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Abstract
In this paper, we study local approximation properties of certain gamma-type oper-
ators. They generalize the Post–Widder operators and the Rathore operators, and
approximate locally integrable functions satisfying a certain growth condition on the
infinite interval [0,∞). We derive the complete asymptotic expansion for these oper-
ators and prove a localization result. Also, we estimate the rate of convergence for
functions of bounded variation.
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1 Introduction

ThePost–Widder operator plays a crucial role in the inversion of theLaplace transform.
Let f : [0,∞) → R be locally integrable and let L f denote its Laplace transform

(L f ) (s) =
∫ ∞

0
e−sx f (x) dx .
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If the integral converges for some s > 0, then the inversion formula

f (x) = lim
n→∞ Ln,x [L f ]

is valid, for all positive x in the Lebesgue set of f [18, Chapter 7, Theorem 6a]. The
operator Ln,x is defined by the equation

Ln,x [g] = (−1)n g(n)
(n
x

) (n
x

)n+1
,

for any real positive number x and any positive integer n [18, Chapter 7, Definition 6].
A simple calculation reveals that

Ln,x [L f ] = 1

n!
(n
x

)n+1
∫ ∞

0
e−nt/x tn f (t) dt (x > 0)

[18, Page 288]. For the sake of approximation, the Post–Widder operator Pn is defined
in the slightly different form

(Pn f ) (x) = (n/x)n

� (n)

∫ ∞

0
e−nt/x tn−1 f (t) dt (x > 0) . (1.1)

[2, Eq. (9.1.9)] (cf. [10, Eq. (3.5)]). The form (1.1) is an operator of exponential type
and these operators preserve linear functions [8]. The connection is as follows. Fix
x > 0. Define f [x] (t) = e−t/x f (t). Then,

(Pn+1 f ) (x) =
(
n + 1

n

)n+1
(n/x)n+1

n!
∫ ∞

0
e−(n+1)t/x tn f (t) dt

=
(
n + 1

n

)n+1

Ln,x
[L f [x]

]
.

Hence, in each Lebesgue point of f we have

lim
n→∞ (Pn+1 f ) (x) = lim

n→∞

(
n + 1

n

)n+1

Ln,x
[L f [x]

] = e · e−x/x f (x) = f (x) .

The Post–Widder operators Pn were intensively studied by several authors [3, 4, 9]. In
recent years, several authors defined and studied variants of the Post–Widder operator
which preserve several test functions [5–7, 13, 16].

In order to include the similar operator by Rathore [12] (see below), we study in
this paper a more general gamma type operator depending on a positive parameter,
which includes both, the Post–Widder operators and the Rathore operators as special
cases.

Let E be the class of all locally integrable functions of exponential type on [0,+∞)

with the property | f (t)| ≤ MeAt (t ≥ 0) for some finite constants M, A > 0. The
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gamma-type operators Pn,c (cf. [10, Eq. (3.3) ]) associate to each f ∈ E the function

(
Pn,c f

)
(x) = (nc)ncx

� (ncx)

∫ ∞

0
e−nct tncx−1 f (t) dt (x > 0) , (1.2)

where c is a positive parameter. We emphasize the fact that c may depend on the
variable x . Note that the integral exists if nc > A. The definition can be rewritten in
the form

(
Pn,c f

)
(x) =

∫ ∞

0
φn,c (x, t) f (t) dt

with the kernel function

φn,c (x, t) = (nc)ncx

� (ncx)
e−nct tncx−1. (1.3)

In the special case c = 1 these operators reduce to the Rathore operators Rn ≡ Pn,1,
given by [10, Eq. (3.6)]

(Rn f ) (x) = nnx

� (nx)

∫ ∞

0
e−nt tnx−1 f (t) dt (x > 0) .

If we substitute c = 1/x , we obtain the Post–Widder operators (1.1).
In this paper we derive the complete asymptotic expansion for the sequence of

operators Pn,c in the form

(
Pn,c f

)
(x) ∼ f (x) +

∞∑
k=1

ak ( f , c, x) n−k (n → ∞), (1.4)

provided that f admits derivatives of sufficiently high order at x > 0. Formula ( 1.4)
means that, for all q = 0, 1, 2, . . ., there holds

(
Pn,c f

)
(x) =

q∑
k=0

ak ( f , c, x) n−k + o(n−q) (n → ∞)

where a0 ( f , c, x) = f (x). The coefficients ak ( f , c, x), which are independent of n,
will be given in an explicit form. It turns out that associated Stirling numbers of the
first kind play an important role. As a special case we obtain the complete asymptotic
expansion for the Rathore operators Rn and for the Post–Widder operators Pn .

Secondly, we study the rate of convergence of the sequence
(
Pn,c f

)
(x) as n → ∞

for functions of bounded variation. More precisely, we present an estimate of the
difference

(
Pn,c f

)
(x) − ( f (x+) + f (x−)) /2.
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2 Main results

For q ∈ N and x ∈ (0,∞), let K [q; x] be the class of all functions f ∈ E which
are q times differentiable at x . The following theorem presents as our main result the
complete asymptotic expansion for the operators Pn,c.

Theorem 2.1 Let q ∈ N and x ∈ (0,∞). For each function f ∈ K [2q; x], the
operators Pn,c possess the asymptotic expansion

(
Pn,c f

)
(x) = f (x) +

q∑
k=1

(−1)k

(nc)k

2k∑
j=k

s2 ( j, j − k)
f ( j) (x)

j ! x j−k + o
(
n−q)

as n → ∞, where s2 ( j, i) denote the associated Stirling numbers of the first kind.

The associated Stirling numbers of the first kind can be defined by their double
generating function

∞∑
i, j=0

s2 (i, j)
t i

i !u
j = e−tu (1 + t)u

(see [1, page 295, Ex. *20]).
For q = 4, we obtain

(
Pn,c f

)
(x)

= f (x) + x f (2) (x)

2cn
+ 8x f (3) (x) + 3x2 f (4) (x)

24 (cn)2

+12x f (4) (x) + 8x2 f (5) (x) + x3 f (6) (x)

48 (cn)3

+1152x f (5) (x) + 1040x2 f (6) (x) + 240x3 f (7) (x) + 15x4 f (8) (x)

5760 (cn)4

+o
(
n−4

)

as n → ∞. In particular, we obtain the Voronovskaja-type formula

lim
n→∞ n

((
Pn,c f

)
(x) − f (x)

) = x

2c
f (2) (x) , (2.1)

for f ∈ K [2; x].
In the special case c = 1 we have the complete asymptotic expansion for the

Rathore operators,

(Rn f ) (x) ∼ f (x) +
∞∑
k=1

(−1)k

nk

2k∑
j=k

s2 ( j, j − k)
f ( j) (x)

j ! x j−k
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as n → ∞. In the special case c = 1/x we have the complete asymptotic expansion
for the Post–Widder operators

(Pn f ) (x) ∼ f (x) +
∞∑
k=1

(−1)k

nk

2k∑
j=k

s2 ( j, j − k)
f ( j) (x)

j ! x j

as n → ∞.
Our second main result is an estimate of the rate of convergence for functions

f ∈ E , which are of bounded variation (BV) on each finite subinterval of (0,∞).

Theorem 2.2 Let f ∈ E be a function of bounded variation on each finite subinterval
of (0,∞). Then, for each x > 0, we have the estimate

∣∣∣∣
(
Pn,c f

)
(x) − f (x+) + f (x−)

2

∣∣∣∣
≤

(
1√

18πncx
+ O

(
1

n

))
| f (x+) − f (x−)| + cx + 2

ncx

n∑
k=1

v
x+x/

√
k

x−x/
√
k
( fx )

+O (exp (−βn))

as n → ∞, where β = (1 − log 2) cx > 0 and the function fx is defined as

fx (y) =
⎧⎨
⎩

f (y) − f (x−) , 0 < y < x,
f (y) − f (x+) , x < y < ∞,

0, y = x .

For the proofs of Theorems 2.1 and 2.2we need a localization result for the operators
Pn,c. Since it is interesting in itself we state it as a theorem.

Theorem 2.3 Let x ≥ δ > 0. If f ∈ E vanishes in a neighborhood (x − δ, x + δ) of
x, then it exists a positive constant β such that

(
Pn,c f

)
(x) = O (exp (−βcn)) (n → ∞) .

The constant β can be chosen to be

β = δ − x log

(
x + δ

x

)
> 0.

Note that δ > x log ((x + δ) /x) for x, δ > 0.

3 Auxiliary results and proofs

Firstly, we study the moments of the operators Pn,c. Throughout the paper, let er
denote the monomials, given by er (x) = xr (r = 0, 1, 2, . . .). Furthermore, define
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ψx = e1 − xe0, for x ∈ R. In the following, the quantities

[
m
j

]
denote the unsigned

Stirling numbers of the first kind defined by

zm =
m∑
j=0

(−1)m− j
[
m
j

]
z j (m = 0, 1, 2, . . .) ,

where z0 = 1, zm = z (z − 1) · · · (z − m + 1),m ∈ N, are the falling factorials. Using
(−z)m = (−1)m(z + m − 1)m we obtain the relations

(z + m − 1)m =
m∑
j=0

[
m
j

]
z j (m = 0, 1, 2, . . .) . (3.1)

We recall some known facts about Stirling numbers which will be useful in the sequel.
The Stirling numbers of the first kind possess the representation

[
r

r − m

]
= (−1)m

2m∑
i=m

s2 (i, i − m)

(
r

i

)
= (−1)m

m∑
i=0

s2 (i + m, i)

(
r

i + m

)
,

(3.2)

for 0 ≤ m ≤ r , (see [1, page 226–227, Ex. 16]). The coefficients s2 (i, i − m), called
associated Stirling numbers of the first kind, are independent of r .

Lemma 3.1 The moments of the operators Pn,c are given by

(
Pn,cer

)
(x) =

r∑
k=0

1

(nc)k

[
r

r − k

]
xr−k (r = 0, 1, 2, . . .) .

In particular, we have Pn,ce0 = e0, Pn,ce1 = e1 and

(
Pn,ce2

)
(x) = x2 + x

nc
,

(
Pn,ce3

)
(x) = x3 + 3x2

nc
+ 2x

(nc)2
,

(
Pn,ce4

)
(x) = x4 + 6x3

nc
+ 11x2

(nc)2
+ 6x

(nc)3
.

Proof We have

(
Pn,cer

)
(x) = (nc)ncx

� (ncx)

∫ ∞

0
e−nct tr+ncx−1dt = � (r + ncx)

� (ncx) (nc)r

= (ncx + r − 1)r

(nc)r
.
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Application of formula ( 3.1) yields

(
Pn,cer

)
(x) = 1

(nc)r

r∑
j=0

[
r
j

]
(ncx) j

and the index transform j = r − k completes the proof. 
�
Lemma 3.2 The central moments of the operators Pn,c are given by

(
Pn,cψ

j
x

)
(x) =

j∑
k=0

x j−k

(nc)k

j−k∑
r=0

(−1) j−k−r
(

j

r + k

)[
r + k
r

]

( j = 0, 1, 2, . . .).

In particular, we have
(
Pn,cψ

0
x

)
(x) = 1,

(
Pn,cψ

1
x

)
(x) = 0 and(

Pn,cψ
2
x

)
(x) = x/ (nc).

Proof Application of the binomial formula yields for the central moments

(
Pn,cψ

j
x

)
(x) =

j∑
r=0

(−x) j−r
(
j

r

) (
Pn,cer

)
(x)

=
j∑

k=0

x j−k

(nc)k

j∑
r=k

(−1) j−r
(
j

r

) [
r

r − k

]

and an index shift r → r + k yields the desired representation. 
�
Lemma 3.3 For each x > 0 and j = 0, 1, 2, . . ., the central moments of the operators

Pn,c satisfy the relation
(
Pn,cψ

j
x

)
(x) = O

(
n−�( j+1)/2
) as n → ∞. More precisely,

they have the representation

(
Pn,cψ

j
x

)
(x) =

j∑
k=�( j+1)/2


(−1)k
x j−k

(nc)k
s2 ( j, j − k) .

Proof Taking advantage of the formula (3.2) we obtain

(
Pn,cψ

j
x

)
(x) =

j∑
k=0

x j−k

(nc)k

j−k∑
r=0

(−1) j−r
(

j

r + k

) k∑
i=0

s2 (i + k, i)

(
r + k

i + k

)
.

Note that
(r+k
i+k

) = 0, for i > r . Using the binomial identity
( j
r+k

)(r+k
i+k

) = ( j
i+k

)( j−i−k
r−i

)
,

for 0 ≤ i ≤ r , we obtain

(
Pn,cψ

j
x

)
(x) =

j∑
k=0

x j−k

(nc)k

k∑
i=0

s2 (i + k, i)

(
j

i + k

) j−k∑
r=i

(−1) j−r
(
j − k − i

r − i

)
.
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The inner sum is to be read as zero if i > j − k. Since

j−k∑
r=i

(−1) j−r
(
j − k − i

r − i

)
=

j−k−i∑
r=0

(−1) j−r−i
(
j − k − i

r

)
=

⎧⎨
⎩
0 (i < j − k) ,

1 (i = j − k) ,

we conclude that

(
Pn,cψ

j
x

)
(x) =

j∑
k=�( j+1)/2


(−1)k
x j−k

(nc)k
s2 ( j, j − k) ,

which completes the proof. 
�
In order to derive Theorem 2.1, a general approximation theorem due to Sikkema

[14, Theorem 3] (see also [15]) will be applied. For j ∈ N and x > 0, let H ( j) (x)
denote the class of all locally bounded real functions f : [0,∞) → R, which are
j times differentiable at x , and satisfy the additional condition f (t) = O

(
t− j

)
as

t → +∞. An inspection of the proof of Sikkema’s result reveals that it can be stated
in the following form which is more appropriate for our purposes.

Lemma 3.4 Let q ∈ N and let (Ln)n∈N be a sequence of positive linear operators,
Ln : H (2q) (x) → C [c, d], x ∈ [c, d]. Suppose that the operators Ln apply to ψ

2q+1
x

and to ψ
2q+2
x . Then the condition

(
Lnψ

j
x

)
(x) = O

(
n−�( j+1)/2
) (n → ∞) , for j = 0, 1, . . . , 2q + 2,

implies, for each function f ∈ H (2q) (x), the asymptotic relation

(Ln f ) (x) =
2q∑
j=0

f ( j) (x)

j !
(
Lnψ

j
x

)
(x) + o

(
n−q) (n → ∞) .

In the application used in the proof of Theorem 2.1, we restrict H ( j) (x) to consist
only of locally integrable functions. We proceed with the proof of the localization
result (Theorem 2.3), which will be applied in the proofs of Theorems 2.1 and 2.2.

Proof of Theorem 2.3 Let f ∈ E . From | f (t)| ≤ MeAt (t ≥ 0)we obtain the estimate

∣∣(Pn,c f
)
(x)

∣∣ ≤ M
(nc)ncx

� (ncx)

(∫ x−δ

0
+

∫ ∞

x+δ

)
e−(nc−A)t tncx−1dt

= M
ssx

� (sx)
(I1 + I2) ,

say, where s = nc > 0 and

I1 =
∫ x−δ

0
e−(s−A)t t sx−1dt = (s − A)−sx γ (sx, (s − A) (x − δ)) ,
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I2 =
∫ ∞

x+δ

e−(s−A)t t sx−1dt = (s − A)−sx � (sx, (s − A) (x + δ)) ,

where

γ (z, b) =
∫ b

0
e−t t z−1dt, � (z, b) =

∫ ∞

b
e−t t z−1dt (Rez > 0, b ≥ 0)

denote the lower and the upper incomplete gamma function, respectively. We use
the well-known asymptotic behaviour of the incomplete gamma function for large
parameters z and b. It holds

γ (z, b) ∼ bze−b

(1 − λ) z
, (3.3)

[17, Eq. (7.3.18)], as z, b → ∞ such that the ratio λ = b/z is bounded away from
unity, i.e., λ ≤ λ0 < 1, where λ0 is a fixed number in (0, 1). In a similar kind it holds

� (z, b) ∼ bz−1e−b

1 − α
, (3.4)

[17, Eq. (7.4.43)], as z, b → ∞ such that the ratio α = z/b is bounded away from
unity, i.e., α ≤ α0 < 1.
If δ = x the integral I1 vanishes. Let us consider the case δ < x . Since

λ = (s − A) (x − δ)

sx
→ x − δ

x
< 1 (s → ∞)

and 1 − λ = δ/x + A (x − δ) / (sx), Eq. (3.3) implies that

I1 ∼ (δs + A (x − δ))−1 (x − δ)sx e−(s−A)(x−δ) (s → ∞) .

Application of Stirling’s formula,

� (z) ∼ √
2πe−z zz−1/2 (z → +∞) ,

leads to

M
ssx

� (sx)
I1 ∼ M√

2π

√
sx

δs + A (x − δ)

(
x − δ

x

)sx

eδs+A(x−δ) (s → ∞) .

Since

(
x − δ

x

)x

eδ < 1 (0 < δ < x) ,
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we conclude that M ssx
�(sx) I1 = O (exp (−β1s)) as s → ∞, where β1 = −δ −

x log
( x−δ

x

)
> 0. Now we turn to the estimate of I2. Since

α = sx

(s − A) (x + δ)
→ x

x + δ
< 1 (s → ∞)

and 1 − α = δs−A(x+δ)
(s−A)(x+δ)

, Eq. (3.4) implies that

I2 ∼ 1

δs − A (x + δ)
(x + δ)sx e−(s−A)(x+δ) (s → ∞) .

Application of Stirling’s formula leads to

M
ssx

� (sx)
I2 ∼ M√

2π
·

√
sx

δs − A (x + δ)

(
x + δ

x

)sx

e−δs+A(x+δ) (s → ∞) .

Since

(
x + δ

x

)x

e−δ < 1 (x, δ > 0) ,

we conclude that M ssx
�(sx) I2 = O (exp (−β2s)) as s → ∞, where β2 = δ −

x log
( x+δ

x

)
> 0. Observe that β1 ≥ β2 because

( x−δ
x

)x
eδ ≤ ( x+δ

x

)x
e−δ .

The latter inequality is equivalent to the obvious inequality 2t ≤ log
(
1+t
1−t

)
=

2
(
t + t3/3 + t5/5 + t7/7 + · · · ), for t = δ/x ∈ [0, 1). Combining the above results

we obtain the desired estimate with the constant β = β2. 
�

Proof of Theorem 2.1 Let x > 0 and put Ur (x) = (x − r , x + r) ∩ [0,+∞), for
r > 0. Let δ > 0 be given. Suppose that f (2q) (x) exists. Choose a function
ϕ ∈ C∞ ([0,+∞)) with ϕ (x) = 1 on Uδ (x) and ϕ (x) = 0 on [0,+∞) \U2δ (x).
Put f̃ = ϕ f . Then we have f̃ ≡ f on Uδ (x) which implies f̃ ( j) (x) = f ( j) (x), for
j = 0, . . . , 2q, and f̃ ≡ 0 on [0,+∞) \U2δ (x). By the localization theorem (Theo-
rem 2.3),

(
Pn,c

(
f − f̃

))
(x) decays exponentially fast as n → ∞. Consequently, f̃

and f possess the same asymptotic expansion of the form (1.4). Therefore, without
loss of generality, we can assume that f ≡ 0 on [0,+∞) \U2δ (x). By Lemma 3.3,

we have
(
Pn,cψ

2 j
x

)
(x) = O

(
n− j

)
as n → ∞. Under these conditions, Lemma 3.4

implies that

(
Pn,c f

)
(x) = f (x) +

2q∑
j=1

f ( j) (x)

j !
(
Pn,cψ

j
x

)
(x) + o

(
n−q) (n → ∞) .
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By Lemma 3.3, we obtain

2q∑
j=1

f ( j) (x)

j !
(
Pn,cψ

j
x

)
(x) =

2q∑
j=1

f ( j) (x)

j !
j∑

k=�( j+1)/2

(−1)k

x j−k

(nc)k
s2 ( j, j − k) .

Interchanging the order of summation, we obtain

(
Pn,c f

)
(x) = f (x) +

2q∑
k=1

(−1)k

(nc)k

min{2k,2q}∑
j=k

f ( j) (x)

j ! x j−ks2 ( j, j − k) + o
(
n−q)

as n → ∞. Taking into account that

2q∑
k=q+1

(−1)k

(nc)k

min{2k,2q}∑
j=k

f ( j) (x)

j ! x j−ks2 ( j, j − k) = o
(
n−q) (n → ∞)

this implies the desired expansion (1.4) with the associated Stirling numbers of the
first kind s2 (i, j) as defined in Eq. (3.2). 
�

Now we turn to the estimate of the rate of convergence for BV functions. For
the proof of Theorem 2.2 we apply the following properties of the kernel function
φn,c (x, t) as defined in (1.3).

Lemma 3.5 The kernel function φn,c (x, t) satisfies the following estimates:

∫ y

0
φn,c (x, t) dt ≤ x

nc (x − y)2
(0 < y < x)

and
∫ ∞

z
φn,c (x, t) dt ≤ x

nc (z − x)2
(x < z < +∞) .

Proof Since x − t ≥ x − y > 0, for 0 ≤ t ≤ y < x , we have

∫ y

0
φn,c (x, t) dt ≤

∫ y

0
φn,c (x, t)

(
x − t

x − y

)2

dt ≤ 1

(x − y)2

(
Pn,cψ

2
x

)
(x)

= x

nc (x − y)2
.

The second estimate

∫ ∞

z
φn,c (x, t) dt ≤

∫ ∞

z
φn,c (x, t)

(
t − x

z − x

)2

dt ≤ 1

(z − x)2

(
Pn,cψ

2
x

)
(x)

= x

nc (z − x)2



43 Page 12 of 15 U. Abel and V. Gupta

is obtained in an analogous manner. 
�
Lemma 3.6 For fixed x > 0,

∫ x

0
φn,c (x, t) dt = 1

2
+ 1

3
√
2πncx

+ O

(
1

n

)
(n → ∞) .

Proof With s = ncx we have
∫ x

0
φn,c (x, t) dt = 1

� (ncx)

∫ ncx

0
e−uuncx−1du = 1

� (s)

∫ s

0
e−uus−1du

= � (s) − � (s, s)

� (s)
.

Following [11, Eq. 8.11.12], the (upper) incomplete gamma function satisfies the
asymptotic relation

� (s, s) = ss−1e−s
(√

πs

2
− 1

3
+ O

(
s−1/2

))
(s → +∞) .

Together with Stirling’s formula

� (s) = sse−s

√
2π

s

(
1 + 1

12s
+ O

(
s−2

))
(s → +∞)

we obtain

� (s) − � (s, s)

� (s)
∼ 1 −

ss−1e−s
(√

πs
2 − 1

3 + O
(
s−1/2

))

sse−s
√
2π/s

(
1 + O

(
s−1

))

= 1 −
√

π
2 − 1

3
√
s

+ O
(
s−1

)
√
2π + O

(
s−1

)

= 1 −
1
2 − 1

3
√
2πs

+ O
(
s−1

)
1 + O

(
s−1

)

= 1 −
(
1

2
− 1

3
√
2πs

+ O

(
1

s

)) (
1 + O

(
1

s

))

= 1

2
+ 1

3
√
2πs

+ O

(
1

s

)

as s → +∞. Hence, for fixed x > 0,

1

� (ncx)

∫ ncx

0
e−uuncx−1du = 1

2
+ 1

3
√
2πncx

+ O

(
1

n

)
(n → ∞) .


�
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Proof of Theorem 2.2 Let x ∈ (0,∞). We start with the estimate

∣∣∣∣
(
Pn,c f

)
(x) − 1

2
( f (x+) + f (x−))

∣∣∣∣
≤ 1

2
| f (x+) − f (x−)| · ∣∣(Pn,csignψx

)
(x)

∣∣ + ∣∣(Pn,c fx
)
(x)

∣∣ .

Due to the fact that Pn,c preserve constant functions, we have

(
Pn,csignψx

)
(x) =

(∫ ∞

x
−

∫ x

0

)
φn,c (x, t) dt = 2

[
1

2
−

∫ x

0
φn,c (x, t) dt

]
.

Thus, by Lemma 3.6, we have

(
Pn,csignψx

)
(x) = − 2

3
√
2πncx

+ O

(
1

n

)
(n → ∞) .

Next we estimate
(
Pn,c fx

)
(x) as follows:

(
Pn,c fx

)
(x)

=
∫ ∞

0
φn,c (x, t) fx (t) dt

=
(∫ x−x/

√
n

0
+

∫ x+x/
√
n

x−x/
√
n

+
∫ 2x

x+x/
√
n
+

∫ ∞

2x

)
φn,c (x, t) fx (t) dt

=: I1 + I2 + I3 + I4.

Define

ηn,c (x, y) =
∫ y

0
φn,c (x, t) dt .

Integration by parts yields

I1 =
∫ x−x/

√
n

0
fx (t) dt

(
ηn,c (x, t)

)

= fx

(
x − x√

n

)
ηn,c

(
x, x − x√

n

)
−

∫ x−x/
√
n

0
ηn,c (x, t) dt ( fx (t)) .

Since | fx (t)| ≤ vxt ( fx ), we have

|I1| ≤ vxx−x/
√
n ( fx ) · ηn,c

(
x, x − x√

n

)
+

∫ x−x/
√
n

0
ηn,c (x, t) dt

(−vxt ( fx )
)
.
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Applying Lemma 3.5, and in the next step integrating by parts, we get

|I1| ≤ 1

cx
vxx−x/

√
n ( fx ) + x

nc

∫ x−x/
√
n

0

1

(x − t)2
dt (−vxt ( fx ))

= x

nc

[
1

x2
vx0 ( fx ) + 2

∫ x−x/
√
n

0

1

(x − t)3
vxt ( fx ) dt

]

≤ x

nc

[
1

x2
vx0 ( fx ) + 1

x2

n∑
k=1

vx
x−x/

√
k
( fx )

]

≤ 2

ncx

n∑
k=1

vx
x−x/

√
k
( fx ) .

Next for t ∈ [
x − x/

√
n, x + x/

√
n
]
and by fact

∫ x+x/
√
n

x−x/
√
n
dt

(
ηn,c (x, t)

) ≤ 1, we
conclude that

|I2| ≤ 1

n

n∑
k=1

v
x+x/

√
k

x−x/
√
k
( fx ) .

Arguing analogously as in estimate of I1, we have

|I3| ≤ 2

ncx

n∑
k=1

v
x+x/

√
k

x ( fx ) .

Since fx ∈ E , the localization result (Theorem 2.3) applied with δ = x implies that
I4 = O (exp (−βcn)) as n → ∞with the constant β = (1 − log 2) x > 0. Collecting
the estimates of I1, I2, I3, I4, we get the desired result. 
�
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