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Abstract
Matrix polynomials with unitary or doubly stochastic coefficients form the subject
matter of this manuscript. We prove that if P(λ) is a quadratic matrix polynomial
whose coefficients are either unitarymatrices or doubly stochasticmatrices, then under
certain conditions on these coefficients, the corresponding block companion matrix C
is diagonalizable. Consequently, if Q(λ) is another quadratic matrix polynomial with
corresponding block companion matrix D, then a Hoffman–Wielandt type inequality
holds for the block companion matrices C and D.
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1 Introduction

Wework either over the fieldC of complex numbers or over the fieldR of real numbers.
The vector space of n × n matrices over C (resp., R) is denoted by Mn(C) (resp.,
Mn(R)). The notations ‖·‖2 and ‖·‖F will denote, respectively, the spectral norm and
the Frobenius norm of a square matrix. An n × n matrix polynomial of degree m is
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a mapping P from C to Mn(C), defined by P(λ) = ∑m
i=0 Aiλ

i , where Ai ∈ Mn(C)

and Am �= 0. Matrix polynomials arise in several areas of applied mathematics. A
good source of reference on matrix polynomials is the monograph by Gohberg et al.
[8].

An n×nmatrix polynomial P(λ) is said to be regular if det(P(λ)) is not identically
zero. For a regular matrix polynomial P(λ), the polynomial eigenvalue problem (PEP)
seeks to find a scalar λ0 and a nonzero vector v such that P(λ0)v = 0.Equivalently, for
a given regularmatrix polynomial P(λ), λ0 ∈ C is an eigenvalue, if detP(λ0) = 0.The
nonzero vector v ∈ C

n satisfying the equation P(λ0)v = 0 is called an eigenvector
of P(λ) corresponding to an eigenvalue λ0. Moreover, λ0 = 0 is an eigenvalue of
P(λ) if and only if A0 is singular. We say ∞ is an eigenvalue of P(λ), when 0 is an
eigenvalue of the reverse matrix polynomial P̂(λ) := λm P( 1

λ
) = A0λ

m + A1λ
m−1 +

· · · + Am−1λ + Am . Notice that for an n × n matrix polynomial of degree m ≥ 1,
there are at most mn number of eigenvalues.

Given an n × n matrix polynomial P(λ) of degree m with nonsingular leading
coefficient, one can introduce a monic matrix polynomial corresponding to P(λ) as
follows: For i = 0, . . . ,m − 1, let Ui = A−1

m Ai . Define a monic matrix polynomial
PU (λ) := Iλm +Um−1λ

m−1 +· · ·+U1λ+U0 so that P(λ) = Am PU (λ). The matrix
polynomials P and PU have the same eigenvalues. Moreover, the eigenvalues of PU
are the same as that of the eigenvalues of the correspondingmn×mn block companion

matrix C :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
−U0 −U1 −U2 · · · −Um−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(see [9] for details). A nonzero vector

v ∈ C
n is an eigenvector of P(λ) corresponding to an eigenvalue λ0 if and only if the

vector

⎡

⎢
⎢
⎢
⎣

v

λ0v
...

λm−1
0 v

⎤

⎥
⎥
⎥
⎦

∈ C
mn is an eigenvector of C corresponding to the eigenvalue λ0.

Note that any eigenvector of C is of this form.
An easy consequence of the finite dimensional spectral theorem (see for instance

Theorem 2.5.5, [10]) is that if A and B are two n × n commuting normal matrices
with eigenvalues λ1, . . . , λn and μ1, . . . , μn, respectively, then

n∑

i=1

|λi − μi |2 = ‖A − B‖2F . (1.1)

What happens when the matrices do not commute has given rise to several interesting
questions. One of the classical and well known inequality in matrix analysis is the
Hoffman–Wielandt inequalitywhich says that if A and B are two n×n normalmatrices
with eigenvalues λ1, . . . , λn and μ1, . . . , μn, respectively given in some order, then
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there exists a permutation π of {1, . . . , n} such that
n∑

i=1

|λi − μπ(i)|2 ≤ ‖A − B‖2F (1.2)

(see for instance Theorem 6.3.5, [10]). Various generalizations of the Hoffman–
Wielandt inequality by allowing one or both matrices to be non-normal have been
studied in the literature (see for instance [1, 2, 5, 6]) and the references cited therein.
The most general form assumes that one matrix is diagonalizable while the other
remains arbitrary. In [11], the authors provide a concise overview of these general-
izations. As in [11], we refer to this generalized form as the Hoffman–Wielandt type
inequality, which is stated below:

Theorem 1.1 [11, Theorem 4] Let A be a diagonalizable matrix of order n and B be
an arbitrary matrix of order n, with eigenvalues α1, α2, . . . , αn and β1, β2, . . . , βn,

respectively. Let X be a nonsingular matrix whose columns are eigenvectors of A.

Then, there exists a permutation π of the indices 1, 2, . . . , n such that

n∑

i=1

|αi − βπ(i)|2 ≤ ‖X‖22‖X−1‖22‖A − B‖2F . (1.3)

The number ‖X‖2‖X−1‖2 is the spectral condition number of X and is usually denoted
by κ(X). For a nonsingular matrix X ∈ Mn(C), κ(X) = σmax

σmin
, the ratio of the largest

and the smallest singular values of X .

The purpose of this manuscript is to investigate inequalities (1.2) and (1.3) for block
companion matrices of matrix polynomials. Examples illustrating that the inequality
(1.2) does not hold in general for block companion matrices of matrix polynomi-
als, even when the coefficients are normal or unitary matrices is presented first (see
Remark 2.1). This motivates us in identifying specific classes of matrix polynomials
for which the Hoffman–Wielandt type inequality (1.3) holds for the corresponding
block companion matrices. As one may observe, inequality (1.3) demands that at
least one of the block companion matrices of such matrix polynomials is diagonal-
izable. With this aim, we prove in Theorem 2.2 that the block companion matrix of
linear matrix polynomials whose coefficients are either unitary or diagonal or positive
semidefinite matrices is diagonalizable. Theorem 2.2 makes it pertinent to look at sim-
ilar classes of matrix polynomials of higher degree whose block companion matrices
are diagonalizable. The main results of the paper in this connection are Theorems 2.4
and 2.12, which concern quadratic matrix polynomials with commuting unitaries and
2 × 2 doubly stochastic matrix coefficients, respectively. We also point out in Theo-
rem 2.10 that the block companion matrix of a linear matrix polynomial with 2 × 2
doubly stochastic matrices are diagonalizable. We establish the Hoffman–Wielandt
type inequality for block companion matrices of these classes of matrix polynomials
in Theorems 2.6, 2.7 and 2.14. Examples to demonstrate that the block companion
matrix is not diagonalizable in general for other classes ofmatrix polynomials—linear,
quadratic and cubic, as well as matrix polynomials not satisfying the assumptions of
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Theorems 2.4 and 2.12—(see Remarks 2.3, 2.5, 2.11 and 2.13) are pointed out. The
final outcome of the paper concerns estimating the spectral condition number of the
matrix X that appears in each of Theorems 2.6, 2.7, and 2.14. We actually prove
that bound on κ(X) in Theorem 2.6 is independent of matrix polynomials and in
Theorem 2.7, we give κ(X) in terms of the eigenvalues of the leading coefficient of
the matrix polynomial. To the best of our knowledge, the results presented in this
manuscript seems new in proving the Hoffman–Wielandt type inequality for certain
class of matrix polynomials. The only other source we are aware of in this direction is
[12]. In connection to the results in the literature, one can see that if the matrix poly-
nomial is monic and linear with normal or diagonalizable matrix coefficients, then
our results reduce to the classical Hoffman–Wielandt and the Hoffman–Wielandt type
inequality, respectively, for matrices.

The manuscript is organized as follows. Section 1 is introductory and contains
a brief introduction to matrix polynomials that are needed for this manuscript. The
main results are presented in Sect. 2, which is further divided into subsections for
ease of reading. Each of these subsections is self-explanatory. The Hoffman–Wielandt
type inequality is derived for the corresponding block companion matrices of matrix
polynomials (with appropriate assumptions) in each of these subsections. In Sect. 2.3,
the spectral condition number of a matrix X ,which appears in the Hoffman–Wielandt
type inequality is estimated. Wherever possible, necessary remarks and examples are
provided to justify the assumptions made. Most of the examples were computationally
verified using Matlab and SageMath.

Assumption Throughout this manuscript, we only work with matrix polynomials
whose leading coefficient is nonsingular.

2 Main results

This section contains the main results of this paper. We first make a remark which
gives justification for considering the Hoffman–Wielandt type inequality as against
the inequality (1.2) in the context of matrix polynomials.

Remark 2.1 1. As mentioned in the introduction, the inequality (1.2) for block
companion matrices of matrix polynomials whose coefficients are normal matri-

ces fails to hold in general. Consider P(λ) =
[
2 0
0 −2

]

λ +
[
2 2
2 −14

]

and

Q(λ) =
[
1 0
0 − 5

4

]

λ +
[
2 5
5 − 30

4

]

with the corresponding block companion matri-

ces C =
[−1 −1
1 −7

]

and D =
[−2 −5
4 −6

]

, respectively. The eigenvalues of C and

D are λ1 = −4 − 2
√
2, λ2 = −4 + 2

√
2 and μ1 = −4 + 4i, μ2 = −4 − 4i ,

respectively. Note that for any permutation π on {1, 2}, ∑2
i=1 |λi −μπ(i)|2 = 48,

whereas ‖C − D‖2F = 27. Therefore, the inequality (1.2) fails to hold in this
case. However, one can easily prove that the inequality (1.2) holds for the block
companion matrix of linear matrix polynomials whose coefficients are unitary
matrices.
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2. For higher degree matrix polynomials the inequality (1.2) fails to hold in gen-
eral even when the coefficients are unitary matrices. For example, let P(λ) =
[
1 0
0 1

]

λ2+
[

1√
2

1√
2

1√
2

− 1√
2

]

λ+
[

4√
41

5√
41

5√
41

− 4√
41

]

and Q(λ) =
[
1 0
0 1

]

λ2+
[

1√
2

1√
2

1√
2

− 1√
2

]

λ+
[

− 1
2

√
3
2

−
√
3
2 − 1

2

]

. If C and D are the corresponding block companion matrices of

these matrix polynomials, then ‖C − D‖2F = 4. However, on computing the
eigenvalues of C and D, one observes that for any permutation π on {1, 2, 3, 4},∑4

i=1 |λi − μπ(i)|2 ≥ 4.5102 > 4, where {λi } and {μ j } are eigenvalues of C and
D, respectively. Thus, the inequality (1.2) fails to hold in this case.

It, therefore, makes it pertinent to consider matrix polynomials whose block com-
panionmatrices satisfy inequality (1.3). Further, in inequality (1.3), one of thematrices
should be diagonalizable. Therefore, in the following subsections, we find classes
of matrix polynomials whose block companion matrix is diagonalizable and prove
inequality (1.3) for such matrix polynomials.

2.1 Hoffman–Wielandt type inequality for block companionmatrices of matrix
polynomials with unitary coefficients

We begin with the following theorem which gives the classes of linear matrix
polynomials whose block companion matrix is diagonalizable.

Theorem 2.2 Let P(λ) = A1λ + A0 be a linear matrix polynomial. Then, the
corresponding block companion matrix C of P(λ) is diagonalizable

(1) when the coefficients are unitary matrices.
(2) when the coefficients are diagonal matrices.
(3) when the coefficients are positive (semi)definite matrices.

Proof In (1) and (2) the block companion matrix is unitary and diagonal, respectively.
Hence, it is diagonalizable. In (3), the corresponding block companion matrix is C =
−A−1

1 A0. Note that A−1
1 A0 = A−1/2

1

(
A−1/2
1 A0A

−1/2
1

)
A1/2
1 . One can verify that

A−1/2
1 A0A

−1/2
1 is a Hermitian matrix and is, therefore, diagonalizable. It now follows

that C = −A−1
1 A0, being similar to −A−1/2

1 A0A
−1/2
1 , is diagonalizable. 	


Remark 2.3 It is not hard to construct linear matrix polynomials whose coefficients are
either normal or upper (lower) triangular such that the corresponding block companion
matrixC is not diagonalizable. If P(λ) is a quadratic matrix polynomial whose coeffi-
cients are either (a) diagonal matrices (b) normal matrices (c) upper (lower) triangular
matrices or (d) positive (semi)definite, then again, the corresponding block compan-
ion matrix need not be diagonalizable. The following matrix polynomial serves as an

example for all of the above cases: P(λ) =
[
1 0
0 1

]

λ2 +
[
2 0
0 2

]

λ +
[
1 0
0 2

]

.

The above remark also implies that if a matrix polynomial has diagonal coeffi-
cients, it does not necessarily mean that the corresponding block companion matrix
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is diagonalizable. Theorem 2.2 and the remark that follows suggest that for deg ≥ 2,
matrix polynomials with unitary coefficients might form a good candidate as far as
diagonalizability of the block companion matrix is concerned. We discuss this below.

Given a matrix polynomial P(λ) = Iλm + Am−1λ
m−1 + · · · + A1λ + A0, let us

consider the following matrix equation Xm + Am−1Xm−1+· · ·+ A1X + A0 = 0 with
X ∈ Mn(C). An n×n matrix X satisfying this equation is called a right solvent of the
equation.We just call a right solvent X a solution here. There are atmost

(nm
n

)
solutions

to this equation [7]. Solutions X1, X2, . . . , Xm of the abovematrix equation are said to

be independent if the block Vandermonde matrix, V :=

⎡

⎢
⎢
⎢
⎣

I I · · · I
X1 X2 · · · Xm
...

...
. . .

...

Xm−1
1 Xm−1

2 · · · Xm−1
m

⎤

⎥
⎥
⎥
⎦
is

invertible. In such a case, the corresponding block companionmatrixC of P(λ) is sim-

ilar to the block diagonal matrix

⎡

⎢
⎢
⎢
⎣

X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...

0 0 · · · Xm

⎤

⎥
⎥
⎥
⎦

through the block Vandermonde

matrix V . Details of these may be found in [4]. Thus, if each of these solutions hap-
pen to be diagonalizable, then the block companion matrix C is also diagonalizable.
We shall use this in proving Theorem 2.4. Let us observe that it suffices to consider
monic matrix polynomials while dealing with commuting unitary coefficients. For, if
P(λ) = V2λ2 + V1λ + V0, where the Vi ’s are commuting unitary matrices, then we
can consider the corresponding monic matrix polynomial PU (λ) = Iλ2 +U1λ +U0
and observe that the coefficients of PU are also commuting unitary matrices. With
these observations, we have the following theorem.

Theorem 2.4 Let P(λ) = Iλ2 + U1λ + U0 be an n × n matrix polynomial where
the coefficients U0 and U1 are commuting unitary matrices. Then, the corresponding
block companion matrix C of P(λ) is diagonalizable.

Proof The matrices U0 and U1 being commuting unitary matrices, there exists
an n × n unitary matrix W such that WU1W ∗ = D1 and WU0W ∗ = D0
where, D1, D0 are diagonal matrices whose diagonal entries are the eigenval-
ues of U1 and U0, respectively. Let D1 = diag(a11, a22, . . . , ann) and D0 =
diag(b11, b22, . . . , bnn). Let Q(λ) := WP(λ)W ∗ = Iλ2 + D1λ + D0. The cor-

responding block companion matrix of Q(λ) is D =
[

0 I
−D0 −D1

]

. Note that C

and D are similar through the unitary matrix U := W ⊕ W . It, therefore, suffices
to prove that the matrix D is diagonalizable. Consider Q(λ) = Iλ2 + D1λ + D0 =⎡

⎢
⎢
⎢
⎣

λ2 + a11λ + b11 0 · · · 0
0 λ2 + a22λ + b22 · · · 0
...

...
. . .

...

0 0 · · · λ2 + annλ + bnn

⎤

⎥
⎥
⎥
⎦

.Let fii (λ) := λ2+aiiλ+

bii , 1 ≤ i ≤ n. It thus follows that
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Q(λ) =

⎡

⎢
⎢
⎢
⎣

f11(λ) 0 · · · 0
0 f22(λ) · · · 0
...

...
. . .

...

0 0 · · · fnn(λ)

⎤

⎥
⎥
⎥
⎦

. Observe that for each i, 1 ≤ i ≤ n, the poly-

nomial fii (λ) has two distinct roots. For otherwise, fii (λ) = (λ − λ0)
2 for some

λ0, so that λ2 + aiiλ + bii = λ2 − 2λ0λ + λ20. Comparing the coefficients we get,
aii = −2λ0 and bii = λ20. Taking the modulus we have, |λ0| = 1

2 and |λ0| = 1,
which is not possible. This proves the assertion that fii (λ) has two distinct roots.
Let λi �= μi be two distinct roots of fii (λ) for 1 ≤ i ≤ n. Let us now define
X1 := diag(λ1, λ2, . . . , λn) and X2 := diag(μ1, μ2, . . . , μn). It is easy to verify that
X1 and X2 satisfy the quadratic matrix equation X2 + D1X + D0 = 0. Moreover,
det(X1 − X2) = ∏n

i=1(λi − μi ) �= 0, as λi �= μi for all i . Therefore, the block

Vandermonde matrix V =
[
I I
X1 X2

]

is invertible; in other words, X1 and X2 are two

independent solutions to the matrix equation X2 + D1X + D0 = 0. It now follows

that the block companion matrix D =
[

0 I
−D0 −D1

]

is similar to the block diagonal

matrix D̃ =
[
X1 0
0 X2

]

through the block Vandermonde matrix V . Since both X1 and

X2 are diagonal, D̃ is diagonal. Hence, D is diagonalizable. 	


Few remarks are in order.

Remark 2.5 1. Theorem2.4 not only proves diagonalizability of the block companion
matrix D, but also explicitly gives the invertible block Vandermonde matrix V
through which diagonalization happens. Note that the block companion matrix C
is then diagonalizable through the matrix X = UV , whereU is the unitary matrix
from the above theorem.

2. Theorem 2.4 does not hold good if the unitarymatricesU0 andU1 do not commute.
For example, when n = 2 consider thematrix polynomial P(λ) = Iλ2+U1λ+U0

where, U0 =
[
− 1

2 −
√
3
2√

3
2 − 1

2

]

and U1 =
[−1 0
0 1

]

. Note that U1 and U0 are unitary

matrices that do not commute. One can easily check that the corresponding block
companion matrix C of P(λ) has two distinct eigenvalues 1 and −1, each of
algebraic multiplicity 2.However, a simple computation reveals that the geometric
multiplicity of both these eigenvalues is 1. Hence, C is not diagonalizable.

For n = 3, consider P(λ) =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ λ2 +
⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦ λ +
⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦ with non-

commuting unitary coefficients. The corresponding block companion matrix C of
P(λ) is not diagonalizable in this case too. Note that one can extend this example
and see that the block companion matrixC is not diagonalizable for any size n ≥ 4
as well.
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3. If the degree of matrix polynomial is greater than 2, the corresponding block
companion matrix need not be diagonalizable, even if all coefficients are commut-

ing unitary matrices. For example consider P(λ) =
[
1 0
0 1

]

λ3 +
[−1 0
0 −1

]

λ2 +
[−1 0
0 −1

]

λ +
[
1 0
0 1

]

. The corresponding block companion matrix C of P(λ) is

not diagonalizable. The argument is the same as in the previous remark.

The above remark justifies the need to consider only quadratic matrix polynomials
with commuting unitary coefficients. We now deduce the Hoffman–Wielandt type
inequality for quadratic matrix polynomials with unitary coefficients.

Theorem 2.6 Let P and Q be quadratic matrix polynomials of the same size, where
P satisfies the conditions of Theorem 2.4. If C and D are the corresponding block
companion matrices, then there exists a permutation π of the indices 1, 2, . . . , 2n
such that

2n∑

i=1

|αi − βπ(i)|2 ≤ ‖X‖22‖X−1‖22‖C − D‖2F ,

where {αi } and {βi } are the eigenvalues of C and D, respectively, and X is a
nonsingular matrix whose columns are the eigenvectors of C .

Proof The assumptions on P ensure that the matrix C is diagonalizable. The result
now follows from Theorem 1.1. 	


The Hoffman–Wielandt type inequality for linear matrix polynomials is stated
below. We skip the proof as it is similar to the above theorem.

Theorem 2.7 Let P and Q be linear matrix polynomials of the same size, where P
satisfies any of the conditions of Theorem 2.2. If C and D are the corresponding block
companion matrices, then there exists a permutation π of the indices 1, 2, . . . , n such
that

n∑

i=1

|αi − βπ(i)|2 ≤ ‖X‖22‖X−1‖22‖C − D‖2F ,

where {αi } and {βi } are the eigenvalues of C and D, respectively, and X is a
nonsingular matrix whose columns are the eigenvectors of C .

2.2 Hoffman–Wielandt type inequality for block companionmatrices of matrix
polynomials with doubly stochastic coefficients

We now consider matrix polynomials whose coefficients are doubly stochastic matri-
ces. Recall that a nonnegative square matrix is doubly stochastic if all the row and
column sums are 1. A classical result of Birkhoff says that any doubly stochastic
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matrix is a convex combination of permutation matrices (see Section 8.7 of [10]).
Since permutation matrices are unitary, it is natural to ask if the Hoffman–Wielandt
type inequality holds for matrix polynomials with doubly stochastic coefficients. We
explore this question in this section.

We begin this section with eigenvalue bounds for matrix polynomials whose coef-
ficients are doubly stochastic matrices, with some added assumptions. We state this
below and skip the proof as the proof technique is essentially the same as in [3] with
the observation that the spectral norm of a doubly stochastic matrix is 1 and the inverse
of a permutation matrix is again a permutation matrix. We illustrate via examples the
validity of these assumptions.

Theorem 2.8 1. Let P(λ) = Amλm + Am−1λ
m−1 + · · · + A1λ + A0, where Am, A0

are n × n permutation matrices and Am−1, . . . , A1 are n × n doubly stochastic
matrices. If λ0 is an eigenvalue of P(λ), then 1

2 < |λ0| < 2.

2. LetD =
{
P(λ) = ∑m

i=0 Aiλ
i : Ai ’s are n×n doubly stochastic matrices, Am, A0

are permutation matrices and m, n ∈ N

}
and let SD = {|λ0| : λ0 is an eigenvalue

of P(λ) ∈ D}. Then inf SD = 1
2 and sup SD = 2.

Few remarks are in order.

Remark 2.9 If the leading coefficient or the constant term (or both) is a doubly
stochastic matrix, but not a permutation matrix, then the eigenvalues may not nec-
essarily lie in the region 1

2 < |λ| < 2. The following examples illustrate this. Let

P(λ) = Iλ2 +
[ 1
4

3
4

3
4

1
4

]

λ+
[ 1
3

2
3

2
3

1
3

]

.One of the eigenvalue is 3−√
57

12 = −0.3792, which

is less than 1
2 in absolute value. Similarly if P(λ) =

[
1
3

2
3

2
3

1
3

]

λ2 +
[
1
4

3
4

3
4

1
4

]

λ +
[
1 0

0 1

]

.

The eigenvalues of P(λ) are −1±i
√
3

2 and −3±√
57

4 and the absolute value of −3−√
57

4
is 2.637 > 2.

We are now in a position to derive diagonalizability of the block companion matrix
of a matrix polynomial with doubly stochastic coefficients. We begin with some easy
observations.

Theorem 2.10 Let P(λ) = A1λ+A0 be a linear matrix polynomial whose coefficients
are 2×2 doubly stochastic matrices. Then, the corresponding block companionmatrix
is diagonalizable.

Proof Writing A0 and A1 as A0 =
[

b 1 − b
1 − b b

]

, A1 =
[

a 1 − a
1 − a a

]

where,

0 ≤ a, b ≤ 1, we observe that C = −
[ a+b−1

2a−1
a−b
2a−1

a−b
2a−1

a+b−1
2a−1

]

, a real symmetric matrix.

Hence C is diagonalizable. 	

Remark 2.11 Let P(λ) = A1λ+ A0 be an n×n matrix polynomial with n ≥ 3. If one
of A1 or A0 is a doubly stochastic matrix which is not a permutation matrix, then C
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need not be diagonalizable. For example consider P(λ) =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ λ +
⎡

⎣

1
8

1
2

3
8

1
4

3
8

3
8

5
8

1
8

1
4

⎤

⎦ .

We can easily check that C is not diagonalizable.

Let us now prove that the block companionmatrix of a quadratic matrix polynomial
with 2×2doubly stochastic coefficients is diagonalizable.Wemakeuse ofTheorem2.8
to prove this.

Theorem 2.12 Let P(λ) = A2λ
2 + A1λ + A0 where, A2, A0 are 2 × 2 permutation

matrices and A1 is a 2 × 2 doubly stochastic matrix. Then, the corresponding block
companion matrix C of P(λ) is diagonalizable.

Proof The proof involves three cases.
Case 1: Suppose A2 = A1 = A0 = I . Then, P(λ) can be written as, P(λ) =[
λ2 + λ + 1 0

0 λ2 + λ + 1

]

. Therefore −1+i
√
3

2 and −1−i
√
3

2 are eigenvalues of P(λ)

and hence of C, of multiplicity 2 each. We can check that [1, 0]t and [0, 1]t are eigen-
vectors of P(λ) corresponding to both the eigenvalues −1+i

√
3

2 and −1−i
√
3

2 .Therefore,

u1 = [1, 0, −1+i
√
3

2 , 0]t , u2 = [0, 1, 0, −1+i
√
3

2 ]t , u3 = [1, 0, −1−i
√
3

2 , 0]t and

u4 = [0, 1, 0, −1−i
√
3

2 ]t are linearly independent eigenvectors of C . This proves
diagonalizability of C .

Case 2: If A2 = A1 = A0 = I ′, where I ′ =
[
0 1
1 0

]

. Then, the monic matrix

polynomial corresponding to P(λ) is PU (λ) = Iλ2 + Iλ + I . Hence by Case 1, C is
diagonalizable.
Case 3: Consider the corresponding monic matrix polynomial, PU (λ) = Iλ2 +
B1λ + B0 where, B1 = A−1

2 A1 is a doubly stochastic matrix and B0 = A−1
2 A0 is

a permutation matrix. Let B1 =
[

a 1 − a
1 − a a

]

and B0 =
[

b 1 − b
1 − b b

]

where,

0 ≤ a, b ≤ 1. Then, PU (λ) =
[

λ2 + aλ + b (1 − a)λ + (1 − b)
(1 − a)λ + (1 − b) λ2 + aλ + b

]

and

detPU (λ) = (λ2 + λ + 1)(λ2 + (2a − 1)λ + (2b − 1)). Note that λ2 + λ + 1 �=
λ2 + (2a − 1)λ + (2b − 1). Otherwise a = b = 1 which then will imply that
A2 = A1 = A0 = I or A2 = A1 = A0 = I ′. Moreover, since both λ2 + λ + 1 and
λ2 + (2a−1)λ+ (2b−1) are real polynomials they do not have common roots. Now,
we claim that λ2+(2a−1)λ+(2b−1) has two distinct roots. Suppose there is only one
root, say, λ0. Then, we have λ2+(2a−1)λ+(2b−1) = (λ−λ0)

2 = λ2−2λ0λ+λ20.

Comparing the coefficients, we get 2a − 1 = −2λ0. Since 0 ≤ a ≤ 1, we have
−1 ≤ 2a − 1 ≤ 1. This implies 2|λ0| = |2a − 1| ≤ 1. Therefore, |λ0| ≤ 1

2 , a contra-
diction to Theorem 2.8. Thus λ2 + (2a − 1)λ + (2b− 1) has two distinct roots. Since
λ2 +λ+1 also has two distinct roots, P(λ) and hence C has four distinct eigenvalues.
Hence, C is diagonalizable. 	


The following remark justifies the assumptions made in the above theorem.
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Remark 2.13 1. In the above theorem, if the leading coefficient or the constant term
(or both) is a doubly stochastic matrix, but not a permutation matrix, then the
corresponding block companion matrix need not be diagonalizable. For example,

consider P(λ) =
[
11
24

13
24

13
24

11
24

]

λ2 +
[
1
4

3
4

3
4

1
4

]

λ +
[
1
8

7
8

7
8

1
8

]

. We can check that the corre-

sponding block companion matrix is not diagonalizable. One can also look at the

matrix polynomial P(λ) =
[
1 0

0 1

]

λ2 +
[
1
2

1
2

1
2

1
2

]

λ +
[
1
2

1
2

1
2

1
2

]

.

2. If the size of a quadratic matrix polynomial P(λ) is greater than 2 then the cor-
responding block companion matrix C need not be diagonalizable even when all
the coefficients are permutation matrices (see the Example in Remark 2.5). Note
that the coefficients of the matrix polynomial in that example are non-commuting
permutation matrices. However, when the coefficients of P(λ) are commuting per-
mutation matrices the corresponding block companion matrixC is diagonalizable,
as already proved in Theorem 2.4.

3. Let P(λ) = A2λ
2 + A1λ + A0 be an n × n matrix polynomial with n ≥ 3. If

one of A2, A1, A0 is a doubly stochastic matrix which is not permutation, then the
corresponding block companion matrix C need not be diagonalizable even if the
coefficients commute. For example, consider

P(λ) =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ λ2 +
⎡

⎣

5
12

5
12

1
6

1
4

1
4

1
2

1
3

1
3

1
3

⎤

⎦ λ +
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ . We can check that the

corresponding block companion matrix of P(λ) is not diagonalizable.
4. Let P(λ) be amatrix polynomial of degree greater than 2.Then, the corresponding

block companionmatrix need not be diagonalizable even with coefficients of P(λ)

being commuting permutationmatrices. For example consider P(λ) =
[
1 0
0 1

]

λ3+
[
0 1
1 0

]

λ2+
[
0 1
1 0

]

λ+
[
1 0
0 1

]

.The coefficients are commutingpermutationmatrices.

However, the corresponding block companion matrix is non-diagonalizable.

We end this section by pointing out that the Hoffman–Wielandt type inequality for
matrix polynomials with doubly stochastic coefficients can be derived as in the unitary
case. For the sake of completeness, we state below only the quadratic polynomials
version and skip the proof.

Theorem 2.14 Let P and Q be quadratic matrix polynomials of the same size, where
P satisfies conditions of Theorem 2.12. If C and D are the corresponding block
companion matrices, then there exists a permutation π of the indices 1, . . . , 4 such
that

4∑

i=1

|αi − βπ(i)|2 ≤ ‖X‖22‖X−1‖22‖C − D‖2F ,

where {αi } and {βi } are the eigenvalues of C and D, respectively, and X is a
nonsingular matrix whose columns are the eigenvectors of C .
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2.3 Estimation of the spectral condition number

A diagonalizable matrix can be diagonalized through more than one matrix and the
spectral condition number of these matrices may not be identical. We also know from
Theorem2.4 that diagonalization of the block companionmatrix ofmatrix polynomials
with commuting unitary coefficients is achieved through a particular block Vander-
monde matrix V . On the other hand, in Theorem 2.12, diagonalization is achieved
more directly. This gives us some hope in estimating the spectral condition number in
Theorems 2.6 and 2.14. We set out to do this in this section.

2.3.1 Condition number of matrix X that appears in Theorem 2.6

We first prove that the spectral condition number of the block Vandermonde matrix V
obtained in Theorem 2.4 is less than 2.

Theorem 2.15 Let V be the block Vandermondematrix obtained in Theorem 2.4.Then,
κ(V ) < 2.

Proof ByTheorem2.4,wehaveV =
[
I I
X1 X2

]

with X1 = diag(λ1, . . . , λn) and X2 =
diag(μ1 . . . , μn), where λi and μi are the distinct roots of fii (λ) = λ2 + aiiλ + bii
for i = 1, . . . , n and aii , bii are the eigenvalues of U1, U0, respectively. We thus
have |λi + μi | = 1 and |λiμi | = 1 for i = 1, . . . , n. It is then easy to show that
(λi −μi )

2 = a2i i −4bii .Thus, |λi −μi |2 = |a2i i −4bii | ≥ ‖a2i i |−4|bii‖ = |1−4| = 3.
Using the parallelogram identity, we have 2(|λi |2+|μi |2) = |λi +μi |2+|λi −μi |2 ≥
1 + 3 = 4. This implies that |λi |2 + |μi |2 ≥ 2. Since

∣
∣|λi | − |μi |

∣
∣ ≤ |λi + μi | = 1,

we have 1 ≥ (|λi | − |μi |)2 = |λi |2 + |μi |2 − 2|λi ||μi |. Therefore, |λi |2 + |μi |2 ≤ 3.
We thus have proved the following:

2 ≤ |λi |2 + |μi |2 ≤ 3, i = 1, . . . , n. (2.1)

We know that κ(V ) = σmax
σmin

, where σmin and σmax are the smallest and the
largest singular values of V , respectively. Since the singular values of V are
the positive square roots of the eigenvalues of VV ∗, we estimate bounds for

these eigenvalues. Define L :=
[

I 0
−(X1 + X2)(2I − Iλ)−1 I

]

. Notice that L is

a matrix with det(L) = 1. Let us now compute the matrix L(VV ∗ − Iλ) =[
2I − Iλ X∗

1 + X∗
2

0 −(X1 + X2)(2I − Iλ)−1(X∗
1 + X∗

2) + X1X∗
1 + X2X∗

2 − Iλ

]

. Since X1

and X2 are diagonal matrices, det(VV ∗ − Iλ) = det
(
L(VV ∗ − Iλ)

) = det(2I −
Iλ)

( − (X1 + X2)(2I − Iλ)−1(X∗
1 + X∗

2) + (X1X∗
1 + X2X∗

2 − Iλ)
) = det

(
Iλ2 −

(2 + X1X∗
1 + X2X∗

2)λ + (X1X∗
1 + X2X∗

2 − X1X∗
2 − X2X∗

1)
) = ∏n

i=1

(
λ2 −

(2 + |λi |2 + |μi |2)λ + (|λi |2 + |μi |2 − λi μ̄i − μi λ̄i )
)
. Thus, in order to com-

pute the eigenvalues of VV ∗, it suffices to determine the roots of the polynomials
λ2 − (2 + |λi |2 + |μi |2)λ + (|λi |2 + |μi |2 − λi μ̄i − μi λ̄i ). These are given by αi =
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(2+|λi |2+|μi |2)−
√

(2−(|λi |2+|μi |2))2+4
2 and βi = (2+|λi |2+|μi |2)+

√
(2−(|λi |2+|μi |2))2+4
2 , for

i = 1, . . . , n. Note that αi ≤ βi as the term inside the square root symbol is positive.
We now claim that 1 ≤ αi ≤ βi < 4 for all i = 1, . . . , n. Suppose on the contrary,
αi < 1 for some i = 1, . . . , n. Then we have,

(2 + |λi |2 + |μi |2) − √
(2 − (|λi |2 + |μi |2))2 + 4

2
< 1

�⇒ (2 + |λi |2 + |μi |2) −
√

(2 − (|λi |2 + |μi |2))2 + 4 < 2

�⇒ (|λi |2 + |μi |2)2 < (2 − (|λi |2 + |μi |2))2 + 4

�⇒ (|λi |2 + |μi |2)2 < 4 + (|λi |2 + |μi |2)2 − 4(|λi |2 + |μi |2) + 4

�⇒ |λi |2 + |μi |2 < 2,

a contradiction to the inequality (2.1). Therefore, we have 1 ≤ αi for all i = 1, . . . , n.

Similarly, if 4 ≤ βi for some i = 1, . . . , n, then we have 3 < |λi |2 + |μi |2 which is
again a contradiction to the inequality (2.1). Therefore, βi < 4 for all i = 1, . . . , n.

We thus have 1 ≤ αi ≤ βi < 4,which implies that 1 ≤ σmin and σmax < 2. Therefore,
κ(V ) = σmax

σmin
< 2. 	


As mentioned in the Remark 2.5, the matrix which diagonalizes the block compan-
ion matrix C is X = UV , where U is a unitary matrix. Since the spectral condition
number is unitarily invariant, we have κ(X) = κ(V ) < 2. Thus, in Theorem 2.6, we
have ‖X‖22‖X−1‖22 < 4.

2.3.2 Condition number of matrix X obtained in Theorem 2.7

In parts (1) and (2) of Theorem2.2, the block companionmatrices are unitary and diag-
onal matrices, respectively. Hence, both are diagonalizable through unitary matrices,
whose spectral condition number is 1.
In part (3) of Theorem 2.2, the block companion matrix is C = −A−1

1 A0 =
A−1/2
1

(
−A−1/2

1 A0A
−1/2
1

)
A1/2
1 ,where−A−1/2

1 A0A
−1/2
1 is aHermitianmatrix, which

is diagonalizable through a unitary matrix, say, U . Hence, C = A−1/2
1 U−1DU A1/2

1 ,

where D is a diagonal matrix. Thus, C is diagonalizable through matrix X = U A1/2
1 ,

where A1/2
1 is a Hermitian positive definite matrix. Thus, κ(X) = κ(A1/2

1 ). Since A1/2
1

is Hermitian positive definite, κ(A1/2
1 ) = λmax

λmin
, where λmax and λmin are, respectively,

the maximum and the minimum eigenvalues of A1/2
1 . Therefore, κ(X) = λmax

λmin
.

2.3.3 Condition number of matrix X obtained in Theorem 2.14

We again discuss two cases with reference to Theorem 2.12.

(1) If A2 = A1 = A0 = I or A2 = A1 = A0 = I ′ where I is the identity matrix and

I ′ =
[
0 1
1 0

]

, the coefficients are unitary matrices and this case reduces to the one

discussed above. Thus, κ(X) < 2.
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(2) In the general case, since the coefficients are of size 2 × 2 one can verify that

v1 =
[

−1+i
√
3

2
−1+i

√
3

2 1 1
]t

, v2 =
[

2i√
3+i

2i√
3+i

1 1
]t

,

v3 =
[

2
(2a−1)+√

4a2−4a−8b+5
− 2

(2a−1)+√
4a2−4a−8b+5

−1 1
]t

and

v4 =
[

2
(2a−1)−√

4a2−4a−8b+5
2

(1−2a)+√
4a2−4a−8b+5

−1 1
]t

are linearly inde-

pendent eigenvectors of the block companion matrix C . We can thus choose
X = [

v1 v2 v3 v4
]
.
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