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Abstract
We consider the one-dimensional Schrödinger equation�f 00 þ qaf ¼ Ef on the positive

half-axis with the potentialqaðrÞ ¼ ða� 1=4Þr�2. It is known that the value a ¼ 0 plays

a special role in this problem: all self-adjoint realizations of the formal differential

expression�o2
r þ qaðrÞ for the Hamiltonian have infinitely many eigenvalues for a\0

and at most one eigenvalue for a� 0. We find a parametrization of self-adjoint boundary

conditions and eigenfunction expansions that is analytic in a and, in particular, is not

singular at a ¼ 0. Employing suitable singular Titchmarsh–Weyl m-functions, we

explicitly find the spectral measures for all self-adjoint Hamiltonians and prove their

smooth dependence ona and the boundary condition. Using the formulas for the spectral

measures, we analyze in detail how the ‘‘phase transition’’ through the point a ¼ 0

occurs for both the eigenvalues and the continuous spectrum of the Hamiltonians.
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extension � Eigenfunction expansion � Titchmarsh–Weyl m-function
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1 Introduction

This paper is devoted to eigenfunction expansions connected with the one-

dimensional Schrödinger equation1
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�o2
r f ðrÞ þ

a� 1=4

r2
f ðrÞ ¼ Ef ðrÞ; r 2 Rþ; ð1:1Þ

where a and E are real parameters, and Rþ denotes the positive half-axis ð0;1Þ.
There are two special values of the coupling constant a at which this problem

undergoes a structural change. One of them is a ¼ 1. For a\1, all solutions of (1.1)

are square-integrable on the interval (0, a) for every a[ 0. At the same time, only

one solution (up to a constant factor) for each E possesses this property for a� 1. In

terms of the well-known Weyl alternative, this means that the differential

expression

�o2
r þ

a� 1=4

r2
ð1:2Þ

corresponds at r ¼ 0 to the limit point case for a� 1 and to the limit circle case for

a\1. As a consequence, (1.2) has a unique self-adjoint realization in L2ðRþÞ2 for

a� 1 and infinitely many self-adjoint realizations in L2ðRþÞ for a\1. The latter

correspond to various self-adjoint boundary conditions at r ¼ 0.

Another special value of a is a ¼ 0. It has long been known [4, 17] that the

spectrum of all self-adjoint realizations of (1.2) is not bounded from below and

contains infinitely many negative eigenvalues for a\0. On the other hand, every

self-adjoint realization of (1.2) has at most one eigenvalue for a� 0 (the continuous

spectrum is ½0;1Þ for all real a).

If j 2 R and a ¼ j2, then the function3 f ðrÞ ¼
ffiffi

r
p

Jjð
ffiffiffiffi

E
p

rÞ, where Jj is the

Bessel function of the first kind of order j, is a solution of (1.1) for every E[ 0

(this follows immediately from the fact that Jj satisfies the Bessel equation). These

solutions can be used to expand square-integrable functions on Rþ. More precisely,

given j� 0 and a square-integrable complex function w on Rþ that vanishes for

large r, we can define the function ŵ on Rþ by setting:

ŵðEÞ ¼ 1
ffiffiffi

2
p
Z 1

0

ffiffi

r
p

Jjð
ffiffiffiffi

E
p

rÞwðrÞ dr; E[ 0: ð1:3Þ

The map w ! ŵ then coincides up to a change of variables with the well-known

Hankel transformation [13] and induces a uniquely determined unitary operator in

L2ðRþÞ. Since the development of a general theory of singular Sturm–Liouville

operators by Weyl [27], this transformation has been used by many authors to

illustrate various approaches to eigenfunction expansions for problems of this type

[9, 10, 16, 18, 24, 28].

For a� 1, transformation (1.3) with j ¼
ffiffiffi

a
p

provides an eigenfunction expan-

sion (i.e., a diagonalizing unitary operator) for the unique self-adjoint realization

of (1.2). If 0� a\1, then it is an eigenfunction expansion for one of infinitely many

self-adjoint realizations of (1.2), namely, for the Friedrichs extension of the

2 Here and subsequently, we let L2ðRþÞ denote the Hilbert space of (equivalence classes of) square-

integrable complex functions on Rþ.

3 In this paper, we use the symbol
ffiffiffi

x
p

only for nonnegative x; the notation z1=2 will be used for a

suitable branch of the square root in the complex plane.
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minimal operator ha associated with (1.2) (see [8]; the precise definition of ha will

be given later in this section). As we shall see, the latter is not bounded from below

and, therefore, has no Friedrichs extension for a\0. Accordingly, the right-hand

side of (1.3) as a function of a has a branch point at a ¼ 0 and cannot be analytically

continued to the region a\0.

For a� 0, eigenfunction expansions corresponding to all self-adjoint realizations

of (1.2) were found in [24] (however, without explicitly using the language of

operators in Hilbert space). In [17], all self-adjoint Hamiltonians associated

with (1.2) and corresponding eigenfunction expansions were constructed for every

real a using the theory of self-adjoint extensions of symmetric operators (a

somewhat different treatment of this problem in the framework of self-adjoint

extensions can be found in [11, 12]).

The generalized eigenfunctions used in [11, 12, 17, 24] had the same type of

branch point singularity at a ¼ 0 as that appearing in Hankel transformation (1.3).

As a result, the cases 0\a\1, a ¼ 0, and a\0 were treated separately and

eigenfunction expansions for a ¼ 0 could not be obtained from those for 0\a\1

and a\0 by taking the limit a ! 0. In [21], we considered problem (1.1) with

a ¼ j2 and constructed a parametrization of self-adjoint realizations of (1.2) and

corresponding eigenfunction expansions that is continuous in j on the interval

ð�1; 1Þ (and, in particular, at j ¼ 0). This work was motivated by our previous

research [20] of the Aharonov–Bohm model, where zero and nonzero j correspond

to integer and noninteger values of the dimensionless magnetic flux through the

solenoid. In terms of a, the results of [21] give a continuous transition from the

region 0\a\1 to a ¼ 0.

In this paper, we extend the treatment in [21] to also cover the region a\0. We

parametrize all eigenfunction expansions associated with (1.2) in such a way that

the generalized eigenfunctions turn out to be analytic in a for a\1, while the

corresponding spectral measures are infinitely differentiable in a on the same

interval. Using explicit formulas for the spectral measures, we analyze in detail how

the transition through the point a ¼ 0 occurs for both the eigenvalues and the

continuous spectrum of self-adjoint realizations of (1.2) in this parametrization.

We now give a brief structural description of our results.

For every a 2 C, we define the function qa on Rþ by setting:

qaðrÞ ¼
a� 1=4

r2
; r[ 0: ð1:4Þ

For real a, qa is the potential term in (1.2).

Let kþ be the restriction to Rþ of the Lebesgue measure k on R and D be the

space of all complex continuously differentiable functions on Rþ whose derivative

is absolutely continuous on Rþ (i.e., absolutely continuous on every segment [a, b]

with 0\a� b\1). Given a; z 2 C, we let La;z denote the linear operator from D
to the space of complex kþ-equivalence classes, such that:
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ðLa;zf ÞðrÞ ¼ �f 00ðrÞ þ qaðrÞf ðrÞ � zf ðrÞ ð1:5Þ

for k-a.e.4 r 2 Rþ and set:

La ¼ La;0: ð1:6Þ

Let a 2 R. We define the linear subspace Da of D by setting:

Da ¼ ff 2 D : f and Laf are both square-integrable on Rþg: ð1:7Þ

For every linear subspace Z of Da, let HaðZÞ be the linear operator in L2ðRþÞ
defined by the relations5:

DHaðZÞ ¼ f½f � : f 2 Zg;

HaðZÞ½f � ¼ Laf ; f 2 Z;
ð1:8Þ

where ½f � ¼ ½f �kþ denotes the kþ-equivalence class of f. We clearly have

C1
0 ðRþÞ � Da, where C1

0 ðRþÞ is the space of all smooth functions on Rþ with

compact support. The operator

�ha ¼ HaðC1
0 ðRþÞÞ ð1:9Þ

is obviously symmetric and, hence, closable. The closure of �ha is denoted by ha:

ha ¼ �ha: ð1:10Þ

We shall see that the adjoint h�a of ha is given by:

h�a ¼ HaðDaÞ: ð1:11Þ

If T is a symmetric extension of ha, then h�a is an extension of T� and hence of T.

By (1.11), we conclude that T is of the form HaðZÞ for some subspace Z of Da.

Self-adjoint operators of the form HaðZÞ can be naturally viewed as self-adjoint

realizations of differential expression (1.2). If HaðZÞ is self-adjoint, then equal-

ity (1.11) and the closedness of ha imply that HaðZÞ is an extension of ha, because

HaðDaÞ is an extension of HaðZÞ. Therefore, the self-adjoint realizations of (1.2) are

precisely the self-adjoint extensions of ha (or, equivalently, of �ha).
For every a; z 2 C, we shall construct real-analytic functions AaðzÞ and BaðzÞ on

Rþ, such that:

La;zAaðzÞ ¼ La;zBaðzÞ ¼ 0; a; z 2 C: ð1:12Þ

The functions AaðzÞ and BaðzÞ are real for real a and z. Moreover, the quantities6

AaðzjrÞ and BaðzjrÞ are entire analytic in a and z for every fixed r[ 0 and, in

4 Throughout the paper, a.e. means either ‘‘almost every’’ or ‘‘almost everywhere’’.
5 Here and subsequently, we let DF denote the domain of definition of a map F.
6 Given a map F whose values are also maps, we let F(x|y) denote the value of F(x) at a point y:

FðxjyÞ ¼ ðFðxÞÞðyÞ.
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particular, are not singular at a ¼ 0. If a\1 and z 2 C, then AaðzÞ and BaðzÞ are

linear independent and are both square-integrable on the interval (0, a) for every

a[ 0 (as mentioned above, we have the limit circle case for a\1).

Given f ; g 2 D, we let Wrðf ; gÞ denote the Wronskian of f and g at a point r[ 0:

Wrðf ; gÞ ¼ f ðrÞg0ðrÞ � f 0ðrÞgðrÞ: ð1:13Þ

Clearly, r ! Wrðf ; gÞ is an absolutely continuous function on Rþ.

For every a; #; z 2 C, we define the function Ua
#ðzÞ on Rþ by the relation:

Ua
#ðzÞ ¼ AaðzÞ cos#þ BaðzÞ sin#: ð1:14Þ

By (1.12), we obviously have:

La;zUa
#ðzÞ ¼ 0; a; #; z 2 C: ð1:15Þ

The properties of AaðzÞ and BaðzÞ imply that Ua
#ðzÞ is real for real a; #, and z and the

quantity Ua
#ðzjrÞ is entire analytic in a; #, and z for every fixed r[ 0. If a\1, then

Ua
#ðzÞ is nontrivial for every #; z 2 C. We shall show that

limr#0 WrðUa
#ðzÞ;Ua

#ðz0ÞÞ ¼ 0 for all a\1, # 2 R, and z; z0 2 C. This condition

means that Ua
#ðzjrÞ for various z have the same asymptotics as r # 0.

Let f 2 D and a; #; z 2 C. In view of (1.15), integration by parts yields:
Z a

r

ðLa;zf Þðr0ÞUa
#ðzjr0Þ dr0 ¼ WrðUa

#ðzÞ; f Þ �WaðUa
#ðzÞ; f Þ

for every a; r[ 0. If a\1, then Ua
#ðzÞ is square-integrable on (0, a) for every a[ 0

and this equality implies that WrðUa
#ðzÞ; f Þ has a limit as r # 0 for every #; z 2 C and

f 2 Da. Given a\1 and # 2 R, we define the operator ha;# in L2ðRþÞ by the

relation:

ha;# ¼ HaðZa;#Þ; ð1:16Þ

where the linear subspace Za;# of Da is given by:

Za;# ¼ ff 2 Da : lim
r#0

WrðUa
#ð0Þ; f Þ ¼ 0g: ð1:17Þ

By (1.14) and the definition of ha;#, we have:

ha;#þp ¼ ha;#; a\1; # 2 R: ð1:18Þ

The next statement gives a complete description of the self-adjoint extensions of ha
for every a 2 R.

Theorem 1.1 For a� 1, the operator ha is self-adjoint. If a\1, then ha;# is a self-
adjoint extension of ha for every # 2 R and, conversely, every self-adjoint extension
of ha is equal to ha;# for some # 2 R. Given #; #0 2 R, we have ha;# ¼ ha;#0 if and
only if #� #0 2 pZ.
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As will be obvious from the explicit definitions of AaðzÞ and BaðzÞ in Sect. 2,

these functions are actually square-integrable on intervals (0, a) with a[ 0 for all a
belonging to the domain:

P ¼ fa 2 C : a ¼ j2 for some j 2 C such that jRe jj\1g:

and all z 2 C. Hence, the above definition of ha;# can be naturally extended to all

a 2 P and # 2 C. Moreover, it is possible to show that such an extended family of

operators is holomorphic on P	 C in the sense of Kato (see Ch. 7 in [14]) and,

therefore, ha;# with a\1 and # 2 R constitute a real-analytic family of operators.

This can be proved using a technique similar to that employed in [3] for the case of

extensions of ha homogeneous with respect to dilations of Rþ. The spectral analysis

of a holomorphic family similar to ha;# can be found in [6], where, however, j rather

than a was used as a parameter and the case a ¼ 0 was treated separately (see also

[5] for an analogous treatment of the Coulomb potential; a possibility of removing

the singularity at j ¼ 0 was indicated in Remark 2.5 in [6]). However, the analysis

of ha;# for complex a and # is beyond the scope of this paper. In the sequel, we

confine ourselves to the self-adjoint case a\1, # 2 R.

Given a positive Borel measure m on R and a m-measurable complex function g,

we let T m
g denote the operator of multiplication by g in the Hilbert space L2ðR; mÞ of

m-square-integrable complex functions on R.7 If g is real, then T m
g is self-adjoint. We

let Lc2ðRþÞ denote the subspace of L2ðRþÞ consisting of all its elements vanishing k-

a.e. outside some compact subset of Rþ.

It turns out that the functions Ua
#ðEÞ with real E can be used as generalized

eigenfunctions for constructing eigenfunction expansions for ha;#. More precisely,

for every a\1 and # 2 R, we shall construct a positive Radon measure8 Va;# on R,

such that:
Z

R

dVa;#ðEÞ
E2 þ 1

\1; ð1:19Þ

and the following statement holds.

Theorem 1.2 Let a\1 and # 2 R. Then, there is a unique unitary operator
Ua;# : L2ðRþÞ ! L2ðR;Va;#Þ, such that:

ðUa;#wÞðEÞ ¼
Z 1

0

Ua
#ðEjrÞwðrÞ dr; w 2 Lc2ðRþÞ;

for Va;#-a.e. E, and we have:

ha;# ¼ U�1
a;#T Va;#

i Ua;#; ð1:20Þ

where i is the identity function on R (i.e., iðEÞ ¼ E for all E 2 R).

7 More precisely, T m
g is the operator in L2ðR; mÞ whose graph consists of all pairs ðu1;u2Þ, such that

u1;u2 2 L2ðR; mÞ and u2ðEÞ ¼ gðEÞu1ðEÞ for m-a.e. E.
8 We recall that a Borel measure m on R is called a Radon measure on R if mðKÞ\1 for every compact

set K � R.
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Clearly, the measures Va;# (which will be referred to as the spectral measures)

contain all information about the spectral properties of the operators ha;#. In

particular, E 2 R is an eigenvalue of ha;# if and only if the measure Va;# of the one-

point set fEg is strictly positive. In agreement with (1.14) and (1.18), Va;# is p-

periodic in #:

Va;#þp ¼ Va;#; a\1; # 2 R: ð1:21Þ

Let x be the p-periodic function on R, such that:

xð#Þ ¼ 1 � 2j#j
p

� �2

; � p
2
�#� p

2
: ð1:22Þ

Clearly, we have 0�xð#Þ� 1 for all # 2 R. We define the subsets Q0, Q1, and Q1
of R2 by the relations (see Fig. 1):

Q0 ¼ fða; #Þ 2 R2 : xð#Þ� a\1g; ð1:23Þ

Q1 ¼ fða; #Þ 2 R2 : 0� a\xð#Þg; ð1:24Þ

Q1 ¼ fða; #Þ 2 R2 : a\0g: ð1:25Þ

The analysis of the measures Va;# shows that ha;# has no eigenvalues for

ða; #Þ 2 Q0, one eigenvalue for ða; #Þ 2 Q1, and infinitely many eigenvalues that

are not bounded from below for ða; #Þ 2 Q1. Using a parametrization of general-

ized eigenfunctions that is analytic on the entire domain:

Q ¼ Q0 [ Q1 [ Q1 ¼ fða; #Þ 2 R2 : a\1g ð1:26Þ

allows us to understand in detail what happens to eigenvalues as we pass from Q1
to Q1 through the line a ¼ 0. It turns out that there is one eigenvalue that crosses this

line in an analytic manner, while the rest infinitely many eigenvalues tend either to

�1 or to zero as a " 0 and die away there. Moreover, the density of Va;# corre-

sponding to the continuous part of the spectrum turns out to be real-analytic on Q.

If a\0, then the operator ha is not bounded from below, because otherwise it

would have self-adjoint extensions (e.g., its Friedrichs extension) that are bounded

from below, in contradiction to Theorem 1.1 and the described properties of

eigenvalues of ha;# for ða; #Þ 2 Q1. On the other hand, it is easy to see that ha is

positive for a� 0. Indeed, let f 2 C1
0 ðRþÞ, w ¼ ½f �, and . be a real number. Using

the integration by parts, we easily derive from (1.9) that:

hw; �hawi ¼
Z 1

0

r2. jor ~f ðrÞj2 þ
a� 1=4 � .2 þ .

r2
j ~f ðrÞj2

� �

dr;

where h�; �i is the scalar product in L2ðRþÞ and the function ~f on Rþ is given by
~f ðrÞ ¼ r�.f ðrÞ, r[ 0. The maximum of �.2 þ . is attained at . ¼ 1=2 and is equal

to 1/4. Substituting this value to the above equality, we deduce that hw; �hawi� 0 for

all a� 0 and w 2 D �ha
. The positivity of ha for a� 0 now follows from (1.10).
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It seems probable that the dependence of Va;# on a and # is not analytic at the

boundaries between the regions Q0, Q1, and Q1, where eigenvalues arise and

disappear (however, we do not prove this claim in this paper). At the same time, we

shall show that this dependence is smooth on Q in a suitable sense. To formulate this

result precisely, we make use of the Schwartz space S of rapidly decreasing smooth

functions. More specifically, S consists of all infinitely differentiable functions u
on R, such that:

sup
E2R; k2f0;...;ng

juðkÞðEÞjð1 þ jEjÞn\1

for every nonnegative integer n, where uðkÞ stands for the kth derivative of u. The

space S is widely used in the theory of generalized functions as the test function

space for tempered distributions. In view of (1.19), every u 2 S is Va;#-integrable

for all a\1 and # 2 R.

Theorem 1.3 For every u 2 S, the function ða; #Þ !
R

uðEÞ dVa;#ðEÞ is infinitely
differentiable on the domain Q given by (1.26).

Thus, our construction of eigenfunction expansions is, as a whole, at least

infinitely differentiable.

When considering Eq. (1.1), it is convenient to set a ¼ j2 and find its solutions

as functions of j (we have actually done so in the case of Hankel transforma-

tion (1.3)). To return to the initial variable a, it is then necessary to replace j with

the square root of a. As was discussed above, this may lead to the appearance of

branch points and the loss of analyticity. This does not happen, however, if the

solution in question is an even holomorphic function of j. Indeed, suppose we have

Fig. 1 The sets Q0, Q1, and Q1 are represented by white, dark gray, and light gray regions, respectively
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an even holomorphic function g, which will be assumed for simplicity to be entire.

Then, g has the power series expansion of the form gðwÞ ¼
P1

k¼0 ckw
2k for every

w 2 C. If we define the entire analytic function G by the formula GðfÞ ¼
P1

k¼0 ckf
k,

f 2 C, then we have:

Gðw2Þ ¼ gðwÞ ð1:27Þ

for all w 2 C and, hence, GðfÞ can be viewed as a result of ‘‘substituting the square

root of f’’ in g. More generally, representations of type (1.27) can be obtained for

even holomorphic functions on arbitrary reflection-symmetric domains and for the

case of several complex variables (see Appendix A). Our construction of the

solutions AaðzÞ and BaðzÞ is based on the described technique. We shall first find

functions ajðzÞ and bjðzÞ that are even in j and satisfy (1.1) with a and E replaced

with j2 and z, respectively, and then define AaðzÞ and BaðzÞ by requiring that

Aj2ðzÞ ¼ ajðzÞ and Bj2ðzÞ ¼ bjðzÞ for every j; z 2 C.

Simple examples of representations of type (1.27), which will be important for

us, are obtained if we choose g to be equal either to the cosine or the entire function

sinc that is defined by the formula:

sincw ¼ w�1 sinw; w 2 Cnf0g;
1; w ¼ 0:

�

Proceeding as above, we find that:

cosw ¼ Cos ðw2Þ; sincw ¼ Sinc ðw2Þ ð1:28Þ

for every w 2 C, where the entire functions Cos and Sinc are given by:

Cos f ¼
X

1

k¼0

ð�fÞk

ð2kÞ! ; Sinc f ¼
X

1

k¼0

ð�fÞk

ð2k þ 1Þ! ; f 2 C: ð1:29Þ

It follows from (1.28) that:

Cos ð�w2Þ ¼ cosðiwÞ ¼ chw;

w Sinc ð�w2Þ ¼ w sinc ðiwÞ ¼ shw
ð1:30Þ

for every w 2 C. In particular, we have:

Cos n ¼ cosð
ffiffiffi

n
p

Þ; Sinc n ¼ sinc ð
ffiffiffi

n
p

Þ; n� 0; ð1:31Þ

Cos n ¼ ch ð
ffiffiffiffiffiffi

jnj
p

Þ; Sinc n ¼ jnj�1=2
sh ð

ffiffiffiffiffiffi

jnj
p

Þ; n\0: ð1:32Þ

The graphs of Cos n and Sinc n are shown in Fig. 2.

Formulas (1.31) and (1.32) show that, in spite of being analytic, the functions

Cos and Sinc are expressed in a piecewise way in terms of the standard

trigonometric and hyperbolic functions. We shall see that various quantities related

to the spectral measures (such as eigenvalues and the density of the absolutely
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continuous part of Va;#) can be conveniently expressed through Cos and Sinc .

Accordingly, the formulas for these quantities in terms of the ordinary elementary

functions are of a piecewise nature. This suggests that Cos and Sinc are more

suitable as ‘‘elementary functions’’ for our problem. Some properties of these

functions that will be necessary for us are summarized in Appendix B.

The paper is organized as follows. In Sect. 2, we define the solutions AaðzÞ and

BaðzÞ and the spectral measures Va;#, thus completing the formulation of our results.

The definition of the measures Va;# in Sect. 2 is given via Herglotz representations

(see Appendix C) of suitable holomorphic functions in the upper complex half-

plane and is not quite explicit. In Sect. 3, we obtain concrete formulas for the point

and absolutely continuous parts of Va;#. In particular, this allows us to justify the

‘‘phase diagram’’ in Fig. 1 and analyze the dependence of eigenvalues of ha;# on a
and #. In Sect. 4, we recall the general theory concerning self-adjoint extensions of

one-dimensional Schrödinger operators and apply it to the proof of Theorem 1.1.

Our treatment of eigenfunction expansions relies on the method of singular

Titchmarsh–Weyl m-functions [16]. In Sect. 5, we briefly describe this method and

then use it to prove Theorem 1.2. Section 6 is devoted to the proof of Theorem 1.3.

2 Definition of generalized eigenfunctions and spectral measures

2.1 Definition of Aa(zÞ and Ba(zÞ

For any z; j 2 C, we define the function ujðzÞ on Rþ by the relation:

Fig. 2 Solid and dashed lines correspond to the functions Cos and Sinc , respectively
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ujðzjrÞ ¼ r1=2þjXjðr2zÞ; r[ 0; ð2:1Þ

where the entire function Xj is given by:

XjðfÞ ¼
1

2j

X

1

n¼0

ð�1Þnfn

Cðjþ nþ 1Þn!22n
; f 2 C: ð2:2Þ

The function Xj is closely related to Bessel functions: for f 6¼ 0, we have:

XjðfÞ ¼ f�j=2Jjðf1=2Þ: ð2:3Þ

Because Jj satisfies the Bessel equation, it follows that:

�o2
ru


jðzjrÞ þ j2 � 1=4

r2
u
jðzjrÞ ¼ zu
jðzjrÞ; r[ 0; ð2:4Þ

for every j 2 C and z 6¼ 0. By continuity, this is also true for z ¼ 0. We therefore

have:

Lj2;zu

jðzÞ ¼ 0; j; z 2 C: ð2:5Þ

For every j; z 2 C, we define the function ajðzÞ on Rþ by setting:

ajðzÞ ¼ ujðzÞ � u�jðzÞ
j

cos#j; j 2 C n f0g; ð2:6Þ

and

a0ðzjrÞ ¼ lim
j!0

ajðzjrÞ ¼ 2 ln
r

2
þ c

� �

u0ðzjrÞ �
ffiffi

r
p

Yðr2zÞ
h i

; r[ 0; ð2:7Þ

where

#j ¼
pj
2
; ð2:8Þ

the entire function Y is given by:

YðfÞ ¼
X

1

n¼1

ð�1Þncn
ðn!Þ2

22n
fn; cn ¼

X

n

j¼1

1

j
;

and c ¼ limn!1ðcn � ln nÞ ¼ 0; 577. . . is the Euler constant.9

Furthermore, for every j; z 2 C, we define the function bjðzÞ on Rþ by the

formula:

bjðzÞ ¼ p
2
ðujðzÞ þ u�jðzÞÞ sinc#j; ð2:9Þ

where #j is given by (2.8).

Given u 2 R, we set Ru ¼ fz 2 C : z ¼ reiu for some r� 0g and:

9 To compute the limit of ajðzjrÞ as j ! 0, we can apply L’Hôpital’s rule and use the equality C0ð1 þ
nÞ=Cð1 þ nÞ ¼ cn � c (see formula (9) in Sect. 1.7.1 in [7]).
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Cu ¼ CnRu:

Hence, Cu is the complex plane with a cut along the ray Ru.

The next statement shows that, notwithstanding a piecewise definition of ajðzÞ,
both quantities ajðzjrÞ and bjðzjrÞ are actually analytic in all their arguments.

Lemma 2.1 There are unique holomorphic functions F1 and F2 on C	 C	 Cp,

such that:

F1ðj; z; rÞ ¼ ajðzjrÞ; F2ðj; z; rÞ ¼ bjðzjrÞ; j; z 2 C; r[ 0: ð2:10Þ

The proof of Lemma 2.1 is given in Appendix D.

By (2.6) and (2.9), we have:

ajðzÞ ¼ a�jðzÞ; bjðzÞ ¼ b�jðzÞ; j; z 2 C: ð2:11Þ

For every a; z 2 C, we define the functions AaðzÞ and BaðzÞ on Rþ by the relations

AaðzÞ ¼ ajðzÞ and BaðzÞ ¼ bjðzÞ, where j 2 C is such that j2 ¼ a (by 2.11, this

definition does not depend on the choice of j). We therefore have:

Aj2ðzÞ ¼ ajðzÞ; Bj2ðzÞ ¼ bjðzÞ; j; z 2 C: ð2:12Þ

Equalities (2.4) and (2.6) imply that:

�o2
ra

jðzjrÞ þ j2 � 1=4

r2
ajðzjrÞ ¼ z ajðzjrÞ; r[ 0; ð2:13Þ

for every j 2 Cnf0g and z 2 C. By Lemma 2.1, we can take the limit j ! 0 and

conclude that (2.13) also holds for j ¼ 0. We hence have Lj2;za
jðzÞ ¼ 0 for all

j; z 2 C. Since Lj2;zb
jðzÞ ¼ 0 for every j; z 2 C by (2.5) and (2.9), it follows

from (2.12) that (1.12) is valid for all a; z 2 C.

We now use Lemma 2.1 to prove that the quantities AaðzjrÞ and BaðzjrÞ enjoy

the same analyticity properties as ajðzjrÞ and bjðzjrÞ.

Lemma 2.2 There are unique holomorphic functions G1 and G2 on C	 C	 Cp,

such that G1ða; z; rÞ ¼ AaðzjrÞ and G2ða; z; rÞ ¼ BaðzjrÞ for every a; z 2 C and
r[ 0.

Proof Let F1 and F2 be as in Lemma 2.1. It follows from (2.10), (2.11), and the

uniqueness theorem for holomorphic functions that F1;2ðj; z; fÞ ¼ F1;2ð�j; z; fÞ for

all j; z 2 C and f 2 Cp. The existence of G1 and G2 with the required properties is

therefore ensured by Lemma A.3, (2.10), and (2.12). The uniqueness of G1 and G2

follows from the uniqueness theorem for holomorphic functions. h

It follows from (1.14), (2.6), (2.9), and (2.12) that:
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Uj2

# ðzÞ ¼ ujðzÞ cosð#� #jÞ � u�jðzÞ cosð#þ #jÞ
j

ð2:14Þ

for every z; # 2 C and j 2 Cnf0g, where #j is given by (2.8).

By (2.1) and (2.2), we have:

ujðzÞ ¼ u�jð�zÞ; z; j 2 C;

where the bar means complex conjugation. In view of (2.6), (2.7), and (2.9), this

implies that ajðzÞ and bjðzÞ are real if z is real and j is either real or purely

imaginary. Since every a 2 R is equal to j2 for some j that is either real or purely

imaginary, it follows from (2.12) that AaðzÞ and BaðzÞ are real for every a; z 2 R.

If f ; g 2 D are such that r ! Wrðf ; gÞ is a constant function on Rþ (in particular,

this is the case when f and g are solutions of La;zf ¼ La;zg ¼ 0 for some a; z 2 C),

then its value will be denoted by W(f, g). Equality (2.5) implies that

WrðujðzÞ; u�jðzÞÞ does not depend on r, and we derive from (2.1) and (2.2) that:

WðujðzÞ; u�jðzÞÞ ¼ lim
r#0

WrðujðzÞ; u�jðzÞÞ ¼ � 2

p
sin pj; j; z 2 C: ð2:15Þ

It follows from (2.6), (2.9), and (2.15) that WðajðzÞ; bjðzÞÞ ¼ �2p sinc 2pj for all

j 2 Cnf0g and z 2 C. By Lemma 2.1, WðajðzÞ; bjðzÞÞ is continuous in j at j ¼ 0

and, therefore, this equality holds for all j; z 2 C. In view of (2.12), this yields:

WðAaðzÞ;BaðzÞÞ ¼ �2pSinc 2ðp2aÞ; a; z 2 C: ð2:16Þ

Hence, AaðzÞ and BaðzÞ are linearly independent for all a; z 2 C, such that a is not a

square of a nonzero integer number and, in particular, for all a\1 and z 2 C.

2.2 Definition of Va,#

We now turn to the definition of the spectral measures Va;#. In what follows, we let

ln denote the branch of the logarithm on C3p=2 satisfying the condition ln 1 ¼ 0 and

set zq ¼ eq ln z for all z 2 C3p=2 and q 2 C.

Lemma 2.3 There is a unique holomorphic function R on C	 C	 C3p=2, such

that:

Rðj2; #; zÞ ¼ z�j=2eipj=2 cosð#� #jÞ � zj=2e�ipj=2 cosð#þ #jÞ
j

ð2:17Þ

for every j 2 Cnf0g, # 2 C and z 2 C3p=2, where #j is given by (2.8). The function

R satisfies the equality:

Rð0; #; zÞ ¼ ðpi� ln zÞ cos#þ p sin# ð2:18Þ

for every # 2 C and z 2 C3p=2.
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Proof Let the function ~R on C	 C	 C3p=2 be such that ~Rðj; #; zÞ is equal to the

right-hand side of (2.17) for nonzero j and ~Rð0; #; zÞ is equal to the right-hand side

of (2.18). For every # 2 C and z 2 C3p=2, the function j ! ~Rðj; #; zÞ is holomor-

phic on Cnf0g and is continuous at j ¼ 0 (the calculation of the limit of the right-

hand side of (2.17) shows that limj!0
~Rðj; #; zÞ ¼ ~Rð0; #; zÞ). This implies that the

function j ! ~Rðj; #; zÞ is holomorphic on C for every # 2 C and z 2 C3p=2. On the

other hand, the function ð#; zÞ ! ~Rðj; #; zÞ is obviously holomorphic on C	 C3p=2

for every j 2 C. By the Hartogs theorem, we conclude that ~R is holomorphic on its

domain. Moreover, we have ~Rð�j; #; zÞ ¼ ~Rðj; #; zÞ for every j; # 2 C and

z 2 C3p=2. Hence, the existence of R follows from Lemma A.3. The uniqueness of R

is ensured by the uniqueness theorem for holomorphic functions. Formula (2.18) is

obvious from the above. h

It follows from (2.17) and (2.18) that:

Rða; #þ p; zÞ ¼ �Rða; #; zÞ ð2:19Þ

for every a; # 2 C and z 2 C3p=2.

Given z 2 C3p=2, there is a unique / 2 ð�p=2; 3p=2Þ, such that z ¼ jzjei/. We

shall denote this / by /z.

Lemma 2.4 Let R be as in Lemma 2.3. Then, we have:

Im Rða; #þ p=2; zÞRða; #; zÞ
� �

¼ pð/z � pÞ Sinc ðð/z � pÞ2aÞ Sinc ðp2aÞ ð2:20Þ

for every a; # 2 R and z 2 C3p=2.

Proof By (2.17), we have:

j2Rðj2; #þ p=2;Eei/ÞRð�j2; #;Eei/Þ
¼ i sinð/� pÞj sin pj

þ cosð/� pÞj sin 2#� Ej cosð#þ #jÞ sinð#þ #jÞ � E�j cosð#� #jÞ sinð#� #jÞ

for all j 2 Cnf0g, # 2 R, E[ 0, and �p=2\/\3p=2. If j is real or purely

imaginary, then �j2 ¼ j2 and the sum of the last three terms in the right-hand side is

real. This implies (2.20) for nonzero a. By continuity, (2.20) remains valid for

a ¼ 0. h

Let R be as in Lemma 2.3. For every a; # 2 C, we let Oa;# denote the open subset

of C3p=2, where the function z ! Rða; #; zÞ is nonzero:

Oa;# ¼ fz 2 C3p=2 : Rða; #; zÞ 6¼ 0g: ð2:21Þ

Suppose now that a\1 and # 2 R. Then, it follows from Lemma 2.4 that:

Cþ [ Rþ � Oa;#; ð2:22Þ

where Cþ denotes the open upper half-plane of the complex plane,
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Cþ ¼ fz 2 C : Im z[ 0g. Let the holomorphic function Ma;# on Oa;# be defined by

the equality:

Ma;#ðzÞ ¼ � Rða; #þ p=2; zÞ
2p2 Sinc 2ðp2aÞRða; #; zÞ

; z 2 Oa;#: ð2:23Þ

Lemma 2.4 implies that:

ImMa;#ðzÞ ¼
ðp� /zÞ Sinc ððp� /zÞ

2aÞ
2pSinc ðp2aÞjRða; #; zÞj2

; z 2 Oa;#: ð2:24Þ

By Lemma B.1 and (2.22), we conclude that ImMa;#ðzÞ[ 0 for every z 2 Cþ and,

hence, Ma;#jCþ
is a Herglotz function (see Appendix C). We now define Va;# as the

Herglotz (and, hence, Radon) measure associated with the function pMa;#jCþ
. It

follows from (C.2) and Lemma C.1 that (1.19) is valid and:

Z

uðEÞ dVa;#ðEÞ ¼ lim
g#0

Z

uðEÞImMa;#ðE þ igÞ dE ð2:25Þ

for every continuous complex function u on R satisfying the bound

juðEÞj�Cð1 þ E2Þ�2
, E 2 R, for some C� 0. In particular, (2.25) holds for every

continuous function u on R with compact support. In view of the Riesz represen-

tation theorem, this implies that Va;# is uniquely determined by equality (2.25). It

follows from (2.19) and (2.23) that Ma;#þp ¼ Ma;# and, therefore, Va;# has p-

periodicity property (1.21).

3 Explicit formulas for the spectral measures

In this section, we assume that Theorems 1.1 and 1.2 are valid and obtain explicit

expressions for both the point and absolutely continuous parts of the spectral

measures Va;#. The proofs of Theorems 1.1 and 1.2 in Sects. 4 and 5 do not rely on

the results of this section.

3.1 General structure of Va,#

Given a positive Radon measure m on R, we let Lc2ðR; mÞ denote the subspace of

L2ðR; mÞ consisting of all its elements vanishing m-a.e. outside some compact subset

of R.

Lemma 3.1 Let a\1, # 2 R, and Ua;# be as in Theorem 1.2. Then, we have:

ðU�1
a;#uÞðrÞ ¼

Z

Ua
#ðEjrÞuðEÞ dVa;#ðEÞ; u 2 Lc2ðR;Va;#Þ; ð3:1Þ

for k-a.e. r 2 Rþ. An E 2 R is an eigenvalue of ha;# if and only if Va;#ðfEgÞ[ 0.

For every eigenvalue E, the corresponding eigenspace is one-dimensional and is

spanned by ½Ua
#ðEÞ�, and we have the equality k½Ua

#ðEÞ�k ¼ Va;#ðfEgÞ�1=2
.
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Proof For brevity, we set h ¼ ha;#, U ¼ Ua;#, V ¼ Va;#, and U ¼ Ua
#. Given u 2

Lc2ðR;VÞ and r[ 0, let �uðrÞ denote the right-hand side of (3.1). By the unitarity of

U and the Fubini theorem, we have:

hw;U�1uiL2ðRþÞ ¼hUw;uiL2ðR;VÞ

¼
Z

R

dVðEÞuðEÞ
Z

Rþ

wðrÞUðEjrÞ dr ¼
Z

Rþ

wðrÞ �uðrÞ dr

for any w 2 Lc2ðRþÞ, where h�; �iL2ðRþÞ and h�; �iL2ðR;VÞ are the scalar products in

L2ðRþÞ and L2ðR;VÞ, respectively. This implies (3.1). Given E 2 R, let GE be the

subspace of L2ðRþÞ composed of all w in the domain of h, such that hw ¼ Ew and
~GE be the subspace of L2ðR;VÞ composed of all u in the domain of T V

i , such that

T V
i u ¼ Eu, where i is the identity function on R. By Theorem 1.2, U induces an

isomorphism between GE and ~GE for every E 2 R. This means, in particular, that

the operators h and T V
i have the same eigenvalues. Hence, E 2 R is an eigenvalue

of h if and only if VðfEgÞ[ 0. If VðfEgÞ[ 0, then ~GE is one-dimensional and is

spanned by ½vE�V , where vE is the characteristic function of the one-point set fEg.

By (3.1), we have U�1½vE�V ¼ VðfEgÞ½Ua
#ðEÞ�. The space GE is, therefore, one-

dimensional and is spanned by ½Ua
#ðEÞ�. Since the norm of ½vE�V in L2ðR;VÞ is equal

to VðfEgÞ1=2
, the unitarity of U implies that k½Ua

#ðEÞ�k ¼ Va;#ðfEgÞ�1=2
. h

As in Sect. 1, let x be the p-periodic function on R satisfying (1.22) and let Q0,

Q1, Q1, and Q be defined by (1.23), (1.24), (1.25), and (1.26), respectively. We set:

Q� 1 ¼ Q1 [ Q1 ¼ fða; #Þ 2 R2 : a\xð#Þg: ð3:2Þ

We obviously have:

Q0 \ Q� 1 ¼ £; Q0 [ Q� 1 ¼ Q: ð3:3Þ

By (1.22), we have:

Cos
p2xð#Þ

4
¼ cos

p
2
� j#j

� �

¼ j sin#j ð3:4Þ

for every # 2 ½�p=2; p=2�. Since both sides of (3.4) are p-periodic, (3.4) remains

valid for all # 2 R. By Lemma B.1, the function a ! Cos ðp2a=4Þ is nonnegative

and strictly decreasing on ð�1; 1�. Hence, for every a\1 and # 2 R, we have the

chain of equivalent conditions:

a\xð#Þ , Cos
p2xð#Þ

4
\Cos

p2a
4

, j sin#j\Cos
p2a
4

, sin2 #\Cos 2 p
2a
4

:

In view of (1.23) and (3.2), it follows that:

Q0 ¼ fða; #Þ 2 R2 : a\1 and sin2 #� Cos 2ðp2a=4Þg; ð3:5Þ
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Q� 1 ¼ fða; #Þ 2 R2 : a\1 and sin2 #\Cos 2ðp2a=4Þg: ð3:6Þ

Given a; # 2 C, we set:

Ra;# ¼ fE\0 : Rða; #;EÞ ¼ 0g; ð3:7Þ

where R is as in Lemma 2.3. By (2.17), we have:

E 2 Rj2;# () E\0 and jEj�j=2
cosð#� #jÞ ¼ jEjj=2

cosð#þ #jÞ ð3:8Þ

for every j 2 Cnf0g and # 2 C.

In view of (2.21) and (2.22), we have Rða; #;EÞ 6¼ 0 for every a\1, # 2 R and

E[ 0. For every a\1 and # 2 R, we define the function ta;# by the formula:

ta;#ðEÞ ¼
1

2jRða; #;EÞj2
; E[ 0;

0; E� 0:

8

<

:

ð3:9Þ

Given a positive Radon measure m on R, we set:

PðmÞ ¼ fE 2 R : mðfEgÞ[ 0g:

Since m is r-additive, the set PðmÞ is at most countable. We define the continuous

part mc and the point part mp of m by the relations:

mc ¼ ð1 � vPðmÞÞ m; mp ¼ vPðmÞ m; ð3:10Þ

where vPðmÞ is the characteristic function of the set PðmÞ (i.e., it is equal to unity on

PðmÞ and to zero on RnPðmÞ). Clearly, mcðfEgÞ ¼ 0 for every E 2 R and:

m ¼ mc þ mp:

A function u on R is mp-integrable if and only if fmðfEgÞuðEÞgE2PðmÞ is a summable

family in C, in which case we have:

Z

uðEÞ dmpðEÞ ¼
X

E2PðmÞ
mðfEgÞuðEÞ: ð3:11Þ

Thus, to completely describe a positive Radon measure m on R, it suffices to find

PðmÞ and mc and specify mðfEgÞ for every E 2 PðmÞ. The next theorem gives such a

description for the measures Va;#. As in Sect. 1, we let k denote the Lebesgue

measure on R.

Theorem 3.2 For every a\1 and # 2 R, we have PðVa;#Þ ¼ Ra;# and Vc
a;# ¼ ta;# k,

where ta;# is given by (3.9). If ða; #Þ 2 Q0, then Ra;# ¼ £. If ða; #Þ 2 Q� 1 and
E 2 Ra;#, then:

Va;#ðfEgÞ ¼
jEj

2 Sinc ðp2aÞðCos 2ðp2a=4Þ � sin2 #Þ
: ð3:12Þ
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Corollary 3.3 Let a\1 and # 2 R. Then, the set of eigenvalues of ha;# is precisely
Ra;#. For every E 2 Ra;#, the corresponding eigenspace is one-dimensional and is
spanned by ½Ua

#ðEÞ�, and we have:
Z 1

0

Ua
#ðEjrÞ

2
dr ¼ 2jEj�1

Sinc ðp2aÞðCos 2ðp2a=4Þ � sin2 #Þ:

Proof The statement follows directly from Lemma 3.1 and Theorem 3.2. h

To prove Theorem 3.2, we shall need several auxiliary lemmas.

Lemma 3.4 Let j 2 C be such that �1\jRe jj\1 and f 2 D be a nontrivial
solution of Lj2 f ¼ 0. Then, f is not square-integrable on Rþ.

Proof If L0f ¼ 0, then there exist c1; c2 2 C, such that f ðrÞ ¼ c1r
1=2 þ c2r

1=2 ln r
for all r[ 0. It is straightforward to verify that such a function is square-integrable

on Rþ if and only if c1 ¼ c2 ¼ 0. This proves our statement for j ¼ 0. If j ¼
j0 þ ij00 is nonzero and Lj2 f ¼ 0, then there exist c1; c2 2 C such that f ðrÞ ¼
c1r

1=2þj þ c2r
1=2�j for all r[ 0. Since jj0j\1, f is square-integrable on (0, r] for

every r[ 0, and we have:

Z r

0

jf ðr0Þj2dr0 ¼ gðrÞ
2

þ Re
c1 �c2r

2þ2ij00

1 þ ij00
ð3:13Þ

for every r[ 0, where the function g on Rþ is given by:

gðrÞ ¼ jc1j2r2þ2j0

1 þ j0
þ jc2j2r2�2j0

1 � j0
; r[ 0: ð3:14Þ

Applying the inequality 2ab� a2 þ b2 to g(r), we obtain:

gðrÞ
2

� jc1c2jr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � j02
p ¼ 1

r
c1 �c2r

2þ2ij00

1 þ ij00

�

�

�

�

�

�

�

�

; r[ 0;

where r ¼ ½ð1 þ j002Þ�1ð1 � j02Þ�1=2
. In view of (3.13), we conclude that:

Z r

0

jf ðr0Þj2dr0 � 1 � r
2

gðrÞ ð3:15Þ

for every r[ 0. Since j 6¼ 0, we have r\1. If f is nontrivial, then c1 and c2 are not

both zero and it follows from (3.14) that gðrÞ ! 1 as r ! 1. By (3.15), this

implies that
R r

0
jf ðr0Þj2dr0 ! 1 as r ! 1 and, hence, f is not square-integrable on

Rþ. h

In what follows, we set R� ¼ ð�1; 0Þ.

Lemma 3.5 Let a\1, # 2 R, and v be the characteristic function of Ra;#. Then, we
have ð1 � vÞVa;# ¼ ta;# k.
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Proof Let m ¼ ð1 � vÞVa;# and m0 ¼ ta;#k. Let O be the open subset of R defined by

the relation O ¼ Rþ [ ðR�nRa;#Þ. As R ¼ O [ Ra;# [ f0g, it suffices to show that m
and m0 have the same restrictions to each of the sets O, Ra;#, and f0g. Since the

functions ta;# and 1 � v are locally bounded on O and Va;# and k are Radon

measures on R, the restrictions of m and m0 to O are Radon measures on O. By (2.21),

(2.22), and (3.7), we have O � Oa;#, and it follows from (2.24) and (3.9) that

ImMa;#ðEÞ ¼ ta;#ðEÞ for every E 2 O. Since 1 � v is equal to unity on O, (2.25)

and the dominated convergence theorem imply that:
Z

uðEÞ dmðEÞ ¼
Z

uðEÞ dVa;#ðEÞ ¼
Z

ta;#ðEÞuðEÞ dE ¼
Z

uðEÞ dm0ðEÞ

for every continuous function u on R, such that suppu is a compact subset of O. By

the Riesz representation theorem, we conclude that mjO ¼ m0jO. Because 1 � v and

ta;# vanish on Ra;#, both m and m0 have zero restrictions to Ra;#. We now note that

Va;#ðf0gÞ ¼ 0, because, otherwise, Ua
#ð0Þ would be a nontrivial square-integrable

function on Rþ by Lemma 3.1, in contradiction to (1.15) and Lemma 3.4. Since

m0ðf0gÞ ¼ 0 and mðf0gÞ ¼ Va;#ðf0gÞ, we conclude that mðf0gÞ ¼ m0ðf0gÞ. h

Using elementary trigonometric transformations, we find that:

cosð#� #jÞ cosð#þ #jÞ ¼ cos2ðpj=2Þ � sin2 #¼ Cos 2ðp2j2=4Þ � sin2 # ð3:16Þ

for all j; # 2 C, where #j is given by (2.8). In view of (3.6), this equality implies

that:

cosð#� #jÞ cosð#þ #jÞ[ 0 ð3:17Þ

for all # 2 R and j 2 C, such that ðj2; #Þ 2 Q� 1.

Lemma 3.6 Ra;# ¼ £ for every ða; #Þ 2 Q0.

Proof Let ða; #Þ 2 Q0. Suppose first that a ¼ 0. By (3.5), we have # ¼ p=2 þ pk

for some k 2 Z. Equality (2.18) therefore implies that Rða; #; zÞ ¼ ð�1Þkp for every

z 2 C3p=2. This means that Ra;# ¼ £. Now, let a 6¼ 0. Since x is nonnegative, it

follows from (1.23) that 0\a\1 and, hence, a ¼ j2 for some 0\j\1. Suppose

Ra;# 6¼ £ and E 2 Ra;#. By (3.8) and (3.16), it follows that:

Cos 2ðp2a=4Þ � sin2 # ¼ 1

2
ðjEjj cos2ð#þ #jÞ þ jEj�j

cos2ð#� #jÞÞ: ð3:18Þ

Since j is real, the right-hand side of (3.18) is nonnegative and can be zero only if

cosð#� #jÞ ¼ cosð#þ #jÞ ¼ 0 and, hence, only if j 2 Z. The condition 0\j\1

therefore implies that the right-hand side of (3.18) is strictly positive. In view

of (3.5), this contradicts the assumption that ða; #Þ 2 Q0. Hence, Ra;# ¼ £. h

Lemma 3.7 Let ða; #Þ 2 Q� 1 and E 2 Ra;#. Then, we have:
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lim
z!E

ðz� EÞMa;#ðzÞ ¼ � jEj
2p Sinc ðp2aÞðCos 2ðp2a=4Þ � sin2 #Þ

:

Proof We separately consider the cases a 6¼ 0 and a ¼ 0.

1. Let a 6¼ 0 and j 2 C be such that j2 ¼ a. By (2.17) and (3.8), we have:

ozRða; #; zÞjz¼E ¼ jEj�j=2
cosð#� #jÞ þ jEjj=2

cosð#þ #jÞ
2jEj

¼jEjj=2�1
cosð#þ #jÞ:

ð3:19Þ

It follows from (3.17) that cosð#þ #jÞ 6¼ 0 and, hence, ozRða; #; zÞjz¼E 6¼ 0.

By (2.17), we have:

Rða; #þ p=2;EÞ ¼ jEjj=2
sinð#þ #jÞ � jEj�j=2

sinð#� #jÞ
j

:

Multiplying the numerator and denominator by cosð#� #jÞ (which is nonzero

by (3.17)) and using (3.8), we obtain:

Rða; #þ p=2;EÞ ¼ pjEjj=2
sinc pj

cosð#� #jÞ
: ð3:20Þ

In view of (2.23), we have:

lim
z!E

ðz� EÞMa;#ðzÞ ¼ � Rða; #þ p=2;EÞ
2p2 Sinc 2ðp2aÞozRða; #; zÞjz¼E

:

Combining this formula with (3.16), (3.19), and (3.20), we arrive at the required

equality.

2. Let a ¼ 0. Since E 2 R0;#, it follows from (2.18) that:

ln jEj cos# ¼ p sin#; ð3:21Þ

ozRð0; #; zÞjz¼E ¼ cos#

jEj : ð3:22Þ

Since ð0; #Þ 2 Q� 1 and Cos ð0Þ ¼ 1, (3.6) implies that cos# 6¼ 0 and, hence,

ozRð0; #; zÞjz¼E 6¼ 0. By (2.18) and (3.21), we obtain:

Rð0; #þ p=2;EÞ ¼ ln jEj sin#þ p cos# ¼ p
cos#

: ð3:23Þ

In view of (2.23) and the equality Sinc ð0Þ ¼ 1, we have

lim
z!E

ðz� EÞM0;#ðzÞ ¼ � Rð0; #þ p=2;EÞ
2p2ozRð0; #; zÞjz¼E

:

Combining this formula with (3.22) and (3.23) yields the required result. h
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Proof of Theorem 3.2 Let ða; #Þ 2 Q� 1 and E 2 Ra;#. Let O ¼ Oa;# [ fEg, where

Oa;# is given by (2.21). Clearly, O is an open subset of C containing E. By

Lemma 3.7, there exists a holomorphic function g on O, such that:

Ma;#ðzÞ ¼ � 1

p
A

z� E
þ gðzÞ ð3:24Þ

for all z 2 Oa;#, where A denotes the right-hand side of (3.12). By (2.24), Ma;# is

real on Oa;# \ R� and, therefore, g is real on O \ R�. By (2.25), (3.24), and the

dominated convergence theorem, we conclude that
R

uðE0Þ dVa;#ðE0Þ is equal to

AuðEÞ for every continuous function u on R, such that suppu is a compact subset

of O \ R�. Hence, Va;#ðfEgÞ ¼ A. Thus, formula (3.12) holds for every ða; #Þ 2
Q� 1 and E 2 Ra;#. This implies, in particular, that Ra;# � PðVa;#Þ for all

ða; #Þ 2 Q� 1. By Lemma 3.6, we have Ra;# ¼ £ for all ða; #Þ 2 Q0. It follows that

Ra;# � PðVa;#Þ for all a\1 and # 2 R. Since the opposite inclusion also holds by

Lemma 3.5, we conclude that Ra;# ¼ PðVa;#Þ for all a\1 and # 2 R. The equality

Vc
a;# ¼ ta;# k now follows from (3.10) and Lemma 3.5. h

Theorem 3.2 implies, in particular, that ta;# is a locally integrable function on R

for every a\1 and # 2 R. It is noteworthy that we established this property of ta;#
without explicitly estimating this function. Instead, we relied on the fact that Va;# is

a Radon measure, which follows from its definition as a Herglotz measure. In

Lemma 6.4, we shall obtain an explicit estimate for jRða; #;EÞj�1
that, when

substituted in (3.9), immediately implies the local integrability of ta;#.

3.2 Eigenvalues of ha,#

We now turn to obtaining an explicit description of the set Ra;# of eigenvalues of

ha;# for every a\1 and # 2 R. To this end, it is convenient to use the logarithmic

scale and pass from the set Ra;# to its inverse image Na;# under the map s ! �es

from R to itself:

Na;# ¼ fs 2 R : �es 2 Ra;#g: ð3:25Þ

We thus have E 2 Ra;# if and only if E\0 and ln jEj 2 Na;#. Furthermore, we define

the open subsets W0 and W of R2 by the relations:

W0 ¼ fða; #Þ 2 Q1 : a[ 0 and � p=2\#\p=2g; ð3:26Þ

W ¼ fða; #Þ 2 Q1 : �p=2\#\p=2g [ Q1: ð3:27Þ

Hence, W0 is the interior of the central dark gray curvilinear triangular region in

Fig. 1. Let ða; #Þ 2 W0. Since W0 � Q� 1, inequality (3.17) for j ¼
ffiffiffi

a
p

implies that

cosð#þ p
ffiffiffi

a
p

=2Þ 6¼ 0 and:
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cosð#� p
ffiffiffi

a
p

=2Þ
cosð#þ p

ffiffiffi

a
p

=2Þ [ 0: ð3:28Þ

Hence, we can define a real-valued function S0 on W0 by the formula:

S0ða; #Þ ¼
1
ffiffiffi

a
p ln

cosð#� p
ffiffiffi

a
p

=2Þ
cosð#þ p

ffiffiffi

a
p

=2Þ :
ð3:29Þ

Applying (3.8) to j ¼
ffiffiffi

a
p

and using (3.28), we conclude that � expðS0ða; #ÞÞ
belongs to Ra;# for every ða; #Þ 2 W0. In view of (3.25), this means that:

S0ða; #Þ 2 Na;#; ða; #Þ 2 W0: ð3:30Þ

We shall see that the set Na;# for every ða; #Þ 2 Q� 1 can actually be completely

described in terms of the analytic continuation of S0 from W0 to W. To construct

such an analytic continuation, we calculate the derivative of S0ða; #Þ with respect to

#. In view of (3.16), we find that:

o#S0ða; #Þ ¼
pSinc ðp2aÞ

Cos 2ðp2a=4Þ � sin2 #
; ða; #Þ 2 W0: ð3:31Þ

We now observe that the right-hand side of (3.31) is actually well-defined and real-

analytic on the entire domain W. The real-analytic continuation of S0 to W can

therefore be obtained by integrating the right-hand side of (3.31). This argument is

central to the proof of the next result.

Lemma 3.8 Let W0 and W be given by (3.26) and (3.27), respectively, and the
function S0 on W0 be defined by (3.29). There is a unique real-analytic function S on
W, such that SjW0

¼ S0. For every # 2 ð�p=2; p=2Þ, we have:

Sð0; #Þ ¼ p tg#; ð3:32Þ

Sða; #Þ ¼ 2
ffiffiffiffiffiffi

jaj
p arctg tg# th

p
ffiffiffiffiffiffi

jaj
p

2

 !

; a\0: ð3:33Þ

For all # 2 R and a\0, we have:

Sða; #þ pÞ ¼ Sða; #Þ þ 2p
ffiffiffiffiffiffi

jaj
p : ð3:34Þ

The graph of the function S described by Lemma 3.8 is shown in Fig. 3.

The proof of Lemma 3.8 relies on the next auxiliary statement.

Lemma 3.9 Let x0; n0 2 R, a; b[ 0, and f be a real-analytic function on the
rectangle:
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Ra;bðx0; n0Þ ¼ fðx; nÞ 2 R2 : jx� x0j\a and jn� n0j\bg:

Then, ðx; nÞ !
R n
n0
f ðx; n0Þ dn0 is a real-analytic function on Ra;bðx0; n0Þ.

Proof Since f is real-analytic on Ra;bðx0; n0Þ, there are an open set O � C2 and a

holomorphic function ~f on O, such that Ra;bðx0; n0Þ � O and f is the restriction of ~f

to Ra;bðx0; n0Þ. Let F denote the function ðx; nÞ !
R n
n0
f ðx; n0Þ dn0 on Ra;bðx0; n0Þ. Fix

0\a0\a and 0\b0\b. There exist open subsets O0 and O00 of C, such that

Ra0;b0 ðx0; n0Þ � O0 	 O00 � O. Moreover, we can assume that O00 is convex. We

define the function ~F on O0 	 O00 by the formula:

~Fðz; fÞ ¼
Z 1

0

ðf� n0Þ ~f ðz; n0 þ ðf� n0ÞtÞ dt; z 2 O0; f 2 O00:

Clearly, ~F is holomorphic on O0 	 O00 and coincides with F on Ra0;b0 ðx0; n0Þ. This

means that F is real-analytic on Ra0;b0 ðx0; n0Þ. Since a0 and b0 can be chosen arbi-

trarily close to a and b, we conclude that F is real-analytic on Ra;bðx0; n0Þ. h

Proof of Lemma 3.8 We define the function S on W by the formula:

Fig. 3 The function S is plotted using formulas (3.29), (3.32), (3.33), and (3.34)
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Sða; #Þ ¼ pSinc ðp2aÞ
Z #

0

d#0

Cos 2ðp2a=4Þ � sin2 #0 ; ða; #Þ 2 W : ð3:35Þ

Since S0ða; 0Þ ¼ 0 for all 0\a\1 by (3.29), it follows from (3.31) and (3.35) that

S0 ¼ SjW0
. For every ða; #Þ 2 W , there is e[ 0, such that W contains the rectangle:

fða0; #0Þ 2 R2 : ja0 � aj\e and j#0j\j#j þ eg:

It therefore follows from Lemma 3.9 and (3.35) that S is real-analytic in a neigh-

borhood of every point of W. This means that S is real-analytic on W. Given a\0

and �p=2\#\p=2, we let Aða; #Þ denote the right-hand side of (3.33) and set

ra ¼
ffiffiffiffiffiffi

jaj
p

. Using (1.32), we find for every a\0 that:

o#Aða; #Þ ¼
sh ðpraÞ

rað ch 2ðpra=2Þ � sin2 #Þ
¼ p Sinc ðp2aÞ

Cos 2ðp2a=4Þ � sin2 #
; j#j\p=2:

In view of (3.35) and the equality Aða; 0Þ ¼ 0, this implies that Sða; #Þ ¼ Aða; #Þ
for all a\0 and �p=2\#\p=2, i.e., (3.33) holds. Formula (3.32) follows imme-

diately from (3.35) for a ¼ 0. Since # ! ðCos 2ðp2a=4Þ � sin2 #Þ�1
is a continuous

p-periodic function on R for every a\0, it follows from (3.35) that:

Sða; #þ pÞ ¼Sða; #Þ þ pSinc ðp2aÞ
Z p=2

�p=2

d#0

Cos 2ðp2a=4Þ � sin2 #0

¼Sða; #Þ þ Sða; p=2Þ � Sða;�p=2Þ

for all a\0 and # 2 R. This implies (3.34), because Sða;
p=2Þ ¼ 
p=
ffiffiffiffiffiffi

jaj
p

by (3.33) and the continuity of S. The uniqueness of S follows from the uniqueness

theorem for holomorphic functions. h

Theorem 3.10 Let the function S on W be as in Lemma 3.8. For every a\1 and
# 2 R, Na;# is equal to the set:

fs 2 R : s ¼ Sða; #þ pkÞ for some k 2 Z such that ða; #þ pkÞ 2 Wg: ð3:36Þ

Proof Given a\1 and # 2 R, we let ~Na;# denote the set (3.36). We have to prove

that:

Na;# ¼ ~Na;# ð3:37Þ

for all a\1 and # 2 R. By (3.25) and (3.30), the set Ra;# contains �eS0ða;#Þ for

every ða; #Þ 2 W0. Since S coincides with S0 on W0, it follows from (3.7) that:

Rða; #;�eSða;#ÞÞ ¼ 0 ð3:38Þ

for all ða; #Þ 2 W0. By Lemma 3.8, the left-hand side of (3.38) is a real-analytic

function of ða; #Þ on W. In view of the uniqueness theorem for holomorphic

functions, this implies that (3.38) remains valid for all ða; #Þ 2 W . Let a\1, # 2 R,
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and s 2 ~Na;#. Then, there is k 2 Z, such that ða; #þ pkÞ 2 W and s ¼ Sða; #þ pkÞ.
By (3.38), we have Rða; #þ pk;�esÞ ¼ 0. By (2.19), it follows that

Rða; #;�esÞ ¼ 0, i.e., s 2 Na;#. We therefore have the inclusion:

~Na;# � Na;#; a\1; # 2 R: ð3:39Þ

If ða; #Þ 2 Q0, then Na;# ¼ £ by Lemma 3.6 and (3.25) and, therefore, (3.39)

implies (3.37). By (3.3), it remains to prove (3.37) for ða; #Þ 2 Q� 1. In this case,

there is at least one k 2 Z, such that ða; #þ pkÞ 2 W . We hence have:

~Na;# 6¼ £; ða; #Þ 2 Q� 1: ð3:40Þ

We now prove (3.37) for ða; #Þ 2 Q� 1 by separately considering the cases a[ 0,

a ¼ 0, and a\0.

1. Let a[ 0, j ¼
ffiffiffi

a
p

, and E1;E2 2 Ra;#. By (3.17), we have cosð#
 #jÞ 6¼ 0,

and it follows from (3.8) that jE1=E2jj ¼ 1 and, hence, E1 ¼ E2. This means

that Ra;# and, consequently, Na;# contain at most one element. In view of (3.39)

and (3.40), this implies (3.37).

2. Let a ¼ 0 and E1;E2 2 R0;#. By (2.18), we have:

� ln jE1;2j cos#þ p sin# ¼ 0:

By (3.6), the condition ð0; #Þ 2 Q� 1 ensures that cos# 6¼ 0. It follows that

ln jE1=E2j ¼ 0 and, hence, E1 ¼ E2. This means that R0;# and, consequently,

N0;# contain at most one element. In view of (3.39) and (3.40), this

implies (3.37).

3. Let a\0 and s 2 Na;#. Then, we have ða; #Þ 2 W and, hence, s0 ¼ Sða; #Þ is an

element of ~Na;#. Let E ¼ �es and E0 ¼ �es
0
. Since s0 2 Na;# by (3.39), we have

E;E0 2 Ra;#. Let j ¼ i
ffiffiffiffiffiffi

jaj
p

. By (3.17), we have cosð#
 #jÞ 6¼ 0 and it follows

from (3.8) that jE=E0jj ¼ 1. This implies that s ¼ s0 þ 2pk=
ffiffiffiffiffiffi

jaj
p

for some

k 2 Z. By Lemma 3.8, we conclude that s ¼ Sða; #þ pkÞ and, therefore,

s 2 ~Na;#. This means that Na;# � ~Na;#, whence (3.37) follows by (3.39). h

By (1.23), (1.24), (1.25), (3.27), and Theorem 3.10, the set Na;# is empty for

ða; #Þ 2 Q0, contains precisely one element for ða; #Þ 2 Q1, and is countably infinite

for ða; #Þ 2 Q1. In view of (3.25), the same is true for Ra;# (the emptiness of Ra;#

for ða; #Þ 2 Q0 also follows from Theorem 3.2). Corollary 3.3 therefore implies that

ha;# has no eigenvalues for ða; #Þ 2 Q0, has one eigenvalue for ða; #Þ 2 Q1, and has

infinitely many eigenvalues for ða; #Þ 2 Q1, in agreement with what was claimed in

Sect. 1.

We now obtain a graphical representation for the sets Na;#. Given # 2 R, we let

N# denote the subset of ða; sÞ-plane whose sections by the lines a ¼ const are

precisely the sets Na;#:
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N# ¼ fða; sÞ 2 R2 : a\1 and s 2 Na;#g:

Furthermore, for every # 2 R, we let S# denote the function a ! Sða; #Þ defined on

the domain DS# ¼ fa 2 R : ða; #Þ 2 Wg and set:

G# ¼ graph of S# ¼ fða; sÞ 2 R2 : ða; #Þ 2 W and s ¼ Sða; #Þg:

By Theorem 3.10, we have:

N# ¼
[

k2Z
G#þpk: ð3:41Þ

It follows from (1.24), (1.25), and (3.27) that:

DS# ¼
ð�1;xð#ÞÞ; j#j � p=2;

R�; j#j[ p=2;

�

where x is given by (1.22). If j#j\p=2, then it follows from (3.29) and Lemma 3.8

that:

S#ðaÞ ¼

1
ffiffiffi

a
p ln

cosð#� p
ffiffiffi

a
p

=2Þ
cosð#þ p

ffiffiffi

a
p

=2Þ ; 0\a\xð#Þ;

p tg#; a ¼ 0;

2
ffiffiffiffiffiffi

jaj
p arctg tg# th

p
ffiffiffiffiffiffi

jaj
p

2

 !

; a\0:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð3:42Þ

Since S is continuous on W, we can calculate S
p=2ðaÞ for a\0 by passing to the

limits # " p=2 and # # �p=2 in S#ðaÞ. In view of (3.33), we obtain:

S
p=2ðaÞ ¼ 
 p
ffiffiffiffiffiffi

jaj
p ; a\0:

By Lemma 3.8, we have:

DS#þpk ¼ R�;

S#þpkðaÞ ¼ S#ðaÞ þ
2pk
ffiffiffiffiffiffi

jaj
p ; a\0;

ð3:43Þ

for every # 2 ½�p=2; p=2� and every nonzero k 2 Z. Formulas (3.41), (3.42),

and (3.43) allow us to draw the set N#, for every # 2 R. In Fig. 4, this set, which

represents the a-dependence of eigenvalues of ha;# in the logarithmic scale, is shown

for # ¼ 
p=2, �p=3, 0, and p=6. For # 6¼ p=2 þ pk, where k 2 Z, there is precisely

one eigenvalue that crosses the line a ¼ 0 in an analytic way, while all other

eigenvalues die away at zero or minus infinity as a " 0. If # ¼ p=2 þ pk for some

k 2 Z, then there are no eigenvalues for a� 0.
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3.3 Continuous part of Va,#

We now consider the absolutely continuous part of the spectral measure Va;#. By

Theorem 3.2, its density ta;# is given by (3.9). Let the function T on C	 C	 C3p=2

be defined by the formula:

Tða; #; zÞ ¼ 2Rða; #; zÞRð�a; �#; zÞ; a; # 2 C; z 2 C3p=2: ð3:44Þ

Clearly, ða; #Þ ! Tða; #; zÞ is a holomorphic function on C	 C for every

z 2 C3p=2. If a and # are real, then we have:

Tða; #; zÞ ¼ 2jRða; #; zÞj2; z 2 C3p=2; ð3:45Þ

and it follows from (3.9) that:

ta;#ðEÞ ¼ Tða; #;EÞ�1; E[ 0; ð3:46Þ

for every a\1 and # 2 R. We shall explicitly express T in terms of the functions

Sinc and Cos . In view of (3.46), this will also give us a formula for the density ta;#.

By (2.17) and (3.44), we have:

(a) (b)

(c)(d)

Fig. 4 Plots (a), (b), (c), and (d) represent the set N# for # ¼ 
p=2, �p=3, 0, and p=6, respectively. The
horizontal and vertical axes correspond to the variables a and s
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Tðj2; #;Eei/Þ ¼ 2

j2
E�j cos2ð#� #jÞ
	

�2 cosððp� /ÞjÞ cosð#� #jÞ cosð#þ #jÞ þ Ej cos2ð#þ #jÞ



ð3:47Þ

for all j 2 Cnf0g, # 2 C, E[ 0, and �p=2\/\3p=2. In view of the equality

lnE Sinc �j2 ln2 E
	 


¼ 1

j
sh ðj lnEÞ ¼ Ej � E�j

2j
; j 2 Cnf0g; E[ 0;

which follows from (1.30), and the trigonometric identities

2 cos2ð#
 #jÞ ¼ 1 þ cos 2# cos pj� sin 2# sin pj;

2 cosð#þ #jÞ cosð#� #jÞ ¼ cos 2#þ cos pj;

which hold for all #; j 2 C, we derive from (3.47) that:

Tðj2; #;Eei/Þ ¼ ln2 E Sinc 2 � j2

4
ln2 E

� �

ð1 þ cos 2# cos pjÞ

� 2p lnE Sinc �j2 ln2 E
	 


sinc pj sin 2#þ 2
cos pj� cosðp� /Þj

j2
cos 2#

þ 2
1 � cos pj cosðp� /Þj

j2

ð3:48Þ

for every j 2 Cnf0g, # 2 C, E[ 0, and �p=2\/\3p=2. Let the functions s and

l on C	 C be defined by the formulas:

sða;/Þ ¼ðp� /Þ2
Sinc 2 ðp� /Þ2a

4

 !

� p2 Sinc 2 p2a
4

� �

; ð3:49Þ

lða;/Þ ¼2p2 Sinc 2ðp2aÞ þ Cos ðp2aÞsða;/Þ; ð3:50Þ

for every a;/ 2 C. Performing elementary trigonometric transformations, we

obtain:

sðj2;/Þ ¼ 4

j2
sin2 ðp� /Þj

2
� sin2 pj

2

� �

¼ 2
cos pj� cosðp� /Þj

j2
; ð3:51Þ

lðj2;/Þ ¼ 2
sin2 pj
j2

þ sðj2;/Þ cos pj ¼ 2
1 � cos pj cosðp� /Þj

j2
ð3:52Þ

for all j 2 Cnf0g and / 2 C. In view of these formulas, (3.48) implies that:

Tða; #;Eei/Þ ¼ ln2 E Sinc 2 � a
4

ln2 E
� �

ð1 þ cos 2#Cos ðp2aÞÞ

� 2p lnE Sinc �a ln2 E
	 


Sinc ðp2aÞ sin 2#þ sða;/Þ cos 2#þ lða;/Þ
ð3:53Þ

for all a 2 Cnf0g, # 2 C, E[ 0, and �p=2\/\3p=2. By continuity, this equality

remains valid for a ¼ 0. Thus, (3.53) holds for all a; # 2 C, E[ 0, and

�p=2\/\3p=2.

Formulas (3.46) and (3.53) can be illustrated by drawing the graphs of the

density ta;#ðEÞ as a function of a and E for various values of #. For this, it is
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convenient to use the logarithmic scale for the energy variable and multiply the

density ta;# by the factor lða; 0Þ ¼ 2p2 Sinc 2ðp2aÞ. More precisely, given # 2 R,

we define the function t# on ð�1; 1Þ 	 R by setting:

t#ða; sÞ ¼ 2p2 Sinc 2ðp2aÞta;#ðesÞ; s 2 R; a\1: ð3:54Þ

By (3.46), (3.50), and (3.53), we have:

t#ða; sÞ�1 ¼ 1 þ s2 Sinc 2 �as2=4ð Þ
2p2 Sinc 2ðp2aÞ

ð1 þ cos 2#Cos ðp2aÞÞ � s Sinc �as2ð Þ
p Sinc ðp2aÞ sin 2#

for every a\1 and #; s 2 R. In Fig. 5, the function t# is plotted using this formula

for # ¼ 
p=2, �p=3, 0, and p=6.

The comparison between Figs. 4 and 5 shows that the a-dependence of

eigenvalues and of the density of the continuous part of Va;# follows the same

pattern. This phenomenon can be easily understood if we recall that the point and

continuous parts of Va;# are both determined by the imaginary part of Ma;#

via (2.25) and consider its behavior in the upper complex half-plane. As in the case

of the density ta;#, to facilitate the visualization of ImMa;#ðzÞ, we multiply it by

2p2 Sinc 2ðp2aÞ and pass to the logarithmic scale for |z|. Therefore, for every a\1

and # 2 R, we introduce the function Ja;# on R	 ½0; pÞ that is defined by the

formula:

Ja;#ðs;/Þ ¼2p2 Sinc 2ðp2aÞ ImMa;#ðesþi/Þ
¼2pðp� /Þ Sinc ððp� /Þ2aÞSinc ðp2aÞTða; #; esþi/Þ�1; s 2 R; 0�/\p;

where the second equality follows from (2.22), (2.24), and (3.45). In view of (3.46)

and (3.54), we have Ja;#ðs; 0Þ ¼ t#ða; sÞ for every a\1 and #; s 2 R. Using (3.53),

we can explicitly express Ja;# in terms of Sinc and Cos . In Fig. 6, the function Ja;#
is plotted for a ¼ �1=2 and # ¼ p=6. We see that the graph of Ja;# contains

equidistant vertical ridges that connect the points of Na;# at their upper ends with the

maxima of the function s ! t#ða; sÞ at their lower ends. This means that the graph

of ImMa;# contains ridges along logarithmically equidistant semicircles in the

upper half-plane that connect eigenvalues of ha;# on the negative half-axis with the

maxima of the density ta;# on the positive half-axis. The values a ¼ �1=2 and

# ¼ p=6 chosen for Fig. 6 play no special role: the functions Ja;# and ImMa;#

behave in the same way for every a\0 and # 2 R.

4 Self-adjoint extensions

In this section, we recall basic facts concerning self-adjoint extensions of one-

dimensional Schrödinger operators and then apply the general theory to proving

Theorem 1.1. We refer the reader to [18, 23, 26] for a detailed treatment of one-

dimensional Schrödinger operators.
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4.1 General theory

As in Sect. 1, let kþ be the restriction to Rþ of the Lebesgue measure k on R and D
be the space of all complex continuously differentiable functions on Rþ whose

derivative is absolutely continuous on Rþ. Let q be a complex locally integrable

function on Rþ. Given z 2 C, we let lq;z denote the linear operator from D to the

space of complex kþ-equivalence classes, such that:

ðlq;zf ÞðrÞ ¼ �f 00ðrÞ þ qðrÞf ðrÞ � zf ðrÞ ð4:1Þ

for k-a.e. r 2 Rþ and set:

lq ¼ lq;0: ð4:2Þ

For every f 2 D and z 2 C, we have lq;zf ¼ lqf � z½f �, where, as in Sect. 1, ½f � ¼
½f �kþ denotes the kþ-equivalence class of f. For every a[ 0 and all complex

numbers z, f1, and f2, there is a unique solution f of the equation lq;zf ¼ 0, such that

f ðaÞ ¼ f1 and f 0ðaÞ ¼ f2. This implies that solutions of lq;zf ¼ 0 constitute a two-

Fig. 5 Plots (a), (b), (c), and (d) represent the function t#ða; sÞ for # ¼ 
p=2, �p=3, 0, and p=6,
respectively. The horizontal and vertical axes correspond to the variables a and s. The value of t# is
encoded in the brightness of the plot: brighter regions correspond to greater values of the function
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dimensional subspace of D. If f ; g 2 D are such that Wrðf ; gÞ has a limit as r # 0,

then we set:

W#ðf ; gÞ ¼ lim
r#0

Wrðf ; gÞ: ð4:3Þ

Similarly, if f ; g 2 D are such that Wrðf ; gÞ has a limit as r " 1, then we set:

W"ðf ; gÞ ¼ lim
r"1

Wrðf ; gÞ: ð4:4Þ

In the rest of this subsection, we assume that q is real. Let:

Dq ¼ ff 2 D : f and lqf are both square-integrable on Rþg: ð4:5Þ

A kþ-measurable complex function f is said to be left or right square-integrable on

Rþ if, respectively,
R a

0
jf ðrÞj2 dr\1 or

R1
a jf ðrÞj2 dx\1 for any a[ 0. The

subspace of D consisting of left or right square-integrable on Rþ functions f, such

that lqf is also, respectively, left or right square-integrable on Rþ is denoted by D#
q

or D"
q. We obviously have Dq ¼ D#

q \ D"
q. It follows from (4.1) by integrating by

parts that:

Fig. 6 The function Ja;#ðs;/Þ is plotted for a ¼ �1=2 and # ¼ p=6. As in Fig. 5, brighter regions

correspond to greater values of the function
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Z b

a

ððlq;zf ÞðrÞgðrÞ � f ðrÞðlq;zgÞðrÞÞ dr ¼ Wbðf ; gÞ �Waðf ; gÞ

for every f ; g 2 D, z 2 C, and a; b[ 0. This implies the existence of limits in the

right-hand sides of (4.3) and (4.4), respectively, for every f ; g 2 D#
q and f ; g 2 D"

q.

Hence, W#ðf ; gÞ is well defined for every f ; g 2 D#
q and W"ðf ; gÞ is well defined for

every f ; g 2 D"
q. Moreover, it follows that:

hlqf ; ½g�i � h½f �; lqgi ¼ W"ð �f ; gÞ �W#ð �f ; gÞ ð4:6Þ

for any f ; g 2 Dq, where h�; �i is the scalar product in L2ðRþÞ.
For any linear subspace Z of Dq, let LqðZÞ be the linear operator in L2ðRþÞ

defined by the relations:

DLqðZÞ ¼ f½f � : f 2 Zg;

LqðZÞ½f � ¼ lqf ; f 2 Z:
ð4:7Þ

We define the minimal operator Lq by setting:

Lq ¼ LqðD0
qÞ; ð4:8Þ

where

D0
q ¼ ff 2 Dq : W

#ðf ; gÞ ¼ W"ðf ; gÞ ¼ 0 for every g 2 Dqg: ð4:9Þ

By (4.6), the operator LqðZÞ is symmetric if and only if W#ð �f ; gÞ ¼ W"ð �f ; gÞ for any

f ; g 2 Z. In particular, Lq is a symmetric operator. Moreover, Lq is closed and

densely defined, and its adjoint L�q is given by:

L�q ¼ LqðDqÞ ð4:10Þ

(see Lemma 9.4 in [23]).

If W#ðf ; gÞ ¼ 0 for any f ; g 2 D#
q, then q is said to be in the limit point case

(l.p.c.) on the left. Otherwise, q is said to be in the limit circle case (l.c.c.) on the

left. Similarly, q is said to be in the l.p.c. on the right if W"ðf ; gÞ ¼ 0 for any

f ; g 2 D"
q and to be in the l.c.c. on the right otherwise. According to the well-known

Weyl alternative (see, e.g., [23], Theorem 9.9), q is in the l.c.c. on the left if and

only if all solutions of lqf ¼ 0 are left square-integrable on Rþ (and, hence, belong

to D#
q).

If q is in the l.p.c. both on the left and on the right, then (4.10) implies that L�q is

symmetric and, therefore, Lq is self-adjoint.

If q is in the l.c.c. on the left and in the l.p.c. on the right, then Lq has deficiency

indices (1, 1) and the self-adjoint extensions of Lq are precisely the operators (see

[26], Theorem 5.8):
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Lfq ¼ LqðZf
qÞ; ð4:11Þ

where f is a nontrivial real solution of lqf ¼ 0 and the subspace Zf
q of Dq is given by:

Zf
q ¼ fg 2 Dq : W

#ðf ; gÞ ¼ 0g: ð4:12Þ

The operator Lfq determines f uniquely up to a nonzero real coefficient.

If q is locally square-integrable on Rþ, then formulas (4.8) and (4.9) imply that

C1
0 ðRþÞ is contained in D0

q and Lq is an extension of LqðC1
0 ðRþÞÞ.

Lemma 4.1 Let q be a real locally square-integrable function on Rþ. Then, Lq is
the closure of LqðC1

0 ðRþÞÞ.

Proof See Lemma 17 in [21]. h

4.2 The case of the inverse-square potential

By (1.5) and (4.1), we have:

La;z ¼ lqa;z; a; z 2 C; ð4:13Þ

where the function qa on Rþ is given by (1.4). In view of (1.6) and (4.2), this

implies that:

La ¼ lqa ; a 2 C: ð4:14Þ

By (1.15) and (4.13), we obtain:

lqa;zUa
#ðzÞ ¼ 0; a; #; z 2 C: ð4:15Þ

If a is real, then qa is real. It follows from (1.7), (1.8), (4.5), (4.7), and (4.14) that:

Da ¼Dqa ; ð4:16Þ

HaðZÞ ¼LqaðZÞ ð4:17Þ

for every a 2 R and every linear subspace Z of Da. Hence, (1.9), (1.10), and

Lemma 4.1 imply that:

ha ¼ Lqa ; a 2 R: ð4:18Þ

By (4.10), (4.16), (4.17), and (4.18), equality (1.11) holds for all real a.

If a ¼ j2 for j 2 C, then the equation lqa f ¼ 0 has linearly independent solutions

r1=2
j for j 6¼ 0 and r1=2 and r1=2 ln r for j ¼ 0. It follows that:

(i) qa is in the l.p.c. both on the left and on the right for a� 1 and

(ii) qa is in the l.p.c. on the right and in the l.c.c. on the left for a\1.
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In view of (4.2) and (4.15), we have lqaUa
#ð0Þ ¼ 0 for every a; # 2 C. For a\1 and

# 2 R, the function Ua
#ð0Þ is real and nontrivial, and it follows from (1.17), (4.12),

and (4.16) that Za;# ¼ Z
Ua
#ð0Þ

qa . By (1.16), (4.11), and (4.17), we conclude that:

ha;# ¼ L
Ua
#ð0Þ

qa ; a\1; # 2 R: ð4:19Þ

Proof of Theorem 1.1 In view of (4.18) and condition (i), the operator ha is self-

adjoint for a� 1. Let a\1. By (4.18) and (4.19), ha;# a self-adjoint extension of ha
for every # 2 R. Conversely, let H be a self-adjoint extension of ha. Then, H ¼ Lfqa
for some nontrivial real f 2 D satisfying lqa f ¼ 0. By (1.12), (4.2), and (4.13), we

have lqaAað0Þ ¼ lqaBað0Þ ¼ 0. Since Aað0Þ and Bað0Þ are real and linearly

independent, it follows from (1.14) that f ¼ cUa
#ð0Þ for some c; # 2 R such that

c 6¼ 0. In view of (4.19), this means that H ¼ ha;#.

Suppose now that #; #0 2 R and ha;# ¼ ha;#0 . By (4.19), we have Ua
#ð0Þ ¼

cUa
#0 ð0Þ for some nonzero real c. In view of (1.14), this implies that sin# ¼ c sin#0

and cos# ¼ c cos#0 and, therefore, ei# ¼ cei#
0
. It follows that eið#�#0Þ ¼ c, whence

c ¼ 
1 and #� #0 2 pZ. h

5 Eigenfunction expansions

This section consists of two subsections. In the first one, we briefly describe the

construction of eigenfunction expansions of one-dimensional Schrödinger operators

developed in [10, 16]. This construction, which is adapted to the case of operators

with a simple spectrum and relies on the so-called singular Titchmarsh–Weyl m-

functions, can be viewed as a variant of Kodaira’s general approach [15] based on

matrix-valued measures (see Remark 16 in [21]). In the second subsection, we

prove Theorem 1.2 by applying the general theory to the case of the inverse-square

potential.

5.1 General theory

Let q be a real locally integrable function on Rþ. We assume that q is in the l.c.c. on

the left and in the l.p.c. on the right.

Let O � C be an open set. We say that a map u : O ! D is a q-solution on O if

lq;zuðzÞ ¼ 0 for every z 2 O. A q-solution u on O is said to be holomorphic if the

functions z ! uðzjrÞ and z ! oruðzjrÞ are holomorphic on O for any r 2 Rþ. A q-

solution u on O is said to be nonvanishing if uðzÞ 6¼ 0 for every z 2 O. A q-solution

in C is said to be real-entire if it is holomorphic on C and u(E) is real for every

E 2 R.

Let u be a real-entire q-solution. Since q is in l.c.c. on the left, we have uðzÞ 2 D#
q

for every z 2 C. Suppose that u is nonvanishing and:
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W#ðuðzÞ; uðz0ÞÞ ¼ 0; z; z0 2 C: ð5:1Þ

Let v be a nonvanishing holomorphic q-solution on Cþ, such that v(z) is right

square-integrable for every z 2 Cþ (such a v always exists; see Lemma 9.8 in [23]).

If WðuðzÞ; vðzÞÞ ¼ 0 for some z 2 Cþ,10 then u(z) is proportional to v(z) and, hence,

uðzÞ 2 Dq. In view of (4.12) and (5.1), this means that uðzÞ 2 Z
uð0Þ
q and, therefore,

[u(z)] is an eigenvector of the self-adjoint operator L
uð0Þ
q with the eigenvalue z.

However, this cannot be the case, because all eigenvalues of L
uð0Þ
q must be real. It

follows that WðuðzÞ; vðzÞÞ 6¼ 0 for all z 2 Cþ.

Given a nonvanishing real-entire q-solution u, one can always find another real-

entire q-solution ~u, such that WðuðzÞ; ~uðzÞÞ 6¼ 0 for all z 2 C (see Lemma 2.4 in

[16]).

Let u and ~u be real-entire q-solutions, such that (5.1) is satisfied and

WðuðzÞ; ~uðzÞÞ 6¼ 0 for all z 2 C. We define the holomorphic function Mq
u; ~u on Cþ

by setting:

Mq
u; ~uðzÞ ¼

1

p
WðvðzÞ; ~uðzÞÞ

WðvðzÞ; uðzÞÞWðuðzÞ; ~uðzÞÞ ; ð5:2Þ

where v is a nonvanishing holomorphic q-solution on Cþ, such that v(z) is right

square-integrable for all z 2 Cþ (since q is in the l.p.c. on the right, this definition is

independent of the choice of v). Following [16], we call such functions singular

Titchmarsh–Weyl m-functions.

The proof of the next statement can be found in [16].

Proposition 5.1 Let a locally integrable real function q on Rþ be in the l.c.c. on the
left and in the l.p.c. on the right. Let u be a nonvanishing real-entire q solution, such
that (5.1) holds for all z 2 C.Then, the following statements hold:

1. There exists a unique positive Radon measure m on R (called the spectral
measure for q and u), such that:

Z

uðEÞ ImMq
u; ~uðE þ igÞ dE !

Z

uðEÞ dmðEÞ ðg # 0Þ

for every continuous function u on R with compact support and every real-
entire q-solution ~u, such that WðuðzÞ; ~uðzÞÞ 6¼ 0 for every z 2 C.

2. Let m be the spectral measure for q and u. There is a unique unitary operator
U : L2ðRþÞ ! L2ðR; mÞ (called the spectral transformation for q and u), such
that:

ðUwÞðEÞ ¼
Z

Rþ

uðEjrÞwðrÞ dr; w 2 Lc2ðRþÞ;

for m-a.e. E.

10 We recall that W(f, g) denotes the value of the function r ! Wrðf ; gÞ if f ; g 2 D are such that this

function is constant (in particular, if lq;zf ¼ lq;zg ¼ 0 for some z 2 C).
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3. Let m and U be the spectral measure and transformation for q and u. Then, we

have L
uð0Þ
q ¼ U�1T m

iU, where i is the identity function on R.

In the next subsection, we shall verify that Va;# is actually the spectral measure

for qa and Ua
#. This justifies using the same term ‘‘spectral measure’’ for Va;# and for

the measures described by Proposition 5.1.

5.2 The case of the inverse-square potential

For any j 2 C, we define the map vj : C3p=2 ! D by the relation:

vjðzjrÞ ¼ ip
2
eipj=2r1=2Hð1Þ

j ðrz1=2Þ; r 2 Rþ; z 2 C3p=2; ð5:3Þ

where H
ð1Þ
j is the first Hankel function of order j. Because H

ð1Þ
j is a solution of the

Bessel equation, we have:

Lj2;zv
jðzÞ ¼ 0; j 2 C; z 2 C3p=2: ð5:4Þ

It follows from the relation H
ð1Þ
�j ¼ eipjH

ð1Þ
j (formula (9) in Sec. 7.2.1 in [7]) that:

v�jðzÞ ¼ vjðzÞ; j 2 C; z 2 C3p=2: ð5:5Þ

In view of (2.5) and (5.4), the Wronskian WrðvjðzÞ; u
jðzÞÞ does not depend on r.
To find it explicitly, we can use the expression for the Wronskian of Bessel func-

tions (formula (29) in Sec. 7.11 in [7]):

WzðJj;Hð1Þ
j Þ ¼ 2i

pz
: ð5:6Þ

Taking (5.5) into account and combining (5.6) with (2.1), (2.3), and (5.3), we

derive that:

WðvjðzÞ; ujðzÞÞ ¼ z�j=2eipj=2; WðvjðzÞ; u�jðzÞÞ ¼ zj=2e�ipj=2 ð5:7Þ

for any j 2 C and z 2 C3p=2.

For a 2 C and z 2 C3p=2, let the function VaðzÞ on Rþ be defined by the relation

VaðzÞ ¼ vjðzÞ, where j 2 C is such that j2 ¼ a (by (5.5), this definition does not

depend on the choice of j). We therefore have:

Vj2ðzÞ ¼ vjðzÞ ð5:8Þ

for every j 2 C and z 2 C3p=2. By (5.4) and (5.8), we obtain:

La;zV
aðzÞ ¼ 0; z 2 C3p=2; a 2 C: ð5:9Þ

Using the well-known asymptotic form of H
ð1Þ
j ðfÞ for f ! 1 (see formula (1)

in Sec. 7.13.1 in [7]), we find that:
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vjðzjrÞ� 2�1
ffiffiffi

p
p

ðiþ 1Þz�1=4eiz
1=2r; r ! 1;

for every j 2 C and z 2 C3p=2 and, hence, vjðzÞ is right square-integrable for all

j 2 C and z 2 Cþ. In view of (5.8), this implies that VaðzÞ is right square-inte-

grable for all a 2 C and z 2 Cþ.

Lemma 5.2 There is a unique holomorphic function F on C	 C3p=2 	 Cp, such

that Fða; z; rÞ ¼ VaðzjrÞ for every a 2 C, z 2 C3p=2, and r[ 0.

Proof By (5.3), there is a holomorphic function G on C	 C3p=2 	 Cp, such that

Gðj; z; rÞ ¼ vjðzjrÞ for every j 2 C, z 2 C3p=2, and r[ 0. It follows from (5.5) and

the uniqueness theorem for holomorphic functions that Gðj; z; fÞ ¼ Gð�j; z; fÞ for

all j 2 C, z 2 C3p=2, and f 2 Cp. The existence of F with the required properties is

now ensured by Lemma A.3 and (5.8). The uniqueness of F follows from the

uniqueness theorem for holomorphic functions. h

It follows immediately from (1.13) that the identity

Wrðf1f2; f3f4Þ ¼ f1ðrÞf3ðrÞWrðf2; f4Þ þWrðf1; f3Þf2ðrÞf4ðrÞ ð5:10Þ

holds for every f1; f2; f3; f4 2 D and r[ 0.

Lemma 5.3 Let j 2 C be such that jRe jj\1. Then, we have:

W#ðujðzÞ; ujðz0ÞÞ ¼ 0; W#ðujðzÞ; u�jðz0ÞÞ ¼ � 2

p
sin pj ð5:11Þ

for every z; z0 2 C.

Proof By (2.1) and (5.10), we have:

WrðujðzÞ; ujðz0ÞÞ ¼2r2þ2jðz0Xjðr2zÞX0
jðr2z0Þ � zX0

jðr2zÞXjðr2z0ÞÞ; ð5:12Þ

WrðujðzÞ; u�jðz0ÞÞ ¼ � 2jXjðr2zÞX�jðr2z0Þ
þ 2r2ðz0Xjðr2zÞX0

�jðr2z0Þ � zX0
jðr2zÞX�jðr2z0ÞÞ

ð5:13Þ

for all z; z0 2 C and r[ 0. Since jRe jj\1, the left equality in (5.11) follows

from (5.12) for every z; z0 2 C. Formula (2.2) implies that:

Xjð0ÞX�jð0Þ ¼ ðCð1 þ jÞCð1 � jÞÞ�1 ¼ sinc pj:

By (5.13), we conclude that the right equality in (5.11) holds for all z; z0 2 C. h

Lemma 5.4 Let a\1 and # 2 R. Then, we have:

W#ðUa
#ðzÞ;Ua

#ðz0ÞÞ ¼ 0; z; z0 2 C: ð5:14Þ

Proof Let a 6¼ 0 and j 2 C be such that j2 ¼ a. By (2.14), we have:
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aWrðUa
#ðzÞ;Ua

#ðz0ÞÞ ¼WrðujðzÞ; ujðz0ÞÞ cos2ð#� #jÞ
þWrðu�jðzÞ; u�jðz0ÞÞ cos2ð#þ #jÞ þ ðWrðujðz0Þ; u�jðzÞÞ
�WrðujðzÞ; u�jðz0ÞÞÞ cosð#� #jÞ cosð#þ #jÞ

ð5:15Þ

for all z; z0 2 C and r[ 0. Since a\1, we have jRe jj\1 and, therefore, (5.14)

follows from (5.15) and Lemma 5.3. It remains to consider the case a ¼ 0. For

every z 2 C, we define the smooth functions c(z) and dðzÞ on R by the relations:

cðzjrÞ ¼ X 0ðr2zÞ; dðzjrÞ ¼ ðc� ln 2ÞcðzjrÞ � Yðr2zÞ; r 2 R:

By (2.1), (2.7), (2.9), and (2.12), we have:

A0ðzjrÞ ¼ 2r1=2ðcðzjrÞ ln r þ dðzjrÞÞ; B0ðzjrÞ ¼ pr1=2cðzjrÞ; z 2 C; r[ 0:

Using (5.10), we obtain:

1

4
WrðA0ðzÞ;A0ðz0ÞÞ ¼ r ln2 rWrðcðzÞ; cðz0ÞÞ þ rWrðdðzÞ; dðz0ÞÞ

þ r ln rðWrðcðzÞ; dðz0ÞÞ þWrðdðzÞ; cðz0ÞÞÞ
1

2p
WrðA0ðzÞ;B0ðz0ÞÞ ¼ rWrðdðzÞ; cðz0ÞÞ þ r ln rWrðcðzÞ; cðz0ÞÞ

� cðzjrÞcðz0jrÞ;
WrðB0ðzÞ;B0ðz0ÞÞ ¼p2rWrðcðzÞ; cðz0ÞÞ

for every r[ 0 and z; z0 2 C. Since cðzj0Þ ¼ 1 and dðzj0Þ ¼ c� ln 2 for all z 2 C,

we find that:

W#ðA0ðzÞ;B0ðz0ÞÞ ¼ �2p; W#ðA0ðzÞ;A0ðz0ÞÞ ¼ W#ðB0ðzÞ;B0ðz0ÞÞ ¼ 0

for all z; z0 2 C. In view of (1.14), this implies (5.14) for a ¼ 0. h

It follows from (1.15) and (5.9) that WrðVaðzÞ;Ua
#ðzÞÞ does not depend on r for

every a; # 2 C and z 2 C3p=2. It is easy to see that:

WðVaðzÞ;Ua
#ðzÞÞ ¼ Rða; #; zÞ; a; # 2 C; z 2 C3p=2; ð5:16Þ

where R is the function defined in Lemma 2.3. Indeed, it follows from (2.14), (5.7),

and (5.8) that WðVj2ðzÞ;Uj2

# ðzÞÞ is equal to the right-hand side of formula (2.17)

for every j 2 Cnf0g, # 2 C, and z 2 C3p=2. Equality (5.16), therefore, holds for all

a 2 Cnf0g, # 2 C, and z 2 C3p=2. By (1.14) and Lemmas 2.2, 2.3, and 5.2, both

sides of (5.16) are holomorphic with respect to ða; #; zÞ on C	 C	 C3p=2. Hence,

(5.16) remains valid for a ¼ 0.

By (1.14) and (2.16), we have:

WðUa
#ðzÞ;Ua

#þp=2ðzÞÞ ¼ �2pSinc 2ðp2aÞ; a; #; z 2 C: ð5:17Þ

Proof of Theorem 1.2 It follows immediately from (1.14) and the definition of

AaðzÞ and BaðzÞ that the functions z ! Ua
#ðzjrÞ and z ! orUa

#ðzjrÞ are holomorphic
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on C for every r[ 0 and a; # 2 C. Equality (4.15), therefore, implies that Ua
# is a

holomorphic qa-solution on C for every a; # 2 C. If a and # are real, then Ua
#ðEÞ is

real for real E and, hence, Ua
# is a real-entire qa-solution. By (5.3) and (5.8), the

functions z ! VaðzjrÞ and z ! orV
aðzjrÞ are holomorphic on C3p=2 for every

r[ 0 and a 2 C. In view of (4.13) and (5.9), it follows that Va is a holomorphic

qa-solution on C3p=2 for every a 2 C. Moreover, Va is nonvanishing for every

a 2 C by (5.7) and (5.8).

We now fix a\1 and # 2 R, set q ¼ qa, and let u and ~u denote the real-entire q-

solutions Ua
# and Ua

#þp=2 respectively. Because a\1, (5.17) implies that:

WðuðzÞ; ~uðzÞÞ 6¼ 0; z 2 C; ð5:18Þ

and, hence, u is nonvanishing. By Lemma 5.4, we conclude that q and u satisfy all

conditions of Proposition 5.1. Moreover, it follows from (5.18) that there exists a

well-defined Titchmarsh–Weyl m-function Mq
u; ~u. Since VaðzÞ is right square-in-

tegrable for every z 2 Cþ, the latter can be found by substituting v ¼ VajCþ
in the

right-hand side of (5.2). Using (2.23), (5.16), and (5.17), we obtain Mq
u; ~uðzÞ ¼

Ma;#ðzÞ for every z 2 Cþ. In view of (5.18), statement 1 of Proposition 5.1 and

formula (2.25) imply that Va;# is precisely the spectral measure for q and u. The

existence and uniqueness of Ua;# and equality (1.20) are, therefore, ensured by

statements 2 and 3 of Proposition 5.1 and formula (4.19). h

6 Smoothness properties of the spectral measure

In this section, we shall establish Theorem 1.3.

Before passing to the proof, we note that the smoothness of Va;# with respect to a
and # is suggested by explicit formulas obtained in Sect. 3. For example, let us set

# ¼ p=2 and examine the a-dependence of the point part Vp
a;p=2

of the measure

Va;p=2. It follows from (3.25), (3.27), Lemma 3.8, and Theorem 3.10 that Ra;p=2 ¼
£ for a� 0 and:

Ra;p=2 ¼ E 2 R : E ¼ � exp ð2k þ 1Þpjaj�1=2
� �

for some k 2 Z
n o

for a\0. Let u 2 S. In view of (3.11) and (B.2), Theorem 3.2 implies that:

Z

uðEÞ dVp
a;p=2

ðEÞ ¼ 2

p2 Sinc ðp2aÞ Sinc 2ðp2a=4Þ
X

k2Z
uð2kþ1ÞpðaÞ ð6:1Þ

for every a\1, where uc, c 2 R, denotes the function on R that is identically zero

on ½0;1Þ and is given by:
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ucðaÞ ¼
1

jaj exp cjaj�1=2
� �

u � exp cjaj�1=2
� �� �

for a\0. It follows immediately from the definition of the space S that uc is an

infinitely differentiable function on R for every nonzero real c (however, in general,

uc is not real-analytic at a ¼ 0 even for real-analytic u). It is also possible to verify

directly that
P

k2Z uð2kþ1Þp is infinitely differentiable on R and, therefore, the left-

hand side of (6.1) is infinitely differentiable with respect to a on ð�1; 1Þ.
It seems, however, that a complete proof of Theorem 1.3 (including the

continuous part of Va;# and the dependence on both a and #) based on explicit

formulas for the spectral measures would be extremely cumbersome. We shall adopt

a different approach based on representation (2.25) of Va;# as a boundary value of

the holomorphic function Ma;#. The idea is to derive the infinite differentiability of

Va;# with respect to a and # from that of Ma;#. Lemma 6.1 below gives a condition

under which the differentiability of a holomorphic function on Cþ with respect to

some parameters implies the same property for its boundary value. This condition

involves certain uniform estimates on the derivatives of this function with respect to

the parameters in question. In the case of the function Ma;#, estimates of this type,

which are the most nontrivial part of the proof of Theorem 1.3, are provided by

Proposition 6.2 below. Combining Lemma 6.1 and Proposition 6.2, we shall obtain

the infinite differentiability of Va;#.

We now give a formal exposition.

For every .; r� 0, we let H.;r denote the Banach space consisting of all

holomorphic functions on Cþ with the finite norm:

kfk.;r ¼ sup
z2Cþ

jf ðzÞjN .;rðzÞ;

where the function N .;r on Cþ is given by:

N .;rðzÞ ¼
1

ð1 þ jzjÞ.
Im z

1 þ jzj

� �r

:

If .0 � .� 0 and r0 � r� 0, then H.;r � H.0;r0 and the inclusion map is continuous.

We define the linear space H by setting H ¼
S

.;r� 0 H.;r. It is well known (see,

e.g., [25], Ch. 5, Sec. 26.3) that
R

R
f ðE þ igÞuðEÞ dE has a limit as g # 0 for every

f 2 H and u 2 S. Given u 2 S, we let Bu denote the map f ! limg#0

R

R
f ðE þ

igÞuðEÞ dE on H. The definitions of S and H.;r imply that f !
R

R
f ðE þ

igÞuðEÞ dE is a continuous linear functional on H.;r for every g[ 0, u 2 S, and

.; r� 0. By the Banach–Steinhaus theorem (see Theorem III.9 in [19]), it follows

that the restriction of Bu to H.;r is a continuous linear functional on H.;r for every

u 2 S and .; r� 0.

Lemma 6.1 Let .; r� 0, n ¼ 1; 2; . . ., and u 2 S. Let O be an open subset of Rn

and M be a map from O to H.;r, such that x ! MðxjzÞ is a continuously

differentiable function on O for every z 2 Cþ. For every j ¼ 1; . . .; n and x 2 O, let
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the function MjðxÞ on Cþ be defined by the equality MjðxjzÞ ¼ oxjMðxjzÞ.Suppose
there is C[ 0, such that:

jMjðxjzÞj �CN .;rðzÞ�1; j ¼ 1; . . .; n; x 2 O; z 2 Cþ: ð6:2Þ

Then, the function x ! BuðMðxÞÞ on O is continuously differentiable and we have

MjðxÞ 2 H.;r and oxjBuðMðxÞÞ ¼ BuðMjðxÞÞ for all j ¼ 1; . . .; n and x 2 O.

Proof The proof relies on the following convergence property for sequences of

holomorphic functions, which easily follows from the Montel theorem (see, e.g.,

Theorem 12 in Sec. 5.4.4 in [1]).

(C) Let V � C be an open set, f1; f2; . . . be holomorphic functions on V, and f be a

complex function on V. Suppose the functions fk are uniformly bounded on

compact subsets of V and fkðzÞ ! f ðzÞ as k ! 1 for every z 2 V . Then, f is

holomorphic on V and fk ! f as k ! 1 uniformly on compact subsets of V.

Let e1; . . .; en be the standard basis in Rn. Given x 2 O and j ¼ 1; . . .; n, we choose

d[ 0, such that xþ tej 2 O for every t 2 ½0; d�. We define the holomorphic

functions h1; h2; . . . on Cþ by setting hk ¼ t�1
k ðMðxþ tkejÞ �MðxÞÞ, where

tk ¼ d=k. By (6.2) and the mean value theorem, we conclude that

jhkðzÞj �CN .;rðzÞ�1
for every z 2 Cþ and k ¼ 1; 2; . . . and, therefore, the functions

hk are uniformly bounded on compact subsets of Cþ. Since limk!1 hkðzÞ ¼ MjðxjzÞ
for every z 2 Cþ, property (C) implies that MjðxÞ is holomorphic on Cþ. In view

of (6.2), it follows that MjðxÞ 2 H.;r and kMjðxÞk.;r �C for every x 2 O and

j ¼ 1; . . .; n.

We now choose .0 [ ., r0 [ r, and let x 2 O and h ¼ ðh1; . . .; hnÞ 2 Rn be such

that xþ th 2 O for all t 2 ½0; 1�. By the mean value theorem, we have:

Mðxþ hjzÞ �MðxjzÞ �
X

j
MjðxjzÞhj

�

�

�

�

�

�

� jhj sup
0\t\1

X

j
jMjðxþ thjzÞ �MjðxjzÞj

for every z 2 Cþ, where jhj ¼ max1� j� n jhjj. This implies that:

Mðxþ hÞ �MðxÞ �
X

j
MjðxÞhj

�

�

�

�

�

�

.0;r0

� jhj sup
0\t\1

X

j
kMjðxþ thÞ �MjðxÞk.0;r0 :

Since Bu is continuous on H.0;r0 , our statement will be proved if we show that Mj is

a continuous map from O to H.0;r0 for every j ¼ 1; . . .; n. To this end, we fix e[ 0

and choose a compact subset K of Cþ, such that:

sup
z2CþnK

N .0�.;r0�rðzÞ\
e

2C
:

Then, we have:
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sup
z2CþnK

jMjðx0jzÞ �MjðxjzÞjN .0;r0 ðzÞ�
e

2C
kMjðx0Þ �MjðxÞk.;r\e

for all x; x0 2 O and j ¼ 1; . . .; n. On the other hand, property (C) and the continuity

of the functions y ! MjðyjzÞ on O for every z 2 Cþ imply that every x 2 O has a

neighborhood Ox � O, such that:

sup
z2K

jMjðx0jzÞ �MjðxjzÞjN .0;r0 ðzÞ\e; x0 2 Ox; j ¼ 1; . . .; n:

Hence, kMjðx0Þ �MjðxÞk.0;r0\e for all x0 2 Ox and j ¼ 1; . . .; n, i.e., Mj is a con-

tinuous map from O to H.0;r0 for every j ¼ 1; . . .; n. h

Let R be as in Lemma 2.3. We set:

O ¼ fða; #; zÞ 2 C	 C	 C3p=2 : Rða; #; zÞ 6¼ 0g;

and define the holomorphic function F on O by the equality:

Fða; #; zÞ ¼ Rða; #þ p=2; zÞ
Rða; #; zÞ ; ða; #; zÞ 2 O: ð6:3Þ

It follows from (2.21), (2.22), and (2.23) that ða; #; zÞ 2 O and:

Ma;#ðzÞ ¼ � Fða; #; zÞ
2p2 Sinc 2ðp2aÞ

ð6:4Þ

for every a\1, # 2 R, and z 2 Cþ.

In the sequel, we let Zþ denote the set of all nonnegative integer numbers.

Proposition 6.2 Let 0� a\1, b 2 R, and k; l 2 Zþ. Then, we have:

okao
l
#Fða; #; zÞ

�

�

�

��Pa;bðk; lÞð1 þ ln2 jzjÞ2kþlþ1 ð1 þ jzjÞ1þa

Im z

 !kþlþ1

for every a 2 ½�b2; a2�, # 2 R, and z 2 Cþ, where:

Pa;bðk; lÞ ¼
p2k

2

24p ch ðpbÞ
sinc 2ðpaÞ

� �kþlþ1

ðk þ lÞ!:

Before proceeding with the proof of Proposition 6.2, we shall derive Theo-

rem 1.3 from Lemma 6.1 and Proposition 6.2.

Proof of Theorem 1.3 For every k; l 2 Zþ and ða; #Þ 2 Q, we define the holomor-

phic function Mk;lða; #Þ on Cþ by the equality:

Mk;lða; #jzÞ ¼ okao
l
#Fða; #; zÞ; z 2 Cþ:

Clearly, the function ða; #Þ ! Mk;lða; #jzÞ on Q is infinitely differentiable for every

z 2 Cþ and we have:
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oaMk;lða; #jzÞ ¼ Mkþ1;lða; #jzÞ; o#Mk;lða; #jzÞ ¼ Mk;lþ1ða; #jzÞ ð6:5Þ

for every ða; #Þ 2 Q, z 2 Cþ, and k; l 2 Zþ. Given 0� a\1 and b 2 R, we set

Oa;b ¼ fða; #Þ 2 Q : �b2\a\a2g. By Proposition 6.2, we have:

jMk;lða; #jzÞj�Pa;bðk; lÞ sup
E[ 0

Eð1 þ ln2 EÞ2kþlþ1

ð1 þ EÞ2
N kþlþ2;kþlþ2ðzÞ�1 ð6:6Þ

for every ða; #Þ 2 Oa;b, z 2 Cþ, and k; l 2 Zþ. Since

Q ¼
[

a2½0;1Þ; b2R
Oa;b; ð6:7Þ

this implies that Mk;lða; #Þ 2 H for every ða; #Þ 2 Q and k; l 2 Zþ. We now fix

u 2 S. Given k; l 2 Zþ, we let Fk;l denote the function ða; #Þ ! BuðMk;lða; #ÞÞ on

Q. Let 0� a\1, b 2 R, and k; l 2 Zþ. In view of (6.5) and (6.6), we can apply

Lemma 6.1 to O ¼ Oa;b, M ¼ Mk;ljO, and . ¼ r ¼ k þ lþ 3. As a result, we con-

clude that Fk;l is continuously differentiable on Oa;b and:

oaFk;lða; #Þ ¼ Fkþ1;lða; #Þ; o#Fk;lða; #Þ ¼ Fk;lþ1ða; #Þ ð6:8Þ

for all ða; #Þ 2 Oa;b. By (6.7), it follows that Fk;l is continuously differentiable on Q
and equalities (6.8) hold for all ða; #Þ 2 Q and k; l 2 Zþ. We now use induction on

n to prove the following statement:

(Sn) F0;0 is n times differentiable on Q and okao
l
#F0;0ða; #Þ ¼ Fk;lða; #Þ for every

ða; #Þ 2 Q and k; l 2 Zþ, such that k þ l ¼ n.

The statement (S0) trivially holds, because every function on Q is 0 times

differentiable. We now suppose n� 1 and derive (Sn) from (Sn�1). Let k; l 2 Zþ be

such that k þ l ¼ n� 1. Since Fk;l is differentiable, (Sn�1) implies that the function

ða; #Þ ! okao
l
#F0;0ða; #Þ on Q is differentiable. This means that F0;0 is n times

differentiable. Suppose now k; l 2 Zþ are such that k þ l ¼ n. Then, we have either

k[ 0 or l[ 0. Hence, we can represent okao
l
#F0;0ða; #Þ either as

oaðok�1
a ol#F0;0ða; #ÞÞ or as o#ðokao

l�1
# F0;0ða; #ÞÞ. In both cases, it follows from (Sn�1)

and (6.8) that okao
l
#F0;0ða; #Þ ¼ Fk;lða; #Þ for all ða; #Þ 2 Q. This completes the

derivation of (Sn) from (Sn�1). By induction, we conclude that (Sn) holds for all

n 2 Zþ and, therefore, the function F0;0 is infinitely differentiable. Given

ða; #Þ 2 Q, we set Ga;# ¼ Ma;#jCþ
. By (6.4), we have M0;0ða; #Þ ¼

�2p2 Sinc ðp2aÞGa;# for every ða; #Þ 2 Q. Since F0;0ða; #Þ ¼ BuðM0;0ða; #ÞÞ, we

conclude that the function ða; #Þ ! BuðGa;#Þ on Q is infinitely differentiable for

every u 2 S. To complete the proof, it remains to note that:

Z

uðEÞ dVa;#ðEÞ ¼
BuðGa;#Þ � B �uðGa;#Þ

2i

for every ða; #Þ 2 Q and u 2 S by (2.25). h
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The rest of this section is devoted to the proof of Proposition 6.2.

It follows from (3.51) and (3.52) that:

lðj2;/Þ2 � sðj2;/Þ2 ¼ 4p2ðp� /Þ2
sinc 2pj sinc 2ðp� /Þj

for every j 2 Cnf0g and / 2 C. By continuity, this equality remains valid for

j ¼ 0. Hence, we have:

lða;/Þ2 � sða;/Þ2 ¼ 4p2ðp� /Þ2
Sinc 2ðp2aÞ Sinc 2ððp� /Þ2aÞ; a;/ 2 C: ð6:9Þ

Let the function U on C	 Rþ be defined by the relation:

Uða;EÞ ¼ lnE Sinc � a
4

ln2 E
� �

; a 2 C; E[ 0: ð6:10Þ

In view of (B.1), rewriting equality (3.53) in terms of U yields:

Tða; #;Eei/Þ ¼lða;/Þ þ Uða;EÞ2

þ Uða;EÞ2
Cos ðp2aÞ þ sða;/Þ

� �

cos 2#

� 2pUða;EÞCos � a
4

ln2 E
� �

Sinc ðp2aÞ sin 2#

ð6:11Þ

for all a; # 2 C, E[ 0, and �p=2\/\3p=2.

By (3.49), sða;/Þ is real for real a and /. We also observe that:

lða;/Þ� 0; a;/ 2 R: ð6:12Þ

Indeed, (3.52) implies that this is true for all a 2 R n f0g and / 2 R. By continuity,

(6.12) remains valid for a ¼ 0.

The next lemma is the key part of the proof of Proposition 6.2.

Lemma 6.3 Let a\1, # 2 R, E[ 0, and 0�/\p. Then, we have:

1

jRða; #;Eei/Þj �
ðUða;EÞ2 þ lða;/ÞÞ1=2

pðp� /Þ Sinc ðp2aÞ Sinc ððp� /Þ2aÞ
:

Proof Let

G ¼ Uða;EÞ2 þ lða;/Þ; ð6:13Þ

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sða;/Þ2 þ Uða;EÞ4 þ 2lða;/ÞUða;EÞ2
q

: ð6:14Þ

By (6.12), H is well defined, and both G and H are nonnegative. Using (3.50) and

the identity:

Cos 2 � a
4

ln2 E
� �

¼ 1 þ a
4
Uða;EÞ2;

which follows from (6.10) and (B.2), we find that
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H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ d2
p

; ð6:15Þ

where

c ¼ Uða;EÞ2
Cos ðp2aÞ þ sða;/Þ;

d ¼ �2pUða;EÞCos � a
4

ln2 E
� �

Sinc ðp2aÞ:

Since jc cos 2#þ d sin 2#j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ d2
p

by the Cauchy–Bunyakovsky inequality,

(6.11) and (6.15) imply that:

Tða; #;Eei/Þ ¼ Gþ c cos 2#þ d sin 2#�G� H: ð6:16Þ

By (6.13) and (6.14), we have:

G2 � H2 ¼ lða;/Þ2 � sða;/Þ2: ð6:17Þ

In view of (6.9), it follows that the left-hand side of (6.17) is nonnegative. We

therefore have H�G, whence 2G�Gþ H. Multiplying this inequality with (6.16)

and using (6.9) and (6.17), we obtain:

2GTða; #;Eei/Þ� 4p2ðp� /Þ2
Sinc 2ðp2aÞ Sinc 2ððp� /Þ2aÞ: ð6:18Þ

Since a\1 and 0�/\p, the right-hand side of (6.18) is strictly positive. Hence,

Tða; #;Eei/Þ[ 0, and (6.13) and (6.18) imply that:

1

Tða; #;Eei/Þ �
Uða;EÞ2 þ lða;/Þ

2p2ðp� /Þ2
Sinc 2ðp2aÞ Sinc 2ððp� /Þ2aÞ

:

The required estimate is now ensured by (3.45), because both Sinc ðp2aÞ and

Sinc ððp� /Þ2aÞ are strictly positive by Lemma B.1. h

For every a 2 R and / 2 ½0; p�, we have:

lða;/Þ� 2p2 Sinc 2ðp2aÞ þ p2: ð6:19Þ

Indeed, let / 2 ½0; p�. If a\0, then p2a�ðp� /Þ2a and, therefore, 0\ Sinc ððp�
/Þ2a=4Þ� Sinc ðp2a=4Þ by Lemma B.1. In view of (3.49), this implies that

sða;/Þ� 0 and, hence, (6.19) follows from (1.32) and (3.50). If a� 0, then (3.49)

ensures that jsða;/Þj � p2 (note that j Sinc nj � 1 for n� 0 by Lemma B.1). Since

jCos ðp2aÞj � 1 by (1.31), it follows from (3.50) that (6.19) is again satisfied. This

completes the proof of (6.19).

Lemma 6.4 Let �1\a\1. Then, we have:

1

jRða; #;Eei/Þj �
ðj lnEj þ 3pÞðEa=2 þ E�a=2Þ

2pðp� /Þ sinc 2ðpaÞ

for all a� a2, # 2 R, E[ 0, and 0�/\p.
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Proof It follows from (6.10) and Lemma B.1 that:

jUða;EÞj � j lnEj ch
a

2
lnE

� �

¼ j lnEj
2

ðEa=2 þ E�a=2Þ

for all a� a2 and E[ 0. By Lemma B.1, we have Sinc ðp2aÞ� Sinc ðp2a2Þ ¼
sinc ðpaÞ for every a� a2. Since 0\ sinc ðpaÞ� 1, inequality (6.19) and the above

estimate imply that:

ðUða;EÞ2 þ lða;/ÞÞ1=2

Sinc ðp2aÞ �
ffiffiffi

2
p

p Sinc ðp2aÞ þ pþ jUða;EÞj
Sinc ðp2aÞ

¼
ffiffiffi

2
p

pþ jUða;EÞj þ p
Sinc ðp2aÞ � 3pþ jUða;EÞj

sinc ðpaÞ

� 3pþ j lnEj
2 sinc ðpaÞ ðE

a=2 þ E�a=2Þ

for every a� a2, E[ 0, and 0�/� p. The required inequality now follows from

Lemma 6.3, because Sinc ððp� /Þ2aÞ� sinc ðpaÞ for all a� a2 and 0�/� 2p by

Lemma B.1. h

Lemma 6.5 Let a, b be real numbers, A;B;C� 0, and n; k1; k2; k3 2 Zþ. Then:

ona Cos ðk1ÞðA2aÞCos ðk2ÞðB2aÞCos ðk3Þð�C2aÞ
� �

�

�

�

�

�

�

� n!ðAþ Bþ CÞ2n

ð2nÞ!2k1þk2þk3
ch ðAbÞ ch ðBbÞ ch ðCaÞ

ð6:20Þ

for every a 2 ½�b2; a2�.

Proof For every u 2 R and n 2 Zþ, we have the inequality (see formula (12) in

[22])

jCos ðnÞðnÞj � n!

ð2nÞ! ch u; n� � u2:

Using this estimate and the standard formula for the nth derivative of a product of

functions, we find that the left-hand side of (6.20) is bounded by the product of

ch ðAbÞ ch ðBbÞ ch ðCaÞ and:

X n!

n1!n2!n3!

ðn1 þ k1Þ!A2n1

ð2n1 þ 2k1Þ!
ðn2 þ k2Þ!B2n2

ð2n2 þ 2k2Þ!
ðn3 þ k3Þ!C2n3

ð2n3 þ 2k3Þ!

for every a 2 ½�b2; a2�, where the sum is taken over all n1; n2; n3 2 Zþ, such that

n1 þ n2 þ n3 ¼ n. Since

ðnþ kÞ!
ð2nþ 2kÞ! �

1

2k

n!

ð2nÞ!

for all n; k 2 Zþ, the sum in the above expression does not exceed:
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1

2k1þk2þk3

n!

ð2nÞ!
X

n1þn2þn3¼n

ð2nÞ!
ð2n1Þ!ð2n2Þ!ð2n3Þ!

A2n1B2n2C2n3 ;

whence the required estimate follows immediately. h

Lemma 6.6 Let a; b 2 R. Then, we have:

jonaRða; #;Eei/Þj �
n!

ð2nÞ! ðpþ j lnEjÞ2nþ1
ch ðpbÞðEa=2 þ E�a=2Þ

for all a 2 ½�b2; a2�, # 2 R, E[ 0, / 2 ½0; p�, and n 2 Zþ.

Proof By elementary trigonometric transformations, we derive from (2.17) that:

Rðj2; #;Eei/Þ

¼ ie�i# sin#j

j
cos

ðp� /Þj
2

� i

j
cos# sin

/j
2

� �

ðEj=2 þ E�j=2Þ

� e�i# cos#j cos
ðp� /Þj

2
þ i sin# cos

/j
2

� �

Ej=2 � E�j=2

j

for every j 2 Cnf0g, # 2 C, E[ 0, and �p=2\/\3p=2. We now fix E[ 0 and

/ 2 ½0; p�, and set A ¼ p=2, ~A ¼ /=2, B ¼ ðp� /Þ=2, and C ¼ j lnEj=2. In view of

the equalities:

Ej=2 � E�j=2

j
¼ lnE Sinc � j2

4
ln2 E

� �

;

Ej=2 þ E�j=2

2
¼ Cos � j2

4
ln2 E

� �

;

which hold for all j 2 Cnf0g by (1.30), we conclude that:

Rða; #;Eei/Þ ¼i pe�i# Sinc ðA2aÞCos ðB2aÞ � / cos# Sinc ð ~A2
aÞ

� �

Cos ð�C2aÞ

� lnE e�i# Cos ðA2aÞCos ðB2aÞ þ i sin#Cos ð ~A2
aÞ

� �

Sinc ð�C2aÞ

for all a 2 Cnf0g and # 2 C. By continuity, this equality remains valid for a ¼ 0.

By Lemma 6.5 and (B.3), it follows that:

jonaRða; #;Eei/Þj

� n!

ð2nÞ! ððAþ Bþ CÞ2n
ch ðAbÞ ch ðBbÞ þ ð ~Aþ CÞ2n

ch ð ~AbÞÞðj lnEj þ pÞ ch ðCaÞ

for every a 2 ½�b2; a2� and # 2 R. This implies the required estimate, because A, ~A,

and B do not exceed p=2 by the condition / 2 ½0; p� and ch 2ðpb=2Þ� ch ðpbÞ. h

Given k 2 Zþ, let Kk ¼ Z
f0;...;kg
þ , i.e., Kk is the set of all maps from f0; . . .; kg to

Zþ. For every k; l 2 Zþ, we set:
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Qk;l ¼ ðs; tÞ 2 Kk 	 Kk :
X

k

j¼0

jðsðjÞ þ tðjÞÞ ¼ k;

(

X

k

j¼0

ðsðjÞ þ tðjÞÞ ¼ k þ lþ 1

)

:

ð6:21Þ

Lemma 6.7 For every k; l 2 Zþ, there is a map C : Qk;l ! Z, such that:
X

ðs;tÞ2Qk;l

jCðs; tÞj � 2kþlðk þ lÞ! ð6:22Þ

and

okao
l
#Fða; #; zÞ ¼Rða; #; zÞ�k�l�1

	
X

ðs;tÞ2Qk;l

Cðs; tÞ
Y

k

j¼0

ðojaRða; #; zÞÞ
sðjÞðojaRða; #þ p=2; zÞÞtðjÞ

ð6:23Þ

for every ða; #; zÞ 2 O (we assume that f0 ¼ 1 for every f 2 C).

The proof of Lemma 6.7, which is of purely combinatorial nature, is elementary

but rather lengthy. It is given in Appendix E.

Proof of Proposition 6.2 We fix z 2 Cþ and set E ¼ jzj. Then, there is a unique

/ 2 ð0; pÞ, such that z ¼ Eei/. Let the map C : Qk;l ! Z be as in Lemma 6.7. In

view of Lemma 6.6, the sum in the right-hand side of (6.23) is bounded above by:

X

ðs;tÞ2Qk;l

jCðs; tÞj
Y

k

j¼0

j!

ð2jÞ! ðpþ j lnEjÞ2jþ1
ch ðpbÞðEa=2 þ E�a=2Þ

� �sðjÞþtðjÞ

for every a 2 ½�b2; a2� and # 2 R. As j!=ð2jÞ!� 2�j for every j 2 Zþ, it follows

from (6.21) and (6.22) that this expression does not exceed:

2lðk þ lÞ!ðpþ j lnEjÞ3kþlþ1
ch ðpbÞðEa=2 þ E�a=2Þ
� �kþlþ1

:

Since

EðEa=2 þ E�a=2Þ2 � 4ð1 þ EÞ1þa; ð1 þ j lnEjÞ2 � 2ð1 þ ln2 EÞ;

Lemma 6.4 and (6.23) therefore imply that:

okao
l
#Fða; #; zÞ

�

�

�

��Pa;bðk; lÞð1 þ ln2 EÞ2kþlþ1 ð1 þ EÞ1þa

Eðp� /Þ

 !kþlþ1

for every a 2 ½�b2; a2� and # 2 R. Hence, the required estimate follows, because

Eðp� /Þ�E sinðp� /Þ ¼ E sin/ ¼ Im z. h

Acknowledgements The author is grateful to I.V. Tyutin and B.L. Voronov for useful discussions.

31 Page 48 of 57 A. G. Smirnov



Appendix A. Even holomorphic functions

Given r[ 0, we let Dr denote the disc of radius r in the complex plane centred at

the origin: Dr ¼ fz 2 C : jzj\rg.

Lemma A.1

1. The map z ! z2 from C to itself is open.

2. Let X be a topological space. The map ðz; xÞ ! ðz2; xÞ from C	 X to itself is
open.

Proof 1. Let O be an open subset of C and ~O be its image under the map z ! z2. Let

f 2 ~Onf0g. Then, there is a holomorphic function g defined on a neighborhood of f

and such that gðfÞ 2 O and gðf0Þ2 ¼ f0 for every f0 2 Dg (i.e., g is a holomorphic

branch of the square root in a neighborhood of f whose value at f belongs to O). By

continuity of g, there is a neighborhood V of f, such that gðf0Þ 2 O for all f0 2 V

and, hence, V � ~O. This means that f is an interior point of ~O for every nonzero

f 2 ~O. If 0 2 ~O, then 0 2 O and Dr � O for some r[ 0. It follows that Dr2 � ~O

and, therefore, 0 is an interior point of ~O. This implies that ~O is open.

2. The assertion follows immediately from statement 1 and the definition of

product topology. h

Lemma A.2 Let O � C be such that �z 2 O for every z 2 O. Let ~O ¼ ff 2 C :

f ¼ z2 for some z 2 Og and f be a map on O, such that f ð�zÞ ¼ f ðzÞ for every

z 2 O. Then, there is a unique map ~f on ~O, such that f ðzÞ ¼ ~f ðz2Þ for all z 2 O. If O

is open and f is a holomorphic function on O, then ~O is open and ~f is a holomorphic

function on ~O.

Proof The uniqueness of ~f is obvious. To prove the existence, we choose wf 2 C,

such that f ¼ w2
f for every f 2 C. Clearly, wf 2 O for every f 2 ~O, and we can

define ~f as the map on ~O taking f 2 ~O to f ðwfÞ. Then, we have f ðzÞ ¼ f ðwz2Þ ¼
~f ðz2Þ for every z 2 O, because z ¼ 
wz2 .

Let O be open and f be holomorphic. By statement 1 of Lemma A.1, ~O is open.

Let f 2 ~Onf0g. As in the proof of statement 1 of Lemma A.1, we choose a holo-

morphic branch of the square root g and a neighborhood V of f, such that V � Dg

and gðVÞ � O. Then, V � ~O and f ðgðf0ÞÞ ¼ ~f ðgðf0Þ2Þ ¼ ~f ðf0Þ for every f0 2 V . This

means that ~f coincides on V with the composition of holomorphic functions f and g

and, hence, is holomorphic on V. This implies that ~f is holomorphic on ~Onf0g. If

0 2 ~O, then 0 2 O and there is r[ 0, such that Dr � O. For k ¼ 0; 1; . . ., let ak ¼
f ðkÞð0Þ=k! be the Taylor coefficients of f(z) at z ¼ 0. Since f is even, we have ak ¼ 0

for odd k and, hence, f ðzÞ ¼
P1

n¼0 a2nz
2n for all z 2 Dr. It follows that the series

P1
n¼0 a2nf

n converges to some hðfÞ for every f 2 Dr2 . Clearly, h is holomorphic on

Dr2 and we have hðz2Þ ¼ f ðzÞ ¼ ~f ðz2Þ for every z 2 Dr. This means that ~f coincides

with h on Dr2 and, therefore, ~f is holomorphic on ~O. h
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Lemma A.3 Let n ¼ 1; 2; . . . and O � C	 Cn be such that ð�z; uÞ 2 O for every

ðz; uÞ 2 O. Let ~O be the image of O under the map ðz; uÞ ! ðz2; uÞ from C	 Cn to
itself and f be a map on O, such that f ð�z; uÞ ¼ f ðz; uÞ for every ðz; uÞ 2 O. Then,

there is a unique map ~f on ~O, such that f ðz; uÞ ¼ ~f ðz2; uÞ for all ðz; uÞ 2 O. If O is

open and f is a holomorphic function on O, then ~O is open and ~f is a holomorphic

function on ~O.

Proof The uniqueness of ~f is obvious. To prove the existence, we choose wf 2 C,

such that f ¼ w2
f for every f 2 C. Clearly, ðwf; uÞ 2 O for every ðf; uÞ 2 ~O, and we

can define ~f as the map on ~O taking ðf; uÞ 2 ~O to f ðwf; uÞ. Then, we have f ðz; uÞ ¼
f ðwz2 ; uÞ ¼ ~f ðz2; uÞ for every ðz; uÞ 2 O, because z ¼ 
wz2 .

Let O be open and f be holomorphic. By statement 2 of Lemma A.1, ~O is open.

For every u 2 Cn, we let j1ðuÞ denote the holomorphic map z ! ðz; uÞ from C to

C	 Cn. For every z 2 C, we let j2ðzÞ denote the holomorphic map u ! ðz; uÞ from

Cn to C	 Cn. In view of the Hartogs theorem, the holomorphy of ~f will be proved if

we show that ~f 
 j1ðuÞ and ~f 
 j2ðzÞ are holomorphic functions for every u 2 Cn and

z 2 C. Let s be the map z ! z2 from C to itself and t be the map ðz; uÞ ! ðz2; uÞ
from C	 Cn to itself. Since f ¼ ~f 
 t and t 
 j1ðuÞ ¼ j1ðuÞ 
 s, we have f 
 j1ðuÞ ¼
ð ~f 
 j1ðuÞÞ 
 s for every u 2 Cn. Because f 
 j1ðuÞ is a holomorphic function,

Lemma A.2 implies that ~f 
 j1ðuÞ is a holomorphic function for every u 2 Cn. Since

t 
 j2ðzÞ ¼ j2ðz2Þ, we have ~f 
 j2ðzÞ ¼ f 
 j2ðz2Þ and, hence, ~f 
 j2ðzÞ is a holomor-

phic function for every z 2 C. h

Appendix B. Some properties of the functions commaCoscomma
and commaSinccomma

Dividing the identity sin 2w ¼ 2 sinw cosw by 2w, we find that sinc 2w ¼
sincw cosw for every w 2 Cnf0g. By continuity, this equality remains valid for

w ¼ 0 and it follows from (1.28) that:

Sinc 4f ¼ Sinc fCos f; f 2 C: ðB:1Þ

Substituting sinw ¼ w sincw in the identity sin2 wþ cos2 w ¼ 1, we obtain

w2 sinc 2wþ cos2 w ¼ 1 for every w 2 C. In view of (1.28), this implies that:

f Sinc 2fþ Cos 2f ¼ 1; f 2 C: ðB:2Þ

Differentiating the left equality in (1.28) yields sinw ¼ �2wCos 0ðw2Þ for every

w 2 C. Dividing this identity by w, we obtain sincw ¼ �2 Cos 0ðw2Þ for all

w 2 Cnf0g. By continuity, this formula remains valid for w ¼ 0 and it follows from

the right equality in (1.28) that:

Sinc f ¼ �2 Cos 0f; f 2 C: ðB:3Þ
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Lemma B.1 The functions Cos and Sinc are strictly decreasing on the interval

ð�1; p2�. For every n\p2, we have Sinc n[ 0. If a 2 R and n� � a2, then
j Sinc nj � ch a.

Proof Let the function f on R be defined by the equality f ðxÞ ¼ x cos x� sin x. Then,

we have sinc 0x ¼ f ðxÞ=x2 for every x[ 0. Since f 0ðxÞ ¼ �x sin x, we have f 0ðxÞ\0

for x 2 ð0; pÞ. As f ð0Þ ¼ 0, we have f ðxÞ\0 for x 2 ð0; pÞ and, therefore, sinc

strictly decreases on ½0;p�. In view of (1.31), this implies that Sinc strictly

decreases on ½0; p2�. Since Sinc is strictly decreasing on ð�1; 0� by (1.29), we

conclude that Sinc strictly decreases on ð�1;p2�. In view of the equality

Sinc ðp2Þ ¼ 0, it follows that Sinc n[ 0 for n\p2. By (B.3), we have Cos 0n ¼
�2�1 Sinc n\0 for n\p2 and, hence, Cos is strictly decreasing on ð�1; p2�. Let

a 2 R. In view of (1.29), (1.30), and the monotonicity of Sinc established above,

we have:

Sinc n� Sinc ð�a2Þ� Cos ð�a2Þ ¼ ch a; n 2 ½�a2; p2�:

If n� p2, then we have j Sinc nj ¼ j sinc
ffiffiffi

n
p

j� 1=p\ ch a. Hence, j Sinc nj � ch a

for all n� � a2. h

Appendix C: Herglotz functions

A holomorphic function f on Cþ is said to be a Herglotz function if Im f ðzÞ[ 0 for

every z 2 Cþ. It is well known (see [2], Ch. 6, Sec. 69) that every Herglotz function

f admits a unique representation of the form:

f ðzÞ ¼ aþ bzþ
Z

R

1

t � z
� t

t2 þ 1

� �

dmðtÞ; z 2 Cþ; ðC:1Þ

where a 2 R, b� 0, and m is a positive Radon measure on R, such that:

Z

R

dmðtÞ
t2 þ 1

�1: ðC:2Þ

We call m the Herglotz measure associated with f.

Lemma C.1 Let f be a Herglotz function and u be a continuous complex function on

R satisfying the bound juðEÞj�Cð1 þ E2Þ�2
, E 2 R, for some C� 0. Then, the

function E ! uðEÞIm f ðE þ igÞ on R is integrable for every g[ 0 and we have
R

R
uðEÞIm f ðE þ igÞ dE ! p

R

R
uðEÞ dmðEÞ as g # 0, where m is the Herglotz

measure associated with f.

Proof Since m is the Herglotz measure associated with f, representation (C.1) holds

for some a 2 R and b� 0. We, therefore, have:
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Im f ðE þ igÞ ¼ bgþ
Z

R

g dmðtÞ
ðt � EÞ2 þ g2

; E 2 R; g[ 0:

Since

Z

R

juðEÞjg dE

ðt � EÞ2 þ g2
�C

Z

R

g dE

ðE2 þ 1Þððt � EÞ2 þ g2Þ
¼ Cpðgþ 1Þ

t2 þ ðgþ 1Þ2
; ðC:3Þ

the function ðE; tÞ ! gððt � EÞ2 þ g2Þ�1uðEÞ on R	 R is integrable with respect

to the measure k	 m, where k is the Lebesgue measure on R. By the Fubini the-

orem, we conclude that the function E ! uðEÞIm f ðE þ igÞ on R is integrable for

every g[ 0 and:

Z

R

uðEÞIm f ðE þ igÞ dE ¼ bg
Z

R

uðEÞ dE þ
Z

R

ggðtÞ dmðtÞ; ðC:4Þ

where the function gg on R is given by:

ggðtÞ ¼
Z

R

uðEÞg dE

ðt � EÞ2 þ g2
¼
Z

R

uðt þ gEÞ dE

E2 þ 1
:

By the dominated convergence theorem, ggðtÞ ! puðtÞ as g # 0 for every t 2 R.

Since jggðtÞj � 2pCðt2 þ 1Þ�1
for 0\g\1 by (C.3) and m satisfies (C.2), we can

apply the dominated convergence theorem again and conclude that
R

R
ggðtÞ dmðtÞ !

p
R

R
uðtÞ dmðtÞ as g # 0. In view of (C.4), it follows that

R

R
uðEÞIm f ðE þ igÞ dE !

p
R

R
uðEÞ dmðEÞ as g # 0. h

Appendix D: Proof of Lemma 2.1

The proof given below is similar to that of Lemma 2 in [21].

Let Ln be the branch of the logarithm on Cp satisfying Ln 1 ¼ 0 and p be the

holomorphic function on C	 Cp defined by the relation pðj; fÞ ¼ ejLn f (hence,

pðj; rÞ ¼ rj for r[ 0). Let h be the holomorphic function on C	 C	 Cp, such that

hðj; z; fÞ ¼ pð1=2 þ j; fÞXjðf2zÞ for all j; z 2 C and f 2 Cp. By (2.1), we have:

hðj; z; rÞ ¼ ujðzjrÞ; j; z 2 C; r[ 0: ðD:1Þ

We define the holomorphic function F2 on C	 C	 Cp by the formula:

F2ðj; z; fÞ ¼
p
2
ðhðj; z; fÞ þ hð�j; z; fÞÞ sinc#j; j; z 2 C; f 2 Cp:

In view of (2.9) and (D.1), the equality F2ðj; z; rÞ ¼ bjðzjrÞ holds for every j; z 2
C and r[ 0. Furthermore, we define the function F1 on C	 C	 Cp by setting:
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F1ðj; z; fÞ ¼
hðj; z; fÞ � hð�j; z; fÞ

j
cos#j; j 2 Cnf0g;

F1ð0; z; fÞ ¼ 2 Ln
f
2
þ c

� �

hð0; z; fÞ � pð1=2; fÞ Yðf2zÞ
� 


for every z 2 C and f 2 Cp. It follows immediately from (2.6), (2.7), (D.1), and the

definition of F1 that F1ðj; z; rÞ ¼ ajðzjrÞ for every j; z 2 C and r[ 0. The function

ðz; fÞ ! F1ðj; z; fÞ is obviously holomorphic on C	 Cp for every fixed j 2 C. The

function j ! F1ðj; z; fÞ is holomorphic on Cnf0g and continuous at j ¼ 0 (this is

ensured by the same calculation as the one used to find the limit in (2.7)) and is,

therefore, holomorphic on C for every fixed z 2 C and f 2 Cp. Hence, F1 is

holomorphic on C	 C	 Cp by the Hartogs theorem. The uniqueness of F1 and F2

follows from the uniqueness theorem for holomorphic functions.

Appendix E: Proof of Lemma 6.7

Let N denote the set of all maps from Zþ to Z that vanish outside a finite subset of

Zþ. We let 0 denote the element of N which is identically zero on Zþ: 0ðjÞ ¼ 0 for

all j 2 Zþ. For s 2 N, let Ks ¼ fj 2 Zþ : sðjÞ 6¼ 0g. By the definition of N, the set

Ks is finite for every s 2 N. Let Nþ be the set of all s 2 N, such that sðjÞ� 0 for

every j 2 Zþ. Given s; t 2 N, we let sþ t denote the pointwise sum of s and t:
ðsþ tÞðjÞ ¼ sðjÞ þ tðjÞ for every j 2 Zþ. Endowed with this addition, N becomes an

Abelian group with zero element 0. If s; t 2 Nþ, then sþ t 2 Nþ. Given s 2 Nþ, we

define the function e(s) on C	 C	 C3p=2 by the relation:

eðsja; #; zÞ ¼
Y

j2I
ðojaRða; #; zÞÞ

sðjÞ; a; # 2 C; z 2 C3p=2;

where I is any finite subset of Zþ, such that Ks � I (clearly, the definition of e(s)
does not depend on the choice of I). It follows immediately from the above defi-

nition that:

eðsþ tÞ ¼ eðsÞeðtÞ; s; t 2 Nþ: ðE:1Þ

For every j 2 Zþ, we define dj 2 Nþ by the formula:

djðkÞ ¼
1; k ¼ j;

0; k 2 Zþnfjg:

�

If j 2 Zþ and s 2 N, then we set:

½s�j ¼ s� dj þ djþ1:

If s 2 Nþ and j 2 Ks, then ½s�j 2 Nþ. We now show that:
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oaeðsja; #; zÞ ¼
X

j2Ks

sðjÞeð½s�jja; #; zÞ; ðE:2Þ

o#eðsja; #; zÞ ¼
X

j2Ks

sðjÞeðs� djja; #; zÞojaRða; #þ p=2; zÞ ðE:3Þ

for every s 2 Nþ, a; # 2 C, and z 2 C3p=2. The proof is by induction on the cardi-

nality CardKs of Ks. Let CardKs ¼ 1 and j 2 Zþ be such that Ks ¼ fjg. Then, we

have eðsja; #; zÞ ¼ ðojaRða; #; zÞÞ
sðjÞ

. This implies (E.2) and (E.3), because sðjÞ[ 0

and:

o#Rða; #; zÞ ¼ Rða; #þ p=2; zÞ ðE:4Þ

by (2.17) and (2.18). Suppose now that CardKs [ 1. Then, we can find s0; s00 2 Nþ,

such that s ¼ s0 þ s00, the sets Ks0 and Ks00 are both nonempty, and Ks0 \ Ks00 ¼ £.

Since CardKs0\CardKs and CardKs00\CardKs, it follows from the Leibniz rule,

the induction hypothesis, and formula (E.1) that:

oaeðsja; #; zÞ ¼ eðs00ja; #; zÞ
X

j2Ks0

s0ðjÞeð½s0�jja; #; zÞþ

þeðs0ja; #; zÞ
X

j2Ks00

s00ðjÞeð½s00�jja; #; zÞ:

Applying (E.1) again and observing that ½s�j ¼ ½s0�j þ s00 ¼ s0 þ ½s00�j for every

j 2 Zþ, we obtain (E.2). In the same way, (E.3) follows from the Leibniz rule, the

induction hypothesis, and formula (E.1). This completes the proof of (E.2)

and (E.3) for all s 2 Nþ that are not identically zero. It remains to note that these

formulas obviously hold for s ¼ 0.11

Given s; t 2 Nþ, we define the function Eðs; tÞ on C	 C	 C3p=2 by the relation:

Eðs; tja; #; zÞ ¼ eðsja; #; zÞeðtja; #þ p=2; zÞ; a; # 2 C; z 2 C3p=2:

Since ojaRða; #; zÞ ¼ eðdjja; #; zÞ for every j 2 Zþ, it follows from (2.19), (E.2),

and (E.3) that:

oaEðs; tja; #; zÞ ¼
X

j2Ks

sðjÞEð½s�j; tja; #; zÞ þ
X

j2Kt

tðjÞEðs; ½t�jja; #; zÞ;

o#Eðs; tja; #; zÞ ¼
X

j2Ks

sðjÞEðs� dj; t þ djja; #; zÞ

�
X

j2Kt

tðjÞEðsþ dj; t � djja; #; zÞ:

In view of (E.4), this implies that:

11 As usual, we assume that sum and product of an empty family are equal to zero and unity respectively.

In particular, eð0Þ is identically unity on C	 C	 C3p=2.
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oa
Eðs; tja; #; zÞ
Rða; #; zÞm ¼ Gmðs; tja; #; zÞ

Rða; #; zÞmþ1
;

o#
Eðs; tja; #; zÞ
Rða; #; zÞm ¼ Hmðs; tja; #; zÞ

Rða; #; zÞmþ1

ðE:5Þ

for every s; t 2 Nþ, m ¼ 1; 2; . . ., and ða; #; zÞ 2 O, where the functions Gmðs; tÞ and

Hmðs; tÞ on C	 C	 C3p=2 are given by:

Gmðs; tÞ ¼
X

j2Ks

sðjÞEð½s�j þ d0; tÞ

þ
X

j2Kt

tðjÞEðsþ d0; ½t�jÞ � mEðsþ d1; tÞ;
ðE:6Þ

Hmðs; tÞ ¼
X

j2Ks

sðjÞEðs� dj þ d0; t þ djÞ

�
X

j2Kt

tðjÞEðsþ dj þ d0; t � djÞ � mEðs; t þ d0Þ:
ðE:7Þ

For k; l 2 Zþ, we set Nkþ ¼ fs 2 Nþ : sðjÞ ¼ 0 for j[ kg and:

Sk;l ¼ fðs; tÞ 2 Nkþ 	 Nkþ : ðsjf0;...;kg; tjf0;...;kgÞ 2 Qk;lg;

where the set Qk;l is given by (6.21).

Let k; l 2 Zþ, a� 0, and f be a function on C	 C	 C3p=2. We say that f is a

function of type (k, l, a) if there exists a map c : Sk;l ! Z, such that
P

ðs;tÞ2Sk;l
jcðs; tÞj � a and:

f ða; #; zÞ ¼
X

ðs;tÞ2Sk;l

cðs; tÞEðs; tja; #; zÞ ðE:8Þ

for every a; # 2 C and z 2 C3p=2. In particular, nEðs; tÞ is a function of type (k, l, |n|)

for every ðs; tÞ 2 Sk;l and n 2 Z. Clearly, the following properties hold:

(1) If f is a function of type (k, l, a), then nf is a function of type (k, l, |n|a) for

every n 2 Z.

(2) If f1 and f2 are functions of types ðk; l; a1Þ and ðk; l; a2Þ, then f1 þ f2 is a

function of type ðk; l; a1 þ a2Þ.
(3) Let I be a finite set and F and A be maps on I, such that FðiÞ is a function of

type ðk; l;AðiÞÞ for every i 2 I. Then,
P

i2I FðiÞ is a function of type

k; l;
P

i2I AðiÞ
	 


.

Given k; l 2 Zþ, we can define a bijection p between Sk;l and Qk;l by setting

pðs; tÞ ¼ ðsjf0;...;kg; tjf0;...;kgÞ for every ðs; tÞ 2 Sk;l. The right-hand side of (E.8) then

coincides with the sum in the right-hand side of (6.23) for C ¼ c 
 p�1. Hence,

Lemma 6.7 is ensured by the following statement.
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Lemma E.1 For every k; l 2 Zþ, there is a function f of type ðk; l; 2kþlðk þ lÞ!Þ, such
that:

okao
l
#Fða; #; zÞ ¼ f ða; #; zÞ

Rða; #; zÞkþlþ1

for every ða; #; zÞ 2 O.

Proof We note that ð0; d0Þ 2 S0;0 and Eð0; d0ja; #; zÞ ¼ Rða; #þ p=2; zÞ for every

a; # 2 C and z 2 C3p=2. It therefore follows from (6.3) that the statement holds for

k ¼ l ¼ 0 with f ¼ Eð0; d0Þ. Suppose the statement is true for k; l 2 Zþ and the map

c : Sk;l ! Z is such that:
X

ðs;tÞ2Sk;l

jcðs; tÞj � 2kþlðk þ lÞ! ðE:9Þ

and

okao
l
#Fða; #; zÞ ¼ 1

Rða; #; zÞkþlþ1

X

ðs;tÞ2Sk;l

cðs; tÞEðs; tja; #; zÞ

for every ða; #; zÞ 2 O. In view of (E.5), it follows that:

okþ1
a ol#Fða; #; zÞ ¼ gða; #; zÞ

Rða; #; zÞkþlþ2
; okao

lþ1
# Fða; #; zÞ ¼ hða; #; zÞ

Rða; #; zÞkþlþ2

for every ða; #; zÞ 2 O, where the functions g and h on C	 C	 C3p=2 are given by:

g ¼
X

ðs;tÞ2Sk;l

cðs; tÞGkþlþ1ðs; tÞ; h ¼
X

ðs;tÞ2Sk;l

cðs; tÞHkþlþ1ðs; tÞ: ðE:10Þ

Our statement will be proved by induction on k and l if we show that g and h are

functions of type ðk þ 1; l; aÞ and ðk; lþ 1; aÞ respectively, where

a ¼ 2kþlþ1ðk þ lþ 1Þ!. If ðs; tÞ 2 Sk;l, then ð½s�j þ d0; tÞ 2 Skþ1;l for every j 2 Ks.

Choosing I ¼ Ks, setting FðjÞ ¼ sðjÞEð½s�j þ d0; tÞ and AðjÞ ¼ sðjÞ for every j 2 I,

and applying property (3), we conclude that
P

j2Ks
sðjÞEð½s�j þ d0; tÞ is a function of

type ðk þ 1; l;
P

j2Ks
sðjÞÞ. Furthermore, if ðs; tÞ 2 Sk;l, then ðsþ d0; ½t�jÞ 2 Skþ1;l for

every j 2 Kt. Hence, choosing I ¼ Kt, setting FðjÞ ¼ tðjÞEðsþ d0; ½t�jÞ and AðjÞ ¼
tðjÞ for every j 2 I, and applying property (3), we deduce that

P

j2Kt
tðjÞEðsþ

d0; ½t�jÞ is a function of type ðk þ 1; l;
P

j2Kt
tðjÞÞ. Since ðsþ d1; tÞ 2 Skþ1;l and

Pk
j¼0ðsðjÞ þ tðjÞÞ ¼ k þ lþ 1 for every ðs; tÞ 2 Sk;l, it follows from (E.6) and

property (2) that Gkþlþ1ðs; tÞ is a function of type ðk þ 1; l; 2ðk þ lþ 1ÞÞ for every

ðs; tÞ 2 Sk;l. In a similar way, (E.7) and properties (2) and (3) imply that Hkþlþ1ðs; tÞ
is a function of type ðk; lþ 1; 2ðk þ lþ 1ÞÞ for every ðs; tÞ 2 Sk;l. Our claim

therefore follows from (E.9), (E.10), and properties (1) and (3). h
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