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Abstract
In this paper, we provide a biography of Professor Rajendra Bhatia and discuss

some of his influential mathematical works as one of the leading researchers in

matrix analysis and linear algebra.
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1 Biography

Rajendra Bhatia was born in 1952 in Rohtak in Northwest India. Both his parents

were school teachers. He studied at Birla Public School Pilani, at St Stephen’s

College, University of Delhi, and at the Delhi Centre of the Indian Statistical

Institute from where he obtained a Ph. D. with a thesis titled ‘‘Estimation of Spectral
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Variation’’ under the supervision of Professors Kalyan Mukherjea and Kalyanapu-

ram Rangachari Parthasarathy. In 1979, he was awarded a Fulbright Fellowship,

with which he came to the University of California, Berkeley. He spent the years

1980–1984 at the Tata Institute and the University of Bombay. After this, he came

to the Indian Statistical Institute in Delhi as an Associate Professor and retired from

there as a Distinguished Scientist in 2017. He is currently a Professor of

Mathematics at Ashoka University, a Professor Emeritus at the Indian Statistical

Institute and a Bhatnagar Fellow of CSIR, India.

He has held visiting positions at various departments across the world, among

them the Universities of Toronto and Guelph and the Fields Institute in Canada;

Yale University and the University of Texas at Arlington in the US; Hokkaido

University in Japan; Universities of Bielefeld, Ljubljana, Pisa, Como, Manchester,

Lisbon, ICTP, and the Ecole Polytechnique in Europe; Sungkyunkwan University

and Kyungpook National University in Korea; Shanghai University in China.

Rajendra has made essential contributions to matrix analysis: perturbation of

eigenvalues and eigenvectors, matrix inequalities, operator functions, norm ideals of

operators, connections with Fourier analysis, differential geometry, approximation

problems, applications to numerical analysis, computations and mathematical

physics; see also [4].

He has served on several editorial boards as
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• Associate Editor, Linear Algebra and its Applications, 1988–2005; Senior Editor

2006–2017, Distinguished Editor 2018.

• Member of the Editorial Board, Linear and Multilinear Algebra, 1988–1992.

• Member of the Editorial Board, SIAM Journal on Matrix Analysis and its

Applications, 1995–2006.

• Member of the Advisory Board, Indian Journal of Pure and Applied

Mathematics, 1992–2011.

• Member of the Editorial Board, Operators and Matrices, 2006– 2017.

• Correspondent, Mathematical Intelligencer, 2007.

• Member of the Editorial Board, Kyungpook Mathematical Journal, 2008–2018.

• Associate Editor, Journal of the Ramanujan Mathematical Society, 2011–2017.

He is the Founder Editor of the book series ‘‘Texts and Readings in Mathematics’’

and ‘‘Culture and History of Mathematics’’. He was the Chief Editor of

‘‘Proceedings of the International Congress of Mathematicians’’, India, 2010.

He is the author of three well-known books on Matrix Analysis: ‘‘Perturbation

Bounds for Matrix Eigenvalues’’, ‘‘Matrix Analysis’’, and ‘‘Positive Definite

Matrices’’, and of two other books: ‘‘Fourier Series’’ and ‘‘Notes on Functional

Analysis’’.

His awards and honours include

• CSIR Bhatnagar Fellow.

• Prasanta Chandra Mahalanobis Medal (INSA), 2017.

• Hans Schneider Prize in Linear Algebra, 2016.

• J. C. Bose National Fellow, 2007–2018.

• Fellow, Third World Academy of Sciences (TWAS).

• Fellow, Indian National Science Academy.

• Fellow, Indian Academy of Sciences.

• Fellow, National Academy of Sciences, India.

• Winegard Visiting Professor, University of Guelph, Canada, 1999.

• Shanti Swarup Bhatnagar Prize for Science and Technology, 1995.

• National Lecturer, University Grants Commission, 1990.

• Indian National Science Academy Medal for Young Scientists, 1982.

• Gold Medal of the Birla Education Trust, Pilani, 1968.

Some major international activities of Rajendra are

• Board of Directors, International Linear Algebra Society, 1995–1998.

• Academic Secretary, Ramanujan Mathematical Society, 2006–2009.

• National Committee for International Mathematical Union, Member 2008–2011,

Chair 2012–2015.

His wife, Irpinder, is a writer and producer of TV films and their son, Gautam, is a

lawyer and writer.
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(Rajendra and Irpinder in South Korea during a conference celebrating his 60th

birthday)

2 Influential publications

Several problems, conjectures, and inequalities carry his name. We discuss them in

detail. Some of his mathematical works were surveyed in [4]. In this paper, we focus

on other aspects of them and discuss some of his contributions attracting several

mathematicians. In particular, we have a look at some recent problems having their

origin in quantum information theory. See [19, 20, 30].

2.1 Matrix perturbation theory

After completing his thesis in 1979, Rajendra decided to move into a different

branch of linear algebra, matrix perturbation theory. The central question is to

bound the change that a small perturbation of a matrix can cause to its spectral

resolution. Beside its theoretical interest, this has clear importance for numerical

analysis. Classical results of Hermann Weyl, Alan Hoffman, Helmut Wielandt, V.

B. Lidskii, Alexander Ostrowski, and others mostly dealt with the changes in the

eigenvalues, but progress was underway in bounding the change in the eigenvectors

as well. The then-recent ‘‘sin h theorem’’ of Davis and Kahan [33] simplified the

picture by showing a perturbation bound resulted immediately from a bound on the

solution X of a related operator equation AX � XB ¼ C. Rajendra used his Fulbright

Fellowship to make contact with Davis, proposing they do joint investigation in this

area, and this was the start of their productive collaboration for the next three

decades. The first fruits were their improvements on the sin h theorem (with

essential contributions by Alan McIntosh, Paul Koosis, and K. R. Parthasarathy);

see [13, 14]. The old problem of bounding change in the spectrum got attention too;

for one, Rajendra and Davis proved that a classical perturbation result for hermitian
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matrices holds unchanged for unitaries (but not, it turned out later, for all normal

matrices) [10].

These results were followed by many extensions, sometimes with other

collaborators, treating different classes of operators and different unitarily invariant

norms [12]. One of them, the perturbation of matrix functions, which is of great

interest in diverse areas, has attracted the attention of Rajendra and his coworkers.

These functions include operator monotone functions, power functions, the matrix

absolute value, various matrix decompositions such as polar, QR, LR, SR, and

tensor powers. Various kinds of perturbation problems related to Rajendra’s

research works include:

• Given a bounded linear operator A acting on a Hilbert space, seeking estimates

for jjjf ðAÞ � f ðBÞjjj in terms of jjjA � Bjjj for some types of functions f is a

perturbation problem. More generally, there are matrix perturbation problems

comparing various norms of the generalized commutators AX � XB and

f ðAÞX � Xf ðBÞ.
• A perturbation problem is to find bounds upon the solution X of an operator

equation, say AX � XB ¼ C, when A and B are normal operators acting on a

Hilbert space, and a bound upon C and some geometric information about

spectra of A and B are given.

• Let a matrix A have a specific factorization A ¼ ST (say, UP, QR, LR, SR).

Suppose that A is subject to a perturbation DA, and that A þ DA ¼ ðS þ DSÞðT þ
DTÞ is the same type of factorization of the perturbed matrix. A matrix

factorization perturbation problem is to search upper bounds for jjjDSjjj and
jjjDTjjj, where jjj � jjj is a given unitarily invariant norm and jjjDAjjj � ejjjAjjj for
sufficiently small e.

For a comprehensive account on Rajendra’s works on matrix perturbation theory,

we refer to [6, 9], and references therein.

2.2 Bhatia–Šemrl property

Let X be a normed space. A vector x 2 X is said to be Birkhoff–James orthogonal to
y 2 X if kx þ kyk�kxk for all scalars k, and we write this as x ?B y. An operator T
in the space B(X, Y) of all bounded linear operators between normed spaces X and Y
attains its norm at x0 if there exists a unit vector x0 2 X such that kTx0k ¼ kTk. Let
MT :¼ fx 2 X : jjTk ¼ kTxkandkxk ¼ 1g.

Suppose that there exists a vector x 2 MT such that Tx ?B Sx in Y. Then T ?B S
in B(X, Y) since

kT þ kSk�kTx þ kSxk�kTxk ¼ kTk:

The converse is of special interest. An operator T 2 BðX; YÞ is said to have the so-

called Bhatia–Šemrl property (B–Š property) if for each S with T ?B S there exists a

vector x 2 MT such that Tx ?B Sx. This definition goes back to the work of Bhatia

and Šemrl [28] in which they proved that every operator in a finite-dimensional

Hilbert space has the B–Š property. Li and Schneider [45] showed that there is a
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finite-dimensional normed space X and a bounded linear operator T on X without the

B–Š property. It is proved by Sain et al. [50] that there are sufficiently many

operators with the B–Š property in BðXÞ :¼ BðX;XÞ when X is a finite-dimensional

strictly convex real Banach space. Kim [39] showed that for a Banach space X with

the Radon–Nikodým property, the set of norm attaining operators having the B–Š

property is dense in B(X, Y). Wójcik [51] extended the above result of Bhatia and

Šemrl when X is reflexive and Y is a smooth and strictly convex reflexive space

subject to the condition that the set of points where T attains its norm is either

connected or a doubleton. Zamani [52] obtained a B–Š type characterization of

Birkhoff–James orthogonality for operators in a semi-Hilbertian space, that is a

space equipped with a semi inner product induced by a positive linear operator A
between Hilbert spaces via ½x; y� :¼ hAx; yi, see also [49].

2.3 A conjecture of Bhatia, Lim, and Yamazaki

Let A ¼ ðA1; . . .;AmÞ be an m-tuple of positive definite matrices, let x ¼
ðx1; . . .;xmÞ be an m-tuple of positive weights such that

Pm
i¼1 xi ¼ 1, and let

t be a real number in [0, 1]. The power mean ofA with weights x and parameter t is

defined by Qtðx;AÞ :¼
Pm

i¼1 xiA
t
i

� �1=t
. Another power mean is defined as the

unique solution Ptðx;AÞ of the matrix equation X ¼
Pm

i¼1 xiX#tAi, where A#tB :

¼ A1=2ðA�1=2BA�1=2ÞtA1=2 stands for the operator weighted geometric mean of two

positive definite matrices A and B; see [46]. A version of a conjecture of Bhatia

et al. [25] states that for any unitarily invariant norm jjj � jjj and 0� t� 1, it holds

that

jjjPtðx;AÞjjj � jjjQtðx;AÞjjj: ð2:1Þ

For two positive definite matrices A and B, this reads as follows:

jjjA þ B þ 2ðA#BÞjjj � jjjA þ B þ A1=2B1=2 þ B1=2A1=2jjj:

Inequality (2.1) is known to be valid for the p-Schatten norms k � kp when p ¼ 1; 2,

and p ¼ 1, see [25]. Dinh et al. [35] proved that inequality (2.1) holds for all

p[ 1. The conjecture, in its general form, remains open.

2.4 Matrix arithmetic–geometric mean inequality

For a self-adjoint compact operator T on a separable Hilbert space, by kjðTÞ we

mean the j-th largest eigenvalue of T for j ¼ 1; 2; . . .. The j-th largest eigenvalue sj

of jT j ¼ ðT�TÞ1=2 is called the j-th singular value of T.
Bhatia and Kittaneh [24] established the first arithmetic–geometric type

inequality involving singular values of a compact operator on a separable Hilbert

space. They proved that
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2sjðA�BÞ� sjðAA� þ BB�Þ; j� 1

for compact operators A and B (see [53] for a new proof and an equivalent

inequality).

Later, Bhatia and Davis [11] provided another version for unitarily invariant

norms as

2jjjA�XBjjj � jjjAA�X þ XBB�jjj;

where A, B, and X are arbitrary square matrices; see the comprehensive survey [23]

for other possible matrix extensions of the arithmetic–geometric mean inequality.

A problem raised from [24] is whether for all positive semidefinite n � n matrices

A and B, it is true that

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sjðABÞ

q
� 1

2
kjðA þ BÞ ð1� j� nÞ

The question was affirmatively solved by Drury [36]; see also [47] for a simplified

proof.

2.5 An interpolation inequality involving the Heinz means

The Heinz mean Hmða; bÞ of two real numbers a; b� 0 is defined for m 2 ½0; 1� by
Hmða; bÞ ¼ a1�mbmþamb1�m

2
. These means interpolate between the arithmetic and

geometric means, that is,
ffiffiffiffiffi
ab

p
�Hmða; bÞ� aþb

2
; see [7]. Bhatia and Davis [11]

proved that if A, B, X are n � n matrices such that A and B are positive semidefinite,

and jjj � jjj is a unitarily invariant norm, then the function f ðpÞ ¼ jjjA1þpXB1�p þ
A1�pXB1þpjjj is convex on ½�1; 1� and takes its minimum at p ¼ 0. As a

consequence,

2jjjA1=2XB1=2jjj � jjjAmXB1�m þ A1�mXBmjjj � jjjAX þ XBjjj ð2:2Þ

which gives a matrix version of the above interpolation. The right side of (2.2) is

known as Heinz inequality; see [6, p. 265]. The double inequality drew attention of

many mathematicians; cf. [3, 34, 37, 38, 40, 41].

2.6 Monotonicity of Karcher means

Kubo and Ando [43] essentially developed the theory of means of two positive

definite matrices. Several mathematicians have tried to extend this theory, in

particular the notion of the matrix geometric mean, to three or more matrices. This

was first done by Ando et al. [2] via a recursive method. A different approach, based

on Riemannian geometry, was developed in two papers by Moakher [48] and by

Bhatia and Holbrook [16]. This has stimulated a lot of work by others.

The space P consisting of the m � m positive definite matrices is a Riemannian

manifold equipped with the metric d2ðA;BÞ ¼
Pm

i¼1 log
2 kiðA�1BÞ

� �1=2
. The
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geometric mean GðA1;A2. . .;AnÞ of n matrices A1; . . .;An 2 P is defined as the

unique matrix X 2 P which minimizes the sum

argmin
X

Xn

i¼1

1

n
d22ðX;AiÞ:

and it is called the Karcher mean (or least squares mean) of A1; . . .;An 2 P. This

matrix is indeed the unique positive definite solution of the so-called Karcher

equation
Pn

i¼1 logðX1=2A�1
i X1=2

� �
¼ 0.

Bhatia and Holbrook [16] conjectured the monotonicity of the Karcher mean with

respect to Löwner order in the sense that

GðA1;A2; . . .;AmÞ�GðB1;B2; . . .;BmÞ wheneverAj �Bj for all 1� j�m:

This was affirmatively answered by Lawson and Lim [44] via utilizing a result of

Sturm on probability measures on metric spaces of nonpositive curvature, and by

Bhatia and Karandikar [22] employing some counting arguments and basic

inequalities for the metric d2.

2.7 Inertia of Löwner matrices

Let f be a continuously differentiable real-valued function on ð0;1Þ; and let

p1; . . .; pn be distinct positive real numbers. The n � n matrix

Lf ¼
f ðpiÞ � f ðpjÞ

pi � pj

� �

is called a Löwner matrix associated with f. Here the ith diagonal entry is given by

f 0ðpiÞ: The power functions tr; r 2 R are of special interest, and we denote the

associated Löwner matrices by Lr; i.e.,

Lr ¼
pr

i � pr
j

pi � pj

� �

:

Löwner in his classical work on operator monotone functions showed that f is

operator monotone if and only if every n � n Löwner matrix Lf is positive

semidefinite for every n 2 N: He also showed that tr is operator monotone if and

only if 0� r � 1: In [5] Bhatia showed that

kDArk ¼ rkAr�1k; ð2:3Þ

where DAr denotes the derivative of the map Ar for a positive definite matrix A. He
used this to derive a perturbation bound for the operator absolute value map. The

relation (2.3) was extended to all r in ð�1; 0Þ [ ½2;1Þ in [29], where the authors also
showed that mysteriously, the relation does not hold for any r 2 ð1;

ffiffiffi
2

p
Þ: In 2000,

Bhatia and Holbrook resolved the remaining case in [17], and showed that (2.3) holds

for r 2 ½
ffiffiffi
2

p
; 2�: In the process they studied the Löwner matrices Lr for 1\r\2; and

showed that every Lr has exactly one positive eigenvalue in this case. Hence, by
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Löwner’s theory, we see that Lr has all nonnegative eigenvalues for 0\r\1 and by

[17] we get that Lr has exactly one positive eigenvalue for 1\r\2: This contrast as
r moves from (0, 1) to (1, 2) is intriguing and raises a natural question on the beha-

viour of the sign distribution of eigenvalues of the Löwner matrices Lr as r varies over
the real line. Bhatia and Holbrook conjectured the behaviour of the inertia of Lr, r 2 R

in [17]. They, in addition to solving the problem for 1\r\2; also computed the

inertia for r ¼ 0; 1; . . .; n � 1: Bhatia and Sano revisited this problem in [26, 27] and

computed the inertia for 2\r\3. This problem was fully solved in 2015 in the paper

[15]. In this process, Bhatia and Jain in [18] also computed the inertia of the matrices

Pr ¼ ðpi þ pjÞr� �
for r 2 R and distinct positive numbers p1; . . .; pn: An interesting

observation that comes from this analysis is that the inertia ofPr is equal to that of Lrþ1

for all r [ 0. A natural question arises whether there is a deeper connection between

the two matrix families. The question is open and may lead to some interesting

development in the area.

2.8 Symplectic eigenvalues of positive definite matrices

Let J denote the 2n � 2n matrix

J ¼
O In

�In O

� �

;

where In is the n � n identity matrix. A 2n � 2n real matrix M is called a symplectic

matrix if MT JM ¼ J: By a theorem of Williamson, see [30], we know that for every

2n � 2n real positive definite matrix A there exists a symplectic matrix M such that

MTAM ¼
D O

O D

� �

;

where D is an n � n positive diagonal matrix with the diagonal entries

d1 � � � � � dn: These n positive numbers are complete invariants for A under the

action of the symplectic group and are called the symplectic eigenvalues of A. These
are important quantities in different areas such as classical and quantum mechanics,

symplectic geometry, symplectic topology and in the newer area of quantum

information. See [30] and references therein. Bhatia and Jain initiated the study of

symplectic eigenvalues from the perspective of matrix analysis in [30] and proved

some fundamental results including some variational principles, interlacing theo-

rem, majorisation inequalities and perturbation bounds. In spite of some major

differences between the classical eigenvalue and symplectic eigenvalue theories, we

see that many fundamental results on eigenvalues can be extended to analogous

results on symplectic eigenvalues with suitable modifications and interpretations.

For instance, in [21] Bhatia and Jain proved an analogue of the classical Schur–

Horn theorem for symplectic eigenvalues.

2.9 Bures–Wasserstein distance and barycenter

Let PðnÞ denote the set of all n � n positive definite matrices. Define
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dðA;BÞ ¼ trA þ trB � 2tr A1=2BA1=2
	 
1=2

� �1=2
:

This is a metric on PðnÞ that occurs in different areas of mathematics and physics. It

is known as the Bures distance in quantum information and is called the Wasserstein
distance in the theory of optimal transport and statistics. We call this the Bures–
Wasserstein distance. This distance is of interest in differential geometry as it is the

distance corresponding to a Riemannian metric. It is also closely related to a well-

known problem in factor analysis and multidimensional scaling called the orthog-

onal Procrustes problem. The quantity tr A1=2BA1=2
� �1=2

is the fidelity between two

states A and B. This is an important quantity in quantum information processes. The

Bures–Wasserstein distance is also related to a measure of separation between two

subspaces of Cn. If A and B are diagonal matrices, d reduces to the Hellinger

distance between probability distributions. Bhatia et al. [19] studied the Bures–

Wasserstein distance from a matrix analysis perspective. They unified many known

facts and simplified many of the existing proofs, leading to a better understanding of

the subject. It is remarkable that an exact expression for the geodesic between any

two elements A and B in PðnÞ with respect to the Bures–Wasserstein distance can be

computed. This in turn gives us the mean of two positive definite matrices with

respect to this metric, called the Wasserstein mean. We can also define the

barycentre of m positive definite matrices A1; . . .;Am: consider the minimisation

problem

argmin
X [ 0

Xm

j¼1

wjd
2ðX;AjÞ: ð2:4Þ

This problem was first treated in [42]. The general problem for several probability

measures on Rn was studied in [1] as a part of the multimarginal transport problem

or the m-coupling problem. The special case of Gaussian measures is the problem

(2.4). It was shown in [1] that the problem has a unique solution. In [19], the authors

gave a simpler proof using the techniques of matrix analysis. We call this unique

solution of (2.4) the Wasserstein barycentre of A1; . . .;Am: This is the unique

positive definite matrix Xðw;A1; . . .;AmÞ that satisfies the matrix equation

X ¼
Xm

j¼1

wjðX1=2AjX
1=2Þ1=2;

where w ¼ ðw1; . . .;wmÞ are nonnegative numbers with
P

wj ¼ 1: When m ¼ 2 and

ðw ¼ ðð1� tÞ; tÞ; this is the Wasserstein mean of A1 and A2; and has the closed form

A1 	t A2 ¼ ð1� tÞ2A1 þ t2A2 þ tð1� tÞ ðA1A2Þ1=2 þ ðA2A1Þ1=2
	 


:

Many basic properties of Xðw;A1; . . .;AmÞ were investigated in [19]. In [20] many

inequalities involving the Wasserstein barycentre, Cartan mean, log Euclidean mean

and the power mean were established. In particular, inequalities parallel to those

studied in [25] were addressed in this paper.
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2.10 Applications in brain–computer interfaces

The work of Rajendra has been instrumental for the introduction of Riemannian

geometry methods in the field of brain–computer interfaces (BCIs) based on

electroencephalography (EEG). Such BCIs are systems for translating EEG signals

directly into commands for a computerized system, that is, to allow the user to send

commands without using the muscles or the eyes. Seen this way, a BCI is a system

designed to ‘interpret’ the intention of the subject.

Such interpretation is a machine learning problem. Encoding EEG signals by

means of some form of covariance matrices has allowed the introduction of very

efficient classifiers acting in the manifold of positive-definite matrices [31], which

are now state-of-the-art in the BCI domain [32]. These advances have been made

possible thanks to the ‘matrix’ interpretation of Riemannian geometry illustrated

with exceptional clarity by Rajendra in a number of papers and collected in the

monograph [8], which have provided neuroscientists and data scientists with a

workable framework for applying differential geometry concepts such as geodesics,

barycenters and parallel transport in the realm of brain neuroimaging data.

2.11 Scientometrics

We present a scientometrics analysis of research activity and collaboration of

Rajendra, based on MathSciNet (MR) and Zentralblatt MATH (zbMATH).

His first publication is

• Bhatia, Rajendra; Parthasarathy, K. R. Lectures on functional analysis. Part I.

Perturbation by bounded operators. ISI Lecture Notes, 3. Macmillan Co. of

India, Ltd., New Delhi, 1978. 146 pp.

The five most cited articles of Rajendra in MR are:

• Bhatia, Rajendra; Holbrook, John. Riemannian geometry and matrix geometric

means. Linear Algebra Appl. 413 (2006), no. 2-3, 594618. (101 citations)

• Bhatia, Rajendra; Rosenthal, Peter. How and why to solve the operator equation

AX � XB ¼ Y . Bull. London Math. Soc. 29 (1997), no. 1, 121. (96 citations)

• Bhatia, Rajendra; Davis, Chandler. More matrix forms of the arithmetic–

geometric mean inequality. SIAM J. Matrix Anal. Appl. 14 (1993), no. 1,

132136. (87 citations)

• Bhatia, Rajendra; Kittaneh, Fuad. On the singular values of a product of

operators. SIAM J. Matrix Anal. Appl. 11 (1990), no. 2, 272277. (76 citations)

• Bhatia, Rajendra; Kittaneh, Fuad. Notes on matrix arithmetic–geometric mean

inequalities. Linear Algebra Appl. 308 (2000), no. 1-3, 203211. (66 citations)

The number of Rajendra’s publications recorded in MR is 148, which are cited 3928

times by 2568 authors. The mathematics subject classification in which Rajendra

has published the most number of his papers is ‘‘linear and multilinear algebra and

matrix theory’’, which is also subject in which his works have most citations.
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On zbMATH, one can see that the journal that published the most number of

Rajendra’s papers is ‘‘Linear Algebra and its Applications’’ (43 papers). He

collaborated with 57 mathematicians. Fuad Kittaneh (with 16 papers), Tanvi Jain

(with 15 papers), and Chandler Davis (with 13 papers) have the largest number of

joint papers with him. The paper [16] by Bhatia and Holbrook is included in the list

of ‘‘10 notable papers from Linear Algebra and Its Applications over the last 50

years’’ offered by the editors of the journal to celebrate its golden anniversary in

2018.
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