined by
Em(A) :={feC®A): YVh>03C>0 VneN|[A"f| < Ch"M,}.

From [4, Sect. 1.3], a different description of £371(A) in terms of E 4, the spectral
measure associated to A, can be deduced as follows:

Emy(A) = {f €eH: 3 >0 / MU GEL ) f, f) < +oo},
C
and
Eany(A) = {f €EH: Vi>0 / oM DGEL D f, f) < +oo}.
C

Now, we have the following result which generalizes [13, Thm. 3.1].

) Birkhauser



67 Page 20 0f 38 D. N. Nenning and G. Schindl

Theorem 4.1 Let M € RIEO be given and I C R a closed interval. Then, a solution y
of (4.1) belongs to Ep(1, H) if and only if y(t) € Ep(A) forallt € 1. In this case,
one has y™ (1) = A"y(t) forallt € I.

Proof Let y be a solution of (4.1), such that y € (I, H). Since y € C*(I, H),
we have by [12, Prop. 4.1] that y™ (r) = A" y(¢) forallt € I andalln € N. Therefore
A"yl = Y™ )]l < Ch"M,,

where / is either in the scope of an existential or universal quantifier depending on
the context. This immediately gives that y(t) € &p(A) for all ¢.

For the converse direction, we argue as in [13, Proof of Prop. 3.1] where it is shown
that in this case for any subinterval [a, b] C I

max_[[y™ @1 < [ly™ @l + ly™ ®)].
tela,b]

Since, again, we have y (1) = A" y(¢), this immediately yields y € Em, H). O
We need one more result generalizing [14, Lemma 4.1] which reads as follows.
Lemma4.2 Let0 < B < +o0. If
U €er (D) = s (A,
0<p'<p
then the operator A is bounded.

Note that in [14], the notation £IA1(A) is used instead of £gs1(A) (i.e., the respective
Gevrey class of order 8). Since we have a generalization of [ 14, Thm. 5.1] as our goal,
we only need a generalization of the above Lemma in the case 8 = 1. Therefore,
we want to conclude that an operator A on a Hilbert space H is bounded if we can
write the entire functions corresponding to A (i.e., 8 = 1) as an union of certain
smaller Roumieu classes. Note that this statement might seem “counterintuitive” when
considering the ultradifferentiable classes introduced in Sect.2.3. However, note that
the classes in Sect. 2.3 are defined using the differential operator which is unbounded.

Summarizing, our generalization of Markin’s result reads as follows.

Lemma4.3 Let § C LC be a family of sequences, such that
VNeFIMeF: wyt) =O0(wy(t))ast — +o0, “4.2)

i.e., a mixed version of (3.3) (of Roumieu type, see [8, Sect. 3]).
Suppose there exists a = (a;) € REO with the following properties:

(i) we havelim;_, 1o ai’’ =0,
(i) a is a uniform bound for §, which means that

VNeFIC>0VjeN: (Nj/j!=)n; < Caj.
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Then

U Eny(A) = &1y (A) as sets
NegF

implies that A is bounded.

Remark 4.4 We gather some comments concerning the previous result:

() By choosing a; = Lemma 4.3 includes Lemma 4.2 (with 8 = 1) as a

1
log(j)/
special case.
(*) Requirements (i) and (ii) in Lemma 4.3 imply that lim;_, n}/ 7 = 0 for all
N € 3.
(x) If each N € § satisfies (3.2), then (4.2) follows with M = N.
(*) In[8, Thm. 3.2] condition (4.2) has been characterized for one-parameter families

(weight matrices, see [8, Sect. 2.5]) in terms of the following requirement:

(M )Y/ ED
3r>1YVNeFiMeFILeN: liminf ——
j—otoo (NI

’

i.e., a mixed version of (3.2).

Actually, we show now that, if § consists of a one-parameter family of sequences
having some rather mild regularity and growth properties, then it is already possible
to find some sequence a as required in Lemma 4.3.

Proposition 4.5 Ler § := {N® ¢ RIEO : B > 0} be a one-parameter family of
sequences N'B) which satisfies the following properties:

@) N(gﬂ) =1 forall B > 0 (normalization),

(i) NB) < NP o nB) < B forall 0 < By < Bo (point-wise order),
(iii) lim ,-%oo(nj.ﬂ))l/f = 0 for each B > 0,
(/3))
J

iv) j+— 'YV is non-increasing for every p > 0,

N RN
(v) lim;_ 4 (W) =lim; 00 (W) = 4ooforall0 < B1 < B (large
J J
growth difference between the sequences).
Then, there exists a = (a;); € RIEO, such that

) j > (@pWiis non-increasing,
() limj4o0(aj)/ =0, and

1/j
(%) 1im 400 (%) = +oo forall B > 0.
n:
J

In particular, this implies that there exists a uniform sequence/bound a for § as
required in Lemma 4.3.
In addition, the family § satisfies (4.2).
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Note:
(%) Requirement (iv) weaker than assuming log-concavity for each n‘®): Together with
@), 1i.e., n(ﬁ ) =1 (for each B), log-concavity implies (iv); see (iv) in Sect.2.6.

(%) Moreover if (iv) is replaced by assuming that each n#) is log-concave and (i) by

slightly stronger n(’S ) = 1 (for each B), then in view of Theorem 3.10, we
see that (iii) and (v) together yield

VO< B <B: E[N(ﬂl)] S[N(/Sz)

(x) In any case, (v) implies that the sequences are pair-wise not equivalent.
(x) Finally, property (v) alone is sufficient to have (4.2) for §.

Proof Put j; := 1 and for k € N set jg4+ to be the smallest integer ji+; > jx with
(k)\1/j) (k+1)\1/j
() > k(n ) (4.3)
and such that for all j > ji41 and all k, we get

k+1 i
(l/l5 + ))1/]

A 4.4
(Vi

For (4.3), we have used properties (ii), (iii), and (iv), and (4.4) holds by property (v).
Now, put ap := 1 and, for ji < j < jk4+1, we set

(a; MW= (k))l/Jk

Thus, we have by definition that j — (a j)l/ J is non-increasing and tending to 0.

Finally, let kp € N. be given (and from now on fixed). For j > ji,+1, we can
find k > ko, such that ji4+; < j < jik42. Thus, in this situation, we can estimate as
follows:

1/j (n (k+1))l/]k+1 (n (k+1))1/]k+1 (n(k+l))1/]
J

4a; Jk+1 Jk+1

= >
k ki - k i - k i
aC @ (Vi (Vi

1/j
hence lim;_, 4~ ((‘;(;)W = +o00. The second inequality follows from the fact that
nj

j— (n(kH))l/ J is non-increasing (property (iv)). By the point-wise order for any
1/ 1

J J :
B > 0, we can find some ky € N., such that (nyg))l/j > T forall j > 1, and
J

hence, the last desired property for a is verified.
Concerning (4.2), we note that by (v), we get 2/ N;’Sl) < Nj(.ﬁZ) forall0 < B < B2
and all j sufficiently large. Consequently

YO<p <p3C=1VjeN: 2N <cnNP?,
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which yields by definition of associated weights @y s, (2¢) < wy@)) (1) + log(C) for
all + > 0. This verifies (4.2) for §. O

Remark 4.6 The previous result shows that any family § < LC that can be
parametrized to satisfy (ii)—(v) from Proposition 4.5 is already uniformly bounded
by some sequence a.

Consequently, in this case, the assumptions (i) and (ii) from Lemma 4.3 on
the existence of a are superfluous, and also, assumption (4.2) for § holds true
automatically.

Before we can give the proof of Lemma 4.3, we need one more technical lemma as
preparation.

Lemmad.7 Leta = (aj); € RIEO with limj_ 4 a}/'/ = 0 be given. Then, there
exists a function g = g, : Rog — R. o with the following properties:

() 1imy—, 400 ga(t) = +00,
(x) Forall N € LC, such thatnj < Da;j (for some D = D(N) > Oandall j € N),
and all d, s > 0, we have that

lim sowy(t/2) — dga(t)t = 4+00.
t——+00

Proof Observe that

(t) > supl AN i Jio(t/z)k ha(t) — log(2D)
S (0] (o) —_— =: — 10 .
OV =R Dakt = 8\ 2D & Tkl a g

It is clear from the definition that h, is non-decreasing. From the assumption
lim;_, a}/ 7 =0, it follows that for every R > 0, there exists C € R, such
that for all ¢+ > 0, we have

ha(t) > C + Rt. (4.5)

This estimate follows, since for every (small) ¢ > 0, there exists B > 0, such that
ar < Be* for all k € N; and therefore

+00 2 k
log (Z (;i 2 ) > -~ log(B),

k=0

which gives (4.5).

Let us set fa(r) = U2 then, by (4.5), lim/—s 400 fa(t) = +oo. Finally, set
ga = +/fa, and so, lim;_, { ga(t) = +00. Moreover, we have lim,_, ;o & fa(t) —
ga(t) = +oo for every ¢ > 0. Thus, for any arbitrary fixed s > 0, we get

swn (t/2) —ga(t)t = sha(1/2) —s10g(2D) — ga(t)t = t(sfa(t) — ga(r)) — s log(2D);

4.6)
hence, lim;_, 400 SN (t/2) — ga(t)t = +00. This shows the statement for d = 1. For
d # 1, the result simply follows by choosing s/d in (4.6). O

) Birkhauser



67 Page240f38 D. N. Nenning and G. Schindl

Proof of Lemma 4.3 We adapt the proof of [14, Lemma 4]. Therefore, assume that the
operator A is actually unbounded. Then, the spectrum o (A) is unbounded as well, and
s0, there exists a strictly increasing sequence of natural numbers k(n), such that

(i) n < ga(k(n)) (and n < k(n)) for all n € N,
(ii) in eachring {A € C: k(n) < |A| < k(n) 4 1}, there is a point A, € o (A),

and we can actually find a O-sequence ¢, with 0 < &, < min(1/n, ,—1), such that A,
belongs to the ring

rmi={AeC: k(n)—¢e, <|A| <k +1—¢,}.
As in Markin’s proof, the subspaces E 4 (r,,) H are non-trivial and pair-wise orthog-
onal. Thus, in each of those spaces, we may choose a non-trivial element e,,, such that
en = Ea(rn)en, (ei,ej) =36 ;.

Now, we define

+00
fi= galk(n) CWHI=ene,

n=1
As in [14], the sequence of coefficients belongs to £2, and
Ea(ra) f = ga(k(m)"* W+ 1=0e, By | | ru| F= 1.
neN.o
Moreover, for every ¢t > 0, we have

/€2t|A|d<EA()\)f,f>=/€2tlkd<EA()")EA U n f,EA U rn f>
C C

n€N>0 n€N>o

=" | SHaEsf. £)
n=1

I'n

=Y [ B EG . Ear) )
n=1""n

o0
= galk(n))2k0H1=en) f Md(Ex()en. en)
n=1

I'n

00
< Z e~ 210g(gak(m)) (k(m)+1—en) L2 (k(m)+1—ep) | Ea(rn)en ”2
n=l1

=1
+00
= Ze—2<log<ga<k(n>>—t>(k<n)+1—sn> < +o0,

n=1
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where we used in the first inequality that for A € r,, we have |A| < k(n) + 1 — g,
and in the final inequality that g, tends to infinity and that k(n) > n. Thus, we have
shown that f € £1y(A).

Moreover, in analogy to [14], and by a similar reasoning as above, we get for all
NegFandt >0

f ENVAESQ) [, f) =) galk() 2 E T / VA(E 4 (Ven, en).
C

n=1 In

4.7)

Next, we observe that for A € r,, we have wy(t|A]) > wn(E(kn) — &,)) >
wn (t(k(n) — 1)). We continue to estimate the right-hand side of (4.7) and infer

¢}
/ SNDAEL Q) f, f) 2 ) galkin) 2K Imen Zon @ =D) / d(Es(Men. en)
C I'n
N — e
=1

n=1

oo
> Z e2(@n (t(k(n)—1))~log(ga (k(n))) (k(m)+1))

n=1

By iterating (4.2), there exist M € §, s > 0 (small) and C > 0 (large), such that for
alla e C

on (tIA]) = sop([A]) = C,

which allows us to continue the estimate and get

oo
/ezwwmnd(EA(k)ﬁ £ = 3 o E—D)=ClosEamN*m+D) — 4o,
C

n=1

where the last equality follows from Lemma 4.7 (applied to the sequence M and
d = 2). Thus, we infer that f ¢ Eny(A). Since N € § has been arbitrary, we are
done. O

Finally, we are now in the position to prove our main theorem, a generalization of
[14, Thm. 5.1] which reads as follows.

Theorem 4.8 Suppose there exists a = (a;);, such that lim;_, | o a]]./] = 0and a
family § of weight sequences as in Lemma 4.3. Assume that for any weak solution
y of (4.1) on [0, +00), there is N € §, such that y € Eny([0, +00), H). Then, the
operator A is bounded.

Proof Let y be a weak solution of (4.1). By assumption, there exists N € §, such that
y € &y ([0, +00), H). By Theorem 4.1, we get that for every ¢ > 0, we have

y(t) € Eny(A),
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in particular y(0) € &y (A). Via an application of [12, Thm. 3.1], we infer

(o < | &m. (4.8)

t>0 Ne§

On the other hand, since

(peE™ = {f €H: [C FROAELGf, f) < +oo} :

t>0 t>0

it is clear that

ALGEIR {f €H: / PHAEAG)f. f) < +oo} = &g (A)-
C

t>0 t>0

Together with (4.8), this yields

U Envy(A) = 5(G1)(A).
NeF

Thus, using Lemma 4.3, we conclude that A is bounded. O

When taking § to be the family of all small Gevrey sequences, i.e., § = & =
{G%* : a < 1}, we infer [14, Thm. 5.1] (see also Remark 4.4).

4.4 An answer to the motivating question from Sect. 4.2

The final goal is now to combine the information from Theorems 3.4 and 4.8.
Therefore, suppose § is a family of weight sequences, such that:

(i) Ne LCforall N e Fand 1 = Ny = Ny,

(i) § has (4.2), _
(iii) § is uniformly bounded by some a = (a;); with lim_, 1o ajl./j =0, and
(iv) for all N € §, we have that n is log-concave.

Note that (iii) gives lim;_, ;oo (n j)l/ J =0forall N € §. Therefore, § is a family
as required in Lemma 4.3 and by (i), (iii), and (iv) Theorem 3.4 can be applied to each
N € §, and hence

YN eF: Emd, H) ZHR. (C H).

Summarizing, we can reformulate Theorem 4.8 as follows.

Theorem 4.9 Let § be a family of weight sequences as considered before. Suppose
that for every weak solution y of (4.1), there exist N € § and C, k > 0, such that y
can be extended to an entire function with

Iyl < Ce®n*lzh,
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Then, A is already a bounded operator.

Theorem 4.9 applies to the family & := {G* : 0 < o < 1} of all small Gevrey
sequences.
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Appendix A: On dual weight sequences and Matuszewska indices

The growth and regularity assumptions for weight sequences M in Theorem 3.4 or for
N € § in Lemma 4.3, in the technical Proposition 4.5 and in Theorems 4.8, 4.9 are by
far not standard in the theory of ultradifferentiable (and ultraholomorphic) functions.
More precisely, the sequences under consideration are required to grow very slowly
or to be even non-increasing. This is due to the fact that in Theorem 3.4 resp. in
Theorem 4.9, the conjugate sequence M* resp. N* plays the crucial role to restrict the
growth. Therefore, the conjugate sequence(s) is (are) required to satisfy the frequently
used conditions in the weight sequence setting; e.g., work with the associated function
WM*.

We are interested in studying and constructing such “exotic/non-standard”
sequences and may ask how they are “naturally” related to standard sequences. On the
one hand, as already stated in Sect. 2.5, formally, we can start with a standard/regular
sequence R = M* and then get M by the formula (2.3) which relates M and M* by a
one-to-one correspondence; i.e., take M = R*. However, in this section, the aim is to
give a completely different approach and to show how such “exotic” small sequences
M are appearing and can be introduced in a natural way. The main idea is to start
with N € LC (and having some more standard requirements) and then consider the
so-called dual sequence D from [5, Sect. 2.1.5]. However, to proceed, we also have
to recall and study the notion of Matuszewska indices.
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A.1: Matuszewska indices

We recall some facts and definitions from [ 5, Sect. 2.1.2], see also the literature citations
therein and especially [1]. Moreover, we refer to [7, Sect. 3]. Note that in [5] and in
[7], a sequence M € RIEO is called a weight sequence if it satisfies all requirements
from the class £C except necessarily My < M{; see [5, Sect. 1.1.1, p. 29; Def. 1.1.8,
p-32] and [7, Sect. 2.2, Sect. 3.1].

First, for any given sequence a = (a,), € RSO, the upper Matuszewska index o (a)
is defined by

a
a(a) :=inf {a eR: —Z is almost decreasing}
p

:inf{aeR:EinlVlfpfq: —<Ha—p},

and the lower Matuszewska index B(a) by

B(a) := sup {ﬂ eR: % is almost increasing}
ap Y4
:sup{ﬁeR:Elel‘v’lgpgq: FEH—}.
Note that 8(a) > 0 implies, in particular, lim,_, ; o a, = +00.
The aim is to give a connection between these indices and the notion of the conjugate
sequence introduced in this work. The following comments (a)—(e) and Lemma A.1
have been made resp. suggested by the anonymous referee:
First put gl = (p)pen and a~l.= (a;l)peN. Consequently, by definition of the
above indices the following relations are valid, see also [7, Rem. 2.6, Prop. 3.6] applied
tor=1ands =—1:

ag'la ) =14+a@ ") =1-B@), (A.1)

and
pigla™h =1+ 8@ =1-a(). (A.2)

The idea is now to apply these identities to a = u, and so, g'a~! corresponds to

w*, i.e., the sequence of quotients of the conjugate sequence M* (recall (2.3), (2.4)).
Combining this information with results from [7], we summarize the following:

(a) By (A.1), one has a(g'a™") < 1if and only if B(a) > O resp. with strict inequal-
ities. In particular, if M is log-convex, then 8(u) > 0, and so, a(u*) < 1.
Conversely, if «(u*) < 1 and so () > 0, then M is equivalent to a log-convex
sequence L, and more precisely, the equivalence is even established on the level
of quotient sequences (see the proof of [9, Prop. 4.15] and (a) in Remark 2.4 for
the analogous estimates in (2.7)).

This should be compared with [7, Thm. 3.16, Cor. 3.17] applied to M* resp. L*
and (v) in Sect. 2.6. (Since L* is equivalent to M*, also M* has (mg).
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(b)

©)

(d)

(e

Indeed, if B(u) > 0, then M is equivalent to a sequence L € LC, because
lim,_ oo ptp = limp_ 4o Ay, = +00, and so, one can achieve normalization
by changing finitely many terms of L at the beginning; see (iv) in Remark A.5 and
also the proof in Lemma A.3.

Similarly, B(g'a=!) > 0 if and only if «(a) < 1 holds by (A.2) resp. with strict
inequalities and the above comments apply when M is replaced by M* and M*
by M.

Using this knowledge, we can change the assumptions in Theorem 3.4 as fol-
lows: To proceed, we take M € RIEO, such that () < 1 is valid. Because then
B(n*) > 0, hence M* is equivalent to a sequence L* € LC and this property is
sufficient to proceed by taking into account (ii) in Remark 3.5 and (ii) in Sect. 2.6.
The same comment applies to Theorem 3.10; i.e., we are taking M, N € RIEO with
a(pn),a(w) < 1.

To ensure this requirement, we give several ideas: First, when given M, in The-
orem A.7 we deal with the corresponding dual sequence D, and so, we want to
have «(§) < 1. This can be expressed in terms of M; see Sect. A.2 for details.
However, even directly for M, we can get () < 1; in this context, see also
Theorem A.13: For this, let M € RIEO be given and assume that either S(v) > 1
or that a(u) < 4o0. In the first case, we take M= (M;l)peN, and in the

second one, M directly if already a(11) < 1 resp. G IM = (p!™"*1M,) pen
ifl <o) <r.

In (i) in Lemma 3.6, we assume M € REO, such that 0 < B(u) < a(u) < +oo:
First, 0 < B(w) yields that M is equivalent to L € L£C and since the equivalence
is established on the level of the quotient sequences (see (a) above), we get 0 <
B(L) < a(A) < +o00, too.

By [7, Thm. 3.16, Cor. 3.17], property o(}) < +o0 is equivalent to having (mg)
for L. Moreover, by combining [23, Prop. 3.4] and [7, Thm. 3.11] applied to
the sequence L and 8 = 0, the second assumption 0 < B(A) yields (3.2) for L.
Since the weighted classes appearing in (ii), (iii) in Lemma 3.6 are preserved under
equivalence of weight sequences (recall (ii) in Remark 3.5), we are done. (Note that
M has both (mg) and (3.2) too, since equivalence preserves these requirements;
for (mg), this is clear and concerning (3.2); see the proof of [23, Cor. 3.3].)

In Corollary 3.7, first, the aim is to apply Lemma 3.6 to M™* and, therefore, we
assume that M € REO is given such that 0 < 8(u*) < a(u*) < +oo which is
equivalent to requiring —oo < B(u) < a(u) < 1 (see (a)). The first estimate is
clearly true if M is log-convex and by (b) the second one is sufficient to apply
Theorem 3.4 which is needed in the proof of Corollary 3.7 as well.

Finally, for the sake of completeness, we comment on the meaning of (3.3) and
(3.2) in terms of growth indices: First, let us consider the auxiliary sequence
R € R defined via the quotients p = (p,), with p, := (M,)V/P, p > 1.
Hence, R, = ]_[le(Mi)l/i with Rgp = 1 (empty product), and so, M € LC
implies R € LC. Then, [7, Thm. 3.11] applied to R and 8 = 0 yields that (3.2)
for M € LC is equivalent to 8(p) > 0.
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On the other hand, recall that (3.3) means a(wy) < +00;i.e., [7, Thm. 2.11, Cor.
2.14] applied to 0 = wy; with « denoting the index for functions from [7, Sect.
2.2].

Summarizing, [23, Thm. 3.1] precisely shows that for any M € LC, we have
a(wy) < +oo if and only if B(p) > 0.

If M has, in addition, (mg) (e.g., like in (¢) above), then B(p) = B(u) and
a(p) = a(uw) holds true: Both equalities follow by the estimates p, = (Mp)]/P <
p < App for some constant A > 1 and all p > 1; recall (2.1) for the first and,
e.g., [7, Lemma 3.1 (iii)] for the second one.

Based on comment (e), the following question appears: What can be said about
the relation between B(p) and B(u) in general; i.e., when M does not have (mg). To
prove relation (A.4), which has been claimed by the referee, for technical reasons, we
have to recall some more notation also used in Sect. A.2:

Let M € LC be given. We introduce the counting function

Em@):=[{peNsp: Mp = tjl, t=>0.

By definition, it is obvious that Xy () = 0on [0, 1) and Xy () = pon [pp, (hp41)
provided that j1, < pp1. Recall that for M € LC, we have lim,_, o 1, = +00.
Moreover, we recall the known integral representation formula (see [11, 1.8. III] and
also [10, (3.11)])

t '
wp(t) = / 2:M—(u)dl/l = / 2:M—(u)dl/l. (A.3)
0 u m

1 u

LemmaA.l Let M € LC be given and let R be the sequence given by R, =
P ((Mp)'i, p € N. Then, we get

B(p) = B(u) = 0. (A4

Proof The arguments and techniques are based on the proofs of the characterization
[23, Thm. 3.1] and of [2, Lemma 12, (2) = (4)] and the obtained estimates might
have applications in different contexts as well.

First, recall that S(u) > 0, because M is assumed to be log-convex. If B(u) = 0,
then (A.4) is trivial, since R is log-convex too and, hence, 8(p0) > 0. On the other hand,
if B(p) = 0, then B(p) = B(w) has to be valid and so (A.4) is clear, too. Therefore,
let, from now on, B(u) > 0 and B(p) > 0.

We take 0 < 8 < B(u), and hence, [7, Thm. 3.11, (v) < (vii)] gives

Ik €Noy: liminf 22 < k. (A.5)
- p—>+00 Hp

hence, prp > kﬂup holds forall p > pg k. Then,lets > pp,, andsoup <t < fipt1
for some p > pg r. We get by the definition of the counting function X (¢) = p and

W Birkhauser



Ultradifferentiable classes of entire functions Page310f38 67

also Ty (kPr) < EM(kﬁupH) < k(p+1) =kXpy )+ k follows. Consequently, so
far, we have shown that

VO<B<BwIkeN,ID>1Vr>0: SyukPr) <kSy@) +D. (A6)

Using (A.6) and the integral representation (A.3), we estimate for all t > 1 /k? as
follows:

kPt t B
h)) Yuk
a)M(kﬁt) — / M(M)du - / Mdv
1 u w1/kP v

NI ! 1 P
<k dv+ D —dv = kwy () + Dlog(tk” /1i1).
0 v w1/kP VU

Since wys () = o(log(t)) as t — 400, we have shown now

VO<B<Bu)IkeNs»ID;>1Vt>0: wykPr) < (k+ Doy@)+ Di.
(A7)
Then, note that k + 1 < 2k for all k € N>, and, when (A.5) is valid for some k, then

also for all k!, because, by iteration, we get Muk—i:’ > k'#. Thus, when 0 < B < B(w)

is given, we can choose 8 with 8/ < B8 < B(u) and k sufficiently large to ensure
(2k)ﬁ < kP & 28" < kP—F' Therefore, when taking k; := 2k, finally, we arrive at

VO<B <Bu) Ik eNsydB>1V1>0: wnkdt) < ko) + B.
(A.8)
Now, we move to the study of S(p): Let 0 < 8 < B(p), and so, [7, Thm. 3.11,
(v) < (vii)] applied to R gives

M, )1/ kp)
JkeNoy: limint M) "
= p——+00 (Mp)l/P

Then, we replace in [23, Thm. 3.1, (i) = (ii)] the value & by k# and L by k and get
VO<B<B(p)IkeNs2IB>1Vr>0: wykPr) <2kwoy@)+ B. (A9)
Analogously, as before, this implies

VO<pB <B(p)Ik €NsyIB>1V1>0: wM(kIIS/t) < kiwpy(t) + B.
(A.10)
Conversely, using (A.10) and following [23, Thm. 3.1, (ii) = (i)] and replacing there

h by k'lg "and L’ by k1, then we get (with the same choice k; for given ') the estimate

My, )Y &) /
1 . 194 B
VO<B <B(p)Ik €Nsy: }nlglfg—(Mp)l/P > ki .
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Therefore, to verify 0 < 8 < B(p), equivalently, one can use (A.10) and by comparing
this with (A.8) above, we have shown B(p) > B(u). O

A.2: Dual sequences

Let N € LC be given. We define a new sequence D, called its dual sequence, in terms
of its quotients § = (3,) pen as follows, see [5, Def. 2.1.40, p. 81]:

Vp>vi(=1D: 8pt1:=En(p), Spy1:=1 VpeZ —1<p<vy,

and set D, := Hf:o 8;i. Hence, D € LC with 1 = Dy = D follows by definition.
Please note that in [5] and [7], a different notation for the counting function and
the sequence of quotients of a weight sequence has been used, and that concerning the
definition of the sequence of quotients, an index shift appears; see [5, Def. 1.1.2, Def.
2.1.27] for details.
In [5, Thm. 2.1.43, p. 82], the following result has been shown:

Theorem A.2 Let N € LC be given, such that

JA=1VpeN: vy < Av,. (A.11)

Then, we get a(v) = /3 and B() = Lﬁ.

Note

(1) As pointed out in [5, Sect. 2.1.3, p. 63—64] and [7, Remark 3.8], the aforemen-
tioned index shift in the sequences of quotients is not effecting the value of the
Matuszewska indices () and B(-).

(i1) (A.11),see [5, (2.11), p. 76] and which has also appeared due to technical reasons
in [18], is connected to the growth behaviors moderate growth and derivation
closedness. More precisely, in [5, Remark 2.1.36, p. 78], it has been shown that
for log-convex sequences, we have

(mg) = (A.11) = (dc), (A.12)
and each implication cannot be reversed in general.
A.3: Main statements

First, by applying Theorem A.2, we immediately get the following statement.

LemmaA.3 Let N € LC be given with (A.11). Assume that N satisfies

l) Uq
IH>138>1V1<p=<q: <H-L

: (A.13)
pﬂ P

i.e., the sequence (vp/pﬂ)p is almost increasing for some B > 1.
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Then, the dual sequence D is equivalent to a sequence L, such that L* is normalized
and log-convex (and D* is equivalent to L*, too).

Proof By assumption, we have 8(v) > B > 1, and so, «(8) < 1 follows by
Theorem A.2. Consequently, we have that

dH>1V1i<p=<qg: —+<H-—-,
q

ie., p — % is almost decreasing. If we can choose H = 1, then we are done with
L = D,sinced := (D,/p") pen directly is log-concave and so D* is log-convex; see
(iv) in Sect.2.6 and (a) in Lemma 2.3. Note that Dg = D; = 1 by definition and so
D* is normalized, too.

If H > 1, then we are applying (a) in Remark 2.4 to M = D to switch from D
to the equivalent sequence L defined via (2.6). Thus, p — % is non-increasing, and
hence, [ := (L,/p")pen is log-concave which is equivalent to the log-convexity for
L*. Normalization for L* follows, since Dy = D1 = 1 and, finally, D* is equivalent
to L* which holds by (ii) in Sect. 2.6. O

LemmaA4 Let N € LC be given with limpHJroo(np)]/I’ = +o00. Then, we get
limp_>+oo 5[)/[) = limp_>+oo(dp)l/p = 0.

Proof First, by (2.1) and Stirling’s formula, we see that lim,_, 100 (1 p)l/ P =400
implies lim,_, 100 v/ p = +00, as well.

Let C > 1 be given, arbitrary but from now on fixed. Then, we can find some
pc € Nog, such that v, > pC forall p > pc holds true. Since | Z] > £ —1 > pc
is valid for all p € Nwith p > Cpc + C(> pc), we have for all such (large) integers
p that

vip/cl > Lp/CIC = (%— l)C:p—Cz %7

where the last estimate is equivalent to having p > 2C which holds true, since p >
Cpc + C > C + C = 2C. Consequently, by the definition of the counting function
Xy and the dual sequence, we have shown Xy (p/2) < |&] < £, and s0, 8,11 =

Xy(p) < %” for all sufficiently large integers p. Now, since C can be taken arbitrary
large, it follows that lim_, 5 6,/p = 0.

Finally, since D € LC by (2.2) and Stirling’s formula, we see that
lim— 400 8,/ p = 0 does imply lim,—, oo (dp) /7 = 0. o

Consequently, when combining Lemmas A.3 and A.4, we have that the
sequence L defined via (2.6) and being equivalent to D has lim,_ o Ap/p =
limp—, 400 (Ip)!/7 = 0, too.

Concerning these Lemmas, we comment:

Remark A.5 Let N satisfy the assumptions from Lemmas A.3 and A.4. Then, we get
for the technical sequence L constructed via the dual sequence D the following (see
again (a) in Remark 2.4 applied to D):
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(1) L* € LC is valid.
(i) Since D is log-convex and equivalence between sequences preserves (mg), by (v)
in Sect. 2.6, we have that both D* and L* have (mg).

(iii)) Moreover, log-convexity for D implies this property for L and, indeed, L satisfies
all requirements of sequences belonging to the class LC except Lo < L1, because
only A1 < 81 = 11is known (see (2.7)).

(iv) However, when technically modifying L at the beginning with the following trick,

one can achieve w.l.o.g. thateven L € LC:
When A1 = 1, then no modification is required. Therefore, letnow A; < 1. Since L
is log-convex, the mapping p +—> A, is non-decreasing and lim_ ;5o A, = +00
because L is equivalent to D. Thus, there exists pg € N~ (chosen minimal), such
that for all p > po, we have 1), > 1. Then, replace L by L defined in terms of its
quotients x p» 1.€., putting L p= ]_[ kl, where we set

3:,, =1, for0 < p < po, 3:,, i=Ap, forp > po.

Consequently, we get: 1 = Lo = Ly, and L is log-convex, since p > Ap is
non-decreasing and L < L < cL for some ¢ > 1 which yields that L and L are
equivalent. B

Finally, Tis log-concave, since p +—> '\7 is non-increasing which can be seen
as follows: Clearly, 7 > p“ forall 1 < p < pg— 1 and also for all p > po,

since [ is log-concave. Then, note that - 5 = f forall 1 < p < po, and so,

g 1o pg o Apgtl _ Apgtl

—_—t = = > = > = =

Po po — po — po+l po+1- o -
Summarizing (see (a) in Remark 2.4), we have that L, L* € LC, L is equivalent

to D and L* is equivalent to D*.

Remark A.6 By the characterization given in [7, Thm. 3.11] and [7, Thm. 3.10], see
also [5, Prop. 2.1.22, p. 68] and the discussion after the proof of [7, Thm. 3.11], we
have the following:

(A.13),i.e., B(v) > 1,isequivalent to the fact that N € LC has (y;) or equivalently
(B1).

Thus, B(v) > 1 if and only if N is strongly non-quasianalytic.

Recall that (y1) for N implies, in particular, that lim,_, o (7 p)l/ P = +4o00.

Summarizing everything, in particular, the information from Lemmas A.3 and A 4
and Remark A.5, we get the following main result.

Theorem A.7 Let N € LC be given and let D € LC denote the corresponding dual
sequence. We assume that:

(x) B(v) > 1 holds true, i.e., N is strongly non-quasianalytic, and hence,
lim s 100 (1) /P = 400, and
(*) N satisfies (A.11).

Then, there exists L € R§0 (given by (2.6) w.r.t. the sequence D) which is equivalent
to D and such that L satisfies all requirements to apply Theorem 3.4 to L. Moreover,
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the corresponding isomorphisms are valid for the class defined by D as well (see (ii)
in Remark 3.5) and we also have a(8) = a(\) < 1. Finally, L is log-convex, D* and
L* are equivalent and both satisfy (mg).

Proof This follows directly by involving Lemmas A.3 and A.4, Remark A.5, and the
comments listed in Sect. 2.6. O

Corollary A.8 Let N € RIEO satisfy the following conditions:

(%) ne LC,
() (1), and
() (mg).

Then, Theorem A.7 can be applied to N.

Proof By (A.12), we get that (mg) implies (A.11), and the other assertions follow
immediately. o

Similarly, the above results can be used to construct sequences L', L? for which
Theorem 3.10 applies.
Note:

(%) A sequence N satisfies the assertions listed in Corollary A.8 if and only if n is
formally a so-called strongly regular sequence in the notion of [24, Sect. 1.1]. The
sequence M in [24] is precisely denoting m in the notation used in this work.

(%) Corollary A.8 applies to N = G* for any s > 1. On the other hand, Theorem A.7
also applies to the so-called g-Gevrey sequences given by M9 := (qu) peN with
g > 1. Each M1 violates (mg), but (A.11) is satisfied.

We also have the following result which shows how (3.3) can be obtained for the
dual sequence D (and for L). This is crucial when D (resp. L) shall belong to a family
¥ as considered in Sect. 4.

Proposition A.9 Let N € LC be given, let D € LC denote the corresponding dual
sequence, and let L given by (2.6) w.r.t. D. We assume that N is also having

(*) a(v) < +o0.

Then, 5(5) = B(A) > 0 and both wp and wy, satisfy (3.3).

Proof First, by [7, Thm. 3.16, Cor. 3.17], we know that «(v) < oo implies (in
fact it is even equivalent to) (mg). Consequently, also (A.11) holds true, see (A.12).
Second, using these facts, Theorem A.2 implies that §(§) > 0. Then, by [7, Thm. 3.11
(vii) < (viii)] (applied to B = 0), we get y (D) > 0 as well (for the definition and the
study of this growth index y (-) for weight sequences, we refer to [7, Sect. 3.1]). By
combining [7, Cor. 4.6 (i)] and [7, Cor. 2.14] (applied to o := wp), we have that wp
satisfies (3.3) and this condition is abbreviated by (w1) in [7]. Finally, the equivalence
between D and L clearly preserves (3.3) for wy, by definition of the associated weight
functions and the equivalence [23, Thm. 3.1 (ii) < (iii)] applied to the sequence D. O

Let us combine now Theorem A.7 and Proposition A.9:
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Theorem A.10 Let N € LC be given, let D € LC denote the corresponding dual
sequence, and let L be given by (2.6) w.r.t. D. We assume that N also satisfies

*) 1< B <a(v) < +oo.

Then, L is a sequence, such that lim,_, 4 (lp)l/f’ =0, (ii) and (iv) in Sect. 4.4 and all
requirements from (i) there except Lo < L. However, lI,l view of (iv) in Remark A.S
also (i) from Sect. 4.4 can be obtained when passing to L.

Note: By applying the technical Proposition 4.5, it is possible that, when given a
one-parameter family of sequences N®, 8 > 0, and having the requirements from
Theorem A.10, to construct from the corresponding family £ := (LP . B > 0} (resp.
L:={L® : B > 0})atechnical uniform bound a as required in Sect.4 and hence to
apply Theorem 4.9 to L (resp. to L£).

A.4:The bidual sequence

The goal of this final section is to show how the procedure from Sect. A.3 can be
reversed in a canonical way. Let us first recall: For any N € LC, we have that the
corresponding dual sequence D € LC, and so, in [5, Definition 2.1.41, p. 81], the
following natural definition has been given:

Vp=di=1: €py1:=2p(p), € =€ :=1, (A.14)

and set £, := ]_[l.p:l ¢;. Finally, we put Eg := l andso E € LC with 1 = Ey = E|
follows by definition. This sequence E = (E)) pen is called the bidual sequence of
N, and in [5, Theorem 2.1.42, p. 81], it has been proven that N and E are equivalent.
(In fact, there even a slightly stronger equivalence on the level of the corresponding
quotient sequences has been established.)

We prove now converse versions of Lemmas A.3 and A.4.

LemmaA.11 Let D € LC be given with a(8) < 1.
Then, the (bi)-dual sequence E defined via (A.14) has (A.13) for some B > 1 (and
so E is strongly non-quasianalytic).

Proof Since(8) < 1,wehave that D satisfies (A.11); see the proof of Proposition A.9.
Thus, B(€) > 1 follows by Theorem A.2 and so, for some 8 > 1, we have

€p €
dH>1V1i<p=<gq: -4 <H—,
B =1 yB

ie., p— <z is almost increasin O
., o g
LemmaA.12 Let D € LC be given with lim, , 1 8,/p = O (resp. equivalently

lim,,_>+oo(dp)1/l’ = 0). Then, the dual sequence E satisfies lim,_, oo €p/p =
lim,—, oo (ep) /P = +o0.
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Proof First, lim,_, 4~ 8,/p = 0if and only if lim,_, 4« (d,) /7 = 0 holds by (2.2).

Let C > 1 be given, arbitrary but from now on fixed and w.l.0.g. we can take C €
N ¢. Then, we find some pc € N, such that§, < pC_1 for all p > pc holds true.
For all such (large) integers p, we also have pC > pc, and s0, §,c < (pO)C~ ' =p
for all p > pc. By definition, since €11 = Zp(p) = |{j € N5o : §; < p}| and
J + §; is non-decreasing, we get now €,41 > pC & 6”7“ > C forall p > pc.
Thus, we are done, because C is arbitrary (large). O

Finally, we get the following main result.
Theorem A.13 Let D € LC be given with 1 = Dy = D and assume that
(%) a(d) < L.

Then, one can apply Theorem 3.4 to the sequence L given by (2.6) and, in addi-
tion, the isomorphisms from Theorem 3.4 hold for the classes defined via D too
(by Remark 3.5). The corresponding dual sequence E € LC (see (A.14)) is strong
non-quasianalytic.

Proof The first part holds by comment () in Sect. A.1 applied to D (even under more
general assumptions on the given sequence). The strong non-quasianalyticity for E
follows from Lemma A.11. O
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