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Abstract

We consider the one-dimensional Schrodinger equation —f” 4 ¢,f = Ef on the positive
half-axis with the potential ¢, (r) = (o — 1/4)r~2.Itis known that the value o« = 0 plays
a special role in this problem: all self-adjoint realizations of the formal differential
expression —af + ¢,(r) for the Hamiltonian have infinitely many eigenvalues for & <0
and at most one eigenvalue for o > 0. We find a parametrization of self-adjoint boundary
conditions and eigenfunction expansions that is analytic in a and, in particular, is not
singular at o = 0. Employing suitable singular Titchmarsh—-Weyl m-functions, we
explicitly find the spectral measures for all self-adjoint Hamiltonians and prove their
smooth dependence on o and the boundary condition. Using the formulas for the spectral
measures, we analyze in detail how the “phase transition” through the point « = 0
occurs for both the eigenvalues and the continuous spectrum of the Hamiltonians.
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1 Introduction

This paper is devoted to eigenfunction expansions connected with the one-
dimensional Schrédinger equation’

! The shift of the coupling constant by 1/4 in the potential term is a matter of technical convenience: it
allows us to get simpler expressions for the solutions of (1.1).
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)+ 2 = ), rew,, (1)

where « and E are real parameters, and R, denotes the positive half-axis (0, c0).

There are two special values of the coupling constant o at which this problem
undergoes a structural change. One of them is o = 1. For o< 1, all solutions of (1.1)
are square-integrable on the interval (0, a) for every a > 0. At the same time, only
one solution (up to a constant factor) for each E possesses this property for o > 1. In
terms of the well-known Weyl alternative, this means that the differential
expression

a—1/4

72

_af + (1.2)
corresponds at r = 0 to the limit point case for o > 1 and to the limit circle case for
a<1. As a consequence, (1.2) has a unique self-adjoint realization in L, (R, )* for
o> 1 and infinitely many self-adjoint realizations in Ly(R;) for a<1. The latter
correspond to various self-adjoint boundary conditions at r = 0.

Another special value of o is o = 0. It has long been known [4, 17] that the
spectrum of all self-adjoint realizations of (1.2) is not bounded from below and
contains infinitely many negative eigenvalues for « <0. On the other hand, every
self-adjoint realization of (1.2) has at most one eigenvalue for « > 0 (the continuous
spectrum is [0, co) for all real o).

If x € R and o = &2, then the function® f(r) = \/rJ(VEr), where J, is the
Bessel function of the first kind of order «, is a solution of (1.1) for every E > 0
(this follows immediately from the fact that J,. satisfies the Bessel equation). These
solutions can be used to expand square-integrable functions on R.. More precisely,
given k >0 and a square-integrable complex function iy on R, that vanishes for

large r, we can define the function lﬁ on R, by setting:
R 1 [
Y(E) = —/ Vil (VER(r)dr, E > 0. (1.3)
V2 Jo

The map yy — x/; then coincides up to a change of variables with the well-known
Hankel transformation [13] and induces a uniquely determined unitary operator in
L,(R,). Since the development of a general theory of singular Sturm-Liouville
operators by Weyl [27], this transformation has been used by many authors to
illustrate various approaches to eigenfunction expansions for problems of this type
[9, 10, 16, 18, 24, 28].

For o > 1, transformation (1.3) with x = \/a provides an eigenfunction expan-
sion (i.e., a diagonalizing unitary operator) for the unique self-adjoint realization
of (1.2). If 0 <wa <1, then it is an eigenfunction expansion for one of infinitely many
self-adjoint realizations of (1.2), namely, for the Friedrichs extension of the

2 Here and subsequently, we let L,(R,) denote the Hilbert space of (equivalence classes of) square-
integrable complex functions on R...

* In this paper, we use the symbol /x only for nonnegative x; the notation z'/?> will be used for a
suitable branch of the square root in the complex plane.
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minimal operator &, associated with (1.2) (see [8]; the precise definition of A, will
be given later in this section). As we shall see, the latter is not bounded from below
and, therefore, has no Friedrichs extension for o <0. Accordingly, the right-hand
side of (1.3) as a function of « has a branch point at « = 0 and cannot be analytically
continued to the region o <0.

For « > 0, eigenfunction expansions corresponding to all self-adjoint realizations
of (1.2) were found in [24] (however, without explicitly using the language of
operators in Hilbert space). In [17], all self-adjoint Hamiltonians associated
with (1.2) and corresponding eigenfunction expansions were constructed for every
real o using the theory of self-adjoint extensions of symmetric operators (a
somewhat different treatment of this problem in the framework of self-adjoint
extensions can be found in [11, 12]).

The generalized eigenfunctions used in [11, 12, 17, 24] had the same type of
branch point singularity at o = O as that appearing in Hankel transformation (1.3).
As a result, the cases O<a<1, « =0, and a<0 were treated separately and
eigenfunction expansions for « = 0 could not be obtained from those for 0 <o <1
and « <0 by taking the limit & — 0. In [21], we considered problem (1.1) with
o = x> and constructed a parametrization of self-adjoint realizations of (1.2) and
corresponding eigenfunction expansions that is continuous in x on the interval
(—=1,1) (and, in particular, at x = 0). This work was motivated by our previous
research [20] of the Aharonov—Bohm model, where zero and nonzero x correspond
to integer and noninteger values of the dimensionless magnetic flux through the
solenoid. In terms of «, the results of [21] give a continuous transition from the
region O <o <1toa=0.

In this paper, we extend the treatment in [21] to also cover the region o <<0. We
parametrize all eigenfunction expansions associated with (1.2) in such a way that
the generalized eigenfunctions turn out to be analytic in o for o<1, while the
corresponding spectral measures are infinitely differentiable in o on the same
interval. Using explicit formulas for the spectral measures, we analyze in detail how
the transition through the point o = 0 occurs for both the eigenvalues and the
continuous spectrum of self-adjoint realizations of (1.2) in this parametrization.

We now give a brief structural description of our results.

For every o € C, we define the function ¢, on R, by setting:

_a—1/4

2 r>0. (1.4)

qa(r)
For real o, g, is the potential term in (1.2).

Let A, be the restriction to R, of the Lebesgue measure 2 on R and D be the
space of all complex continuously differentiable functions on R, whose derivative
is absolutely continuous on R (i.e., absolutely continuous on every segment [a, ]
with 0 <a <b<o0). Given o,z € C, we let &, ; denote the linear operator from D
to the space of complex 4. -equivalence classes, such that:

W Birkhiuser
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(L2 )r) = =f"(r) + qu(r)f (r) = (1) (1.5)
for J-a.e.* r € R, and set:
Ly =Lap- (1.6)
Let o € R. We define the linear subspace A, of D by setting:
Ay ={f €D:f and Z,f are both square-integrable on R.}. (1.7)

For every linear subspace Z of A,, let H,(Z) be the linear operator in L,(R)
defined by the relations™:

Dy,z) ={lf] : f € Z},
H,(Z)[f| = Z.f, fE€Z,

where [f] = [f], ~denotes the /.-equivalence class of f. We clearly have
C°(Ry) C Ay, where C°(Ry) is the space of all smooth functions on R, with
compact support. The operator

(1.8)

i = Hy(CE (R,)) (1.9)
is obviously symmetric and, hence, closable. The closure of h; is denoted by h,:
= I (1.10)
We shall see that the adjoint £ of h, is given by:
k= H,(A,). (1.11)

If T is a symmetric extension of A,, then A4} is an extension of 7* and hence of T.
By (1.11), we conclude that T is of the form H,(Z) for some subspace Z of A,.

Self-adjoint operators of the form H,(Z) can be naturally viewed as self-adjoint
realizations of differential expression (1.2). If H,(Z) is self-adjoint, then equal-
ity (1.11) and the closedness of &, imply that H,(Z) is an extension of h,, because
H,(A,) is an extension of H,(Z). Therefore, the self-adjoint realizations of (1.2) are
precisely the self-adjoint extensions of &, (or, equivalently, of hy).

For every o,z € C, we shall construct real-analytic functions .4”(z) and B*(z) on
R, , such that:

gz,zAa(Z) = gz.zBa(Z) =0, o,z€C. (112)

The functions A”(z) and B%(z) are real for real o and z. Moreover, the quantities®
A*(z|r) and B*(z|r) are entire analytic in « and z for every fixed r > 0 and, in

* Throughout the paper, a.e. means either “almost every” or “almost everywhere”.
5> Here and subsequently, we let Dy denote the domain of definition of a map F.

S Given a map F whose values are also maps, we let F(xly) denote the value of F(x) at a point y:

Fxly) = (F(x))()-
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particular, are not singular at o = 0. If <1 and z € C, then A*(z) and B%(z) are
linear independent and are both square-integrable on the interval (0, a) for every
a > 0 (as mentioned above, we have the limit circle case for a<1).

Given f, g € D, we let W,(f, g) denote the Wronskian of f and g at a point r > 0:

Wi (f,8) =f(r)g'(r) = f(r)g(r). (1.13)

Clearly, r — W,(f, g) is an absolutely continuous function on R,
For every o, 9,z € C, we define the function U5(z) on Ry by the relation:

U (z) = A%(z) cos ¥ + B*(z) sinv. (1.14)
By (1.12), we obviously have:
go’wzu%(z) = 07 OC,’l?,Z S C (115)

The properties of A”(z) and B*(z) imply that U/} (z) is real for real o, 1J, and z and the
quantity U5 (z|r) is entire analytic in a, ¥, and z for every fixed r > 0. If « <1, then
Uy(z) is nontrivial for every ¥,z€C. We shall show that
lim, o W,(U%(2),U5(Z)) =0 for all <1, ¢ € R, and z,Z € C. This condition
means that {{}(z|r) for various z have the same asymptotics as r | 0.

Let f € D and a,4,z € C. In view of (1.15), integration by parts yields:

/a(ﬂ’a,zf)(r’) Bl dr’ = W (U5 (2),f) = WaUj(2).f)

for every a,r > 0. If a < 1, then U5 (z) is square-integrable on (0, a) for every a > 0
and this equality implies that W,.({/3(z),f) has a limit as r | O for every 1,z € C and
f €A, Given a<1 and ¥ € R, we define the operator &, in L,(R.) by the
relation:

hac,19 = Hot(Za,ﬂ>a (116)

where the linear subspace Z, y of A, is given by:
Zuo = {f € Ay Tim W, (U5(0),f) = 0} (1.17)
By (1.14) and the definition of &, y, we have:
hygin = hyp, o<l,9€R. (1.18)

The next statement gives a complete description of the self-adjoint extensions of 4,
for every o € R.

Theorem 1.1 For o> 1, the operator hy is self-adjoint. If o<1, then h,y is a self-
adjoint extension of h, for every ¥ € R and, conversely, every self-adjoint extension
of hy is equal to hyy for some ¥ € R. Given 9,9 € R, we have h,y = hy g if and
only if 9 — V' € nZ.

W Birkhiuser
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As will be obvious from the explicit definitions of A%*(z) and B*(z) in Sect. 2,
these functions are actually square-integrable on intervals (0, a) with a > 0 for all «
belonging to the domain:

M= {xeC:oa=x?for some x € C such that [Rex|<1}.

and all z € C. Hence, the above definition of 4,» can be naturally extended to all
o € IT and ¥ € C. Moreover, it is possible to show that such an extended family of
operators is holomorphic on IT x C in the sense of Kato (see Ch. 7 in [14]) and,
therefore, h,y with o<1 and 1 € R constitute a real-analytic family of operators.
This can be proved using a technique similar to that employed in [3] for the case of
extensions of i, homogeneous with respect to dilations of R... The spectral analysis
of a holomorphic family similar to &, 4 can be found in [6], where, however, « rather
than o was used as a parameter and the case « = 0 was treated separately (see also
[5] for an analogous treatment of the Coulomb potential; a possibility of removing
the singularity at x = 0 was indicated in Remark 2.5 in [6]). However, the analysis
of hyy for complex o and ¢ is beyond the scope of this paper. In the sequel, we
confine ourselves to the self-adjoint case a <1, ¥ € R.

Given a positive Borel measure v on R and a v-measurable complex function g,
we let 7 ; denote the operator of multiplication by g in the Hilbert space L, (R, v) of
v-square-integrable complex functions on R.” If g is real, then ’T; is self-adjoint. We
let LS(R.) denote the subspace of L,(R..) consisting of all its elements vanishing A-
a.e. outside some compact subset of R..

It turns out that the functions U5 (E) with real E can be used as generalized
eigenfunctions for constructing eigenfunction expansions for 4, y. More precisely,
for every o<1 and ¥ € R, we shall construct a positive Radon measure® V.9 on R,

such that:
dVO“g(E)
— L <0 1.19

/RE2+1 =00, (1.19)

and the following statement holds.

Theorem 1.2 Let a<1 and ¥ € R. Then, there is a unique unitary operator
Uy : Ly(Ry) — Lo(R, Vyp), such that:

() (E) = [ UEG)dr € ISR,
for V, g-a.e. E, and we have:
hay = Uy y TV Uy, (1.20)

where 1 is the identity function on R (i.e., 1(E) = E for all E € R).

7 More precisely, T, is the operator in L»(R,v) whose graph consists of all pairs (¢, ®,), such that
?15¢2 € L2(R,v) and ¢, (E) = g(E)¢, (E) for v-ae. E.

8 We recall that a Borel measure v on R is called a Radon measure on R if v(K) < oo for every compact
set K C R.

& Birkhauser
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Clearly, the measures V), y (which will be referred to as the spectral measures)
contain all information about the spectral properties of the operators #, . In
particular, £ € R is an eigenvalue of &, if and only if the measure V), y of the one-
point set {E} is strictly positive. In agreement with (1.14) and (1.18), V,y is 7-
periodic in ¥:

Vyotn = Van, o<1,V €R. (1.21)

Let w be the n-periodic function on R, such that:

o= (1-22)", -

Clearly, we have 0 < (1) <1 for all ¥ € R. We define the subsets Qp, Q1, and QO
of R? by the relations (see Fig. 1):

<v< (1.22)

N
o

Qo = {(0,9) € R? : (V) <a< 1}, (1.23)
01 = {(o,0) e R*: 0<a<w(¥)}, (1.24)
0w = {(2,9) € R* : 2 <0}. (1.25)

The analysis of the measures V,y shows that h,y has no eigenvalues for
(o, 1) € Qp, one eigenvalue for (o, ) € Qy, and infinitely many eigenvalues that
are not bounded from below for (o, %) € Q... Using a parametrization of general-
ized eigenfunctions that is analytic on the entire domain:

0=0UQIUQx ={(x,¥) e R*:a<1} (1.26)

allows us to understand in detail what happens to eigenvalues as we pass from Q,
to Q; through the line o = 0. It turns out that there is one eigenvalue that crosses this
line in an analytic manner, while the rest infinitely many eigenvalues tend either to
—oo or to zero as o | 0 and die away there. Moreover, the density of V), y corre-
sponding to the continuous part of the spectrum turns out to be real-analytic on Q.

If <0, then the operator A, is not bounded from below, because otherwise it
would have self-adjoint extensions (e.g., its Friedrichs extension) that are bounded
from below, in contradiction to Theorem 1.1 and the described properties of
eigenvalues of A,y for («,79) € Q. On the other hand, it is easy to see that h, is
positive for o> 0. Indeed, let f € C;°(R;), ¥ = [f], and ¢ be a real number. Using
the integration by parts, we easily derive from (1.9) that:

o0 - o — J— 02 ~
Wi = [ (o + 2R ar,

where (-, -) is the scalar product in L,(R,) and the function f on R, is given by
f(r) = r~f(r), r > 0. The maximum of —@? + g is attained at ¢ = 1/2 and is equal
to 1/4. Substituting this value to the above equality, we deduce that (y, h,ay) > 0 for
all >0 and ¥ € Dy . The positivity of h, for « >0 now follows from (1.10).

W Birkhiuser
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Fig. 1 The sets Qo, O, and Q are represented by white, dark gray, and light gray regions, respectively

It seems probable that the dependence of V,» on a and ¢ is not analytic at the
boundaries between the regions Qp, Q;, and O, where eigenvalues arise and
disappear (however, we do not prove this claim in this paper). At the same time, we
shall show that this dependence is smooth on Q in a suitable sense. To formulate this
result precisely, we make use of the Schwartz space . of rapidly decreasing smooth
functions. More specifically, .’ consists of all infinitely differentiable functions ¢
on R, such that:

sup e (E)|(1+|E])" <00
EE€R, ke{0,...,n}

for every nonnegative integer n, where @) stands for the kth derivative of ¢. The
space % is widely used in the theory of generalized functions as the test function
space for tempered distributions. In view of (1.19), every ¢ € & is V, y-integrable
for all a<1 and ¥ € R.

Theorem 1.3 For every ¢ € &, the function (o,9) — [ @(E)dV,»(E) is infinitely
differentiable on the domain Q given by (1.26).

Thus, our construction of eigenfunction expansions is, as a whole, at least
infinitely differentiable.

When considering Eq. (1.1), it is convenient to set o = x> and find its solutions
as functions of x (we have actually done so in the case of Hankel transforma-
tion (1.3)). To return to the initial variable «, it is then necessary to replace x with
the square root of . As was discussed above, this may lead to the appearance of
branch points and the loss of analyticity. This does not happen, however, if the
solution in question is an even holomorphic function of x. Indeed, suppose we have

& Birkhauser
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an even holomorphic function g, which will be assumed for simplicity to be entire.
Then, g has the power series expansion of the form g(w) = > 2, cxw? for every
w € C. If we define the entire analytic function G by the formula G({) = Y222 ex (¥,
{ € C, then we have:

G(w*) = g(w) (1.27)

for all w € C and, hence, G({) can be viewed as a result of “substituting the square
root of {” in g. More generally, representations of type (1.27) can be obtained for
even holomorphic functions on arbitrary reflection-symmetric domains and for the
case of several complex variables (see Appendix A). Our construction of the
solutions .A%(z) and B*(z) is based on the described technique. We shall first find
functions a*(z) and b*(z) that are even in k and satisfy (1.1) with o and E replaced
with x? and z, respectively, and then define .A*(z) and B*(z) by requiring that
A¥ (z) = a®(z) and B¥ (z) = b*(z) for every «, z € C.

Simple examples of representations of type (1.27), which will be important for
us, are obtained if we choose g to be equal either to the cosine or the entire function
sinc that is defined by the formula:

1
Sincw — { wlsinw, we C\{0},
1, w=0.

Proceeding as above, we find that:
cosw = Cos (w?), sincw = Sinc (w?) (1.28)

for every w € C, where the entire functions Cos and Sinc are given by:
0 k
=9
Cos{ =
2 G

It follows from (1.28) that:

Sinccfiﬂ leC (1.29)
’ 2k )Y ' '

Cos (—w?) = cos(iw) = chw,

(1.30)
w Sinc (—w?) = wsinc (iw) = shw
for every w € C. In particular, we have:
Cos & = cos(v/€), Sincé = sinc (&), >0, (1.31)
Cos¢ = ch(y/[g]), Sinc&=[¢]/*sh(y/[E]), ¢&<0. (132)

The graphs of Cos ¢ and Sinc ¢ are shown in Fig. 2.

Formulas (1.31) and (1.32) show that, in spite of being analytic, the functions
Cos and Sinc are expressed in a piecewise way in terms of the standard
trigonometric and hyperbolic functions. We shall see that various quantities related
to the spectral measures (such as eigenvalues and the density of the absolutely

W Birkhiuser
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Fig. 2 Solid and dashed lines correspond to the functions Cos and Sinc, respectively

continuous part of V, ) can be conveniently expressed through Cos and Sinc.
Accordingly, the formulas for these quantities in terms of the ordinary elementary
functions are of a piecewise nature. This suggests that Cos and Sinc are more
suitable as “elementary functions” for our problem. Some properties of these
functions that will be necessary for us are summarized in Appendix B.

The paper is organized as follows. In Sect. 2, we define the solutions A%(z) and
B*(z) and the spectral measures V, », thus completing the formulation of our results.
The definition of the measures V), » in Sect. 2 is given via Herglotz representations
(see Appendix C) of suitable holomorphic functions in the upper complex half-
plane and is not quite explicit. In Sect. 3, we obtain concrete formulas for the point
and absolutely continuous parts of V, ». In particular, this allows us to justify the
“phase diagram” in Fig. 1 and analyze the dependence of eigenvalues of /1,4 on o
and 9. In Sect. 4, we recall the general theory concerning self-adjoint extensions of
one-dimensional Schrédinger operators and apply it to the proof of Theorem 1.1.
Our treatment of eigenfunction expansions relies on the method of singular
Titchmarsh—Weyl m-functions [16]. In Sect. 5, we briefly describe this method and
then use it to prove Theorem 1.2. Section 6 is devoted to the proof of Theorem 1.3.

2 Definition of generalized eigenfunctions and spectral measures
2.1 Definition of .4%(z) and 5%(2)

For any z,x € C, we define the function 1u*(z) on R by the relation:

& Birkhauser
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W (glr) = r'P X (rP2), 1> 0, (2.1)
where the entire function X, is given by:

)i
Xl 2"Zrk+n+1n'22”

{eC. (2.2)

The function X is closely related to Bessel functions: for { # 0, we have:

X () = UPI(07). (2.3)
Because J, satisfies the Bessel equation, it follows that:

2 _1/4
—0RF (2]r) + %ui"(zm =™ (z]r), r>0, (24)

for every x € C and z # 0. By continuity, this is also true for z = 0. We therefore
have:

Lo (z) =0, K,zeC. (2.5)
For every k,z € C, we define the function a“(z) on R, by setting:

U (z) — u*(z)

- cosd,, k€ C\{0}, (2.6)

a*(z) =
and

a”(2lr) = lim o*(2]r) = 2[<ln%—|— y) W) = VY|, r>0, (27

where

and y = lim,_(c, — Inn) = 0,577... is the Euler constant.’
Furthermore, for every k,z € C, we define the function b“(z) on R, by the
formula:

b*(z) = = (u"(z) + u™"(z)) sinc ¥y, (2.9)

NS}

where 9, is given by (2.8).
Given ¢ € R, we set R, = {z € C: z=re'” for some r>0} and:

 To compute the limit of a*(z|r) as xk — 0, we can apply L’Hbpital’s rule and use the equality '+
n)/T'(1 +n)=c, —y (see formula (9) in Sect. 1.7.1 in [7]).

W Birkhiuser



31 Page 12 of 57 A. G. Smirnov

Cp = C\R,.

Hence, C, is the complex plane with a cut along the ray R,,.
The next statement shows that, notwithstanding a piecewise definition of a*(z),
both quantities a*(z|r) and b"(z|r) are actually analytic in all their arguments.

Lemma 2.1 There are unique holomorphic functions Fy and F, on C x C x C,,
such that:

Fi(k,z,r) = a"(zlr),  Fa(r,z,r) =b%(zlr), x,2€C,r>0. (2.10)

The proof of Lemma 2.1 is given in Appendix D.
By (2.6) and (2.9), we have:

a“(z) =a™(z), b"(z2) =b"(z), x,zeC. (2.11)

For every o, z € C, we define the functions .A*(z) and B%(z) on Ry by the relations
A%(z) = a(z) and B*(z) = b"(z), where k € C is such that k> = o (by 2.11, this
definition does not depend on the choice of k). We therefore have:

A (z) = a"(2), B¥(z) = 0*(z), x,ze€C. (2.12)
Equalities (2.4) and (2.6) imply that:

K2 —1/4
el + e = e, rm0, @13)

for every k € C\{0} and z € C. By Lemma 2.1, we can take the limit k — 0 and
conclude that (2.13) also holds for x = 0. We hence have . ,a"(z) = 0 for all
K,z € C. Since %,2,b"(z) =0 for every k,z € C by (2.5) and (2.9), it follows
from (2.12) that (1.12) is valid for all o,z € C.

We now use Lemma 2.1 to prove that the quantities .A*(z|r) and B*(z|r) enjoy
the same analyticity properties as a“(z|r) and b*(z|r).

Lemma 2.2 There are unique holomorphic functions Gy and G, on C x C x C,,

such that Gy(o,z,r) = A(z|r) and Ga(o,z,r) = B*(z|r) for every a,z € C and
r>0.

Proof Let F; and F, be as in Lemma 2.1. It follows from (2.10), (2.11), and the
uniqueness theorem for holomorphic functions that F 5 (x, z,{) = F12(—x, z,{) for
all x,z € C and { € C,. The existence of G| and G, with the required properties is
therefore ensured by Lemma A.3, (2.10), and (2.12). The uniqueness of G| and G,
follows from the uniqueness theorem for holomorphic functions. O

It follows from (1.14), (2.6), (2.9), and (2.12) that:
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Us (z) = u*(z) cos (¥ — vy) = u*(z) cos(¥) + ¥, (2.14)

for every z,9 € C and x € C\{0}, where ¥, is given by (2.3).
By (2.1) and (2.2), we have:

u(z) =u*(z), z,x€C,

where the bar means complex conjugation. In view of (2.6), (2.7), and (2.9), this
implies that a*(z) and b“(z) are real if z is real and k is either real or purely
imaginary. Since every « € R is equal to x> for some « that is either real or purely
imaginary, it follows from (2.12) that A*(z) and B*(z) are real for every o,z € R.
If f, g € D are such that r — W,(f, g) is a constant function on R (in particular,
this is the case when f and g are solutions of &, .f = £, g = 0 for some «,z € C),
then its value will be denoted by W(f, g). Equality (2.5) implies that
W, (u*(z),u""(z)) does not depend on r, and we derive from (2.1) and (2.2) that:

W(uK(z),u*’f(z)):ulronw,(uK(z),u*K(z)>:—%sinnx, kzeC.  (215)

It follows from (2.6), (2.9), and (2.15) that W(a*(z), b"(z)) = —2m sinc >zx for all
Kk € C\{0} and z € C. By Lemma 2.1, W(a"*(z), b"(z)) is continuous in x at k =0
and, therefore, this equality holds for all k,z € C. In view of (2.12), this yields:

W(A*(z),B*(z)) = —2nSinc*(n*a), o,z € C. (2.16)

Hence, A”(z) and B*(z) are linearly independent for all «, z € C, such that o is not a
square of a nonzero integer number and, in particular, for all «<1 and z € C.

2.2 Definition of V),

We now turn to the definition of the spectral measures V, . In what follows, we let
In denote the branch of the logarithm on Cj;/, satisfying the condition In1 = 0 and
set z/ = e?!"% for all z € Csz/n and p € C.

Lemma 2.3 There is a unique holomorphic function R on C x C x Csgjy, such
that:

Z*ic/2€imc/2 COS(’l9 _ ﬂx) _ ZK/ZefinK/Z COS(ﬂ + 79;()
K

R(K27197Z) = (217)

for every k € C\{0}, ¥ € C and z € Cs, )5, where ¥, is given by (2.8). The function
R satisfies the equality:

R(0,9,z) = (ni — Inz) cos Y + msind (2.18)

for every ¥ € C and z € Cay.
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Proof Let the function R on C x C x Csz/» be such that R(x,7,7) is equal to the
right-hand side of (2.17) for nonzero « and R(0, 9, z) is equal to the right-hand side
of (2.18). For every ¥ € C and z € Cs,,, the function k — R(x,7,7) is holomor-
phic on C\{0} and is continuous at k¥ = 0 (the calculation of the limit of the right-
hand side of (2.17) shows that lim,_o R(x, 1, z) = R(0, 9, z)). This implies that the
function k — R~(;c, ©,z) is holomorphic on C for every 9 € C and z € Cs,». On the
other hand, the function (9,z) — R(x, 7, z) is obviously holomorphic on C x Cj
for every k € C. By the Hartogs theorem, we conclude that R is holomorphic on its
domain. Moreover, we have R(—x,9,z) = R(x,9,z) for every x,9 € C and
7 € Csy/2. Hence, the existence of R follows from Lemma A.3. The uniqueness of R

is ensured by the uniqueness theorem for holomorphic functions. Formula (2.18) is
obvious from the above. ]

It follows from (2.17) and (2.18) that:
R(o, ¥+ m,2) = —R(a, 9, 7) (2.19)

for every o, € C and z € Csy)5.
Given z € Cyy, there is a unique ¢ € (—7/2,3m/2), such that z = [z|e”. We
shall denote this ¢ by ¢..

Lemma 2.4 Let R be as in Lemma 2.3. Then, we have:
Im (R(oc, 9+ 7n/2,z)R(a, 197z)> = n(¢, — ) Sinc ((¢, — n)%a) Sinc (n?a) (2.20)
for every o,9 € R and z € Csy .

Proof By (2.17), we have:

K2R(1%, 9 + /2, E¢'*)R(R2, 0, Eei?)
= isin(¢ — n)x sin 7
+ cos(¢p — m)k sin 29 — E* cos( + ¥y sin( + ¥) — E~" cos( — 9y sin(P — 9y)

for all k € C\{0}, Y€ R, E>0, and —n/2<¢<3n/2. If k is real or purely
imaginary, then > = x? and the sum of the last three terms in the right-hand side is

real. This implies (2.20) for nonzero o. By continuity, (2.20) remains valid for
oa=0. l

Let R be as in Lemma 2.3. For every o, € C, we let O,y denote the open subset
of Cszy/2, where the function z — R(«,,z) is nonzero:

006715‘ = {Z € C3n/2 : R(OC,’[9,Z) 7é 0} (22])
Suppose now that o<1 and ¢ € R. Then, it follows from Lemma 2.4 that:
C+ U IR+ C O%ﬂ, (222)

where C, denotes the open upper half-plane of the complex plane,
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C4 ={z € C:Imz > 0}. Let the holomorphic function .#, » on O, » be defined by
the equality:

R(a, ¥+ 1/2,z2)
M ay9(z) = , € O,9. 223
) = e (R 0,0 O 223)
Lemma 2.4 implies that:
. 2
Iy (z) = P 8JSine @ =0 =y (2.24)

27 Sinc (n2a)|R(at, 9, 2)*

By Lemma B.1 and (2.22), we conclude that Im .#, 9(z) > 0 for every z € C and,
hence, .#, | is a Herglotz function (see Appendix C). We now define V, 4 as the

Herglotz (and, hence, Radon) measure associated with the function n/%w\&. It
follows from (C.2) and Lemma C.1 that (1.19) is valid and:

/ (E)dVy(E —hm/ E)Im .4 ,9(E + in) dE (2.25)

for every continuous complex function ¢ on R satisfying the bound

lp(E)| < C(1+ E?) %, E € R, for some C > 0. In particular, (2.25) holds for every
continuous function ¢ on R with compact support. In view of the Riesz represen-
tation theorem, this implies that V, 4 is uniquely determined by equality (2.25). It
follows from (2.19) and (2.23) that .#,94r = -#,y and, therefore, V,y has -
periodicity property (1.21).

3 Explicit formulas for the spectral measures

In this section, we assume that Theorems 1.1 and 1.2 are valid and obtain explicit
expressions for both the point and absolutely continuous parts of the spectral
measures V, y. The proofs of Theorems 1.1 and 1.2 in Sects. 4 and 5 do not rely on
the results of this section.

3.1 General structure of V), »

Given a positive Radon measure v on R, we let LS(R, v) denote the subspace of

L,(R, v) consisting of all its elements vanishing v-a.e. outside some compact subset
of R.

Lemma 3.1 Let a<1, ¥ € R, and U,y be as in Theorem 1.2. Then, we have:
/uﬂ (EINQE)dVoy(E), ¢ ISR Ve), (1)

for J-a.e. r € Ry. An E € R is an eigenvalue of hyy if and only if V,3({E}) > 0.
For every eigenvalue E, the corresponding eigenspace is one-dimensional and is

spanned by [U%(E)], and we have the equality ||[U}(E)]|| = Vmg({E})fl/z.
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Proof For brevity, we set h = hy 9, U = Uy, V = V9, and U = U. Given ¢ €
L5(R,V) and r > 0, let ¢(r) denote the right-hand side of (3.1). By the unitarity of
U and the Fubini theorem, we have:

WU o).y =(UY, ),y

_ / IV(E)o(E) / EER) ar = / )

for any y € LS(Ry), where (-,),g,) and (-,-);,gy) are the scalar products in
L(Ry) and Ly(R, V), respectively. This implies (3.1). Given E € R, let Gg be the
subspace of L,(R) composed of all ¥ in the domain of 4, such that iy = Ey and
G be the subspace of L,(R, V) composed of all ¢ in the domain of ’T}}, such that
’T}}(p = E¢, where 1 is the identity function on R. By Theorem 1.2, U induces an
isomorphism between Gg and G for every E € R. This means, in particular, that
the operators i and 7' }} have the same eigenvalues. Hence, E € R is an eigenvalue

of & if and only if V({E}) > 0. If V({E}) > 0, then G is one-dimensional and is
spanned by [yz],,, where y is the characteristic function of the one-point set {E}.

By (3.1), we have U~ '[yz], = V({E})[U}(E)]. The space Gg is, therefore, one-
dimensional and is spanned by [(/5(E)]. Since the norm of [yz], in L,(R, V) is equal

to V({E})'/?, the unitarity of U implies that ||[L/%(E)]|| = Vao({E}) "% O

As in Sect. 1, let w be the n-periodic function on R satisfying (1.22) and let Qy,
01, O, and Q be defined by (1.23), (1.24), (1.25), and (1.26), respectively. We set:

0>1=01UQx = {(2,9) € R* : a<w(V)}. (3.2)

We obviously have:

QNO>1=¢, QUQO>1 =0 (33)
By (1.22), we have:
2o (¥
Cos © C:( ) = cos (g — |19|> = |sin 9| (34)

for every ¥ € [—n/2,7/2]. Since both sides of (3.4) are n-periodic, (3.4) remains
valid for all ¥ € R. By Lemma B.1, the function « — Cos (n°2/4) is nonnegative
and strictly decreasing on (—oo, 1]. Hence, for every o<1 and ¥ € R, we have the
chain of equivalent conditions:

200(9 2 2 2
a<w(¥) < Cos m (V) <Cos "2 & | sin| < Cos % & sin20< Cos2 =2,
4 4 4 4
In view of (1.23) and (3.2), it follows that:
Qo = {(2,9) € R* : <1 and sin® ¥ > Cos?(n’n/4)}, (3.5)
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0-1={(o,9) € R*:a<1 and sin’ ¥ < Cos?(n’a/4)}. (3.6)
Given o, € C, we set:
2,9 ={E<O0:R(a,9,E) =0}, (3.7)
where R is as in Lemma 2.3. By (2.17), we have:
E€ X0,y < E<0and [E| ™ cos(¥) — 9,) = |E|*'* cos(¥ + ) (3.8)

for every k € C\{0} and ¢ € C.
In view of (2.21) and (2.22), we have R(a, ¥, E) # 0 for every o<1, ¥ € R and
E > 0. For every o<1 and ¥ € R, we define the function t,» by the formula:

1
) ———=., E>0,

ty9(E) = § 2|R(a, 9, E)| (3.9)
0, E<O0.

Given a positive Radon measure v on R, we set:
Pv) ={E € R:v({E}) > 0}.

Since v is o-additive, the set P(v) is at most countable. We define the continuous
part v* and the point part W of v by the relations:

V= (1- XP(V)) Vo VW= Vs (3.10)

where yp(,) is the characteristic function of the set P(v) (i.e., it is equal to unity on
P(v) and to zero on R\P(v)). Clearly, v*({E}) = 0 for every E € R and:

y ="+,

A function ¢ on R is v-integrable if and only if {v({E})¢(E)} gep(,) is a summable
family in C, in which case we have:

/ p(E)Y W (E) = 3 v({E})o(E). (3.11)

E€P(v)

Thus, to completely describe a positive Radon measure v on R, it suffices to find
P(v) and v¢ and specify v({E}) for every E € P(v). The next theorem gives such a
description for the measures V,y. As in Sect. 1, we let A denote the Lebesgue
measure on R.

Theorem 3.2 For every o<1 and 9 € R, we have P(Vy9) = Z, 9 and V;Tﬁ =1ty 4
where tyy9 is given by (3.9). If («,9) € Qu, then Xy = . If (0,9) € Q> and
E c Xy, then:

E|

Var(lED = 5 ine (n20)( Cos *(n2e/4) — sin> ) (3.12)
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Corollary 3.3 Let a<1 and 9 € R. Then, the set of eigenvalues of hyy is precisely
2y9. For every E € X, 9, the corresponding eigenspace is one-dimensional and is
spanned by [U%(E)], and we have:

/ U%(E|r)* dr = 2|E| " Sinc (n?a)( Cos 2 (na/4) — sin®¥).
0

Proof The statement follows directly from Lemma 3.1 and Theorem 3.2. O
To prove Theorem 3.2, we shall need several auxiliary lemmas.

Lemma 3.4 Let k € C be such that —1<|Re k| <1 and f € D be a nontrivial
solution of L ,2f = 0. Then, f is not square-integrable on R,.

Proof If %f = 0, then there exist c;,c; € C, such that f(r) = ¢;r'/? + cor'/?Inr
for all r > 0. It is straightforward to verify that such a function is square-integrable
on R, if and only if ¢; = ¢, = 0. This proves our statement for k = 0. If x =

k' + ix" is nonzero and Z,.f =0, then there exist ¢j,c; € C such that f(r) =
c1rt/2 % 4 eyr /27 for all r > 0. Since |K'| <1, fis square-integrable on (0, r] for
every r > 0, and we have:

r o g(r) 6152r2+2i1<”
df =224+ Re ———— 3.13
/) lf(r)| r ) + Re 1+ ix” ( )

for every r > 0, where the function g on R, is given by:

|Cl|2 242 |CZ|2 22k
> 0. 3.14
o) = 2y (314
Applying the inequality 2ab < a®> + b* to g(r), we obtain:
80 Jacl? _Lja@r™) -,
2 1—#x2 o 1+ix"

where o = [(1 4+ x") "' (1 — &’ )]1/2 In view of (3.13), we conclude that:

/[f |dr>—g() (3.15)

for every r > 0. Since x # 0, we have o < 1. If fis nontrivial, then ¢; and ¢, are not
both zero and it follows from (3.14) that g(r) — oo as r — oo. By (3.15), this

implies that fo | dr — oo as r — oo and, hence, f is not square-integrable on
R;. O
In what follows, we set R_ = (—o0,0).

Lemma 3.5 Let o<1, v € R, and y be the characteristic function of X, . Then, we
have (1 — 7)Vyy = typ A
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Proof Letv = (1— y)V,yand V' = t,4A. Let O be the open subset of R defined by
the relation O = Ry U (R_\Z,5). As R = O U X,y U {0}, it suffices to show that v
and v have the same restrictions to each of the sets O, Z, 4, and {0}. Since the
functions #,»y and 1 — y are locally bounded on O and V,, and A are Radon
measures on R, the restrictions of v and ' to O are Radon measures on O. By (2.21),
(2.22), and (3.7), we have O C O,y, and it follows from (2.24) and (3.9) that
Im Ay 9(E) = t,9(E) for every E € O. Since 1 — y is equal to unity on O, (2.25)
and the dominated convergence theorem imply that:

[ow ae = [ o©).0E) = [ noEro@ = [ oE) o)

for every continuous function ¢ on R, such that supp ¢ is a compact subset of O. By
the Riesz representation theorem, we conclude that v|, = V'|,. Because 1 — y and
t,9 vanish on X, 4, both v and v have zero restrictions to X, 3. We now note that
V,9({0}) = 0, because, otherwise, U/(0) would be a nontrivial square-integrable
function on R; by Lemma 3.1, in contradiction to (1.15) and Lemma 3.4. Since
v'({0}) = 0 and v({0}) = V,s({0}), we conclude that v({0}) = v'({0}). d

Using elementary trigonometric transformations, we find that:
cos() — 0,.) cos(¥) + 9,) = cos*(mi/2) — sin® ) = Cos?(n?x?*/4) —sin®9  (3.16)

for all k,9 € C, where ¥, is given by (2.8). In view of (3.6), this equality implies
that:

cos(¥ — ¥,) cos(¥ + ) >0 (3.17)
for all ¥ € R and « € C, such that (x*,9) € 0> .
Lemma 3.6 X,y = J for every (o, 9) € Q.

Proof Let (a,1) € Qp. Suppose first that « = 0. By (3.5), we have ¢ = n/2 + nk
for some k € Z. Equality (2.18) therefore implies that R(a, 9, z) = (—1)*= for every
7 € Csyy,. This means that X,y = . Now, let o # 0. Since w is nonnegative, it

follows from (1.23) that 0 <a <1 and, hence, o = x* for some 0<x < 1. Suppose
Y.0# Jand E € X, 5. By (3.8) and (3.16), it follows that:

Cos2(ra/4) — sin 9 = 5 (|E|" cos (¥ + 0,) + |E[ *cos’ (9 — 9,)).  (3.18)

N =

Since « is real, the right-hand side of (3.18) is nonnegative and can be zero only if
cos(¥ — ¥y) = cos(¥ + ;) = 0 and, hence, only if k € Z. The condition 0 <k <1
therefore implies that the right-hand side of (3.18) is strictly positive. In view
of (3.5), this contradicts the assumption that (o, ) € Qp. Hence, X,y = . O

Lemma 3.7 Let (o,9) € Q> and E € X,y. Then, we have:
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| £
1 —E)M 19(z) = — '
ip(e = BN ®) = = Sine (2a)( Cos (2 /4) — sin 0)

Proof We separately consider the cases o # 0 and o = 0.
1. Let o # 0 and x € C be such that k2 = o. By (2.17) and (3.8), we have:
|E[™ cos(0 — 0,) + |E"* cos(d) + )

=k 2|E]| (3.19)
=|E[*>" cos(9 + 9,).

O.R(2,9,z)

It follows from (3.17) that cos(¥ +4,) # 0 and, hence, 0.R(,1,z)|,_g #O.
By (2.17), we have:
E[sin(0 + 9,) — [E["sin(0) — 9,

R(ot, 9 +/2,E) = " :

Multiplying the numerator and denominator by cos(¥} —¥,) (which is nonzero
by (3.17)) and using (3.8), we obtain:

n|E|*/? sinc T

cos(9 —0,) (3.20)

R(a,9 + n/2,E) =
In view of (2.23), we have:

R(#,9 +1/2,E
lim(z — E) M y9(z) = — - (2a + /2, E) .
2—E 2n? Sinc “(n%a)0.R (2, ¥, 2)|,_g

Combining this formula with (3.16), (3.19), and (3.20), we arrive at the required
equality.
2. Let o = 0. Since E € X y, it follows from (2.18) that:

In |E|cos ¥ = msin ), (3.21)

cos

O:R(0,9,2)|,_f = B (3.22)
Since (0,9) € 0> and Cos (0) =1, (3.6) implies that cos? # 0 and, hence,

0:R(0,9,z)|,_g # 0. By (2.18) and (3.21), we obtain:

T
R(0,9 2,E) = In|E|sind 9= . .

(0,9 + n/2,E) = In|E|sin? 4+ mcos g (3.23)

In view of (2.23) and the equality Sinc (0) = 1, we have
) R(0,9+m/2,E)

1 — E) M4 = — .

lim(z = E)-#0(2) 2m20.R(0,9,2)]._
Combining this formula with (3.22) and (3.23) yields the required result. U
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Proof of Theorem 3.2 Let (0,9) € Q> and E € X, 5. Let O = O,y U {E}, where
O, is given by (2.21). Clearly, O is an open subset of C containing E. By
Lemma 3.7, there exists a holomorphic function g on O, such that:

M I 4 3.24

Mop(2) = =2 —F+8(2) (3.24)
for all z € O,y, where A denotes the right-hand side of (3.12). By (2.24), .,y is
real on O,y N R_ and, therefore, g is real on O N R_. By (2.25), (3.24), and the
dominated convergence theorem, we conclude that [ ¢(E')dV,(E') is equal to
A@(E) for every continuous function ¢ on R, such that supp ¢ is a compact subset
of ONR_. Hence, V,y({E}) = A. Thus, formula (3.12) holds for every (o,4) €
Q> and E€ZX,y. This implies, in particular, that X,y C P(V,y) for all
(2,9) € O>1. By Lemma 3.6, we have X, y = & for all («, ) € Qy. It follows that
Yy9 C P(Vyy) for all o<1 and ¥ € R. Since the opposite inclusion also holds by
Lemma 3.5, we conclude that Z, 3 = P(V,.y) for all <1 and 9 € R. The equality
Vj;’ﬂ = ty9 A now follows from (3.10) and Lemma 3.5. O

Theorem 3.2 implies, in particular, that 7, is a locally integrable function on R
for every o<1 and ¥ € R. It is noteworthy that we established this property of #, »
without explicitly estimating this function. Instead, we relied on the fact that V, y is
a Radon measure, which follows from its definition as a Herglotz measure. In

Lemma 6.4, we shall obtain an explicit estimate for |R(x,9,E)|”" that, when

substituted in (3.9), immediately implies the local integrability of ¢, y.

3.2 Eigenvalues of h, ;

We now turn to obtaining an explicit description of the set X, of eigenvalues of
hy 9 for every o<1 and ¥ € R. To this end, it is convenient to use the logarithmic
scale and pass from the set X,y to its inverse image N,y under the map s — —e*
from R to itself:

Nyyg={seR:—e" €Z,,}. (3.25)

We thus have E € X, 4 if and only if £ <0 and In |E| € N, ». Furthermore, we define
the open subsets W, and W of R? by the relations:

Wo={(o,9) € Q1 :2>0and —n/2<V¥<m/2}, (3.26)
W ={(0,9) € Q1 : —1/2<9<7/2} U Owe. (3.27)

Hence, W, is the interior of the central dark gray curvilinear triangular region in
Fig. 1. Let (o, 9) € Wy. Since Wy C Q> 1, inequality (3.17) for k = /o implies that
cos(d + m\/a/2) # 0 and:
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cos(V — my/a/2)
cos(V + my/a/2)

Hence, we can define a real-valued function Sy on W, by the formula:

> 0. (3.28)

1 cos(¥ — my//2)
So(o, ) = ﬁlnm. (3.29)

Applying (3.8) to k = +/x and using (3.28), we conclude that — exp(Sp(x,v))
belongs to X,y for every (o, ) € Wy. In view of (3.25), this means that:

So(OCJ?) S NM?’ (OC,’lg) e Wy. (330)

We shall see that the set N,y for every («,9) € Q> can actually be completely
described in terms of the analytic continuation of Sy from Wy, to W. To construct
such an analytic continuation, we calculate the derivative of Sy(o, ) with respect to

9. In view of (3.16), we find that:
7 Sinc (7?x)

Cos?(n20/4) — sin®> ¥’

61950(06,19) = (Ot,ﬁ) e W. (331)
We now observe that the right-hand side of (3.31) is actually well-defined and real-
analytic on the entire domain W. The real-analytic continuation of Sy to W can
therefore be obtained by integrating the right-hand side of (3.31). This argument is
central to the proof of the next result.

Lemma 3.8 Let Wy and W be given by (3.26) and (3.27), respectively, and the
function Sy on Wy be defined by (3.29). There is a unique real-analytic function S on
W, such that S|y, = So. For every ¥ € (—n/2,m/2), we have:

5(0,9) = mtgd, (3.32)

arctg (tgﬁth Ty |oc|>’ a<O0. (3.33)

S(a,9) = 5

2
Vol
For all ¥ € R and o <0, we have:
2n

T

S(ot, 9+ m) = S(a, ) + (3.34)

The graph of the function S described by Lemma 3.8 is shown in Fig. 3.
The proof of Lemma 3.8 relies on the next auxiliary statement.

Lemma 3.9 Let x9,éy € R, a,b >0, and f be a real-analytic function on the
rectangle:
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Fig. 3 The function S is plotted using formulas (3.29), (3.32), (3.33), and (3.34)

Rap(x0, &) ={(x,&) € R?: |x — xo| <a and |& — &y| <b}.
Then, (x,¢&) — ffof(x, &) d¢& is a real-analytic function on R, p(x0, &p)-

Proof Since f is real-analytic on R, ;(xo, &), there are an open set O C C* and a
holomorphic function f on O, such that R, ;(xo, &) C O and fis the restriction of f
to R,(x0, &o)- Let F denote the function (x, &) — | 50 f(x, &) dE on Ryp(xo, & ). Fix

0<d <a and 0<b'<b. There exist open subsets O’ and O” of C, such that
Ry iy (x0,&9) C O' x 0" C O. Moreover, we can assume that O” is convex. We

define the function F on O’ x O" by the formula:
1
Flad) = [ (€= alfat+ (- aidr ze0. L0,
0
Clearly, F is holomorphic on O’ x 0" and coincides with F on Ry (x0, ). This

means that F is real-analytic on R,y (xo, o). Since @’ and b’ can be chosen arbi-
trarily close to a and b, we conclude that F is real-analytic on R, (xo, &). O

Proof of Lemma 3.8 We define the function S on W by the formula:
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dy
n20/4) — sin> '’

S(,9) = m Sinc (x2a) /0 ! o () eW.  (3.35)

Since Sp(e,0) = 0 for all 0<a <1 by (3.29), it follows from (3.31) and (3.35) that
So = S|y, For every (o, 9) € W, there is ¢ > 0, such that W contains the rectangle:

{(o,9) € R?: |o — o <eand [¥|<|9|+ &}

It therefore follows from Lemma 3.9 and (3.35) that S is real-analytic in a neigh-
borhood of every point of W. This means that S is real-analytic on W. Given o <0
and —n/2<¥<m/2, we let A(a,?) denote the right-hand side of (3.33) and set

gy, = /|- Using (1.32), we find for every o <0 that:

sh (na,) B 7 Sinc (na)
04(ch?(no,/2) —sin®®)  Cos?(n?a/4) — sin® ¥’
In view of (3.35) and the equality A(x,0) = 0, this implies that S(o, ) = A(e, ¥)
for all x<0 and —n/2<9<m/2, i.e., (3.33) holds. Formula (3.32) follows imme-

diately from (3.35) for « = 0. Since ¥ — (Cos ?(n2a/4) — sin® )" is a continuous
n-periodic function on R for every « <0, it follows from (3.35) that:

OpA(a, ) = |9 <m/2.

/2 d¥
S s 9 =S ) 9 Si ? /
(OC + 7'6) (o( ) + mSinc (7'[ O() L Cos 2(7[20(/4) _ Sil’l2 v

=S(a,9) + S(o, m/2) — S(at, —71/2)
for all «<0 and ¥ € R. This implies (3.34), because S(o, £7/2) = £n/+/|0]

by (3.33) and the continuity of S. The uniqueness of S follows from the uniqueness
theorem for holomorphic functions. O

Theorem 3.10 Let the function S on W be as in Lemma 3.8. For every o<1 and
¥ € R, N,y is equal to the set:

{s € R:5=58(x,¥ + nk) for some k € Z such that («,9 + nk) € W}. (3.36)

Proof Given o<1 and ¥ € R, we let N, «9 denote the set (3.36). We have to prove
that:

Nz,ﬁ = No:,ﬁ (337)

for all o<1 and ¥ € R. By (3.25) and (3.30), the set X, contains —5(0) for
every (o, 9) € Wy. Since S coincides with Sy on Wy, it follows from (3.7) that:

R(2,9, —5*")) =0 (3.38)

for all («,9) € Wy. By Lemma 3.8, the left-hand side of (3.38) is a real-analytic
function of (o,7) on W. In view of the uniqueness theorem for holomorphic
functions, this implies that (3.38) remains valid for all (a,9) € W. Leta<1, 9 € R,
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and s € N, 4. Then, there is k € Z, such that (o, ) + k) € W and s = S(a, ) + k).
By (3.38), we have R(a,9+ mk,—e*)=0. By (2.19), it follows that
R(o, 9, —e*) =0, i.e., s € N, y. We therefore have the inclusion:

Nyy CNyy, a<l,deR. (3.39)

If (o,9) € Qp, then N,y = & by Lemma 3.6 and (3.25) and, therefore, (3.39)
implies (3.37). By (3.3), it remains to prove (3.37) for («,9) € Q. In this case,
there is at least one k € Z, such that (o, + nk) € W. We hence have:

Nuo # @, (2,9) € Q>1. (3.40)

We now prove (3.37) for (o,9) € Q> by separately considering the cases o > 0,
o =0, and o <O.

1. Let a>0, k =/ and Ej,E; € Z,4. By (3.17), we have cos(¢ & ¥) # 0,
and it follows from (3.8) that |E;/E,|* = 1 and, hence, E; = E;. This means
that X, y and, consequently, N,y contain at most one element. In view of (3.39)
and (3.40), this implies (3.37).

2. Leta=0and E{,E; € X y. By (2.18), we have:

—In|E; 2| cos ¥ + msind = 0.

By (3.6), the condition (0,9) € Q> ensures that cos® # 0. It follows that
In|E;/E;| = 0 and, hence, E, = E,. This means that X,y and, consequently,
Nyppy contain at most one element. In view of (3.39) and (3.40), this
implies (3.37).

3. Leta<O0ands € N,y. Then, we have («,9) € W and, hence, s' = S(«,¥) is an
element of ]\7%,,9. Let E= —¢' and E' = —¢*. Since 5 € N,y by (3.39), we have
E E € X,y. Let k = iy/|a|. By (3.17), we have cos(¢ & ;) # 0 and it follows
from (3.8) that |E/E'|* = 1. This implies that s =s' 4 2nk/+/|o| for some
k€ Z. By Lemma 3.8, we conclude that s = S(x, 9 4+ nk) and, therefore,
s € Ny 9. This means that N,y C N, , whence (3.37) follows by (3.39). [

By (1.23), (1.24), (1.25), (3.27), and Theorem 3.10, the set N,y is empty for
(o, 9) € Qo, contains precisely one element for (o, 1) € Qy, and is countably infinite
for (o,9) € Qw. In view of (3.25), the same is true for X,y (the emptiness of X, »
for (o, ) € Qp also follows from Theorem 3.2). Corollary 3.3 therefore implies that
hys has no eigenvalues for («, ) € Qy, has one eigenvalue for («,¥) € Q, and has
infinitely many eigenvalues for (a,) € O, in agreement with what was claimed in
Sect. 1.

We now obtain a graphical representation for the sets N, y. Given ¥ € R, we let
Ny denote the subset of («,s)-plane whose sections by the lines o = const are
precisely the sets N, y:
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Ny ={(2,5) € R* : <1 and s € N, y}.

Furthermore, for every ¢ € R, we let Sy denote the function o — S(o, ) defined on
the domain Dy, = {o € R: (,¥) € W} and set:

Gy = graph of Sy = {(o,5) € R?: (a,9) € W and s = S(a,9)}.

By Theorem 3.10, we have:

Ny = | Gosa. (3.41)
kez

It follows from (1.24), (1.25), and (3.27) that:

_ (_007(”(19))7 |19| Sn/zv
Ds, = { R_, 9| > n/2,

where o is given by (1.22). If |¢| <7/2, then it follows from (3.29) and Lemma 3.8
that:

1 cos(¥d — my/a/2)

—In————F= 0 0
NG ncos(19+7r\/&/2)7 <a<o(?),
Sy(a) = ntgd, 2 =0, (3.42)
2
arctg tgﬁthn 1 , o<0.
Vol 2

Since § is continuous on W, we can calculate S, /(o) for <0 by passing to the
limits ¥ 1 7/2 and ¥ | —n/2 in Sy(a). In view of (3.33), we obtain:

T

Sin/Q(OC) =+ s o <0.
Vaki
By Lemma 3.8, we have:
D&an =R,
2nk 343
S19+nk(a) = 519([1) + i “<07 ( )

Tma

for every ¥ € [-n/2,n/2] and every nonzero k € Z. Formulas (3.41), (3.42),
and (3.43) allow us to draw the set Ny, for every ¢ € R. In Fig. 4, this set, which
represents the a-dependence of eigenvalues of 4, y in the logarithmic scale, is shown
for ¥ = +n/2, —n/3, 0, and 7t/6. For ¥ # /2 + 7k, where k € Z, there is precisely
one eigenvalue that crosses the line o =0 in an analytic way, while all other
eigenvalues die away at zero or minus infinity as o 1 0. If ¥ = /2 + nk for some
k € Z, then there are no eigenvalues for o > 0.
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Fig. 4 Plots (a), (b), (c), and (d) represent the set Ny for ¢ = +n/2, —n/3, 0, and /6, respectively. The
horizontal and vertical axes correspond to the variables o and s

3.3 Continuous part of V, ;

We now consider the absolutely continuous part of the spectral measure V, y. By
Theorem 3.2, its density 7, is given by (3.9). Let the function 7on C x C x Csz/»
be defined by the formula:

T(2,9,2) = 2R(o, 9, 2)R(%,9,2), 0,9 € C, z € Cyppa. (3.44)

Clearly, (o,9) — T(x,9,z) is a holomorphic function on C x C for every
7 € Csyyp. If o and o) are real, then we have:

T(O‘7197Z) = 2|R(OC?197 Z)lzu z€ C3n/27 (345)
and it follows from (3.9) that:
t,9(E) = T(2,9,E)”", E>0, (3.46)

for every o<1 and ¥ € R. We shall explicitly express 7 in terms of the functions
Sinc and Cos. In view of (3.46), this will also give us a formula for the density ¢, ».
By (2.17) and (3.44), we have:
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i 2 —K
T(Kk%,9, Ee') =3 (E™"cos* (¥ — V) (3.47)
—2cos((m — P)x) cos(¥I — U,) cos(V + ) + E* cos® (¥ + V)
for all k € C\{0}, ¥ € C, E > 0, and —7/2 < ¢ <37/2. In view of the equality
Ef —E7F
2Kk

which follows from (1.30), and the trigonometric identities

1
InE Sinc (—1*In*E) = —sh (kInE) = x € C\{0}, E >0,

2cos* (9 &+ 0,) = 1 + cos 219 cos mk F sin 209 sin 7,
2 cos(¥ + Yy) cos(¥ — ¥,) = cos2¥ + cos 1k,

which hold for all 9, x € C, we derive from (3.47) that:

2
T(1%, 9, Ee'?) =In® E Sinc 2 <7 %ln2 E) (1 + cos 29 cos k)

cosmi —cos(m =)oy (3.48)

—2rInE Sinc (71{2 In? E) sinc 7k sin 24 + 2 2

1 — cos i cos(m — )i

+2 2

for every xk € C\{0}, ¥ € C, E > 0, and —1/2 < ¢ <37/2. Let the functions 7 and
won C x C be defined by the formulas:

n—¢) o
(o, §) =(n — $)* Sinc? <(4¢»> — 7* Sinc? (4) , (3.49)

(e, ¢) =27 Sinc *(n*a) + Cos (na)t(a, B), (3.50)

for every a,¢ € C. Performing elementary trigonometric transformations, we
obtain:

(2, ) = Ki <sin2 (n fzc/,’));c i %> _ COSTK — c;;s(n - d));c7 (3.51)

i .2
sin” K
u(?, ¢) =2 ot T(x?

for all x € C\{0} and ¢ € C. In view of these formulas, (3.48) implies that:

1 — cosmk cos(m — P)K (3.52)
2

,¢)cosmk =2

T(a, 9, Ee'?) =In® E Sinc ? —zlan 1 4 cos 29 Cos (m%«
( ) (~5m2E)( (7)) (3.53)
— 27InE Sinc (—o In” E) Sinc (7%a) sin 20 + (o, ¢) cos 28 + p(ar, ¢)

for all « € C\{0}, 9 € C, E > 0, and —7/2 < ¢ <37/2. By continuity, this equality
remains valid for o« =0. Thus, (3.53) holds for all «,¢ € C, E>0, and
—n/2<¢<3m/2.

Formulas (3.46) and (3.53) can be illustrated by drawing the graphs of the
density #,9(E) as a function of « and E for various values of ¢. For this, it is
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convenient to use the logarithmic scale for the energy variable and multiply the
density 1, by the factor u(a,0) = 27 Sinc >(n?«). More precisely, given ¥ € R,
we define the function ty on (—o0, 1) X R by setting:

ty(a,s) = 27 Sinc *(n*o)t,9(e*), s€R, a<]1. (3.54)
By (3.46), (3.50), and (3.53), we have:

s Sinc (—os?)

52 Sinc 2 (—as?/4)
7 Sinc (7% o)

sin 29
212 Sinc % (n20)

ty(e,s) ' =1+ (1 + cos 29 Cos (n°a)) —
for every a<1 and 9, s € R. In Fig. 5, the function ty is plotted using this formula
for 9 = +n/2, —n/3, 0, and 7/6.

The comparison between Figs. 4 and 5 shows that the o-dependence of
eigenvalues and of the density of the continuous part of V,y follows the same
pattern. This phenomenon can be easily understood if we recall that the point and
continuous parts of 1,y are both determined by the imaginary part of .#,y
via (2.25) and consider its behavior in the upper complex half-plane. As in the case
of the density t, 4, to facilitate the visualization of Im .# OW(z), we multiply it by
2n? Sinc *(n%e) and pass to the logarithmic scale for Izl. Therefore, for every a < 1
and ¥ € R, we introduce the function J,» on R x [0,7) that is defined by the
formula:

T (8, ¢) =27 Sinc *(n?e) Im 4, (7))
=27(n — ) Sinc ((n — ¢)*a) Sinc (7*a)T(a, 9, )™, se R, 0<p<n,

where the second equality follows from (2.22), (2.24), and (3.45). In view of (3.46)
and (3.54), we have J, »(s,0) = ty(a, s) for every o<1 and ¥, s € R. Using (3.53),
we can explicitly express J, » in terms of Sinc and Cos. In Fig. 6, the function J, »
is plotted for o« = —1/2 and ¢ = /6. We see that the graph of J,, contains
equidistant vertical ridges that connect the points of N, y at their upper ends with the
maxima of the function s — t;(, s) at their lower ends. This means that the graph
of Im.#,y contains ridges along logarithmically equidistant semicircles in the
upper half-plane that connect eigenvalues of £, on the negative half-axis with the
maxima of the density #,y on the positive half-axis. The values « = —1/2 and
¥ = /6 chosen for Fig. 6 play no special role: the functions J,y and Im .4,y
behave in the same way for every <0 and ¥ € R.

4 Self-adjoint extensions
In this section, we recall basic facts concerning self-adjoint extensions of one-
dimensional Schrodinger operators and then apply the general theory to proving

Theorem 1.1. We refer the reader to [18, 23, 26] for a detailed treatment of one-
dimensional Schrodinger operators.
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Fig. 5 Plots (a), (b), (c), and (d) represent the function ty(e,s) for ¥ = £n/2, —n/3, 0, and 7/6,
respectively. The horizontal and vertical axes correspond to the variables o and s. The value of ty is
encoded in the brightness of the plot: brighter regions correspond to greater values of the function

4.1 General theory

As in Sect. 1, let /. be the restriction to R, of the Lebesgue measure 1 on R and D
be the space of all complex continuously differentiable functions on R, whose
derivative is absolutely continuous on R;. Let g be a complex locally integrable
function on R,. Given z € C, we let [, denote the linear operator from D to the
space of complex A, -equivalence classes, such that:

(Lgof)(r) = =f"(r) + q(r)f (r) — 2 (r) (4.1)
for A-a.e. r € R, and set:
Iy =10- (4.2)

For every f € D and z € C, we have [, .f = [,f — z[f], where, as in Sect. 1, [f] =
i ;. denotes the A -equivalence class of f. For every a >0 and all complex

numbers z, {;, and {,, there is a unique solution f of the equation /, .f = 0, such that
f(a) ={; and f'(a) = {,. This implies that solutions of ,.f = 0 constitute a two-

) Birkhauser



Coupling constant dependence... Page 31 of 57 31

-30 -20 -10 0 10 20 30

s S
S Ur T2
O_l ] | | | _0

-30 -20 -10 0 10 20 30

S

Fig. 6 The function J, (s, ¢) is plotted for « = —1/2 and ¥ = n/6. As in Fig. 5, brighter regions
correspond to greater values of the function

dimensional subspace of D. If f, g € D are such that W,(f, g) has a limit as r | 0,
then we set:

i -1
Wi, 8) = im Wi (f. ). (4.3)
Similarly, if f, g € D are such that W,(f, g) has a limit as r | oo, then we set:
Wi g) = lim W, (£ o). (4.4)
In the rest of this subsection, we assume that ¢ is real. Let:

Dy={f€D:fand [,f are both square-integrable on R, }. (4.5)

A A,-measurable complex function fis said to be left or right square-integrable on
R, if, respectively, [i|[f(r)]>dr<oco or [X|f(r)]>dx<co for any a > 0. The
subspace of D consisting of left or right square-integrable on R, functions f, such
that [ f is also, respectively, left or right square-integrable on R is denoted by Dé
or D;. We obviously have D, = Dé N D;. It follows from (4.1) by integrating by
parts that:

T Birkhiuser



31 Page 32 of 57 A. G. Smirnov

b
/ (g (P8 (r) — F()(Lg8) (1) dr = Wi (. 8) — Wl )

for every f,g € D, z € C, and a,b > 0. This implies the existence of limits in the
right-hand sides of (4.3) and (4.4), respectively, for every f, g € D(i and f,g € D;.
Hence, W(f, g) is well defined for every f, g € D} and W'(f, g) is well defined for

every f,g € DII. Moreover, it follows that:

(Iof,18]) — (1. 1,8) = W'(f,8) — W'(F,g) (4.6)

for any f,g € D,, where (-,-) is the scalar product in L(R.).
For any linear subspace Z of D,, let L,(Z) be the linear operator in Lr(R)
defined by the relations:

Dy, =1{lfl:f€Z},

(4.7
L) =1f, feZ
We define the minimal operator L, by setting:
L, =Ly(D)), (4.8)

where
DS ={feD,: Wf,g) = W(f,g) = 0 for every g € D,}. (4.9)

By (4.6), the operator L,(Z) is symmetric if and only if W'(f, g) = WI(f, g) for any
f,g € Z. In particular, L, is a symmetric operator. Moreover, L, is closed and
densely defined, and its adjoint L; is given by:

L, =L,(D,) (4.10)

(see Lemma 9.4 in [23]).

If W'(f,g) =0 for any f,g € Df], then ¢ is said to be in the limit point case
(I.p.c.) on the left. Otherwise, ¢ is said to be in the limit circle case (l.c.c.) on the
left. Similarly, ¢ is said to be in the lp.c. on the right if W'(f,g) = 0 for any
f,8¢€ D(Tl and to be in the l.c.c. on the right otherwise. According to the well-known
Weyl alternative (see, e.g., [23], Theorem 9.9), ¢ is in the l.c.c. on the left if and
only if all solutions of [,f = 0 are left square-integrable on R, (and, hence, belong
to Df]).

If g is in the 1.p.c. both on the left and on the right, then (4.10) implies that L is
symmetric and, therefore, L, is self-adjoint.

If g is in the l.c.c. on the left and in the 1.p.c. on the right, then L, has deficiency
indices (1, 1) and the self-adjoint extensions of L, are precisely the operators (see
[26], Theorem 5.8):
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L = Ly(7)), (4.11)

where fis a nontrivial real solution of /,f = 0 and the subspace Z{; of D, is given by:
Z ={g €D, : W (f,g) = 0}. (4.12)

The operator L{; determines f uniquely up to a nonzero real coefficient.
If g is locally square-integrable on R, then formulas (4.8) and (4.9) imply that
C5°(R,) is contained in DS and L, is an extension of L,(Cy°(Ry)).

Lemma 4.1 Let g be a real locally square-integrable function on R.. Then, L, is
the closure of Ly(C3°(R,)).

Proof See Lemma 17 in [21]. O

4.2 The case of the inverse-square potential

By (1.5) and (4.1), we have:
Loz=1g,z, #,2€C, (4.13)

where the function g, on R, is given by (1.4). In view of (1.6) and (4.2), this
implies that:

Ly=1, aeC. (4.14)

By (1.15) and (4.13), we obtain:
lg,Uy(z) =0, o,0,z€C. (4.15)
If « is real, then g, is real. It follows from (1.7), (1.8), (4.5), (4.7), and (4.14) that:
A, =D,,, (4.16)

H,(Z) =L, (Z) (4.17)

for every o € R and every linear subspace Z of A,. Hence, (1.9), (1.10), and
Lemma 4.1 imply that:

hy=L,, «cR (4.18)

By (4.10), (4.16), (4.17), and (4.18), equality (1.11) holds for all real .
If o = &2 for k € C, then the equation /,,f = 0 has linearly independent solutions
r1/25< for i # 0 and r'/? and r'/?Inr for x = 0. It follows that:

(i) g4 is in the Lp.c. both on the left and on the right for « > 1 and
(i) g, is in the Lp.c. on the right and in the l.c.c. on the left for o <1.
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In view of (4.2) and (4.15), we have [,,U}(0) = 0 for every «, ¥ € C. For a <1 and
¥ € R, the function ¢/}(0) is real and nontrivial, and it follows from (1.17), (4.12),

and (4.16) that Z, y = Z27*) By (1.16), (4.11), and (4.17), we conclude that:
hyy =L50 4<1, 0 €eR. (4.19)

Proof of Theorem 1.1 In view of (4.18) and condition (i), the operator A, is self-
adjoint for « > 1. Let a < 1. By (4.18) and (4.19), h,y a self-adjoint extension of A,
for every ¥ € R. Conversely, let H be a self-adjoint extension of 4,. Then, H = Lf;l
for some nontrivial real f € D satisfying [, f = 0. By (1.12), (4.2), and (4.13), we
have 1, .A%*(0) =1, B*(0) =0. Since A*(0) and B*(0) are real and linearly
independent, it follows from (1.14) that f = cU%(0) for some ¢, ¥ € R such that
¢ # 0. In view of (4.19), this means that H = £, .

Suppose now that 9,9 € R and h,y = hyy. By (4.19), we have U5(0) =
cU% (0) for some nonzero real ¢. In view of (1.14), this implies that sin 9 = ¢sin ¢’
and cos ) = ccos?Y and, therefore, e? = ce’. Tt follows that ¢/’Y) = ¢, whence
c==%1land 9 - € nZ. O

5 Eigenfunction expansions

This section consists of two subsections. In the first one, we briefly describe the
construction of eigenfunction expansions of one-dimensional Schrodinger operators
developed in [10, 16]. This construction, which is adapted to the case of operators
with a simple spectrum and relies on the so-called singular Titchmarsh—-Weyl m-
functions, can be viewed as a variant of Kodaira’s general approach [15] based on
matrix-valued measures (see Remark 16 in [21]). In the second subsection, we
prove Theorem 1.2 by applying the general theory to the case of the inverse-square
potential.

5.1 General theory

Let g be a real locally integrable function on R;. We assume that ¢g is in the l.c.c. on
the left and in the l.p.c. on the right.

Let O C C be an open set. We say that a map u : O — D is a g-solution on O if
l,.u(z) = 0 for every z € O. A g-solution u on O is said to be holomorphic if the
functions z — u(z|r) and z — 0,u(z|r) are holomorphic on O for any r € R;. A ¢-
solution u on O is said to be nonvanishing if u(z) # 0 for every z € O. A g-solution
in C is said to be real-entire if it is holomorphic on C and u(E) is real for every
EcR

Let u be a real-entire g-solution. Since g is in l.c.c. on the left, we have u(z) € Dé
for every z € C. Suppose that u is nonvanishing and:
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Whu(z),u(?)) =0, z,7 €C. (5.1)

Let v be a nonvanishing holomorphic g-solution on C,, such that v(z) is right
square-integrable for every z € C (such a v always exists; see Lemma 9.8 in [23]).
If W(u(z),v(z)) = 0 for some z € C,'” then u(z) is proportional to v(z) and, hence,

u(z) € Dy. In view of (4.12) and (5.1), this means that u(z) € ZZ«)) and, therefore,

(0)

[u(z)] is an eigenvector of the self-adjoint operator L, ~ with the eigenvalue z.

©) must be real. It

However, this cannot be the case, because all eigenvalues of LZ
follows that W(u(z),v(z)) # 0 for all z € C,.

Given a nonvanishing real-entire g-solution u, one can always find another real-
entire g-solution i, such that W(u(z),i(z)) # 0 for all z € C (see Lemma 2.4 in
[16]).

Let u and u# be real-entire g-solutions, such that (5.1) is satisfied and
W (u(z),1(z)) # 0 for all z € C. We define the holomorphic function M; ; on C,
by setting:

1 W(v(z),u(z))

M) = W@ )W), a@) 5-2)

where v is a nonvanishing holomorphic g-solution on C,, such that v(z) is right
square-integrable for all z € C (since g is in the l.p.c. on the right, this definition is
independent of the choice of v). Following [16], we call such functions singular
Titchmarsh—Weyl m-functions.

The proof of the next statement can be found in [16].

Proposition 5.1 Let a locally integrable real function g on R, be in the l.c.c. on the
left and in the Lp.c. on the right. Let u be a nonvanishing real-entire q solution, such
that (5.1) holds for all z € C.Then, the following statements hold:

1. There exists a unique positive Radon measure v on R (called the spectral
measure for q and u), such that:

/ () Im M (E + in) dE — / 9(E)dv(E) (11 0)

for every continuous function ¢ on R with compact support and every real-
entire g-solution u, such that W(u(z),i(z)) # 0 for every z € C.

2. Let v be the spectral measure for q and u. There is a unique unitary operator
U:L(R;) — Ly(R,v) (called the spectral transformation for q and u), such
that:

(UW)(E) = / W(EINW() dr, ¥ € L5(R,),

for v-a.e. E.

10 We recall that W(f, g) denotes the value of the function r — W,(f,g) if f,g € D are such that this
function is constant (in particular, if I, .f = ,.g = 0 for some z € C).
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3. Let v and U be the spectral measure and transformation for q and u. Then, we
have LZ«)) = U'T'U, where 1 is the identity function on R.

In the next subsection, we shall verify that V), » is actually the spectral measure
for ¢, and U. This justifies using the same term “spectral measure” for V, » and for
the measures described by Proposition 5.1.

5.2 The case of the inverse-square potential
For any x € C, we define the map v" : C3,/, — D by the relation:
v (dlr) = T e PAPHD(2), r € Ry, 2 € Canp, (5:3)

where H,(cl) is the first Hankel function of order k. Because H,(Cl) is a solution of the

Bessel equation, we have:
L2 0%(z) =0, Kk€C,z€Csy. (5.4)
It follows from the relation H(,l,z = ei”"H,S-l) (formula (9) in Sec. 7.2.1 in [7]) that:
0 "(z) =0"(z), K€C,z€Cspp (5.5)

In view of (2.5) and (5.4), the Wronskian W, (v*(z), u**(z)) does not depend on r.
To find it explicitly, we can use the expression for the Wronskian of Bessel func-
tions (formula (29) in Sec. 7.11 in [7]):

2i
W.(J,, HY) = e (5.6)

Taking (5.5) into account and combining (5.6) with (2.1), (2.3), and (5.3), we
derive that:

W(UK(Z), IIK(Z)) — fo/zeimc/z’ W(DK(Z), uﬂc(z)) _ ZK/Zefimc/Z (57)

for any k € C and z € Cy,5.
For o € C and z € C3y)», let the function ¥"*(z) on R be defined by the relation

¥7%(z) = v*(z), where x € C is such that k> = o (by (5.5), this definition does not
depend on the choice of k). We therefore have:

7 (2) = v°(2) (5.8)
for every k € C and z € Cs,);. By (5.4) and (5.8), we obtain:
LyV(2) =0, 7€ Cypp, €. (5.9)

Using the well-known asymptotic form of H,(Cl)(C) for { — oo (see formula (1)
in Sec. 7.13.1 in [7]), we find that:
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DK(Z|I‘)N271\/E(I'—|—1)271/46&1/”, r— oo,

for every x € C and z € Cs;/, and, hence, v*(z) is right square-integrable for all
k € C and z € C,. In view of (5.8), this implies that ¥ *(z) is right square-inte-
grable for all « € C and z € C,..

Lemma 5.2 There is a unique holomorphic function F on C X Csy/p x Cq, such
that F(o,z,r) = 77*(2|r) for every o € C, z € Csyp, and r > 0.

Proof By (5.3), there is a holomorphic function G on C x Cz,/, X Cg, such that
G(k,z,1r) = v*(z|r) for every k € C, z € Cs,/,, and r > 0. It follows from (5.5) and
the uniqueness theorem for holomorphic functions that G(k, z,{) = G(—x, z,{) for
all k € C, z € Csyy2, and { € C;. The existence of F with the required properties is
now ensured by Lemma A.3 and (5.8). The uniqueness of F follows from the
uniqueness theorem for holomorphic functions. ([

It follows immediately from (1.13) that the identity

W, (fifa. fafa) = (AW (. fa) + Wi, B)R(r)fa(r) (5.10)
holds for every fi,f>,f3,f+ € D and r > 0.

Lemma 5.3 Ler k € C be such that |Re k| <1. Then, we have:
! 2
W (2),u () =0, W' (z),u™(7)) = —Esin K (5.11)
for every z,7 € C.
Proof By (2.1) and (5.10), we have:
W, (4 (2), 0 () =2 2K RPN — iX(P)X(PD), (5.12)

W, (u"(2), u™(¢)) = = 2k X (P2) X (°7)

L2 X (P X () — X (P2) X (7)) (5.13)

for all z,7 € C and r > 0. Since |Rex|<1, the left equality in (5.11) follows
from (5.12) for every z,7 € C. Formula (2.2) implies that:

Xe(0)X_(0) = (T(1 + x)T(1 — k)" = sinc 7k
By (5.13), we conclude that the right equality in (5.11) holds for all 7,7/ € C. [
Lemma 5.4 Let o<1 and 9 € R. Then, we have:

WU (2),U% (7)) =0, z,7 €C. (5.14)

Proof Let o # 0 and k € C be such that k> = «. By (2.14), we have:
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aW, (U (2), U5 (2) =W, (u"(2),u"(2)) cos* (9 — V)
+ W (™ (2),u™ () cos? (0 + V) + (W, (u* (<), u"(z)) (5.15)
— W, (u*(2),u"(Z'))) cos(9 — I,) cos(V + Yy

for all z,7 € C and r > 0. Since o<1, we have |Rek|<1 and, therefore, (5.14)
follows from (5.15) and Lemma 5.3. It remains to consider the case o = 0. For
every z € C, we define the smooth functions ¢(z) and d(z) on R by the relations:

c(zlr) = Xo(r’z), d(zlr) = (y = In2)e(zlr) = Y(rP2), reR.
By (2.1), (2.7), (2.9), and (2.12), we have:
A(zr) = 272 (c(z]r) Inr +d(z|r)), B°(zr) = nr'’?e(zr), zeC,r>0.

Using (5.10), we obtain:

T, A°) = rin W, (e(2), ) + rW,(d(2), ()
+ rinr(W,(e(2),d(2) + Wo(d(2), (@)

%Wr(AO(Z%BO(Z’)) = rW,(d(z),¢(2) + rinrWi(c(z), ¢(2))
—c(elr)e(@|r),
W, (B’(2), B(¢) =n°rW,(c(2), ¢(z'))

for every r > 0 and z,Z’ € C. Since ¢(z|0) = 1 and d(z|0) =y —In2 for all z € C,
we find that:

WHA'(2), B()) = =21, WHA'(2), A°(¢) = WH(B°(2), B°()) = 0
for all z,7' € C. In view of (1.14), this implies (5.14) for o = 0. O

It follows from (1.15) and (5.9) that W,(¥"*(z),Uj(z)) does not depend on r for
every o, € C and z € Csgy. It is easy to see that:

W(H/j(z)vug(z)) = R(O(,ﬂ,Z), O(,’l? € C? zZ€ C37‘c/27 (516)

where R is the function defined in Lemma 2.3. Indeed, it follows from (2.14), (5.7),
and (5.8) that W(“/"2 (z),ljlg2 (2)) is equal to the right-hand side of formula (2.17)
for every k € C\{0}, ¥ € C, and z € Csy». Equality (5.16), therefore, holds for all
« € C\{0}, ¥ € C, and z € Cs;)». By (1.14) and Lemmas 2.2, 2.3, and 5.2, both
sides of (5.16) are holomorphic with respect to (,%,z) on C x C x Cs,/,. Hence,

(5.16) remains valid for o = 0.
By (1.14) and (2.16), we have:

WU (), U () = —20Sinc?(n2), a,d,z€C. (5.17)

Proof of Theorem 1.2 1t follows immediately from (1.14) and the definition of
A*(z) and B*(z) that the functions z — U%(z|r) and z — 3,5 (z|r) are holomorphic
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on C for every r > 0 and «, ¥ € C. Equality (4.15), therefore, implies that { is a
holomorphic g,-solution on C for every o, € C. If o and ¥ are real, then U}j(E) is
real for real E and, hence, U3 is a real-entire g,-solution. By (5.3) and (5.8), the
functions z — 7"*(z|r) and z — 0,77*(z|r) are holomorphic on Cj,/, for every
r>0and o € C. In view of (4.13) and (5.9), it follows that ¥™* is a holomorphic
gs-solution on Cs,/, for every o« € C. Moreover, ¥™* is nonvanishing for every
o € C by (5.7) and (5.8).

We now fix <1 and ¥ € R, set ¢ = g,, and let u and u denote the real-entire g-
solutions U7 and L{§+n/2 respectively. Because a <1, (5.17) implies that:

W(u(z),u(z)) #0, ze€C, (5.18)

and, hence, u is nonvanishing. By Lemma 5.4, we conclude that ¢ and u satisfy all
conditions of Proposition 5.1. Moreover, it follows from (5.18) that there exists a
well-defined Titchmarsh-Weyl m-function MY .. Since 77*(z) is right square-in-
tegrable for every z € C, the latter can be found by substituting v = v~ ""|C+ in the
right-hand side of (5.2). Using (2.23), (5.16), and (5.17), we obtain M (z) =
M y9(z) for every z € Cy. In view of (5.18), statement 1 of Proposition 5.1 and
formula (2.25) imply that V), y is precisely the spectral measure for ¢ and u. The
existence and uniqueness of U,y and equality (1.20) are, therefore, ensured by
statements 2 and 3 of Proposition 5.1 and formula (4.19). U

6 Smoothness properties of the spectral measure

In this section, we shall establish Theorem 1.3.
Before passing to the proof, we note that the smoothness of V), y with respect to o
and ¥ is suggested by explicit formulas obtained in Sect. 3. For example, let us set
= n/2 and examine the o-dependence of the point part V )2 of the measure
Vm/z It follows from (3.25), (3.27), Lemma 3.8, and Theorem 3 10 that X, ;/» =
& for « >0 and:

Xy = {E ER:E= —exp((2k + l)n|ac|71/2> for some k € Z}

for <0. Let ¢ € <. In view of (3.11) and (B.2), Theorem 3.2 implies that:

2
EYDV (E) =
/qo( ) Va2 (E) 72 Sinc (n2«) Sinc *(n2a/4) éwzﬂl (6.1)

for every a <1, where ¢, ¢ € R, denotes the function on R that is identically zero
on [0,00) and is given by:
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P () = ﬁexp(cmfl/z)q)(_ exp(c\ocrl/z))

for . <0. It follows immediately from the definition of the space . that ¢, is an
infinitely differentiable function on R for every nonzero real ¢ (however, in general,
@, is not real-analytic at « = 0 even for real-analytic ¢). It is also possible to verify
directly that 3, _, ®(2k+1)x 18 infinitely differentiable on R and, therefore, the left-
hand side of (6.1) is infinitely differentiable with respect to o on (—oo, 1).

It seems, however, that a complete proof of Theorem 1.3 (including the
continuous part of V, » and the dependence on both o and 1J) based on explicit
formulas for the spectral measures would be extremely cumbersome. We shall adopt
a different approach based on representation (2.25) of V, 4 as a boundary value of
the holomorphic function .#, ». The idea is to derive the infinite differentiability of
V,» with respect to o and ¥ from that of .4, ». Lemma 6.1 below gives a condition
under which the differentiability of a holomorphic function on C with respect to
some parameters implies the same property for its boundary value. This condition
involves certain uniform estimates on the derivatives of this function with respect to
the parameters in question. In the case of the function .#, y, estimates of this type,
which are the most nontrivial part of the proof of Theorem 1.3, are provided by
Proposition 6.2 below. Combining Lemma 6.1 and Proposition 6.2, we shall obtain
the infinite differentiability of V), y.

We now give a formal exposition.

For every ¢,0>0, we let 'H,, denote the Banach space consisting of all
holomorphic functions on C, with the finite norm:

IFlly.o = sup F(@)IWV0(2),

where the function NV, , on C. is given by:

1 Imz \°
Neal®) =Gy (1 T |z|) |

If ' >9>0and ¢’ > ¢ >0, then H,, C Hy » and the inclusion map is continuous.
We define the linear space H by setting H =, ;o Ho0- It is well known (see,
e.g., [25], Ch. 5, Sec. 26.3) that [, f(E + in)¢(E) dE has a limit as 5 | 0 for every
f €M and ¢ € . Given ¢ € &, we let B, denote the map f — limy o [ f(E +
in)p(E)dE on H. The definitions of % and H,, imply that f — [ f(E+
in)@(E) dE is a continuous linear functional on H, , for every n > 0, ¢ € &, and
0,0 > 0. By the Banach—Steinhaus theorem (see Theorem II1.9 in [19]), it follows
that the restriction of B,, to H, , is a continuous linear functional on H, , for every
@ €% and 9,0 >0.

Lemma 6.1 Let 9,6>0,n=1,2,...,and ¢ € &. Let O be an open subset of R"
and M be a map from O to H,,, such that x — M(x|z) is a continuously
differentiable function on O for every z € C,. Foreveryj=1,...,nand x € O, let
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the function M;(x) on C, be defined by the equality M;(x|z) = 0,M (x|z).Suppose
there is C > 0, such that:

IMi(xJ2)| S CNo(2) ', j=1,..0m, x €0, € Ty (6.2)

Then, the function x — B,(M(x)) on O is continuously differentiable and we have
M;(x) € Hy o and 0, B,(M(x)) = B,(M;(x)) for all j=1,...,n and x € O.

Proof The proof relies on the following convergence property for sequences of
holomorphic functions, which easily follows from the Montel theorem (see, e.g.,
Theorem 12 in Sec. 5.4.4 in [1]).

(C) LetV C C be an open set, fi, f2, . . . be holomorphic functions on V, and fbe a
complex function on V. Suppose the functions f; are uniformly bounded on
compact subsets of V and f;(z) — f(z) as k — oo for every z € V. Then, f is
holomorphic on V and f; — f as k — oo uniformly on compact subsets of V.

Let ey, ..., e, be the standard basis in R". Given x € O and j = 1,...,n, we choose
0 >0, such that x+te; € O for every t € [0,0]. We define the holomorphic
functions hy,hy,... on C, by setting hy =1 '(M(x + txe;) — M(x)), where
t, =90/k. By (6.2) and the mean value theorem, we conclude that
Ih(2)] < CN 4 (z) " forevery z € C, and k = 1,2, ... and, therefore, the functions
hy. are uniformly bounded on compact subsets of C... Since limy_. i (z) = M;(x|z)
for every z € C, property (C) implies that M;(x) is holomorphic on C . In view

of (6.2), it follows that M;(x) € H,, and [|M;(x)||,, <C for every x € O and

j=1,...,n
We now choose ¢’ > ¢, ¢’ > g, and letx € O and h = (hy,...,h,) € R" be such
that x + th € O for all ¢ € [0, 1]. By the mean value theorem, we have:
’Mx+h|z M(x|z) — ZMx|zh‘
<|h| sup Z |M;(x + th|z) — M;(x|z)|
0<r<1

for every z € C,, where |h| = max, <<, |h;|. This implies that:

HM x4+ h) = M(x) = > My(x
<|h| sup Z |M;(x + th) — (x)||Q,’U,.
O<r<1

Since B,, is continuous on H, ., our statement will be proved if we show that M; is
a continuous map from O to Hy » for every j = 1,...,n. To this end, we fix ¢ > 0
and choose a compact subset K of C,, such that:

€
sup Ny po—o(2) < 2.
wook LT 2C

Then, we have:
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&
sup [M;(x'[z) = Mj(x[z)IN g0 (2) < 55 1M (x) = M), p <&
zeCL\K

forall x,x’ € O and j = 1,...,n. On the other hand, property (C) and the continuity
of the functions y — M;(y|z) on O for every z € C, imply that every x € O has a
neighborhood O, C O, such that:

sup |M;(x'|z) — Mi(x|2)|[Ny o (z) <&, X €0y, j=1,...,n
€K

Hence, |M;(x') — M;(x)
tinuous map from O to Hy  for every j=1,...,n. O

g <eforall X € Oy and j=1,...,n, ie., M;is a con-

Let R be as in Lemma 2.3. We set:
0= {(“7197Z) €eCxCx CSn/Z : R(OC7’19,Z) 7é 0}7
and define the holomorphic function % on @ by the equality:

R(o, 9 +7/2,2)

F (o v,2) = R(o,0,2)

(0,9,2) € 0. (6.3)

It follows from (2.21), (2.22), and (2.23) that (o, ¥, z) € @ and:

F(,9,7)

Myg(z) = ——2 B0
#0(3) 212 Sinc % (n20)

for every a<1, ¥ € R, and z € C,.
In the sequel, we let Z, denote the set of all nonnegative integer numbers.
Proposition 6.2 Let 0<a<1, b € R, and k,l € 7. Then, we have:

(1 n |Z|)1+a> k4141

|6§6593‘7(OC, ?97Z)| <Pup(k,D)(1+ In2 |Z|)2k+l+l < .

for every o € [—b*,d?], 9 € R, and z € C,, where:

n%* (24mch (nb)) !
Pk, 1) = — (2220 k+ 1)L,
»l 1) 2 (sincz(na)> (kD)

Before proceeding with the proof of Proposition 6.2, we shall derive Theo-
rem 1.3 from Lemma 6.1 and Proposition 6.2.

Proof of Theorem 1.3 For every k,l € Z, and (2,9) € Q, we define the holomor-
phic function M; (o, 9) on C by the equality:

My (o, 9|z) = XL 7 (2,9,2), z€C,.

Clearly, the function (o, 9) — My (o, ¥|z) on Q is infinitely differentiable for every
z € C; and we have:
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0uM (o, V|z) = Mg (o, 9)2),  OgMyy(or, V|z) = My i1 (o, 9|2) (6.5)

for every (a,9) € Q, z€ C,, and k,l € Z,. Given 0<a<1 and b € R, we set
Oup = {(2,9) € Q: —b* <a<a’}. By Proposition 6.2, we have:

E(l + 1112 E)2k+l+l

|Myi(o, 9|z)| < Pap(k, 1) sup 5 Nisiropira(z) (6.6)
E>0 (l + E)
for every (a,9) € Oyp, z € Cy, and k,l € Z,. Since
Q = U Oa,b7 (67)

acl0,1),beR

this implies that M; (o, ) € H for every (a,9) € Q and k,l € Z,. We now fix
¢ € &.Given k,l € Z,, we let Fi; denote the function (o, 9) — By, (M (o, 9)) on
Q. Let 0<a<l1, beR, and k,l € Z,. In view of (6.5) and (6.6), we can apply
Lemma 6.1 to O = Oy, M = My |, and ¢ = 6 = k+ 1+ 3. As a result, we con-
clude that Fy; is continuously differentiable on O, and:

0uF k(o 9) = Frpr(o,9),  OpFry(o,9) = Fyypr (o, 9) (6.8)

for all (o, ) € O,p. By (6.7), it follows that Fy is continuously differentiable on Q
and equalities (6.8) hold for all (o, ) € Q and k,/ € Z,. We now use induction on
n to prove the following statement:

(Sw)  Fop is n times differentiable on Q and al;ango’O(zx, V) = Fy (o, ) for every
(o,9) € Q and k,l € Z, such that k + 1 = n.

The statement (Sp) trivially holds, because every function on Q is 0 times
differentiable. We now suppose n > 1 and derive (S,) from (S,—). Let kK, € Z be
such that kK + 1 = n — 1. Since Fy, is differentiable, (S,_;) implies that the function
(o0, ) — 6’;659F070(ac,19) on Q is differentiable. This means that Fyo is n times
differentiable. Suppose now k,[ € Z. are such that k + [ = n. Then, we have either
k>0 or [>0. Hence, we can represent 0-04Fyo(x,¥) either as
0,(08710! Fo.o(a, 9)) or as 9y(0450 " Fo (2, 9)). In both cases, it follows from (S,_;)
and (6.8) that 05d}Foo(a,9) = Fis(,9) for all (o,09) € Q. This completes the
derivation of (S,) from (S,_1). By induction, we conclude that (S,) holds for all
n€ Z, and, therefore, the function Fyo is infinitely differentiable. Given
(,9) €0, we set Gup=Myylc,. By (6.4), we have Mopo(xJ)=
—27* Sinc (7)) G,y for every (a,9) € Q. Since Fog(,9) = B,(Moo(a,9)), we
conclude that the function (a,9) — B,(Gyy) on Q is infinitely differentiable for
every ¢ € %. To complete the proof, it remains to note that:

[ o)1) = BolCes) ~BelCao)

for every (a,9) € Q and ¢ € & by (2.25). O
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The rest of this section is devoted to the proof of Proposition 6.2.
It follows from (3.51) and (3.52) that:

w(k?, ) — (K2, )* = 4n°(n — $)? sinc i sinc(n — )k

for every x € C\{0} and ¢ € C. By continuity, this equality remains valid for
x = 0. Hence, we have:

(e, §) — (o, @) = 4n®(n — ¢)* Sinc >(n’a) Sinc 2 ((n — ¢)?a), o, € C. (6.9)
Let the function ® on C x R, be defined by the relation:
®(a, E) = In E Sinc (—%1112 E) neC,E>O0. (6.10)
In view of (B.1), rewriting equality (3.53) in terms of ® yields:
T(ot, 9, E€®) =p(ot, p) + O(at, E)*
+ <(D(oc, E)* Cos (n*a) 4 (a1, qﬁ)) cos 299 (6.11)
— 2n®(o, E) Cos (— gln2 E) Sinc (n?a) sin 20

for all o,9 € C, E >0, and —n/2< ¢ <3m/2.
By (3.49), 1(a, ¢) is real for real o and ¢. We also observe that:

wlo, d) >0, o,¢ €R. (6.12)

Indeed, (3.52) implies that this is true for all € R\ {0} and ¢ € R. By continuity,
(6.12) remains valid for o = 0.
The next lemma is the key part of the proof of Proposition 6.2.

Lemma 6.3 Let a<1, 9 € R, E > 0, and 0 < ¢ <m. Then, we have:

L (@B ()
|R(ot,9, Ee'?)| ~ n(m — ¢) Sinc (n2a) Sinc ((n — ¢)*ar)

Proof Let
G = O E) + ulx, ), (6.13)

H = \Jt(2, 6)" + (2, E)* + 2u(s, $)D(, E)’. (6.14)

By (6.12), H is well defined, and both G and H are nonnegative. Using (3.50) and
the identity:

2f %o ) o 2
—In"E)=1+-D(o, E
Cos ( 1 —|—4 (o, E)7,
which follows from (6.10) and (B.2), we find that
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H=1/c®+d?, (6.15)
where
¢ = ®(a, E)? Cos (n2a) + 1(at, ),
d = —27n®(a, E) Cos (f%ln2 E) Sinc (7%a).
Since |ccos2d + dsin29| <+/c2 4+ d? by the Cauchy-Bunyakovsky inequality,
(6.11) and (6.15) imply that:
T(x, 9, Ee®) = G 4 ccos 20 + dsin29 > G — H. (6.16)
By (6.13) and (6.14), we have:
G* — H* = (o, ) — (o, )™ (6.17)

In view of (6.9), it follows that the left-hand side of (6.17) is nonnegative. We
therefore have H < G, whence 2G > G + H. Multiplying this inequality with (6.16)
and using (6.9) and (6.17), we obtain:

2GT(a,9, Ee'?) > 4n*(n — ¢)* Sinc 2 (n?a) Sinc >((n — ¢)*ar). (6.18)
Since o<1 and 0 < ¢ <, the right-hand side of (6.18) is strictly positive. Hence,
T(o,9, Ee'?) > 0, and (6.13) and (6.18) imply that:

1 - O(o, E)* + (e, )
T(2,9,Ee%) = 272(n — §)? Sinc2(w2a) Sinc *((7 — ¢)%)

The required estimate is now ensured by (3.45), because both Sinc (n?x) and
Sinc ((m — ¢)*«) are strictly positive by Lemma B.1. O

For every o € R and ¢ € [0, 7], we have:
(e, ) <271* Sinc ?(n?a) + 2. (6.19)

Indeed, let ¢ € [0, ). If <0, then n%a < (1 — ¢)* and, therefore, 0 < Sinc ((7 —
$)*x/4) < Sinc (n0/4) by Lemma B.1. In view of (3.49), this implies that
(o, ) <0 and, hence, (6.19) follows from (1.32) and (3.50). If « >0, then (3.49)
ensures that |t(«, ¢)| < 7? (note that |Sinc ¢| <1 for ¢ >0 by Lemma B.1). Since
| Cos (n?a)| < 1 by (1.31), it follows from (3.50) that (6.19) is again satisfied. This
completes the proof of (6.19).

Lemma 6.4 Let —1<a<1. Then, we have:

1 _ ([InE] + 3n)(EY/? + E~9/?)
IR(ot, 9, Ee’®)| = 2n(n — ¢) sinc*(ma)

forall o<a®>, € R, E>0,and 0< p<m.

W Birkhiuser



31 Page 46 of 57 A. G. Smirnov

Proof 1t follows from (6.10) and Lemma B.1 that:

InE
O, E)| < |nE|ch (CiE) = MEl (a2, g
2 2

for all «<a® and E > 0. By Lemma B.1, we have Sinc () > Sinc (n°a®) =
sinc (na) for every o < a?. Since 0 < sinc (na) < 1, inequality (6.19) and the above
estimate imply that:

(®(0, E) + p(a, )"/ _ V2nSine (%) + 7 + |O( E)|

Sinc (7%a) - Sinc (n2a)
oy Q@B+ n 3+ [0(5,E)
Sinc (n2ar) sinc (ma)
31+ |InE|

Ea/Z E—a/z
~ 2sinc (na) ( * )

for every o <a?, E > 0, and 0 < ¢ < . The required inequality now follows from

Lemma 6.3, because Sinc (1 — ¢)>a) > sinc (ma) for all & < a? and 0 < ¢ <27 by
Lemma B.1. |

Lemma 6.5 Let a, b be real numbers, A,B,C >0, and n,ky,ky, ks € Z.. Then:

o) ( Cos 1) (A%4) Cos &) (B2a) Cos &) (—Czoc)> ’

n(A+B+C)" (6.20)

(2n) 12k Hhatks ch (Ab) ch (Bb) ch (Ca)

or every o € [—b?,a?.
f ry o € [-b,

Proof For every u € R and n € Z,, we have the inequality (see formula (12) in
[22])

n!
(2n)!
Using this estimate and the standard formula for the nth derivative of a product of

functions, we find that the left-hand side of (6.20) is bounded by the product of
ch (Ab) ch (Bb) ch (Ca) and:

| Cos ™ (&) < chu, &é> —u’.

Z n! (I’ll + kl)!Aznl (n2 + kz)!anz (n3 + k3)!C2n3
I’l]!l’lz!n3! (2”1 + 2k1)' (21’12 + 2k2)' (2}13 + 2k3)'

for every o € [—bz,a2], where the sum is taken over all ny,n,,n3 € Z., such that
ny + ny + n3 = n. Since

(n+k)! <1 n!
(2n 4 2k)! = 2k (2n)!

for all n,k € Z, the sum in the above expression does not exceed:
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1 n! (2n)! ) p2ny 2
A nlB nzc n3
Dkitka+ks (2n)! Z (2m1)!(2n3)!(2n3)! ’

“nytnytnz=n

whence the required estimate follows immediately. O

Lemma 6.6 Let a,b € R. Then, we have:
n!
(2n)!
forall v € [-b*,a*], 9 € R, E>0, ¢ €[0,n], andn € Z,.

|0"R (2,9, Ee'?)| < (n + | InE|)*"™ ch (nb)(EY/? + E~9/?)

Proof By elementary trigonometric transformations, we derive from (2.17) that:
R(x%,0, Ee'?)

_ (ie"” sin cos (m—¢)x _ icosﬂsin%) (EX? + E~/2)
K

K 2
¢K) EK/2 _ Ef;c/z

g T— @)K
— (e“) cos Y, cosﬂ+ isin ) cos —

2 2 K

for every k € C\{0}, 9 € C, E > 0, and —n/2 < ¢ <3n/2. We now fix E > 0 and
¢ €[0,n],and setA = 1/2,A = ¢/2, B = (n — $)/2, and C = |In E|/2. In view of
the equalities:

Ek‘/2 _ E*K/Z 2
—— = InESinc (— K—lnz E) ,
K 4

/2 —K/2 2
%: Cos (—%ln2E>,

which hold for all k € C\{0} by (1.30), we conclude that:
R(o, 0, Ee'?) :i<ne_“9 Sinc (A%a) Cos (B*a) — ¢ cos ¥ Sinc (14~2oc)) Cos (—C%a)
- lnE(e"'19 Cos (A%«) Cos (B*a) + isin1) Cos (A~20c)) Sinc (—C?a)
for all o € C\{0} and ¥ € C. By continuity, this equality remains valid for o« = 0.
By Lemma 6.5 and (B.3), it follows that:
|0"R(or, ¥, Ee')|
n!

< ) ((A + B+ C)* ch (Ab) ch (Bb) + (A + C)* ch (Ab))(| In E| + 7) ch (Ca)

for every o € [—b?,a*] and ¥ € R. This implies the required estimate, because A, A,
and B do not exceed 71/2 by the condition ¢ € [0, 7] and ch?(nb/2) < ch (nb). O

Givenk € Z, let Ay = Zio’“"k}, i.e., Ay is the set of all maps from {0,...,k} to
Z.. For every k,l € 7., we set:
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Ok {(S 1) € Ax x A : ZJ ) +1()) =

) =0 (6.21)
> (sG) + 1)) =k +1+ 1}.
j=0
Lemma 6.7 For every k,l € Z, there is a map C : Qy; — Z, such that:
> IC(s <2k +1)! (6.22)
(5.)€Qu
and
okl 7 (0,9, 2) =R (e, 09, 2) * !
k 6.23
x Y Cls, ) [J@R(,9,2))V @R, 0+ 7/2,2))" (623)
(5,6)€Qu j=0

for every (a,9,z) € O (we assume that (° = 1 for every { € C).

The proof of Lemma 6.7, which is of purely combinatorial nature, is elementary
but rather lengthy. It is given in Appendix E.

Proof of Proposition 6.2 We fix z € C; and set E = |z|. Then, there is a unique
¢ € (0,7), such that z = Ee’. Let the map C : Q;; — Z be as in Lemma 6.7. In
view of Lemma 6.6, the sum in the right-hand side of (6.23) is bounded above by:

()+1()
> st|H( (m+ |InE))¥"" ch (nb)(E“/z—i-E“/z))
(S,t)GQ“

for every o € [-b?,a%] and ¥ € R. As j!/(2j)! <27/ for every j € Z,, it follows
from (6.21) and (6.22) that this expression does not exceed:

k+1+1
2'(k 4+ DM+ [In B (ch (mb) (B2 + E))

Since
E(E? + EPY <41+ E)'™, (1+|IE[)’ <2(1 + In*E),

Lemma 6.4 and (6.23) therefore imply that:

(1 —|—E)1+a k+1+1
04017 (2,0.9)] < Pap (kD1 + 10 £ (m)

for every o € [—b* a*] and ¥ € R. Hence, the required estimate follows, because
E(n — ¢)>Esin(n — ¢) = Esin¢ =Imz. O

Acknowledgements The author is grateful to I.V. Tyutin and B.L. Voronov for useful discussions.
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Appendix A. Even holomorphic functions

Given r > 0, we let D, denote the disc of radius r in the complex plane centred at
the origin: D, ={z € C: |z|<r}.

Lemma A.1

1. The map z — 22 from C to itself is open.
2. Let X be a topological space. The map (z,x) — (z%,x) from C x X to itself is
open.

Proof 1.Let O be an open subset of C and O be its image under the map z — z2. Let
{ € 0\{0}. Then, there is a holomorphic function g defined on a neighborhood of ¢
and such that g({) € O and g((')2 = {' for every {' € D, (i.e., g is a holomorphic
branch of the square root in a neighborhood of { whose value at { belongs to O). By
continuity of g, there is a neighborhood V of {, such that g({') € O for all {' € V
and, hence, V C O. This means that { is an interior point of O for every nonzero
{€0.1f0€ 0, then 0 € O and D, C O for some r > 0. It follows that D,- C O

and, therefore, 0 is an interior point of O. This implies that O is open.
2. The assertion follows immediately from statement 1 and the definition of
product topology. O

Lemma A2 Let O C C be such that —z € O for every z € O. Let O ={{ € C:
{ = z* for some z € O} and f be a map on O, such that f(—z) = f(z) for every
z € O. Then, there is a unique map f on O, such that f(z) = f(z2) for all z € O. If O
is open and f is a holomorphic function on O, then O is open and f is a holomorphic
function on O.

Proof The uniqueness of f is obvious. To prove the existence, we choose w; € C,
such that { = wf for every { € C. Clearly, w; € O for every { € O, and we can
define f as the map on O taking { € O to f(w;). Then, we have f(z) = f(w,) =
f(2?) for every z € O, because z = £w,».

Let O be open and f be holomorphic. By statement 1 of Lemma A.1, O is open.
Let { € O\{0}. As in the proof of statement 1 of Lemma A.1, we choose a holo-
morphic branch of the square root g and a neighborhood V of {, such that V C D,
and g(V) C 0. Then, V C O and f(g({)) = f(g({)?) = f({) for every {' € V. This
means that f coincides on V with the composition of holomorphic functions f and g
and, hence, is holomorphic on V. This implies that f is holomorphic on O\{0}. If
0e 0, then 0 € O and there is r > 0, such that D, C O. For k =0,1,..., let ¢ =
f®)(0)/k! be the Taylor coefficients of f(z) at z = 0. Since fis even, we have a; = 0
for odd k and, hence, f(z) = > axz*" for all z € D,. It follows that the series
Y one o a2 (" converges to some h(() for every { € D,.. Clearly, h is holomorphic on
D,> and we have h(z?) = f(z) = f(z?) for every z € D,. This means that f coincides
with i on D, and, therefore, f is holomorphic on 0. O
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Lemma A3 Let n=1,2,... and O C C x C" be such that (—z,u) € O for every
(z,u) € O. Let O be the image of O under the map (z,u) — (22,u) from C x C" to
itself and f be a map on O, such that f(—z,u) = f(z,u) for every (z,u) € O. Then,
there is a unique map f on O, such that f(z,u) :f(zz7 u) for all (z,u) € 0. If O is

open and f is a holomorphic function on O, then O is open and f is a holomorphic

function on O.

Proof The uniqueness of f is obvious. To prove the existence, we choose w; € C,
such that { = wg for every { € C. Clearly, (w¢,u) € O for every ({,u) € O, and we
can define f as the map on O taking ({,u) € O to f(wy,u). Then, we have f(z,u) =
f(wa,u) = f(2%,u) for every (z,u) € O, because z = +w.

Let O be open and f be holomorphic. By statement 2 of Lemma A.1, 0 is open.

For every u € C", we let j;(u) denote the holomorphic map z — (z,u) from C to
C x C". For every z € C, we let j»(z) denote the holomorphic map u — (z,u) from
C" to C x C". In view of the Hartogs theorem, the holomorphy of f will be proved if
we show that f o j; () and f o j(z) are holomorphic functions for every u € C" and
z € C. Let s be the map z — z> from C to itself and ¢ be the map (z,u) — (z%,u)
from C x C" to itself. Since f = f oz and t o j; (u) = j, (u) o 5, we have f o j; (u) =
(f oji(u)) os for every u € C". Because f oj(u) is a holomorphic function,
Lemma A.2 implies that f o j; (1) is a holomorphic function for every u € C". Since
10js(z) = ja(z%), we have f 0 j,(z) = f 0j2(z%) and, hence, f o j(z) is a holomor-
phic function for every z € C. O

Appendix B. Some properties of the functions commaCoscomma
and commaSinccomma

Dividing the identity sin2w = 2sinwcosw by 2w, we find that sinc2w =
sincwcosw for every w € C\{0}. By continuity, this equality remains valid for
w = 0 and it follows from (1.28) that:

Sinc4{ = Sinc{Cos{, (e C. (B.1)

Substituting sinw = wsincw in the identity sin’w -+ cos’w =1, we obtain

w? sinc 2w + cos> w = 1 for every w € C. In view of (1.28), this implies that:

{Sinc?{ + Cos*( =1, (eC. (B.2)

Differentiating the left equality in (1.28) yields sinw = —2w Cos’(w?) for every
w € C. Dividing this identity by w, we obtain sincw = —2Cos’(w?) for all
w € C\{0}. By continuity, this formula remains valid for w = 0 and it follows from
the right equality in (1.28) that:

Sinc{ = —2Cos’{, (e C. (B.3)
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Lemma B.1 The functions Cos and Sinc are strictly decreasing on the interval
(—o0,n?). For every ¢<m?, we have Sinc¢ > 0. If a€ R and &> — a?, then
| Sinc ¢| < cha.

Proof Let the function fon R be defined by the equality f(x) = xcosx — sinx. Then,
we have sinc’x = f(x)/x? for every x > 0. Since f'(x) = —xsinx, we have f'(x) <0
for x € (0,7). As f(0) =0, we have f(x) <0 for x € (0,n) and, therefore, sinc
strictly decreases on [0,7]. In view of (1.31), this implies that Sinc strictly
decreases on [0, 7%]. Since Sinc is strictly decreasing on (—oc,0] by (1.29), we
conclude that Sinc strictly decreases on (—oo,n?]. In view of the equality
Sinc (7?) = 0, it follows that Sinc ¢ > 0 for ¢ <n?. By (B.3), we have Cos’¢ =
—2-1Sinc ¢ <0 for ¢ <7? and, hence, Cos is strictly decreasing on (—o0, nz]. Let
a € R. In view of (1.29), (1.30), and the monotonicity of Sinc established above,
we have:

Sinc ¢ < Sinc (—a*) < Cos (—a?) = cha, ¢ € [-a* 7.

If £>n?, then we have | Sinc &| = |sinc v/&| < 1/n< cha. Hence, |Sinc é| < cha
for all £> — a2, O

Appendix C: Herglotz functions

A holomorphic function f on C; is said to be a Herglotz function if Imf(z) > 0 for
every z € C,. Itis well known (see [2], Ch. 6, Sec. 69) that every Herglotz function
f admits a unique representation of the form:

f(Z)a+bZ+/<L ! )dv(), z€Cy, (C.1)

Rt_Z t2+l

where a € R, b >0, and v is a positive Radon measure on R, such that:

/ ) _ . (C.2)

rPZ+17

We call v the Herglotz measure associated with f.

Lemma C.1 Let f be a Herglotz function and ¢ be a continuous complex function on
R satisfying the bound |@(E)| < C(1 4+ E2) 2, E € R, for some C>0. Then, the
function E — @(E)Imf(E +in) on [Ri is integrable for every n > 0 and we have
Jr @(E)Imf(E +in)dE — 7 [ @(E)dv(E) as n |0, where v is the Herglotz
measure associated with f.

Proof Since v is the Herglotz measure associated with f, representation (C.1) holds
for some a € R and b > 0. We, therefore, have:
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EecR,n>0.

)

Since
_o(E)lndE_ ndE _ Cn(n+1)
/R(t—E)2+n2<C/R(E2+1)((r—E)2+n2) pegrry

the function (E,7) — n((t — E)* + %) ' @(E) on R x R is integrable with respect
to the measure 4 x v, where 4 is the Lebesgue measure on R. By the Fubini the-
orem, we conclude that the function £ — ¢(E)Imf(E + in) on R is integrable for
every 1 > 0 and:

[o@msE+inac=om [ oEaE+ [aoan,  c4)
R R R

where the function g, on R is given by:

B p(EyndE [ @(t+nE)dE
gﬂ(t)/R(l—E)z‘f'ﬂz/R 2+l

By the dominated convergence theorem, g,(f) — m¢(f) as n | O for every ¢ € R.
Since |g, (1) <2nC(* + 1)~" for 0<y<1 by (C.3) and v satisfies (C.2), we can
apply the dominated convergence theorem again and conclude that [}, g,(r) dv(r) —
7 [ @(t) dv(r) as 7 | 0. In view of (C.4), it follows that [, ¢(E)Imf(E + in) dE —

7 [ @(E)dv(E) as 1 | 0. O

Appendix D: Proof of Lemma 2.1

The proof given below is similar to that of Lemma 2 in [21].
Let Ln be the branch of the logarithm on C, satisfying Ln1 = 0 and p be the

holomorphic function on C x C, defined by the relation p(x,{) = ¢ (hence,
p(x,r) = r* for r > 0). Let h be the holomorphic function on C x C x C,, such that

h(x,z, ) = p(1/2 4 K, )X, ({*2) for all k,z € C and { € C,. By (2.1), we have:
h(k,z,r) = u*(z]r), Kx,z€C,r>0. (D.1)

We define the holomorphic function F, on C x C x C, by the formula:

Fal,2,0) = 3 (h(,2,0) + h(=x,2,0)) sine Vs, 1,2 € C, L€ Cr

In view of (2.9) and (D.1), the equality F»(x,z,r) = b*(z|r) holds for every x,z €
C and r > 0. Furthermore, we define the function F; on C x C x C, by setting:
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h(K7 2, C) - h(_Kv 2, C)
K

Fi0.2.0) =2| (Lo +9)0.2.0 - p(1/2.0 Y

Fi(k,z,{) = cost,, x € C\{0},

for every z € C and { € C,. It follows immediately from (2.6), (2.7), (D.1), and the
definition of F; that F(x,z,r) = a*(z|r) for every x,z € C and r > 0. The function
(z,{) — Fi(x,z,{) is obviously holomorphic on C x C, for every fixed k € C. The
function xk — F1(x,z,{) is holomorphic on C\{0} and continuous at x = 0 (this is
ensured by the same calculation as the one used to find the limit in (2.7)) and is,
therefore, holomorphic on C for every fixed z € C and { € C,. Hence, F; is
holomorphic on C x C x C, by the Hartogs theorem. The uniqueness of F; and F,
follows from the uniqueness theorem for holomorphic functions.

Appendix E: Proof of Lemma 6.7

Let E denote the set of all maps from Z to Z that vanish outside a finite subset of
Z.. We let 0 denote the element of = which is identically zero on Z: 0(j) = 0 for
alljeZ,. Fors €&, let K, = {j € Z; : s(j) # 0}. By the definition of E, the set
K, is finite for every s € E. Let Z, be the set of all s € &, such that s(j) >0 for
every j € Z,. Given s,t € 2, we let s+ ¢ denote the pointwise sum of s and #:
(s +1)(j) = s(j) + #(j) for every j € Z_.. Endowed with this addition, Z becomes an
Abelian group with zero element 0. If s,z € E,, then s+t € E,. Given s € E,, we
define the function e(s) on C x C X Csg/, by the relation:

e(s|oc,19, Z) = H(GZ;R(OC719>Z))SU)7 06,19 € Ca zZ€ C3n/27

jel

where [ is any finite subset of Z, such that Iy C I (clearly, the definition of e(s)
does not depend on the choice of I). It follows immediately from the above defi-
nition that:

e(s+1) =e(s)e(r), s,te€Z,. (E.1)
For every j € Z,, we define §; € E, by the formula:
17 k :j7
0;(k) =
i®) {0, ke Z\{j}.

Ifje Z, and s € E, then we set:
[S]j =5 — 5j + 5j+1‘

If s € 2, and j € K, then [s]j € E;. We now show that:
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we(slo,9,2) = s(ie([s];|on 9, 2), (E2)
JEK
doe(s|e, ¥,2) = Y _ s()e(s — djlo, 0, 2)R(o, ¥ + 7/2, 2) (E3)
JEK

for every s € E,, a,9 € C, and z € Cs,/5. The proof is by induction on the cardi-
nality Card Ky of K. Let Card Ky = 1 and j € Z be such that K; = {j}. Then, we
have e(s|o, ¥,2) = (O R(a,9,2))*"). This implies (E.2) and (E.3), because s(j) > 0
and:

OpR(o, ¥, z) = R(o,9 + 1/2,2) (E4)

by (2.17) and (2.18). Suppose now that Card Ky > 1. Then, we can find ', 5" € 2,
such that s = s’ + s”, the sets Ky and Ky are both nonempty, and Ky N Ky = .
Since Card Ky <Card Ky and Card Ky < Card K, it follows from the Leibniz rule,
the induction hypothesis, and formula (E.1) that:

Oye(s|o, 9, z) = e(s |oc19z2(] s')lo, 9, 2)+

JEKy

|om9zZ"(/ ([s"]jlot, 9, 2).
JEKw

Applying (E.1) again and observing that [s], = [s'], + 5" =" +[s"]; for every
j € Z, we obtain (E.2). In the same way, (E.3) follows from the Leibniz rule, the
induction hypothesis, and formula (E.1). This completes the proof of (E.2)
and (E.3) for all s € =, that are not identically zero. It remains to note that these
formulas obviously hold for s = 0."'

Given 5,1 € 2, we define the function £(s, ) on C x C x Cs,, by the relation:

E(s 1o, 9, z) = e(s|o, 0, 2)e(t]o, 0 4+ 7/2,2), a,9 € C, z € Cappa.

Since & R(a,9,7) = e(J;]a, 9, z) for every j € Z,, it follows from (2.19), (E.2),
and (E.3) that:

0, E(s, 1o, 0,2) =Y s(IE([s];, tlor, ¥, 2) + > t()ECs, [, 3, 2),

JEKs JjeK,
0yE(s,tlo, ¥,2) = Z s(HE(s — 0,1 + 9], Y, 2)
JjeKs
— > tE(s + 8yt — Sl 9, 2).
Jjek

In view of (E.4), this implies that:

1" As usual, we assume that sum and product of an empty family are equal to zero and unity respectively.
In particular, e(0) is identically unity on C x C x Csz,.
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E(s t|o,9,2)  Guls, 1|, 9,2)
"R, 9,2)" T R(o,0,2)"
E(s,tlo,9,2)  Huls, 1], 9,2)

R(e,9,2)"  R(x,9,2)""!

(E.5)

0y

forevery s,t € E,,m=1,2,...,and (2,9,z) € 0, where the functions G,,(s, t) and
H,,(s,t) on C x C x Csg, are given by:

Guls,1) =y s()E(ls]; + o.1)

jek,

+ ) tG)E(s + S0, [1];) — mE(s + 61, 1),

JEK,
Hy(s,1) =Y s()E(s = & + do, 1 + &)
JEK

=Y tG)E(s + 8 + So,1 — 6;) — mE(s, 1+ d).

JEK:

(E.6)

(E.7)

For k,l € Z,, we set . = {s € E, : s(j) =0 for j > k} and:

Skt ={(5,1) € B X By = (slyo,.p- tli0,..01) € Lt

where the set Oy ; is given by (6.21).

Let k,l € Z1, a>0, and f be a function on C x C x Cs,/,. We say that f'is a
function of type (k, [, a) if there exists a map c:Sx; — Z, such that
Z(N)GSN lc(s,1)| < a and:

fl9,2)= > cls,0E(s, 1o, 9, 2) (E.8)

(5,1)€Sks

for every o, € C and z € Cs,,. In particular, n&(s, ¢) is a function of type (k, I, Inl)
for every (s,1) € Sk, and n € Z. Clearly, the following properties hold:

(1) If fis a function of type (k, [, a), then nf is a function of type (k, I, Inla) for
every n € Z.

(2) If fi and f; are functions of types (k,l,a;) and (k,[,a,), then fi +f> is a
function of type (k,l,a; + ay).

(3) Let I be a finite set and F and A be maps on /, such that F(1) is a function of
type (k,I,A(1)) for every 1€1. Then, >, F(1) is a function of type

(ks 1,32, A(D).-

Given k,l € Z,, we can define a bijection p between S;; and Qi; by setting

p(s,t) = (slyo,.. 43 tl(0,.4y) for every (s, ) € Si,. The right-hand side of (E.8) then

coincides with the sum in the right-hand side of (6.23) for C =cop™!

Lemma 6.7 is ensured by the following statement.

. Hence,
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Lemma E.1 For every k,l € 7., there is a function f of type (k1,2 (k +1)!), such
that:

fla,9,2)

oL F (0, 09,7) = ——— L
o~ ( ) R(OC719,Z)](+I+1

for every (a,9,z) € C.

Proof We note that (0,00) € Spo and £(0, do|a, ¥, z) = R(ar, I + /2, 7) for every
a,¥ € C and z € Csyy. It therefore follows from (6.3) that the statement holds for
k=1=0with f = £(0, ). Suppose the statement is true for k,! € Z, and the map
¢ : Sk; — Z is such that:

D lels.n <25k +1)! (E.9)

(A‘,l)GSk_[
and

1

roLF (a,0,7) = ——————
o~ ( ) R(Ot,ﬁ, Z)k+l+l(

Z c(s, 0)E(s, t]o, 9, 2)

5,1)ESk

for every (a,1,z) € 0. In view of (E.5), it follows that:

g(fx,’l?,Z) kAl+1
e el -

h(a, 9, 7)

o*HoL 7 (0,9, 2) = i
o 9 ( ) R(O{,ﬁ,z)k+l+2

for every (a,1,z) € O, where the functions g and 2 on C x C x Cs,/, are given by:

g= Y c(s.0)Guni(st), h= Y cls,)Hpri(s.1). (E.10)

(S,Z)Eskvl (S,T)Esk_[

Our statement will be proved by induction on k and [ if we show that g and 4 are
functions of type (k+1,l,a) and (k,/+1,a) respectively, where
a =2k 4 1+ 1)L If (s,1) € Spy, then ([s]; + 0o, 1) € Sey1y for every j € K.
Choosing I = K, setting F(j) = s(j)([s]; + o, 1) and A(j) = s(j) for every j € I,
and applying property (3), we conclude that > i s(/)E([s]; + do, ?) is a function of
type (k+ 1,1, k. s(j))- Furthermore, if (s, 7) € Sk, then (s + do, [1];) € Sk41, for
every j € K;. Hence, choosing I = K,, setting F(j) = t(j)(s + do, [f];) and A(j) =
t(j) for every j € I, and applying property (3), we deduce that > . t(j)E(s +
do, [f];) is a function of type (k+1,1,> . t(j)). Since (s+01,1) € Sgy14 and
Efzo(s(i) +1(j)) =k+1+1 for every (s,t) € Sy, it follows from (E.6) and
property (2) that Gy 41(s,?) is a function of type (k+ 1,1,2(k+ 1+ 1)) for every
(s,1) € Sk;. In a similar way, (E.7) and properties (2) and (3) imply that H;+1 (s, t)
is a function of type (k,l/+ 1,2(k+1+1)) for every (s,t) € Si;. Our claim
therefore follows from (E.9), (E.10), and properties (1) and (3). O
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