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Abstract
In the present work, using the power series method, we obtain various Korovkin-

type approximation theorems for linear operators defined on derivatives of func-

tions. We also explain that our theorem makes more sense with a striking example.

We study the quantitative estimates of linear operators. In the final section, we

summarize our new results.
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1 Introduction

The classical theorem of Korovkin [13] on the approximation of continuous

functions on a compact interval gives conditions that are key tools for deciding

whether a sequence of positive linear operators converges to the identity operator.

By means of test functions, convergence was guaranteed on the whole space [1, 4].

Gadjiev and Orhan [11] developed the Korovkin-type approximation theorem by

taking the concept of statistical convergence, which is another interesting

convergence method, instead of classical convergence ([10, 22], see also [15]).
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Several studies, such as [7, 8, 17], deal with statistical convergence and Korovkin-

type approximation theory. Also, recent generalizations of the Korovkin theorem

using new types of statistical convergence are given in [2, 3].

It is worth noting that the main aim of using summability theory has always been

to make a non-convergent sequence converge. If the sequence of positive linear

operators does not converge to the identity operator, then it might be beneficial to

use some matrix and non-matrix summability methods [12, 16, 19].

The power series methods, including both the Abel and Borel methods, are well

known and they are more effective than ordinary convergence. As it is well known,

power series methods and statistical convergence are incompatible. These methods

are considered in the Korovkin type approximation theory with the Abel

summability method in [21] for the first time. In many further papers, the authors

show how this concept can be applied to approximation theory [18, 20, 23–25].

Various approximation theorems have recently been obtained by relaxing the

positivity condition on linear operators. For instance, Duman and Anastassiou [9]

relaxed the positivity condition of linear operators in the Korovkin-type approx-

imation theory via statistical convergence, and several authors [5, 6] have given

Korovkin-type approximation theorems for non-positive operators and convergence

methods.

The present work aims to study some Korovkin-type approximation theorems for

linear operators defined on classes of differentiable functions via the power series

method. We give an example that our theorem makes more sense. It should also be

noted that we study the rate of convergence. In the final section, we summarize the

results obtained in the present paper.

Prior to giving the main theorems, we mention the power series method.

Let pkð Þ be a non-negative real sequence such that p0 [ 0 and the corresponding

power series

p tð Þ :¼
X1

k¼0

pkt
k

has a radius of convergence R with 0\R�1: If the limit

lim
0\t!R�

1

p tð Þ
X1

k¼0

xkpkt
k ¼ L

exists, then we say that x ¼ xkð Þ is convergent in the sense of power series method

[14, 21]. It is worthwhile to point out that the method is regular if and only if

lim0\t!R�
pkt

k

p tð Þ ¼ 0 for every k (see, e.g., [4]).

2 Approximation properties via power series method

Let k be a nonnegative integer. As Ck½0; 1� is frequently called, we denote the space

of the k-times continuously differentiable functions on [0, 1] endowed with the sup-

norm :k k: Then throughout the paper, we consider the following function spaces:
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C1
þ ¼ h 2 C1½0; 1� : h0 � 0

� �
; Cþ ¼ h 2 C½0; 1� : h� 0f g;

C2
þ ¼ h 2 C2½0; 1� : h00 � 0

� �
; Cþ;1 ¼ h 2 C1½0; 1� : h� 0

� �
;

C1
� ¼ h 2 C1½0; 1� : h0 � 0

� �
; Cþ;2 ¼ h 2 C2½0; 1� : h� 0

� �
;

C2
� ¼ h 2 C2½0; 1� : h00 � 0

� �
:

Let Tnð Þ be a sequence of a linear operator from Ck½0; 1� into itself and let Vt :ð Þ be
given by

Vt h; xð Þ :¼ 1

p tð Þ
X1

n¼0

Tn h; xð Þpntn

is well-defined operator from Ck½0; 1� into itself as we can see from the following

inequality

Vt hð Þk k� sup
0\t\R

1

p tð Þ
X1

n¼0

Tn 1ð Þk kpntn\1:

We assume throughout the paper that the test functions are

hi xð Þ ¼ xi; i ¼ 0; 1; 2; 3; 4:

Theorem 2.1 Let Tnð Þ be a sequence of linear operators from C2½0; 1� into itself

and Tn Cþ;2 \ C2
þ

� �
� Cþ;2; for all n 2 N: Then for every h 2 C2½0; 1�

lim
0\t!R�

Vt hð Þ � hk k ¼ 0 ð2:1Þ

if and only if

lim
0\t!R�

Vt hið Þ � hik k ¼ 0; i ¼ 0; 1; 2: ð2:2Þ

Proof First, we assume that Vt hð Þ is convergent to h for every h 2 C2½0; 1�. Hence
hi 2 C2½0; 1�, i ¼ 0; 1; 2; Vt hið Þ is convergent to hi for each i ¼ 0; 1; 2. Therefore,
only the sufficiency part does really require a proof. Let x 2 ½0; 1� be fixed and let

h 2 C2½0; 1�: Since h is bounded and uniformly continuous on [0, 1], for every

e[ 0; there exists a d[ 0 such that

�e� 2M1b

d2
ux yð Þ� h yð Þ � h xð Þ� eþ 2M1b

d2
ux yð Þ ð2:3Þ

holds for all y 2 ½0; 1� and for any b� 1 where M1 ¼ hk k and ux yð Þ ¼ y� xð Þ2:
Then by (2.3) we get that

h1;b yð Þ :¼eþ 2M1b

d2
ux yð Þ þ h yð Þ � h xð Þ� 0; ð2:4Þ
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h2;b yð Þ :¼eþ 2M1b

d2
ux yð Þ � h yð Þ þ h xð Þ� 0: ð2:5Þ

Also, for all y 2 ½0; 1�;

h
00

1;b yð Þ :¼ 4M1b

d2
þ h

00
yð Þ and h

00

2;b yð Þ :¼ 4M1b

d2
� h

00
yð Þ:

Because h
00
is bounded on [0, 1], we can choose b� 1 so that h

00

1;b yð Þ� 0;

h
00

2;b yð Þ� 0; for each y 2 ½0; 1�. Hence h1;b; h2;b 2 Cþ;2 \ C2
þ and then by the

hypothesis

Tn hj;b; x
� �

� 0; for all n 2 N; x 2 ½0; 1� and j ¼ 1; 2 ð2:6Þ

and hence

Vt hj;b; x
� �

� 0; for t 2 0;Rð Þ; x 2 ½0; 1� and j ¼ 1; 2:

From (2.4)–(2.6) and linearity Tnð Þ we get

eVt h0; xð Þ þ 2M1b

d2
Vt ux; xð Þ þ Vt h; xð Þ � h xð ÞVt h0; xð Þ� 0

eVt h0; xð Þ þ 2M1b

d2
Vt ux; xð Þ � Vt h; xð Þ þ h xð ÞVt h0; xð Þ� 0

Then we obtain

Vt h; xð Þ � h xð Þj j � eþ 2M1b

d2
Vt ux; xð Þ þ eþ h xð Þj jð Þ Vt h0; xð Þ � h0 xð Þj j:

We immediately get that

Vt hð Þ � hk k� eþ K1 Vt h2ð Þ � h2k k þ Vt h1ð Þ � h1k k þ Vt h0ð Þ � h0k kf g ð2:7Þ

where K1 ¼ max eþM1 þ
2M1b

d2
;
4M2b

d2

� �
:

Hence it follows from the hypothesis and the inequality (2.7) that

lim
0\t!R�

Vt hð Þ � hk k\e

which concludes the proof since e is arbitrary.

Theorem 2.2 Let Tnð Þ be a sequence of linear operators from C2½0; 1� into itself

and Tn Cþ;2 \ C2
�

� �
� C2

�; for all n 2 N: Then for all h 2 C2½0; 1�

lim
0\t!R�

V
00

t hð Þ � h
00�� �� ¼ 0 ð2:8Þ

if and only if

53 Page 4 of 14 S. Yıldız and N. Ş. Bayram



lim
0\t!R�

V
00

t hið Þ � h
00

i

�� �� ¼ 0; i ¼ 0; 1; 2; 3; 4: ð2:9Þ

Proof It is obvious that (2.8) implies that (2.9) . Let h 2 C2½0; 1� and x 2 ½0; 1� be
fixed. Based on the proof of Theorem 2.1, this can be found as follows:

For every e[ 0; there exists a d[ 0 such that

�e� 2Mb

d2
r

00

x yð Þ� h
00
yð Þ � h

00
xð Þ� eþ 2Mb

d2
r

00

x yð Þ ð2:10Þ

holds for all y 2 ½0; 1� and for any b� 1 where M2 ¼ h
00�� �� and rx yð Þ ¼

� y� xð Þ4

12
þ 1:

Consider the following functions on [0, 1] :

u1;b yð Þ :¼ 2M2b

d2
rx yð Þ þ h yð Þ � e

2
y2 � h

00
yð Þ
2

y
00 � 0

u2;b yð Þ :¼ 2M2b

d2
rx yð Þ � h yð Þ � e

2
y2 þ h

00
yð Þ
2

y
00 � 0

Also, then by (2.10) and for all y 2 ½0; 1�;

u
00

1;b yð Þ� 0 and u
00

2;b yð Þ� 0;

which gives u1;b; u2;b 2 C2
� and observe that rx yð Þ� 11

12
for all y 2 ½0; 1�: Then

inequality

�h yð Þ þ e
2
� h

00
xð Þ

2
y2

	 

d2

2M2rx yð Þ � M1 þM2 þ eð Þd2

M2

ð2:11Þ

holds for all y 2 ½0; 1�; where M1 ¼ hk k and M2 ¼ h
00�� ��, as mentioned before. As

we know, we can choose b� 1 such that u1;b yð Þ� 0; u2;b yð Þ� 0; for each y 2 ½0; 1�
and hence u1;b; u2;b 2 Cþ;2 \ C2

�: Then by the hypothesis

T
00

n uj;b; x
� �

� 0; for all n 2 N; x 2 ½0; 1� and j ¼ 1; 2

and hence

V
00

t uj;b; x
� �

� 0; for t 2 0;Rð Þ; x 2 ½0; 1� and j ¼ 1; 2:

Then we get
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2M2b

d2
V

00

t rx; xð Þ þ V
00

t h; xð Þ � e
2
V

00

t h2; xð Þ � h
00
xð Þ
2

V
00

t h2; xð Þ� 0;

2M2b

d2
V

00

t rx; xð Þ � V
00

t h; xð Þ � e
2
V

00

t h2; xð Þ þ h
00
xð Þ
2

V
00

t h2; xð Þ� 0;

and thus

2M2b

d2
V

00

t rx; xð Þ � e
2
V

00

t h2; xð Þ þ h
00
xð Þ
2

V
00

t h2; xð Þ � h
00
xð Þ

�V
00

t h; xð Þ � h
00
xð Þ

� � 2M2b

d2
V

00

t rx; xð Þ þ e
2
V

00

t h2; xð Þ þ h
00
xð Þ
2

V
00

t h2; xð Þ � h
00
xð Þ:

Observe that in view of rx 2 Cþ;2 \ C2
�; we can get V

00

t rx; xð Þ� 0 and using this

V
00

t h; xð Þ � h
00
xð Þ

�� ��� � 2M2b

d2
V

00

t rx; xð Þ þ e
2
V

00

t h2; xð Þ þ
h

00
xð Þ

�� ��
2

V
00

t h2; xð Þ � 2
�� ��:

Thus

V
00

t h; xð Þ � h
00
xð Þ

�� ��� eþ
eþ h

00
xð Þ

�� ��
2

V
00

t h2; xð Þ � h
00

2 xð Þ
�� ��

þ 2M2b

d2
V

00

t �rx; xð Þ:
ð2:12Þ

Now we compute the quantity V
00
t �rx; xð Þ in inequality (2.12) . To see this, observe

that

V
00

t �rx; xð Þ ¼V
00

t

y� xð Þ4

12
� 1; x

 !

� 1

12
V

00

t h4; xð Þ � x

3
V

00

t h3; xð Þ þ x2

2
V

00

t h2; xð Þ � x3

3
V

00

t h1; xð Þ

þ x4

12
� 1

� 

V

00

t h0; xð Þ

¼ 1

12
V

00

t h4; xð Þ � h
00

4 xð Þ
n o

� x

3
V

00

t h3; xð Þ � h
00

3 xð Þ
n o

þ x2

2
V

00

t h2; xð Þ � h
00

2 xð Þ
n o

� x3

3
V

00

t h1; xð Þ � h
00

1 xð Þ
n o

þ x4

12
� 1

� 

V

00

t h0; xð Þ � h
00

0 xð Þ
n o

:

Combining this with (2.12) , for every e[ 0 we get

53 Page 6 of 14 S. Yıldız and N. Ş. Bayram



V
00

t h� h
00�� ��� eþ

eþ h
00
xð Þ

�� ��
2

þ 2M2b

d2

 !
V

00

t h2ð Þ � h
00

2

�� ��

þM2b

6d2
V

00

t h4ð Þ � h
00

4

�� ��

þ 2M2b

3d2
V

00

t h3ð Þ � h
00

3

�� ��

þ 2M2b

3d2
V

00

t h1ð Þ � h
00

1

�� ��

þ 2M2b

3d2
1� x4

12

� 

V

00

t h0ð Þ � h
00

0

�� ��:

ð2:13Þ

Therefore, we derive, for every e[ 0; that

V
00

t hð Þ � h
00�� ��� eþ K2

X4

k¼0

V
00

t hk � h
00

k

�� ��

where K2 ¼
eþM2

2
þM2b

d
and M2 ¼ h

00�� �� as stated before. Thus it follows from

the hypothesis and inequality (2.13) we obtain that

lim
0\t!R�

V
00

t hð Þ � h
00�� �� ¼ 0:

Theorem 2.3 Let Tnð Þ be a sequence of linear operators from C1½0; 1� into itself

and Tn Cþ;1 \ C1
þ

� �
� C1

þ; for all n 2 N: Then for all h 2 C1½0; 1�

lim
0\t!R�

V
0

t hð Þ � h
0�� �� ¼ 0 ð2:14Þ

if and only if

lim
0\t!R�

V
0

t hið Þ � h
0

i

�� �� ¼ 0; i ¼ 0; 1; 2; 3: ð2:15Þ

Proof It is enough to prove the implication (2.15) ) (2.14) . Let h 2 C1½0; 1� and
x 2 ½0; 1� be fixed. Then for every e[ 0; there exists a positive number d[ 0 such

that

�e� 2M3b

d2
c
0

x yð Þ� h
0
yð Þ � h

0
xð Þ� eþ 2M3b

d2
c
0

x yð Þ ð2:16Þ

holds for all y 2 ½0; 1� and for any b� 1 whereM3 ¼ h
0�� �� and cx yð Þ ¼ y� xð Þ3

3
þ 1:

Now using the functions defined by
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h1;b yð Þ :¼ 2M3b

d2
cx yð Þ � h yð Þ þ eyþ yh

0
xð Þ;

h2;b yð Þ :¼ 2M3b

d2
cx yð Þ þ h yð Þ þ ey� yh

0
xð Þ;

we can easily see that h1;b and h2;b belong to C1
þ for any b� 1; i.e., h1;b yð Þ� 0;

h2;b yð Þ� 0: Also observe that cx yð Þ� 2

3
for all y 2 ½0; 1�; then inequality

�h yð Þ � ey� h
0
xð Þy

� �
d2

2M3cx yð Þ � M1 þM3 þ eð Þd2

M3

ð2:17Þ

holds for all y 2 ½0; 1�; where M1 ¼ hk k as mentioned before. Now we can choose

b� 1 such a way that h1;b yð Þ� 0; h2;b yð Þ� 0; for each y 2 ½0; 1� and hence h1;b;
h2;b 2 Cþ;1 \ C1

þ: Then by the hypothesis

T 0
n hj;b; x
� �

� 0; for all n 2 N; x 2 ½0; 1� and j ¼ 1; 2

and hence

V
0

t hj;b; x
� �

� 0; for t 2 0;Rð Þ; x 2 ½0; 1� and j ¼ 1; 2:

Then we get

2M3b

d2
V

0

t cx; xð Þ � V
0

t h; xð Þ þ eV
0

t h1; xð Þ þ h
0
xð ÞV 0

t h1; xð Þ� 0;

2M3b

d2
V

0

t cx; xð Þ þ V
0

t h; xð Þ þ eV
0

t h2; xð Þ � h
0
xð ÞV 0

t h1; xð Þ� 0;

and thus

2M3b

d2
V

0

t cx; xð Þ � eV
0

t h1; xð Þ þ h
0
xð ÞV 0

t h1; xð Þ � h
0
xð Þ

�V
0

t h; xð Þ � h
0
xð Þ

� � 2M3b

d2
V

0

t cx; xð Þ þ eV
0

t h1; xð Þ þ h
0
xð ÞV

0

t h1; xð Þ � h
0
xð Þ:

Since the function cx 2 Cþ;1 \ C1
þ; we have V

0

t cxð Þ 2 C1
þ

V
0

t h; xð Þ � h
0
xð Þ

���
���� eþ eþ h

0
xð Þ

�� ��
	 


V
0

t h1; xð Þ � h
0

1 xð Þ
���

���

þ 2M3b

d2
V

0

t cx; xð Þ;
ð2:18Þ

holds. Since
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V
0

t c; xð Þ ¼V
0

t

y� xð Þ3

3
þ 1; x

 !

� 1

3
V

0

t h3; xð Þ � xV
0

t h2; xð Þ þ x2V
0

t h1; xð Þ þ 1� x3

3

� 

V

0

t h0; xð Þ

¼ 1

3
V

0

t h3; xð Þ � h
0

3 xð Þ
n o

� x V
0

t h2; xð Þ � h
0

2 xð Þ
n o

þ x2 V
0

t h1; xð Þ � h
0

1 xð Þ
n o

þ 1� x3

3

� 

V

0

t h0; xð Þ � h
0

0 xð Þ
n o

;

combining this with (2.18) , for every e[ 0; we get

V
0

t h; xð Þ � h
0
xð Þ

�� ��� eþ eþ h
0
xð Þ

�� ��þ 2M3bx2

d2

� 

V

0

t h1; xð Þ � h
0

1 xð Þ
�� ��

þ 2M3b

3d2
V

0

t h3; xð Þ � h
0

3 xð Þ
�� ��

þ 2M3bx

3d2
V

0

t h2; xð Þ � h
0

2 xð Þ
�� ��

þ 2M3b

3d2
1� x3

3

� 

V

0

t h0; xð Þ � h
0

0 xð Þ
�� ��

ð2:19Þ

It follows that

V
0

t hð Þ � h
0�� ��� eþ K3

X3

k¼0

V
0

t hkð Þ � h
0

k

�� �� ð2:20Þ

where K3 ¼ eþM3 þ
2M3b
d

: Thus it follows from hypothesis and inequality (2.20)

that

lim
0\t!R�

V
0

t hð Þ � h
0�� �� ¼ 0:

3 Applications

In this section, we give intriguing application, showing that, in general, our results

are more robust than classical ones.

Example 3.1 Let h½x0; x1; :::; xi� denote the divided difference of the function h 2
C½0; 1� in the points x0; x1; :::; xi 2 ½0; 1� where i ¼ 0; 1; 2; :::. Also, let

G ¼ fh 2 C½0; 1�: 9M[ 0 such that h½x0; x1; x2� �M 8x0; x1; x2 2 ½0; 1�} and Knð Þ,
Kn : G ! C½0; 1�, be the sequence of linear operators defined [5] by
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KnhðxÞ ¼

hð0Þ þ h 0;
1

n

� �
xþ h 0;

1

n
;
2

n

� �
x2; x 2 0;

1

n

� �
;

Knh
i

n

� 

þ DKnh

i

n

� 

x� i

n

� 

þ h

1

n
;
iþ 1

n
;
iþ 2

n

� �
x� i

n

� 
2

;

x 2 i

n
;
iþ 1

n

� �
; i ¼ 1; :::; n� 3;

Knh
n� 2

n

� 

þ DKnh

n� 2

n

� 

x� n� 2

n

� 


þf
n� 2

n
;
n� 1

n
; 1

� �
x� n� 2

n

� 
2

; x 2 n� 2

n
; 1

� �
;

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

where D denotes the differential operator. Then we know from [5] that Kn is not

positive operator and Kne0 ¼ e0, Kne1 ¼ e1, Kne2ðxÞ ¼
x

n
þ e2ðxÞ 8x 2 ½0; 1�. Hence,

Knei converges uniformly to ei for i ¼ 0; 1; 2 and thus Knh converges uniformly to h
as n ! 1 for all h 2 G. Now, using this operator Kn, we define the sequence of

linear operators

TnhðxÞ ¼ ð1þ unÞKnhðxÞ; for all h 2 C½0; 1�; n� 1:

Take ðunÞ ¼ ð�1Þn. It is easy to see that ðunÞ is Abel convergent to zero, but it is

not convergent in the classical and statistical sense. Observe that Tne0ðxÞ ¼
ð1þ unÞe0ðxÞ, Tne1ðxÞ ¼ ð1þ unÞe1ðxÞ and Tne2ðxÞ ¼ ð1þ unÞð1þ x

n e2ðxÞÞ. By

using the above conditions and because of the method is regular, we can see that

Tnei is Abel convergent to ei for i ¼ 0; 1; 2.
The example given above suggests that the classical and statistical Korovkin

theorems for the sequence of non-positive operators (see [5, 10]) do not work. Then

we can alternatively use the power series method to get some Korovkin type

approximation results. Hence, by using this method, our Theorem 2.1 works for the

operators Tn.

4 Quantitative estimates

In this section, we prove some results which give the degree of approximation by

means of linear operators.

The modulus of continuity, denoted by x h; dð Þ, is defined by

xðh; dÞ ¼ sup
y�xj j � d

hðyÞ � hðxÞj j:

where d is a positive constant, h 2 C½a; b�). It is easy to see that, for any c[ 0 and

all
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xðh; dÞ� ð1þ ½c�Þxðh; dÞ

where [c] is defined to be the greatest integer less than or equal to c.
Now we present some estimates the rates of the power series method for

Korovkin-type theorems.

Theorem 4.1 Let Tnð Þ be a sequence of linear operators from C2½0; 1� into itself

and Tn Cþ;2 \ C2
þ

� �
� Cþ;2; for all n 2 N: We have, for all h 2 C2½0; 1�

Vt hð Þ � hk k� 1þ bð Þx h; dnð Þ þ x h; dð Þ þ h xð Þk kð Þ Vt h0ð Þ � h0k k ð4:1Þ

where dk :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vtuxk k

p
and ux yð Þ ¼ y� xð Þ2:

Proof Let x 2 ½0; 1� be fixed and let h 2 C2½0; 1�: We can write that

� 1þ b

d2
ux yð Þ

� 

x h; dð Þ� h yð Þ � h xð Þ� 1þ b

d2
ux yð Þ

� 

x h; dð Þ ð4:2Þ

for all y 2 ½0; 1� and for any b� 1 where ux yð Þ ¼ y� xð Þ2: Then by (4.2) we get

that

g1;b yð Þ :¼ 1þ b

d2
ux yð Þ

� 

x h; dð Þ þ h yð Þ � h xð Þ� 0; ð4:3Þ

g2;b yð Þ :¼ 1þ b

d2
ux yð Þ

� 

x h; dð Þ � h yð Þ þ h xð Þ� 0: ð4:4Þ

Also for all y 2 ½0; 1�;

g
00

1;b yð Þ :¼ 2b

d2
x h; dð Þ þ h

00
yð Þ and g

00

2;b yð Þ :¼ 2b

d2
x h; dð Þ � h

00
yð Þ:

Because h
00
is bounded on [0, 1] we can choose b� 1 such a way that g

00

1;b yð Þ� 0;

g
00

2;b yð Þ� 0; for each y 2 ½0; 1�: Hence, g1;b; g2;b 2 Cþ;2 \ C2
þ and then by the

hypothesis

Tn gj;b; x
� �

� 0; for all n 2 N; x 2 ½0; 1� and j ¼ 1; 2 ð4:5Þ

and hence

Vt gj;b; x
� �

� 0; for t 2 0;Rð Þ; x 2 ½0; 1� and j ¼ 1; 2:

From (4.3)–(4.5) and the linearity of Tnð Þ; we get

Vt h0; xð Þx h; dð Þ þ bx h; dð Þ
d2

Vt ux; xð Þ þ Vt h; xð Þ � h xð ÞVt h0; xð Þ� 0;

Vt h0; xð Þx h; dð Þ þ bx h; dð Þ
d2

Vt ux; xð Þ � Vt h; xð Þ þ h xð ÞVt h0; xð Þ� 0;

thus
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�Vt h0; xð Þx h; dð Þ � bx h; dð Þ
d2

Vt ux; xð Þ� h xð ÞVt h0; xð Þ � Vt h; xð Þ

�Vt h0; xð Þx h; dð Þ

þ bx h; dð Þ
d2

Vt ux; xð Þ:

Then we obtain

Vt h; xð Þ � h xð Þj j �x h; dð Þ þ x h; dð Þ þ h xð Þj jð Þ Vt h0; xð Þ � h0 xð Þj j

þ bx h; dð Þ
d2

Vt ux; xð Þ:

If we take d :¼ dn :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vt uxð Þk k

p
and taking supremum x; y 2 ½0; 1�; then we get

Vt hð Þ � hk k� 1þ bð Þx h; dnð Þ þ x h; dð Þ þ h xð Þk kð Þ Vt h0ð Þ � h0k k: ð4:6Þ

Note that Theorems 4.2 and 4.3 may be proved as in Theorem 4.1. So we omit

their proofs.

Theorem 4.2 Let Tnð Þ be a sequence of linear operators from C2½0; 1� into itself

and Tn Cþ;2 \ C2
�

� �
� C2

�; for all n 2 N; then we have for all h 2 C2½0; 1�,

V
00

t hð Þ � h
00�� ��� 1þ bð Þx h

00
; dn

	 

þ x h

00
; d

	 

þ h

00
xð Þ

�� ��
	 


V
00

t h0ð Þ � h
00

0

�� ��;

ð4:7Þ

where dk :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00
t �rxð Þ

�� ��
q

and rx yð Þ ¼ � y� xð Þ4

12
þ 1:

Theorem 4.3 Let Tnð Þ be a sequence of linear operators from C1½0; 1� into itself

and Tn Cþ;1 \ C1
þ

� �
� C1

þ; for all n 2 N then we have for all h 2 C1½0; 1�,

V
0

t hð Þ � h
0�� ��� 1þ bð Þx h

0
; dn

	 

þ x h

0
; d

	 

þ h

0
xð Þ

�� ��
	 


V
0

t h0ð Þ � h
0

0

�� ��; ð4:8Þ

where dk :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 0
t cxð Þ

�� ��
q

and cx yð Þ ¼ y� xð Þ3

3
þ 1:

5 Conclusions

Finally, we give the following concluding remarks.

e Let Tnð Þ be a sequence of linear operators from C[0, 1] into itself and

Tn Cþð Þ � Cþ; for all n 2 N: Then for all h 2 C½0; 1�;

lim
0\t!R�

Vt hð Þ � hk k ¼ 0 ð5:1Þ

if and only if
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lim
0\t!R�

Vt hið Þ � hik k ¼ 0; i ¼ 0; 1; 2 see [17]ð Þ: ð5:2Þ

eWe remark that all our theorems also work on any compact subset of R instead of

the unit interval [0, 1].

e Theorem 2.3 works if we replace the condition Tn Cþ;1 \ C1
þ

� �
� C1

þ by

Tn Cþ;1 \ C1
�

� �
� C1

�: To prove this, it is enough to consider the function lx yð Þ ¼

� y� xð Þ3

3
þ 1 instead of cx yð Þ defined in the proof of Theorem 2.3.
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