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Abstract
We consider Banach spaces of functions or distributions on Rd for which the norm

is defined in terms of a weighted Lp-norm of the Fourier transform of the elements

and the weight w in question is assumed to be tempered and moderate. We study in

particular subspaces of these spaces obtained by taking the closure in the corre-

sponding norm of the test functions with compact support in a fixed open subset U

of Rd, usually assumed to be bounded. We consider weighted inequalities involving

the Lp-norm of the Fourier transform of the elements of the subspace with respect to

a positive Borel measure l on Rd and the original norm defined on the subspace. We

obtain, in particular, an exact characterization for these inequalities to hold in the

case where U is a ball with a small enough radius using a suitable weighted

version of the Beurling density. Exploiting duality, we then use these results to

characterize the positive Borel measures l having the property that the inverse

Fourier transform of any measure F dl, where F 2 LqðlÞ, agrees on any open ball

B of sufficiently small radius with the inverse Fourier transform of a tempered

function g, where g 2 Lqð ~wÞ, for a weight ~w related to w and, if it is the case, we

also obtain a necessary and sufficient condition for the associated mapping

F�1LqðlÞjB ! F�1Lqð ~wÞjB to be surjective.
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1 Introduction

In Lemma 4.2 of [20], R. Strichartz proved that if l is a translation-bounded Borel

measure on Rd (see (12) for the definition) and F 2 L2ðlÞ, then the Fourier

transform of the (complex) measure F dl is locally square-integrable on Rd.

Although this is not mentioned in [20], the converse of this statement is also true: if,

for any F 2 L2ðlÞ, the Fourier transform of F dl is in L2locðRdÞ, then l must be

translation-bounded. We note that the condition that l is translation-bounded is

equivalent to the upper-Beurling density of l, DþðlÞ, being finite (see Sect. 5, for

more details and for the definition of Beurling densities). If, in addition, the lower-

Beurling density of l, D�ðlÞ is strictly positive, then any locally square-integrable

function h on Rd can in fact be expressed, in any ball having sufficiently small

radius, as the Fourier transform of a measure F dl, for some F 2 L2ðlÞ (which

depends on the ball). As an example, consider in one dimension the measure

l ¼
P

n2Z dn, where da denotes the Dirac mass concentrated at the point a. It

satisfies D�ðlÞ ¼ DþðlÞ ¼ 1 and the set of inverse Fourier transforms of measures

F dl, where F 2 L2ðlÞ, consists exactly of the 1-periodic locally square-integrable

functions on the line. It is then clear that, on any open ball B of radius 1/2, any

square integrable function f can be expressed as the inverse Fourier transform of

F dl, for some function F 2 L2ðlÞ.
One of our main goals in this paper, is to generalize these results to spaces more

general than L2locðRdÞ. We will consider here Banach spaces or functions or

distributions on Rd for which the corresponding norm is defined using the weighted

Lp-norm of the Fourier transform of the elements, where the associated weight is

assumed to be moderate and tempered (see Sect. 2, for the exact definitions). When

p ¼ 2, the corresponding spaces have been studied by the author in [8] and many of

the results in [8] are generalized here in the case 1� p\1. It turns out that

multiplication by a function in the Schwartz class, SðRdÞ, defines a continuous

linear map on these spaces and this will allow us to define a ‘‘local’’ version of this

spaces, in analogy with the relationship between L2ðRdÞ and L2locðRdÞ. We will be

mostly interested in subspaces of these spaces obtained by taking the closure in the

corresponding norm of the test functions with compact support in a fixed open set

U. Given a locally finite positive measure l on Rd as well as a moderate and

tempered weight w defined on Rd and p with 1� p\1, we will be interested in

comparing the norms

kukp;w :¼
Z

Rd
jûðnÞjp wðnÞ dn

� �1=p

and kukp;l :¼
Z

Rd
jûðnÞjp dlðnÞ

� �1=p

;

where u ranges over all test functions with compact support in the open set U. As
we will show in Theorem 9 (see also Theorem 8 for the unweighted case w ¼ 1),

the fact that kukp;l �B kukp;w for some positive constant B and for all test functions

u supported in a ball of sufficiently small radius is equivalent to having

Dþðw�1 lÞ\1. If this is the case, a duality argument shows that if F 2 LqðlÞ,

1230 J.-P. Gabardo



where q is the dual exponent of p, then the inverse Fourier transform of the measure

F dl (in the sense of tempered distributions) coincides on any fixed ball with the

inverse Fourier transform of some tempered function h (that depends on the ball)

satisfying
R
Rd jhðnÞjq ~wðnÞ dn\1, where ~w ¼ w1�q if 1\p\1, or kh ~wk1\1 if

p ¼ 1 where ~w ¼ w�1. This generalizes thus the result of Strichartz mentioned

above which corresponds to the case p ¼ 2 and w ¼ 1, since the required condition

DþðlÞ\1 is equivalent to l being translation-bounded by Proposition 6. We will

also prove in Theorem 7, that the two norms above are equivalent in the case where

U is a ball in Rd with sufficiently small radius if and only if D�ðw�1 lÞ[ 0 and

Dþðw�1 lÞ\1 (see also Theorem 6 for the unweighted case). This implies, again

by a duality argument, that, if both these conditions are met, the inverse Fourier

transforms of the tempered measures F dl with F 2 LqðlÞ and those of the tem-

pered functions h satisfying
R
Rd jhðnÞjq ~wðnÞ dn\1 if 1\p\1 or kh ~wk1\1 if

p ¼ 1, where ~w is as above, generate the same space of distributions when restricted

to any ball of sufficiently small radius. This generalizes the fact mentioned earlier

that if a positive measure l satisfies D�ðlÞ[ 0 and DþðlÞ\1, the restrictions to

any ball with sufficiently small radius of the inverse Fourier transform of measures

of the form F dl where F 2 L2ðlÞ, generate exactly the space of square-integrable

functions on that ball.

The paper is organized as follows. We consider Banach spaces of functions or

tempered distributions where the norm of an element is defined by a weighted Lp-
norm of their Fourier transform in Sect. 2 and prove some of their basic properties

and characterize their dual spaces. In Sect. 3, we prove that if a positive Borel

measure l on Rd has the property that its associated Lp-space contains the Fourier

transform of all the test functions supported in a small ball, then l is necessarily a

tempered measure, i.e.
Z

Rd

1

ð1þ jnj2ÞM
dlðnÞ\1

for some M[ 0. We then define certain weighted inequalities associated with a

positive Borel measure and show that they are equivalent to some properties of the

adjoint of certain operators defined by the Fourier transform on those spaces. These

type of inequalities have been considered by researchers in sampling theory in

various frameworks such as Gabor frames or Fock spaces (e.g. [1, 17]) and the

measures giving rise to these inequalities are often called ‘‘sampling measures’’.

In Sect. 4, we prove a useful result which allows us, for example, to deduce a

weighted inequality from an unweighted one (i.e. for the weight w ¼ 1) and vice-

versa. Finally, the last section, Sect. 5, is the most technical. Here, we prove our

main results which generalize Strichartz’s result mentioned above.

Let us mention some notations and definitions used in this paper. If U is an open

subset of Rd, we denote by C1
0 ðUÞ the space of test-functions supported in U,

i.e. the infinitely differentiable functions compactly supported in U and if K � Rd is

compact, C1
0 ðKÞ denotes the space of functions in C1

0 ðRdÞ whose support is
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contained in K. The Schwartz class, denoted by SðRdÞ, consists of all functions w on

Rd, such that

sup
x2Rd

jDawðxÞ ð1þ jxj2ÞN j\1

for any multi-index a. C0ðRdÞ is the space of continuous functions on Rd that vanish

at infinity.

If w[ 0 is a weight on Rd and 1� p\1, the space LpwðRdÞ is the Lebesgue

space of measurable functions f on Rd satisfying
Z

Rd
jf ðnÞjp wðnÞ dn\1:

If w ¼ 1, LpwðRdÞ is denoted by LpðRdÞ and we let kfkp ¼
R
Rd jf ðnÞjp dn

� �1=p
and

kfk1 ¼ ess supn2Rd jf ðnÞj. If A, B are subsets of Rd and t 2 Rd, we will denote by

Aþ B the set faþ b : a 2 A; b 2 Bg and by t þ A the set ft þ a : a 2 Ag. We

also denote by B(a, r) the open ball of center a 2 Rd with radius r[ 0,

i.e. fx 2 Rd : jx� aj\rg. If f 2 L1ðRdÞ, we denote its Fourier transform by f̂ or

Fðf Þ. It is defined by

f̂ ðnÞ ¼ Fðf ÞðnÞ ¼
Z

Rd
e�2pin�x f ðxÞ dx; n 2 Rd:

This definition extends in the usual way to the dual of SðRdÞ, the space S0ðRdÞ of
tempered distributions on Rd . If U is open, we also denote by D0ðUÞ, the space of

distributions on U (which is the dual of the space C1
0 ðUÞ defined earlier). If X is a

Banach space, its dual, the space of continuous linear functionals on X, is denoted
by X0 (see [19] for more details on these various spaces).

2 Weighted Fourier Lp-spaces

A moderate weight on Rd is a continuous function w[ 0 defined on Rd and

satisfying

wðnþ gÞ�wðnÞ vðgÞ; n; g 2 Rd; ð1Þ

for some function v[ 0 on Rd. In the following, we will always assume that v is

tempered, i.e. that there exists a constants C;M[ 0 such that

vðnÞ�C ð1þ jnj2ÞM; n 2 Rd: ð2Þ

This implies, in particular, that w is tempered as well and, in fact, it is easy to see

that, for some integer M� 0, the function wðnÞ ð1þ jnj2Þ�M
is bounded, and so is

the function w�1ðnÞ ð1þ jnj2Þ�M
(since w�1 satisfies the inequality (1) with vðgÞ

replaced by vð�gÞ). We will assume that v is submultiplicative, i.e. that vðnþ
sÞ� vðnÞ vðsÞ for any n; s 2 Rd. This is not a restriction since v can be defined as
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vðsÞ ¼ supn2Rd wðnþ sÞ=wðnÞ, for s 2 Rd. It is easily checked that any power of w,

wa with a 2 R, defines a moderate weight which is also tempered. An example of a

weight w satisfying (1) and (2) is the weight

wðnÞ ¼ ð1þ jnj2Þs; n 2 Rd;

with s 2 R, which is used in the definition of the standard Sobolev space HsðRdÞ
corresponding to the case p ¼ 2 below. Using Peetre’s inequality, it is easily seen

that the corresponding v satisfies

vðnÞ� ð1þ jnj2Þjsj;

where w1 �w2 means that Aw1 �w2 �Bw1 pointwise for two positive constant

A and B. We refer the reader to Gröchenig’s paper [11] for more examples of

weights satisfying (1) as well as an extensive overview of their properties and

applications in harmonic analysis (see also [6, 8, 13]).

Definition 1 If 1� p\1, let

F�1LpwðRdÞ ¼ u 2 S0ðRdÞ; û 2 L1locðRdÞ and
Z

Rd
jûðnÞjp wðnÞ dn\1

� �

ð3Þ

and let

F�1L1w ðRdÞ ¼ fu 2 S0ðRdÞ; û 2 L1locðRdÞ and û w 2 L1ðRdÞg:

The norm of an element u 2 F�1LpwðRdÞ is defined by

kukp;w ¼
Z

Rd
jûðnÞjp wðnÞ dn

� �1=p

; 1� p\1; and kuk1;w ¼ kû wk1:

Proposition 1 For any p with 1� p�1, F�1LpwðRdÞ is a Banach space. When

p ¼ 2, F�1L2wðRdÞ is Hilbert space with inner product

hh; giw ¼
Z

Rd
ĥðnÞ ĝðnÞwðnÞ dn; h; g 2 F�1L2wðRdÞ:

We have the continuous embeddings

SðRdÞ,!F�1LpwðRdÞ,!S0ðRdÞ

and F : F�1LpwðRdÞ ! LpwðRdÞ an isometric isomorphism, where F is the Fourier
transform.

Proof As the statements to prove are easily checked, we just verify the continuity

of the embeddings above as well as the completeness property. To show the

continuous embedding SðRdÞ,!F�1LpwðRdÞ, choose M[ 0 large enough so that
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both functions wðnÞ�1 ð1þ jnj2Þ�M
and wðnÞ ð1þ jnj2Þ�M

are bounded on Rd. For

p ¼ 1 and u 2 SðRdÞ, we have the estimate

kû wk1 �kûðnÞ ð1þ jnj2ÞMk1 kwðnÞ ð1þ jnj2Þ�Mk1:

and for 1� p\1, by Hölder’s inequality, we have

Z

Rd
jûðnÞjp wðnÞ dn�C kûðnÞ ð1þ jnj2Þskp1

where C :¼
R
Rd

wðnÞ
ð1þjnj2Þsp dn\1 if s p[M þ d=2. If u 2 F�1L1w ðRdÞ, the

inequality

Z

Rd

jûðnÞj
ð1þ jnj2Þs

dn�C kuk1;w;

where C ¼
R
Rd

w�1ðnÞ
ð1þjnj2Þs dn\1 if s[M þ d=2 shows the continuity of the

embedding F�1L1w ðRdÞ,!S0ðRdÞ. If 1\p\1 and s q[Mq=pþ d=2 where q is

the dual exponent of p defined by 1=pþ 1=q ¼ 1, Hölder’s inequality shows that,

for any u 2 F�1LpwðRdÞ,

Z

Rd

jûðnÞj
ð1þ jnj2Þs

dn�
Z

Rd
jûðnÞjp wðnÞ dn

� �1=p Z

Rd

w�q=pðnÞ
ð1þ jnj2Þsq

dn

 !1=q

�C kukp;w;

where

C ¼ sup
n2Rd

wðnÞ�1 ð1þ jnj2Þ�M
� 	

 !1=p Z

Rd

1

ð1þ jnj2Þsq�Mq=p
dn

 !1=q

\1:

For p ¼ 1, we have the estimate

Z

Rd

jûðnÞj
ð1þ jnj2ÞM

dn� sup
n2Rd

wðnÞ�1 ð1þ jnj2Þ�M
� 	

kuk1;w:

This shows that the space F�1LpwðRdÞ is continuously embedded in S0ðRdÞ if

1� p\1.

In particular, if fung is a Cauchy sequence in F�1LpwðRdÞ, the sequence fûng is

Cauchy in LpwðRdÞ. Since this last space is complete, there exists h 2 LpwðRdÞ such
that ûn ! h in LpwðRdÞ and the previous estimate yields

Z

Rd

jhðnÞj
ð1þ jnj2Þs

dn\1

if s is large enough, showing that h defines a tempered distribution. If the element

u 2 S0ðRdÞ is defined by the equation û ¼ h, it follows thus that u belongs to
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F�1LpwðRdÞ and un ! u in F�1LpwðRdÞ, proving the required completeness property.

h

We should point out that, for a general moderate weight w as above, it might not

be true that u, the complex conjugate of u, belongs to F�1LpwðRdÞ whenever u does.

This will be the case, however, if w is even (wð�nÞ ¼ wðnÞ), or more generally, if

wð�nÞ�CwðnÞ for some constant C[ 0. The following two results show that the

dual of F�1LpwðRdÞ can be identified with F�1Lq
w1�qðRdÞ if 1\p\1 and with

F�1L1w�1ðRdÞ if p ¼ 1.

Proposition 2 Let p with 1\p\1 and let h 2 F�1Lq
w1�qðRdÞ, where q is the dual

exponent of p. Then, the mapping

‘hðuÞ ¼
Z

Rd
ûðnÞ ĥðnÞ dn; u 2 F�1LpwðRdÞ; ð4Þ

is well defined as an element of F�1LpwðRdÞ
� �0

. Furthermore, we have

k‘hk ¼ khkq;w1�q . Conversely any element ‘ of the dual space F�1LpwðRdÞ
� �0

is of the

form ‘ ¼ ‘h as in (4) for some h 2 F�1Lq
w1�qðRdÞ:

Proof If h 2 F�1Lq
w1�qðRdÞ and ‘h is defined by (4), we have, using Hölder’s

inequality, that

j‘hðuÞj �
Z

Rd
jûðnÞj jĥðnÞj dn ¼

Z

Rd
jûðnÞj jĥðnÞjwðnÞ1=p wðnÞ�1=p dn

�
Z

Rd
jûðnÞjp wðnÞ dn

� �1=p Z

Rd
jĥðnÞjq wðnÞ�q=p dn

� �1=q

¼ kukp;w
Z

Rd
jĥðnÞjq wðnÞ1�q dn

� �1=q

;

showing that ‘h 2 F�1LpwðRdÞ
� �0

and k‘hk�khkq;w1�q . Furthermore, defining u 2
F�1LpwðRdÞ by the formula

ûðnÞ ¼ ĥðnÞ jĥðnÞjq�2 wðnÞ�q=p
if hðnÞ 6¼ 0;

0 if hðnÞ ¼ 0;

(

we have ‘hðuÞ ¼ kukp;w khkq;w1�q , showing that k‘hk ¼ khkq;w1�q . Conversely, since

the mapping F : F�1LpwðRdÞ ! LpwðRdÞ is an isometric isomorphism and

LpwðRdÞ
� �0¼ LqwðRdÞ in the sense that any continuous linear functional ~‘ on LpwðRdÞ
has the form

~‘ðf Þ ¼
Z

Rd
f ðnÞ gðnÞwðnÞ dn; f 2 LpwðRdÞ;

for some g 2 LqwðRdÞ, it follows that any element ‘ of FLpwðRdÞ
� �0

has the form
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‘ðuÞ ¼
Z

Rd
ûðnÞGðnÞwðnÞ dn; f 2 LpwðRdÞ;

for some G 2 LqwðRdÞ. Defining h by the formula ĥ ¼ Gw, it is easily checked that

h 2 F�1Lq
w1�qðRdÞ and that ‘ ¼ ‘h, as above. This proves our claim. h

We can deal with the case p ¼ 1 in a similar way. The proof of the next

proposition is left to the reader.

Proposition 3 If h 2 F�1L1w�1ðRdÞ, the mapping

‘hðuÞ ¼
Z

Rd
ûðnÞ ĥðnÞ dn; u 2 F�1L1wðRdÞ; ð5Þ

is well defined as an element of F�1L1wðRdÞ
� �0

. Furthermore, we have

k‘hk ¼ khk1;w�1 . Conversely any element ‘ of F�1L1wðRdÞ
� �0

is of the form ‘ ¼ ‘h

as in (5) for some h 2 F�1L1w�1ðRdÞ.

We can use the previous duality characterization to prove the density of the test

functions F�1LpwðRdÞ when 1� p\1.

Proposition 4 If 1� p\1, the space C1
0 ðRdÞ is dense in F�1LpwðRdÞ.

Proof We argue by contradiction. If C1
0 ðRdÞ were not dense in F�1LpwðRdÞ, the

Hahn-Banach theorem would show the existence of a non-zero element ‘ of

F�1LpwðRdÞ
� �0

satisfying ‘ðuÞ ¼ 0 for all u 2 C1
0 ðRdÞ. If 1\p\1, Proposition 2

would imply the existence of h 2 F�1Lq
w1�qðRdÞ with h 6¼ 0 such that

‘ðuÞ ¼
Z

Rd
ûðnÞ ĥðnÞ dn ¼ 0; u 2 C1

0 ðRdÞ:

Since the space F�1Lq
w1�qðRdÞ is continuously embedded in S0ðRdÞ and the space

C1
0 ðRdÞ is dense is SðRdÞ, it would follow that h ¼ 0, a contradiction. If p ¼ 1, the

proof is similar and uses Proposition 3. h

Definition 2 If U is an open set of Rd and 1� p\1, we will denote by F�1LpwðUÞ
the closure of the space C1

0 ðUÞ in F�1LpwðRdÞ.

Note that Proposition 4 shows that there is no ambiguity between Definitions 1

and 2 in the case where U ¼ Rd.

Lemma 1 If 1� p�1 and w 2 SðRdÞ, the mapping u 7!w u is a continuous linear

mapping from F�1LpwðRdÞ to itself.

Proof If 1� p\1 and u 2 F�1LpwðRdÞ, the integral form of Minkowski’s

inequality yields
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kw ukp;w ¼
Z

Rd
jðû � ŵÞðnÞjp wðnÞ dn

� �1=p

¼
Z

Rd

Z

Rd
ûðn� gÞ ŵðgÞ dg



















p

wðnÞ dn
� �1=p

�
Z

Rd
jŵðgÞj

Z

Rd
jûðn� gÞjp wðnÞ dn

� �1=p

dg

�
Z

Rd
jŵðgÞj

Z

Rd
jûðn� gÞjp wðn� gÞ vðgÞ dn

� �1=p

dg ¼ C kukp;w;

where C :¼
R
Rd jŵðgÞj vðgÞ1=p dg\1: The case p ¼ 1 follows from a similar

argument. h

The next lemma will help us define tempered distributions on Rd which are

locally in F�1LpwðRdÞ.

Lemma 2 Let 1� p�1 and let w be a weight on Rd satisfying (1) and (2). Then,

given T 2 S0ðRdÞ, the following are equivalent.

(a) For any u 2 C1
0 ðRdÞ, the distribution u T belongs to F�1LpwðRdÞ.

(b) For any bounded open set U � Rd, there exists u 2 F�1LpwðRdÞ such that

u ¼ T on U.

Proof If (a) holds and U � Rd is a bounded open set, we can find u 2 C1
0 ðRdÞ

such that u 	 1 on U. Then, u ¼ u T 2 F�1LpwðRdÞ and u ¼ T on U. Conversely, if

(b) holds and u 2 C1
0 ðRdÞ, let U be a bounded open set containing the support of u.

If T 2 S0ðRdÞ, let u 2 F�1LpwðRdÞ with u ¼ T on U. We have then u T ¼ u u 2
F�1LpwðRdÞ by Lemma 1, which proves our claim. h

We will denote by F�1
locL

p
wðRdÞ the set of tempered distributions on Rd which

satisfy any of the equivalent statements of the previous lemma.

3 Weighted inequalities in measure spaces

We now introduce certain weighted inequalities which will play a central role in the

following sections.

Definition 3 Let w[ 0 be a weight on Rd satisfying (1) and (2) and let l be a

positive, locally finite Borel measure on Rd. Let U � Rd be open and non-empty, let

p with 1� p\1 and let A;B[ 0.

(a) We say that the couple ðl;wÞ belongs to BpðU;BÞ if we have the inequality
Z

Rd
jûðnÞjp dlðnÞ�B

Z

Rd
jûðnÞjp wðnÞ dn; u 2 F�1LpwðUÞ: ð6Þ
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(b) We say that the couple ðl;wÞ belongs to F pðU;A;BÞ if, for any u in the space

F�1LpwðUÞ, we have the inequalities

A

Z

Rd
jûðnÞjp wðnÞ dn�

Z

Rd
jûðnÞjp dlðnÞ�B

Z

Rd
jûðnÞjp wðnÞ dn: ð7Þ

Since, by definition, the space C1
0 ðUÞ is dense in F�1LpwðUÞ, in order to establish

that a couple ðl;wÞ belongs to BpðU;BÞ or F pðU;A;BÞ, it is thus sufficient to verify
the inequalities in (6) or (7), respectively, for test functions u ¼ u 2 C1

0 ðUÞ. Note
that, for any a 2 Rd, we have

BpðU;BÞ ¼ BpðU þ a;BÞ and F pðU;A;BÞ ¼ F pðU þ a;A;BÞ: ð8Þ

Clearly, if l is any tempered positive Borel measure on Rd, we have

Z

Rd
jûðkÞjp dlðkÞ\1

if 1� p\1 and u 2 C1
0 ðRdÞ. However, it is not immediately obvious that a

positive Borel measure l must be tempered if the previous integral is finite for all

the test functions in C1
0 ðUÞ where U � Rd is a non-empty open set. The next

lemma will be needed to show that it is indeed the case.

Lemma 3 Let q with 1\q\1, let l be a positive, locally finite Borel measure on

Rd and suppose that, for every F 2 LqðlÞ with F� 0, the measure F dl is tempered,
i.e. there exists an integer m ¼ mðFÞ such that

Z

Rd

FðnÞ
ð1þ jnj2Þm

dlðnÞ\1:

Then, the measure l must itself be tempered, i.e. there exists an integer M such that
Z

Rd

1

ð1þ jnj2ÞM
dlðnÞ\1:

Proof We first show that there exist an integer m0 � 0 such that
Z

Rd

FðnÞ
ð1þ jnj2Þm0

dlðnÞ\1

for all F 2 LqðlÞ with F� 0. Indeed, if it weren’t the case, we could find a sequence

fFkgk� 1 2 LqðlÞ with Fk � 0 and

Z

Rd

FkðnÞ
ð1þ jnj2Þk

dlðnÞ ¼ 1:
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Letting F ¼
P1

k¼1 2�k kFkk�1
q;l Fk, we have F 2 LqðlÞ, F� 0 and, for any k� 1,

Z

Rd

FðnÞ
ð1þ jnj2Þk

dlðnÞ� 2�k kFkk�1
p;l

Z

Rd

FkðnÞ
ð1þ jnj2Þk

dlðnÞ ¼ 1;

in contradiction with our hypothesis. Letting thus m0 be as above, we can define the

linear mapping ‘ : LqðlÞ ! C by

‘ðGÞ ¼
Z

Rd

GðnÞ
ð1þ jnj2Þm0

dlðnÞ; G 2 LqðlÞ:

Define also for N� 1, the linear mappings ‘N : LqðlÞ ! C by

‘NðGÞ ¼
Z

fjnj �Ng

GðnÞ
ð1þ jnj2Þm0

dlðnÞ; G 2 LqðlÞ:

Each ‘N defines a bounded linear map since, for any G 2 LqðlÞ, we have

j‘NðGÞj �
Z

Rd
jGðnÞjq dlðnÞ

� �1=q Z

fjnj �Ng

1

ð1þ jnj2Þpm0
dlðnÞ

 !1=p

:

Furthermore, for any G 2 LqðlÞ, the sequence f‘NðGÞg is bounded since

‘NðGÞ ! ‘ðGÞ, N ! 1, by the Lebesgue dominated convergence theorem. It fol-

lows thus from the uniform boundedness principle that the sequence of operators

f‘Ng is bounded, i.e. there exists B[ 0 such that k‘Nk�B for all N. This implies

that k‘k�B, i.e. the linear functional ‘ is continuous. The fact that the dual of LqðlÞ
is LpðlÞ (with 1=pþ 1=q ¼ 1) shows that

Z

Rd

1

ð1þ jnj2Þpm0
dlðnÞ\1;

proving that our claim holds with M ¼ pm0. h

Note that the previous result does not hold for q ¼ 1 since the measure F dl is

automatically bounded if F 2 L1l.

Proposition 5 Let p with 1� p\1, let l be a positive Borel measure on Rd (not
necessarily locally finite) and suppose that, for some �[ 0, we have

Z

Rd
jûðnÞjp dlðnÞ\1; u 2 C1

0 ðBð0; �ÞÞ;

where Bð0; �Þ ¼ fx 2 Rd; jxj\�g. Then, l is a tempered measure, i.e. there exists
M[ 0 such that

Z

Rd

1

ð1þ jnj2ÞM
dlðnÞ\1:
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Proof We first show that l is locally finite. By a compactness argument, it is

enough to show that each point in Rd is the center of a ball with finite l-measure.

Let u0 2 C1
0 ðBð0; �ÞÞ with u0 6¼ 0 and choose n0 2 Rd such that

jû0ðn0Þj :¼ 2 r[ 0. By continuity, we have thus, for some �[ 0, that jû0ðnÞj � r

if jn� n0j\�. If n1 2 Rd, the function u1, defined by u1ðxÞ ¼ e2pix�ðn1�n0Þ u0ðxÞ,
belongs to C1

0 ðBð0; �ÞÞ and we have the inequality jû1ðnÞj � r if jn� n1j\�. Hence,

lðBðn1; �ÞÞ�
1

r2

Z

fjn�n1j\�g
jû1ðnÞj2 dlðnÞ�

1

r2

Z

Rd
jû1ðnÞj2 dlðnÞ\1;

showing that l is locally finite. To show that l is actually tempered, we consider

first the case where 1\p\1. Using Lemma 3, it suffices to show that for any

F 2 LqðlÞ with F� 0, the measure F dl is tempered. For such an F, let N � 1 and

define, for any u 2 C1
0 ðBð0; �ÞÞ,

hT ;ui ¼
Z

Rd
FðnÞ ûðnÞ dlðnÞ and hTN ;ui ¼

Z

Bð0;NÞ
FðnÞ ûðnÞ dlðnÞ:

It is easy to check that for each N� 1, TN 2 D0ðBð0; �ÞÞ since it is the restriction to

the ball Bð0; �Þ of the inverse Fourier transform of the bounded measure

F vBð0;NÞ dl. Furthermore, the sequence fTNgN � 1 is bounded in D0ðBð0; �ÞÞ since

this is equivalent to the boundedness of each sequence fhTN ;uigN � 1 with u 2
C1
0 ðBð0; �ÞÞ and, for such u, we have

jhTN ;uij �
Z

Bð0;NÞ
FðnÞ jûðnÞj dlðnÞ�

Z

Rd
FqðnÞ dlðnÞ

� �1=q

kukp;l;

where kukp;l ¼
R
Rd jûðnÞjp dlðnÞ

� �1=p
. It follows then from elementary distribution

theory, that there exist an integer K� 0 and a constant C[ 0, such that

jhTN ;uij �C
X

jaj �K

koauk1; u 2 C1
0 ðBð0; �=2ÞÞ:

Hence, T 2 D0ðBð0; �ÞÞ and satisfies

jhT ;uij �C
X

jaj �K

koauk1; u 2 C1
0 ðBð0; �=2ÞÞ:

Let q 2 C1
0 ðBð0; 1ÞÞ satisfy q̂ð0Þ ¼ 1 and for r[ 0, define qrðxÞ ¼ qðx=rÞ and

~qrðxÞ ¼ qð�x=rÞ. Clearly, qr � ~qr 2 C1
0 ðBð0; �=2ÞÞ if 0\r� �=4. Furthermore, for

any x 2 Rd, we have

oa qr � ~qrð ÞðxÞ ¼ oaqrð Þ � ~qrð ÞðxÞ ¼ r�jaj
Z

Rd
oaqð Þððy� xÞ=rÞ qðy=rÞ dy:

Hence, for any multi-index a, we have

koa qr � ~qrð Þk1 � r�jajþd koaqk2 kqk2:

1240 J.-P. Gabardo



It follows that, there exists a constant C1 [ 0 such that

jhT ; qr � ~qrij�C1 r
d�K if 0\r� �=4\1:

Since q̂rðnÞ ¼ rd q̂ðrnÞ, we have thus the inequality

Z

Rd
FðnÞ jq̂ðrnÞj2 dlðnÞ�C1 r

�d�K ; 0\r� �=4\1:

Let d[ 0 be small enough so that jq̂ðnÞj2 � 1=2 if jnj � d. We have then

Z

fjnj � d=rg
FðnÞ dlðnÞ� 2C1 r

�d�K ; 0\r� �=4\1;

and

Z

Rd

FðnÞ
ð1þ jnj2ÞM

dlðnÞ�
Z

fjnj � 1g

FðnÞ
ð1þ jnj2ÞM

dlðnÞ

þ
X1

k¼1

k�2M

Z

fk\jnj � kþ1g
FðnÞ dlðnÞ:

For k large enough, we have

Z

fk\jnj � kþ1g
FðnÞ dlðnÞ� 2C1

k þ 1

d

� �dþK

and the series above converges to a finite value if M[ ðd þ K þ 1Þ=2, proving our

claim. If p ¼ 1, it suffices to reproduce the above argument with F 	 1. h

Corollary 1 Under the previous assumptions, if the couple ðl;wÞ belongs to
BpðU;BÞ for some p with 1� p\1, then l must be a tempered measure and so is
the (complex) measure F dl if F 2 LqðlÞ with 1� q�1.

Proof The open set U contains a ball of radius �[ 0, which we can assume to be

centered at the origin. Since C1
0 ðBð0; �ÞÞ is contained in F�1LpwðUÞ, Proposition 5

shows that l is tempered if 1� p\1. If M[ 0 is such that
Z

Rd

1

ð1þ jnj2ÞM
dlðnÞ\1

and F 2 LqðlÞ, where 1\q\1, we have, letting p be the conjugate exponent of q

and C ¼
R
Rd

1

ð1þjnj2Þs p dlðnÞ
� 	1=p

, that

Z

Rd

jFðnÞj
ð1þ jnj2Þs

dl�C

Z

Rd
jFðnÞjq dlðnÞ

� �1=q

\1

if s�M=p. If q ¼ 1, F dl is a bounded measure and is thus also tempered. If
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q ¼ 1, the fact that F dl is tempered follows from the fact that l is tempered

together with the inequality jFj dl�kFk1 dl. h

The next result gives a different interpretation of the fact that ðl;wÞ belongs to
BpðU;BÞ or F pðU;A;BÞ. We will use the property that for any F 2 LqðlÞ with

1� q�1, F�1 F dlf g is well-defined as a tempered distribution by the previous

corollary.

Theorem 1 Let l be a tempered positive Borel measure on Rd and let w be a

moderate Rd satisfying (1) and (2). Let p with 1� p\1, let q be the conjugate

exponent of p and let U be a non-empty open subset of Rd. Then, the following are
equivalent.

(a) ðl;wÞ 2 BpðU;BÞ for some B[ 0.

(b) For any F 2 LqðlÞ, there exists h 2 F�1Lq~wðRdÞ with F�1 F dlf g ¼ h on the

open set U, where ~w ¼ w1�q if 1\p\1 and ~w ¼ w�1 if p ¼ 1.

Proof Assume first that ðl;wÞ 2 BpðU;BÞ. This means that mapping T :

F�1LpwðUÞ ! LpðlÞ : u 7!û is bounded and, thus, so is the adjoint mapping

T� : LpðlÞ0 ! F�1LpwðUÞ
� �0

. Using the ðLpðlÞ; LqðlÞÞ duality, given any

F 2 LqðlÞ, there exists thus an element ‘F of F�1LpwðUÞ
� �0

such that
Z

Rd
ûðnÞFðnÞ dlðnÞ ¼ ‘FðuÞ; u 2 F�1LpwðUÞ:

By the Hahn–Banach theorem, the continuous linear form ‘F can be extended to an

element of FLpwðRdÞ
� �0

and using the duality results in Proposition 2 and Propo-

sition 3, this means that, given any F 2 LqðlÞ, there exists a corresponding element

h 2 F�1Lq~wðRdÞ such that

Z

Rd
ûðnÞ ĥðnÞ dn ¼

Z

Rd
ûðnÞFðnÞ dlðnÞ; u 2 C1

0 ðUÞ: ð9Þ

This last identity means exactly that F�1 F dlf g ¼ h as distributions on the open set

U. Conversely, if (b) holds, given any F 2 LqðlÞ, there exists h 2 F�1Lq~wðRdÞ such
that F�1 F dlf g ¼ h on U. In particular, there exists a constant CðFÞ[ 0 such that

Z

Rd
ûðnÞFðnÞ dlðnÞ

















�CðFÞ kukp;w; u 2 C1

0 ðUÞ:

Thus, for any F 2 LqðlÞ, the linear functional ‘F defined by

‘FðuÞ ¼
Z

Rd
ûðnÞFðnÞ dlðnÞ; u 2 C1

0 ðUÞ;

can be extended to a continuous linear functional on F�1LpwðUÞ, i.e. an element of
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F�1LpwðUÞ
� �0

. Note that if Fn ! F in LqðlÞ and ‘Fn
! ‘ in F�1LpwðUÞ

� �0
, we have,

for any u 2 C1
0 ðUÞ,

‘ðuÞ ¼ lim
n!1

Z

Rd
ûðnÞFnðnÞ dlðnÞ ¼

Z

Rd
ûðnÞFðnÞ dlðnÞ ¼ ‘FðuÞ;

and thus ‘ ¼ ‘F , using the density of C1
0 ðUÞ in F�1LpwðUÞ. It follows that the linear

mapping LqðlÞ ! F�1LpwðUÞ
� �0

: F 7!‘F is closed and thus continuous, using the

closed graph theorem. There exists thus a constant B[ 0 such that

Z

Rd
ûðnÞFðnÞ dlðnÞ

















�B

Z

Rd
jFðnÞjq dlðnÞ

� �1=q

kukp;w;

whenever u 2 C1
0 ðUÞ and F 2 LqðlÞ. Hence, we obtain the inequality

Z

Rd
jûðnÞjp dlðnÞ

� �1=p

¼ sup
F 2 LqðlÞ

R
jFjq dl

� �1=q¼ 1

Z

Rd
ûðnÞFðnÞ dlðnÞ

















�B kukp;w;

for any u 2 C1
0 ðUÞ, proving (a). h

Corollary 2 Under the previous assumptions, the following are equivalent.

(a) ðl;wÞ 2 BpðU;BÞ for some B[ 0 and some non-empty bounded open set

U � Rd.

(b) ðl;wÞ 2 BpðU;BðUÞÞ for all non-empty bounded open set U � Rd where
BðUÞ[ 0 depends on U.

(c) For any F 2 LqðlÞ, F�1 F dlf g 2 F�1
locL

q
~wðRdÞ where ~w ¼ w1�q if 1\p\1

and ~w ¼ w�1 if p ¼ 1.

Proof Clearly (b) implies (a). Conversely, if (a) holds, there exists �[ 0 such that

ðl;wÞ 2 BpðBð0; �Þ;BÞ for some B[ 0, using (8). If U is a bounded open set in Rd,

we can use a partition of unity argument to construct N functions f1; . . .; fN 2
C1
0 ðRdÞ with suppðfiÞ � Bðai; �Þ, where ai 2 Rd such that

PN
i¼1 fi ¼ 1 on a

neighborhood of U. We have then, for u 2 C1
0 ðUÞ, that

Z

Rd
jûðnÞjp dlðnÞ

� �1=p

¼
Z

Rd





XN

i¼1

ðû � f̂iÞðnÞ



p dlðnÞ

 !1=p

�
XN

i¼1

Z

Rd




ðû � f̂iÞðnÞ




p dlðnÞ

� �1=p

�B
XN

i¼1

ku fikp;w �BðUÞ kukp;w;

where Lemma 1 was used in the last step, showing that (a) holds. The equivalence

of (b) and (c) then follows directly from Theorem 1. h

Local Fourier spaces and weighted Beurling density 1243



Theorem 2 Let l be a tempered positive Borel measure on Rd and let w be a

moderate weight on Rd satisfying (1) and (2). Let p with 1� p\1, let q be the

conjugate exponent of p and let U be a non-empty subset of Rd. Define the weight ~w

by ~w ¼ w1�q if 1\p\1 and ~w ¼ w�1 if p ¼ 1. Then, ðl;wÞ 2 F pðU;A;BÞ for
some A;B[ 0 if and only if

(a) For any F 2 LqðlÞ, there exists v 2 F�1Lq~wðRdÞ with F�1 F dlf g ¼ v on the

open set U.

(b) For any h 2 F�1Lq~wðRdÞ, there exists F 2 LqðlÞ such that F�1 F dlf g ¼ h on

the open set U.

Proof If ðl;wÞ 2 F pðU;A;BÞ, then ðl;wÞ 2 BpðU;BÞ and (a) follows from

Theorem 1. Since the linear mapping T : F�1LpwðUÞ ! LpðlÞ : u 7!û is bounded

and also bounded below the adjoint mapping T� : LpðlÞð Þ0! F�1LpwðUÞ
� �0

is

bounded and surjective. If h 2 F�1Lq~wðRdÞ, the linear mapping

lðuÞ ¼
Z

Rd
uðnÞ ĥðnÞ dn; u 2 C1

0 ðUÞ;

can be extended uniquely to an element of F�1LpwðUÞ
� �0

. Hence, using the sur-

jectivity of T�, there exists F 2 LqðlÞ such that

Z

Rd
ûðnÞ ĥðnÞ dn ¼

Z

Rd
ûðnÞFðnÞ dlðnÞ

which is equivalent to the identity F�1 F dlf g ¼ h on the open set U, so (b) holds.

Conversely, the statement in (a) is equivalent to the boundedness of T� and thus of T
and the statement in (b) is equivalent to the surjectivity of T� which is equivalent to

the topological injectivity of T, i.e. to the lower-bound inequality in (7), showing

thus that ðl;wÞ 2 F pðU;A;BÞ for some A;B[ 0. h

4 Perturbation by multiplication

In this section, we consider the following natural problem. Suppose we know, for

example that a weight w1 satisfying(1) and (2) and a tempered measure l1 are such
that the couple ðl;w1Þ belongs to F pðU;A;BÞ for some open set U � Rd. Does it

follow that the couple ðw�1 l1;w
�1 w1Þ also belongs to F pðU;A;BÞ if w also

satisfies (1) and (2)? Simple examples with p ¼ 2 ([8]) show that this is not the case

in general. However, we will show that ðw�1 l1;w
�1 w1Þ belongs to a larger class

F pðV;A0;B0Þ if V is an open set slightly smaller than U in the sense that

V þ Bð0; �Þ � U, for some �[ 0. Note that, letting l2 ¼ w�1 l1 and w2 ¼ w�1 w1,

we have then w�1
1 dl1 ¼ w�1

2 dl2. Our goal in this section can then be rephrased

more generally as follows. Given two moderate weights w1;w2 on Rd satisfying

both (1) (with v ¼ vi for wi, i ¼ 1; 2) and (2), we will show that if the couple

ðl1;w1Þ belongs to BpðU;BÞ (resp. F pðU;A;BÞ) for some open set U, then the
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couple ðl2;w2Þ belongs to BpðV;B0Þ (resp. F pðV ;A0;B0Þ) if the open set V is as

above.

We will need the following lemma which can be found in ([8]). We reproduce it

here for the reader’s convenience.

Lemma 4 Let w and v satisfy (1) and (2) and let F� 0 be a measurable function on

Rd satisfying
Z

Rd
FðnÞ vð�nÞ dn\1:

Then, for any n 2 Rd, we have the inequalities

wðnÞ
Z

Rd
FðcÞ v�1ðcÞ dc

� �

�ðw � FÞðnÞ�wðnÞ
Z

Rd
FðcÞ vð�cÞ dc

� �

: ð10Þ

Proof Note first that, since 1 ¼ vð0Þ� vðcÞ vð�cÞ, we have
Z

Rd
FðcÞ v�1ðcÞ dc�

Z

Rd
FðcÞ vð�cÞ dc\1;

Hence,

ðw � FÞðnÞ ¼
Z

Rd
Fðn� cÞwðcÞ dc�wðnÞ

Z

Rd
FðcÞ vð�cÞ dc;

and

ðw � FÞðnÞ ¼
Z

Rd
Fðn� cÞwðcÞ dc�wðnÞ

Z

Rd
FðcÞ v�1ðcÞ dc;

which proves the inequalities in (10). h

The next result can be used to deduce weighted inequalities, such as (6) or (7),

from unweighted ones (i.e. with w ¼ 1) holding for a slightly larger space and vice-

versa. The case p ¼ 2 of this theorem was proved in ([8]). The case 1� p\1 is

proved below by a similar method.

Theorem 3 Let �[ 0 and consider open sets V and U in Rd such that
V þ Bð0; �Þ � U. Let p with 1� p\1 and let w1;w2 [ 0 be two moderate weights

on Rd satisfying

wiðnþ gÞ�wiðnÞ viðgÞ; n; g 2 Rd;

where vi is tempered for i ¼ 1; 2. Let U;V � Rd be open and suppose that, for some

�[ 0, V þ Bð0; �Þ � U. Let l1; l2 be positive Borel measures on Rd satisfying

w�1
1 dl1 ¼ w�1

2 dl2

and, letting v :¼ v1 v2, define the quantity
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Mð�Þ ¼ inf

R
Rd jŵðnÞjp vð�nÞ dn
R
Rd jŵðnÞjp v�1ðnÞ dn

; w 2 C1
0 ðBð0; �ÞÞnf0g

( )

� 1: ð11Þ

(a) If ðl1;w1Þ 2 BpðU;BÞ, then ðl2;w2Þ 2 BpðV;Bð�ÞÞ where Bð�Þ ¼ BMð�Þ.
(b) If ðl1;w1Þ 2 F pðU;A;BÞ, then ðl2;w2Þ 2 F pðV ;Að�Þ;Bð�ÞÞ where Að�Þ ¼

BMð�Þ�1
and Bð�Þ ¼ BMð�Þ.

Proof As we mentioned before, it suffices to prove the required inequalities for test

functions in C1
0 ðVÞ instead of general elements of F�1LpwðVÞ. Letting w ¼ w1 w

�1
2

and v ¼ v1 v2, it is easily checked that both (1) and (2) hold. Suppose that

w 2 C1
0 Bð0; �Þð Þnf0g. Since v is tempered, so is v�1 using the inequality 1 ¼

vð0Þ� vðnÞ vð�nÞ for n 2 Rd . Furthermore, we have

0\
Z

Rd
jŵðnÞjp v�1ðnÞ dn�

Z

Rd
jŵðnÞjp vð�nÞ dn\1:

Using Lemma 4 with w and v replaced with w�1 and vð��Þ, respectively, , we have
the pointwise inequalities

w�1 �C1 jŵjp � w�1
� 	

and jŵjp � w�1 �C2 w
�1 on Rd;

where

C1 ¼
Z

Rd
jŵðnÞjp v�1ð�nÞ dn

� ��1

and C2 ¼
Z

Rd
jŵðnÞjp vðnÞ dn:

Suppose that ðl1;w1Þ 2 BpðU;BÞ. If u 2 C1
0 ðVÞ, we have thus

Z

Rd
jûðnÞjp dl2ðnÞ ¼

Z

Rd
jûðnÞjp w2ðnÞw�1

1 ðnÞ dl1ðnÞ

¼
Z

Rd
jûðnÞjp w�1ðnÞ dl1ðnÞ

�C1

Z

Rd
jûðnÞjp jŵjp � w�1

� 	
ðnÞ dl1ðnÞ

¼ C1

Z

Rd
jûðnÞjp

Z

Rd
jŵðn� sÞjp w�1ðsÞ ds

� �

dl1ðnÞ

¼ C1

Z

Rd
w�1ðsÞ

Z

Rd
jûðnÞjp jŵðn� sÞjp dl1ðnÞ

� �

ds:

Since for fixed s, the function n 7!ûðnÞ ŵðn� sÞ is the Fourier transform of the

convolution of u with e2pisx w, a function which belongs to C1
0 V þ Bð0; �Þð Þ �

C1
0 Uð Þ and ðl1;w1Þ 2 BðU;BÞ, we obtain that
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Z

Rd
jûðnÞjp dl2ðnÞ�C1 B

Z

Rd
w�1ðsÞ

Z

Rd
jûðnÞjp jŵðn� sÞjp w1ðnÞ dn

� �

ds

¼ C1 B

Z

Rd
jûðnÞjp

Z

Rd
jŵðn� sÞjp w�1ðsÞ ds

� �

w1ðnÞ dn

¼ C1 B

Z

Rd
jûðnÞjp jŵjp � w�1

� 	
ðnÞw1ðnÞ dn

�C1 BC2

Z

Rd
jûðnÞjp w�1ðnÞw1ðnÞ dn

¼ C1 BC2

Z

Rd
jûðnÞjp w2ðnÞ dn

from which the conclusion of statement (a) immediately follows.

Suppose now that ðl1;w1Þ 2 F pðU;A;BÞ. By part (a), it suffices to prove the first
inequality in (7). If u 2 C1

0 ðVÞ, we have thus
Z

Rd
jûðnÞjp dl2ðnÞ ¼

Z

Rd
jûðnÞjp w�1ðnÞ dl1ðnÞ

�C�1
2

Z

Rd
jûðnÞjp jŵj2 � w�1

� 	
ðnÞ dl1ðnÞ

¼ C�1
2

Z

Rd
jûðnÞjp

Z

Rd
jŵðn� sÞjp w�1ðsÞ ds

� �

dl1ðnÞ

¼ C�1
2

Z

Rd
w�1ðsÞ

Z

Rd
jûðnÞjp jŵðn� sÞjp dl1ðnÞ

� �

ds:

Since for fixed s, we have uðnÞ ŵðn� sÞ ¼ /̂ðnÞ with / 2 C1
0 Uð Þ, we obtain, using

our assumption, that

Z

Rd
jûðnÞjp dl2ðnÞ�C�1

2 A

Z

Rd
w�1ðsÞ

Z

Rd
jûðnÞjp jŵðn� sÞjp w1ðnÞ dn

� �

ds

¼ C�1
2 A

Z

Rd
jûðnÞjp

Z

Rd
jŵðn� sÞjp w�1ðsÞ ds

� �

w1ðnÞ dn

¼ C�1
2 A

Z

Rd
jûðnÞjp jŵjp � w�1

� 	
ðnÞw1ðnÞ dn

�C�1
2 AC�1

1

Z

Rd
jûðnÞjp w�1ðnÞw1ðnÞ dn

¼ C�1
2 AC�1

1

Z

Rd
jûðnÞjp w2ðnÞ dn:

Our proof is completed by noticing that the constants Að�Þ and Bð�Þ can be obtained

by taking the infimum of the quantity C1 C2 as w vary over all non-zero functions in

C1
0 Bð0; �Þð Þ and by using the inequalities obtained above. h
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5 Weighted inequalities for functions with a spectrum in a small ball

In this section, our main goal will be to characterize when a pair ðl;wÞ belongs to
BpðU;BÞ (for some B[ 0) or to F pðU;A;BÞ (for some A;B[ 0) in the case where

U is a ball with a sufficiently small radius. Using Theorem 3, we can reduce the

problem to the unweighted case, i.e. the case where w ¼ 1. We first need to define

the upper and lower-Beurling density of a positive Borel measure on Rd. If r[ 0,

we let Ir ¼ fx 2 Rd; jxij � r=2; i ¼ 1; . . .; dg, the closed hypercube of side length r

centered at the origin in Rd. We will write I for I1 for simplicity. If l is a positive

Borel measure on Rd, the quantities

DþðlÞ ¼ lim sup
R!1

sup
z2Rd

l zþ IRð Þ
Rd

and D�ðlÞ ¼ lim inf
R!1

inf
z2Rd

l zþ IRð Þ
Rd

are called the upper and lower-Beurling density of the measure l, respectively. If
both these densities are equal and finite, we say that the Beurling density of the

measure l exists and we define it to be the quantity DðlÞ :¼ DþðlÞ ¼ D�ðlÞ. Note
that the notion of Beurling density, particularly that of a discrete set of points in Rd

(which corresponds to a mesure that assigns a mass of 1 unit at each of these points),

is a very useful tool in sampling theory where the type of inequalities we are

considering in the case p ¼ 2 play an essential role (see [4–10, 12, 14, 16, 18]). A

positive Borel measure l is called translation-bounded if there exists a constant

C[ 0 such that

lðxþ ½0; 1
dÞ�C 8 x 2 Rd: ð12Þ

Note that the space of (complex) measures r whose total variation jrj is translation-
bounded is a special case of amalgam space and is denoted by WðM; l1Þ (see [2, 3]
for more details).

Proposition 6 ([5]) Let l be a positive Borel measure on Rd. Then, the following
are equivalent:

(a) l is translation bounded.

(b) DþðlÞ\1.

(c) There exists f 2 L1ðRdÞ with f � 0,
R
f dx ¼ 1 and a constant C[ 0 such that

l � f �C a.e. on Rd.

As the last condition in the previous proposition shows, the notion of upper-

Beurling density is related to certain convolution inequalities satisfied by the

measure l. The following result will also be used in the proof of our main result in

this section.

Theorem 4 ([5]) Let l be a positive Borel measure on Rd and let h 2 L1ðRdÞ with
h� 0. Let A;B[ 0 be constants. Then

(a) If l � h�B a.e. on Rd, then DþðlÞ
R
h dx�B:
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(b) If l is translation-bounded and the inequality A� l � h holds a.e. on Rd, then

A�D�ðlÞ
R
h dx:

Lemma 5 Let l be a positive Borel measure on Rd. For any r[ 0, let Er be a Borel

measurable subset of Rd, such that

fx 2 Rd; jxij\r=2; i ¼ 1; . . .; dg � Er � Ir:

Then

DþðlÞ ¼ lim sup
R!1

sup
n2Rd

lðnþ ERÞ
Rd

and D�ðlÞ ¼ lim inf
R!1

inf
n2Rd

lðnþ ERÞ
Rd

:

Proof Let 0\d\1, using the inclusion IdR � ER � IR, we have the inequalities

dd
lðnþ IdRÞ
ðdRÞd

� lðnþ ERÞ
Rd

� lðnþ IRÞ
Rd

which imply that

dd DþðlÞ� lim sup
R!1

sup
n2Rd

lðnþ ERÞ
Rd

�DþðlÞ

and

dd D�ðlÞ� lim inf
R!1

inf
n2Rd

lðnþ ERÞ
Rd

�D�ðlÞ:

The result follows by letting d ! 1� in the previous inequalities. h

The following lemma will also be needed. It shows, in particular, the continuous

embedding of the Schwartz space SðRdÞ in the amalgam space WðC; ‘1Þ. (see [2, 3]
for the precise definition of this last space and for an overview of applications of

general amalgam spaces in Fourier analysis).

Lemma 6 Let w 2 SðRdÞ. Then, there exists C[ 0 such that

dd
X

k2Zd

sup
c2Id

jwðn� kd� cÞj�C; n 2 Rd; 0\d� 1:

Proof Let us define

gðcÞ ¼ 1

1þ c2
; c 2 R:

and suppose that 0\d� 1. If n 2 ½�d=2; d=2
 and k 2 Znf0g,
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inf
jcj � d=2

jn� dk � cj ¼ minfjn� kd� d=2j; jn� kdþ d=2jg� d ðjkj � 1Þ:

Hence,

d
X

k2Z
sup

jcj � d=2
gðn� kd� cÞ� dþ

X

k2Znf0g

d

1þ d2 ðjkj � 1Þ2

0

@

1

A

¼ 3 dþ 2
X1

n¼1

d

1þ d2 n2
� 3þ 2

Z 1

0

1

1þ x2
dx ¼ c\1:

Since the left-hand side of the previous expression is d-periodic as a function of n, if
follows that the inequality holds for all n 2 R. If w 2 SðRdÞ, we have the estimate

jwðcÞj �C1

Yd

i¼1

gðciÞ; c 2 Rd:

Therefore, for any n 2 Rd, we obtain

dd
X

k2Zd

sup
c2Id

jwðn� dk � cÞj �
X

k2Zd

C1

Yd

i¼1

d sup
jcij � d=2

gðni � dki � ciÞ

¼ C1

Yd

i¼1

d
X

ki2Z
sup

jcij � d=2
gðni � dki � ciÞ�C1 c

d ¼ C\1:

h

The inequalities (13) in the following theorem are known as the Plancherel–Polya

inequalities (see [21]) and one can show that they hold for d\1 (i.e. one can take

d0 ¼ 1 in Theorem 5). For the convenience of the reader, we provide a quick proof

for the weaker result stated below as this is all we will need. Furthermore,we do not

know of a reference for (14) which gives the limiting values for the best constants in

the inequalities as d ! 0þ. These will be used in the proof of Theorem 6.

Theorem 5 (Plancherel–Polya) Let p with 1� p\1. Then, there exists d0 with
0\d0 � 1 such that, if with 0\d\d0, there exists constants C1ðdÞ;C2ðdÞ[ 0 such
that

C1ðdÞ kûkp �
�X

k2Zd

dd jûðdkÞÞjp
�1=p

�C2ðdÞ kûkp; u 2 C1
0 ðIÞ: ð13Þ

Furthermore, if C1ðdÞ and C2ðdÞ are the best constants in the inequality (13), we
have

lim
d!0þ

C1ðdÞ ¼ lim
d!0þ

C2ðdÞ ¼ 1: ð14Þ
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Proof As usual we let q be the dual exponent of p. We give the proof for the case

1\p\1, as the case p ¼ 1 (where q ¼ 1) can be dealt with in a similar way by

replacing by 1 any term raised to the power p
q or

1
q in the proof below.

We have, using Minkowski’s inequality,

X

k2Zd

dd jûðdkÞjpÞ
 !1=p

¼
X

k2Zd

Z

dkþId

jûðdkÞjp dc
 !1=p

¼
X

k2Zd

Z

dkþId

jûðdkÞ � ûðcÞ þ ûðcÞjp dc
 !1=p

�
X

k2Zd

Z

dkþId

jûðdkÞ � ûðcÞjp dc
 !1=p

þ
X

k2Zd

Z

dkþId

jûðcÞjp dc
 !1=p

�
X

k2Zd

Z

dkþId

jûðdkÞ � ûðcÞjp dc
 !1=p

þ
Z

Rd
jûðcÞjp dc

� �1=p

:

Similarly, we have also

Z

Rd
jûðcÞjp dc

� �1=p

¼
X

k2Zd

Z

dkþId

jûðcÞjp dc
 !1=p

¼
X

k2Zd

Z

dkþId

jûðcÞ � ûðdkÞ þ ûðdkÞjp dc
 !1=p

�
X

k2Zd

Z

dkþId

jûðdkÞ � ûðcÞjp dc
 !1=p

þ
X

k2Zd

Z

dkþId

jûðdkÞjp dc
 !1=p

¼
X

k2Zd

Z

dkþId

jûðdkÞ � ûðcÞjp dc
 !1=p

þ
X

k2Zd

dd jûðdkÞÞjpÞ
 !1=p

:

Hence, to prove (13) and (14), it suffices to show that

X

k2Zd

Z

dkþId

jûðdkÞ � ûðcÞjp dc
 !1=p

�CðdÞ kûkp; u 2 C1
0 ðIÞ: ð15Þ

where CðdÞ ! 0 as d ! 0. Choosing b 2 C1
0 ðRdÞ so that b ¼ 1 on a neighborhood

of I and letting w ¼ b̂, we have û ¼ û � w if u 2 C1
0 ðRdÞ is supported in I.

We have thus, using Hölder’s inequality,
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X

k2Zd

Z

dkþId

jûðdkÞ � ûðcÞjp dc

¼
X

k2Zd

Z

dkþId

Z

Rd
wðdk � sÞ � wðc� sÞ½ 
 ûðsÞ ds



















p

dc

�
X

k2Zd

Z

dkþId

Z

Rd
wðdk � sÞ � wðc� sÞj j jûðsÞjp ds

� �

SðcÞ dc;

where SðcÞ ¼
R
Rd wðdk � sÞ � wðc� sÞj j ds

� �p=q �ð2 kwk1Þ
p=q: It follows thus that

X

k2Zd

Z

dkþId

jûðdkÞ � ûðcÞjp dc

�ð2 kwk1Þ
p=q

Z

Rd

X

k2Zd

Z

dkþId

wðdk � sÞ � wðc� sÞj j dc
( )

jûðsÞjp ds:

Let

HdðsÞ ¼
X

k2Zd

Z

dkþId

wðdk � sÞ � wðc� sÞj j dc; s 2 Rd:

By the mean-value theorem, if c 2 dk þ Id, we have

jwðdk � sÞ � wðc� sÞj� d
ffiffiffi
d

p X

1� i� d

sup
n2Id

jwniðnþ dk � sÞj:

Hence,

HdðsÞ�
X

k2Zd

ddþ1
ffiffiffi
d

p X

1� i� d

sup
n2dkþId

jwniðn� sÞj dc

¼ d
ffiffiffi
d

p X

1� i� d

dd
X

k2Zd

sup
n2dkþId

jwniðn� sÞj; s 2 Rd:

Applying Lemma 6 to each of the functions wni 2 SðRdÞ, i ¼ 1; . . .; d, we deduce

the existence of a constant A[ 0 such that HdðsÞ�A d. It follows that the inequality

(15) holds with CðdÞ ¼ ð2 kwk1Þ
1=q A1=p d1=p ! 0 as d ! 0þ, proving our claim. h

The following theorem is related to the Logvinenko–Sereda theorem ([15]; see

also Proposition 3.34 in [18]) in which the measure l in the next theorem is of the

form dl ¼ vEðnÞ dn where E is a measurable subset of Rd .

Theorem 6 Let l be a locally finite, positive Borel measure on Rd and let p with
1� p\1. Then, the following are equivalent.

(a) There exist constants A;B[ 0 and �[ 0 such that

A kq̂kpp �
Z

Rd
jq̂ðnÞjp dlðnÞ�B kq̂kpp; q 2 C1

0 ðI�Þ: ð16Þ

(b) We have 0\D�ðlÞ�DþðlÞ\1.
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Moreover, if (a) holds for �[ 0 and we denote by AðgÞ and BðgÞ respectively the
best constants A and B such that the inequalities in (16) holds for all functions
q 2 C1

0 ðIgÞ, where 0\g� �, then these constants satisfy the inequalities

AðgÞ�D�ðlÞ�DþðlÞ�BðgÞ and

lim
g!0þ

AðgÞ ¼ D�ðlÞ while lim
g!0þ

BðgÞ ¼ DþðlÞ:

Proof The proof below deals only with the case 1\p\1, as the case p ¼ 1

(where q ¼ 1) can be dealt with in a similar way by replacing by 1 any term raised

to the power p
q or 1

q. Suppose first that (a) holds for some �[ 0. Then, letting

qðxÞ ¼ q0ðxÞ e2pigx, where q0 2 C1
0 ðI�Þ and q0 6¼ 0, we have jq̂ðnÞj ¼ jq̂0ðg� nÞj

and using the inequalities in (16), we obtain that

A kq̂0kpp �
Z

Rd
jq̂0ðg� nÞjp dlðnÞ�B kq̂0kpp; g 2 Rd;

or, equivalently, that

A kq̂0k
p
p � l � jq̂0j

pð ÞðgÞ�B kq̂0k
p
p; g 2 Rd:

This implies, using Proposition 6 and Theorem 4, that

A�D�ðlÞ�DþðlÞ�B

and thus that (b) holds. Conversely, if (b) holds, and �[ 0 is given, note that any

function q 2 C1
0 ðI�Þ can be written in the form qðxÞ ¼ ��dð1�1=pÞ uðx=�Þ, where

u 2 C1
0 ðIÞ and kq̂kp ¼ kûkp.

It follows that the inequalities in (16) are equivalent to

A kûkpp �
Z

Rd
�d jûð� nÞjp dlðnÞ�B kûkpp; u 2 C1

0 ðIÞ: ð17Þ

For any �[ 0, let l� be the measure defined by

Z

Rd
/ðnÞ dl�ðnÞ ¼

Z

Rd
�d /ð� nÞ dlðnÞ; / 2 C0ðRdÞ:

The inequalities in (16) can thus also be written using (17) as

A kûkpp �
Z

Rd
jûðnÞjp dl�ðnÞ�B kûkpp; u 2 C1

0 ðIÞ: ð18Þ

Note that if d[ 0 and n 2 Rd, we have

l�ðnþ IdÞ ¼ �d lðn=�þ Id=�Þ ¼ dd
lðn=�þ Id=�Þ

ðd=�Þd

and, in particular,
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dd inf
n02Rd

lðn0 þ Id=�Þ
ðd=�Þd

� l�ðnþ IdÞ� dd sup
n02Rd

lðn0 þ Id=�Þ
ðd=�Þd

: ð19Þ

Let b 2 C1
0 ðRdÞ with b ¼ 1 on a neighborhood of I and let w ¼ b̂. As before, we

have then û ¼ û � w, for u 2 C1
0 ðIÞ and, in particular, for any n 2 Rd, using

Hölder’s inequality, we have

jûðnÞjp ¼
Z

Rd
wðn� cÞ ûðcÞ dc



















p

�
Z

Rd
jwðn� cÞj jûðcÞjp dc

Z

Rd
jwðn� cÞj dc

� �p=q

¼ kwkp=q1

Z

Rd
jwðn� cÞj jûðcÞjp dc:

Letting d ¼ 1 , we can use (19) and the fact that DþðlÞ\1, to find a number

M0 [ 0 and �0 [ 0 such that

l�ðnþ IÞ�M0 n 2 Rd; 0\�� �0:

We have, in particular,

l�0ðnþ IÞ�M0; n 2 Rd:

Hence, letting C ¼ kwkp=q1 and using Fubini’s theorem, we have, for any

u 2 C1
0 ðIÞ, that
Z

Rd
jûðnÞjp dl�0ðnÞ�C

Z

Rd

Z

Rd
jwðn� cÞj jûðcÞjp dc dl�0ðnÞ

¼ C

Z

Rd

Z

Rd
jwðn� cÞj dl�0ðnÞ

� �

jûðcÞjp dc:

Using Lemma 6, there exists thus a number M1 [ 0 such that

Z

Rd
jwðn� cÞj dl�0ðnÞ�

X

k2Zd

Z

kþI

jwðn� cÞj dl�0ðnÞ

�M0

X

k2Zd

sup
c2I

jwðn� k � cÞj �M1:

Hence, it follows that there exists thus a number M[ 0 such that

Z

Rd
jûðnÞjp dl�0ðnÞ�M kukpp; u 2 C1

0 ðIÞ:

If d[ 0, define the set Qd as fn 2 Rd; �d=2� ni\d=2; i ¼ 1; . . .; dg. If

u 2 C1
0 ðIÞ, let Yk;d;�ðuÞ ¼

R
dkþQd

jûðdkÞjp dl�ðnÞ. If 0\�\�0, we can write, using

Minkoswki’s inequality twice, that
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Z

Rd
jûðnÞjp dl�ðnÞ

� �1=p

¼
X

k2Zd

Z

dkþQd

jûðnÞjp dl�ðnÞ
 !1=p

¼
X

k2Zd

Z

dkþQd

jûðdkÞ þ ðûðnÞ � ûðdkÞÞjp dl�ðnÞ
 !1=p

�
X

k2Zd

Yk;d;�ðuÞ
� �1=pþ

Z

dkþQd

jûðnÞ � ûðdkÞÞjp dl�ðnÞ
� �1=p

" #p !1=p

�
X

k2Zd

Yk;d;�ðuÞ
 !1=p

þ
X

k2Zd

Z

dkþQd

jûðnÞ � ûðdkÞÞjp dl�ðnÞ
 !1=p

:

Similarly, letting Zk;d;�ðuÞ ¼
R
dkþQd

jûðnÞjp dl�ðnÞ, we have

X

k2Zd

Z

dkþQd

jûðdkÞÞjp dl�ðnÞ
 !1=p

�
X

k2Zd

Zk;d;�ðuÞ
 !1=p

þ
X

k2Zd

Z

dkþQd

jûðnÞ � ûðdkÞÞjp dl�ðnÞ
 !1=p

¼
Z

Rd
jûðnÞjp dl�ðnÞ

� �1=p

þ
X

k2Zd

Z

dkþQd

jûðnÞ � ûðdkÞÞjp dl�ðnÞ
 !1=p

;

showing that

Gðd; �;uÞ � Iðd; �;uÞ�
Z

Rd
jûðnÞjp dl�ðnÞ

� �1=p

�Gðd; �;uÞ þ Iðd; �;uÞ ð20Þ

where

Gðd; �;uÞ ¼
X

k2Zd

Z

dkþQd

jûðdkÞÞjp dl�ðnÞ
 !1=p

and

Iðd; �;uÞ ¼
X

k2Zd

Z

dkþQd

jûðnÞ � ûðdkÞÞjp dl�ðnÞ
 !1=p

:

We first estimate Iðd; �;uÞ. We have, using the inclusion Qd � Id,
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Iðd; �;uÞð Þp �
X

k2Zd

Z

dkþId

jûðnÞ � ûðdkÞjp dl�ðnÞ

¼
X

k2Zd

Z

dkþId

Z

Rd
wðn� cÞ � wðdk � cÞ½ 
 ûðcÞ dc



















p

dl�ðnÞ:

Since

Z

Rd
wðn� cÞ � wðdk � cÞð Þ ûðcÞ dc



















p

�C1

Z

Rd
jwðn� cÞ � wðdk � cÞj jûðcÞjp dc;

where C1 ¼ ð2 kwk1Þ
p=q

, Fubini’s theorem yields

Iðd; �;uÞð Þp �C1

X

k2Zd

Z

dkþId

Z

Rd
jwðn� cÞ � wðdk � cÞj jûðcÞjp dc dl�ðnÞ

¼ C1

Z

Rd

X

k2Zd

Z

dkþId

jwðn� cÞ � wðdk � cÞj dl�ðnÞ
( )

jûðcÞjp dc

Let

HdðcÞ ¼ C1

X

k2Zd

Z

dkþId

jwðn� cÞ � wðdk � cÞj dl�ðnÞ; c 2 Rd:

We have

HdðcÞ�C1

X

k2Zd

sup
n2dkþId

jwðn� cÞ � wðdk � cÞj l�ðdk þ IdÞ:

By the mean-value theorem, if n 2 dk þ Id, we have

jwðn� cÞ � wðdk � cÞj � d
ffiffiffi
d

p X

1� i� d

sup
n02dkþId

jwniðn
0 � cÞj:

Using (19), it follows that

HdðcÞ�C1

X

k2Zd

d
ffiffiffi
d

p X

1� i� d

sup
n02dkþId

jwniðn
0 � cÞj dd sup

f2Rd

lðfþ Id=�Þ
ðd=�Þd

¼ C1 d
ffiffiffi
d

p
sup
f2Rd

lðfþ Id=�Þ
ðd=�Þd

X

1� i� d

X

k2Zd

dd sup
n02dkþId

jwniðn
0 � cÞj:

Applying Lemma 6 to each of the functions wni 2 SðRdÞ, i ¼ 1; . . .; d, we deduce

the existence of a constant C[ 0 such that
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HdðcÞ�C d sup
f2Rd

lðfþ Id=�Þ
ðd=�Þd

; c 2 Rd:

It follows that, for any d[ 0, we have the inequality

Iðd; �;uÞð Þp �C d sup
f2Rd

lðfþ Id=�Þ
ðd=�Þd

kûkpp; u 2 C1
0 ðIÞ:

We now consider Gðd; �;uÞ and assume that d\d0 where d0 is as in Theorem 5 .

Let C1ðdÞ and C2ðdÞ be the best constants in the inequalities (13). Since Qd � Id, we
have, for any u 2 C1

0 ðIÞ, using (19),

Gðd; �;uÞð Þp¼
X

k2Zd

Z

dkþQd

jûðdkÞÞjp dl�ðnÞ�
X

k2Zd

jûðdkÞÞjp l�ðdk þ IdÞ

� sup
f2Rd

lðfþ Id=�Þ
ðd=�Þd

 !
X

k2Zd

dd jûðdkÞÞjp � C2ðdÞð Þp sup
f2Rd

lðfþ Id=�Þ
ðd=�Þd

 !

kûkpp:

Similarly, letting Ed ¼ fx 2 Rd; jxij\d=2; i ¼ 1; . . .; dg for d[ 0, we have

Gðd; �;uÞð Þp¼
X

k2Zd

Z

dkþQd

jûðdkÞÞjp dl�ðnÞ�
X

k2Zd

jûðdkÞÞjp l�ðdk þ EdÞ

�
X

k2Zd

dd jûðdkÞÞjp inf
f2Rd

lðfþ Ed=�Þ
ðd=�Þd

� C1ðdÞð Þp inf
f2Rd

lðfþ Ed=�Þ
ðd=�Þd

kûkpp:

Using (20), we obtain thus, for u 2 C1
0 ðIÞ, the inequalities

Z

Rd
jûðnÞjp dl�ðnÞ

� �1=p

� C2ðdÞ þ C1=p d1=p
h i

sup
f2Rd

lðfþ Id=�Þ
ðd=�Þd

 !1=p

kûkp; ð21Þ

and

Z

Rd
jûðnÞjp dl�ðnÞ

� �1=p

� C1ðdÞ inf
f2Rd

lðfþ Ed=�Þ
ðd=�Þd

 !1=p

�C1=pd1=p sup
f2Rd

lðfþ Id=�Þ
ðd=�Þd

 !1=p
2

4

3

5kûkp:
ð22Þ

Fix q with 0\q\D�ðlÞ. Since CiðdÞ ! 1 as d ! 0þ, for i ¼ 1; 2, by Theorem 5,

we obtain, letting d ¼
ffiffi
�

p
in (21) and (22), the existence of �1 [ 0 such that

Z

Rd
jûðnÞjp dl�ðnÞ

� �1=p

� DþðlÞ þ q½ 
1=p kûkp; 0\�� �1; u 2 C1
0 ðIÞ;

ð23Þ

and, using Lemma 5,
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Z

Rd
jûðnÞjp dl�ðnÞ

� �1=p

� D�ðlÞ � q½ 
1=p kûkp; 0\�� �1; u 2 C1
0 ðIÞ:

ð24Þ

Using the first part of the proof, we deduce the inequalities

D�ðlÞ � q�Að�Þ�D�ðlÞ�DþðlÞ�Bð�Þ�DþðlÞ þ q; 0\�� �1:

This proves our claim. h

Since every set I� contains the translate of a small ball centered at the origin, we

can replace the set I� by the ball Bð0; �Þ in the statement of the previous theorem. A

consequence of the previous result, of the statement (b) in Theorem 3 and of

Theorem 2, is the following characterization.

Theorem 7 Let l be a tempered positive Borel measure on Rd and let w be a

moderate Rd satisfying (1) and (2). Define the weight ~w ¼ w1�q if 1\p\1 and

~w ¼ w�1 if p ¼ 1. Then, the following are equivalent.

(a) There exists �[ 0 such that ðl;wÞ 2 F pðBð0; �Þ;A;BÞ for some A;B[ 0.

(b) For any F 2 LqðlÞ, F�1 F dlf g 2 F�1
locL

q
~wðRdÞ, and if �[ 0 is small enough,

for any h 2 F�1Lq~wðRdÞ and any a 2 Rd, there exists F 2 LqðlÞ such that

F�1 F dlf g ¼ h on the open set Bða; �Þ.
(c) We have the inequalities 0\D�ðw�1 lÞ�Dþðw�1 lÞ\1.

Proof The equivalence of (a) and (b) following directly from Theorem 2 and

Corollary 2, it suffices to prove the equivalence of (a) and (c). Assume first that (a)

holds. Using (b) of Theorem 3 with l1 ¼ l, w1 ¼ w, dl2 ¼ w�1 dl and w2 ¼ 1 and

using the inclusion Bð0; �=2Þ þ Bð0; �=2Þ � Bð0; �Þ, we deduce that ðw�1 l; 1Þ 2
F pðBð0; �=2Þ;A0;B0Þ for some A0;B0 [ 0. This implies (c) using Theorem 6.

Conversely, if (c) holds, then Theorem 6 shows the existence of �[ 0 such that

ðw�1 l; 1Þ 2 F pðBð0; �Þ;A;BÞ for some A;B[ 0. Using (b) of Theorem 3 with

dl1 ¼ w�1 dl w1 ¼ 1, l2 ¼ l and w2 ¼ w and using again the inclusion

Bð0; �=2Þ þ Bð0; �=2Þ � Bð0; �Þ, we deduce that ðl;wÞ 2 F pðBð0; �=2Þ;A0;B0Þ for

some A0;B0 [ 0, yielding (a). h

There is also a version of the Theorem 6 above where we only assume the

inequality on the right-hand side. The proof is similar to that of the previous

theorem. Alternatively, one can also prove it by applying the previous theorem to

the measure dlþ s dn where s[ 0 is a small constant and letting s approach zero.

Theorem 8 Let l be a positive Borel measure on Rd which is locally finite and let p
with 1� p\1. Then, the following are equivalent.

(a) There exist constants B[ 0 and �[ 0 such that
Z

Rd
jûðnÞjp dlðnÞ�B

Z

Rd
jûðnÞjp dn; u 2 C1

0 ðI�Þ: ð25Þ
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(b) We have DþðlÞ\1.

Moreover, if (a) holds for �[ 0 and we denote by BðgÞ the best constant B such that
the inequalities in (25) holds for all functions u 2 C1

0 ðIgÞ, where 0\g� �, we have

the inequality DþðlÞ�BðgÞ and

lim
g!0þ

BðgÞ ¼ DþðlÞ:

Combining the previous theorem, the statement (a) in Theorem 3 as well as the

equivalence of (a) and (b) in Corollary 2, we can prove following result, following

arguments similar to those used in the proof of Theorem 7. The details are left to the

reader.

Theorem 9 Let l be a tempered positive Borel measure on Rd and let w be a

weight on Rd satisfying (1) and (2). Let U � Rd be a bounded open set. Then, the
following are equivalent.

(a) ðl;wÞ 2 BpðU;BÞ for some B[ 0.

(b) For any F 2 LqðlÞ, F�1 F dlf g 2 F�1
locL

q
~wðRdÞ, where ~w ¼ w1�q in the case

where 1\p\1 and ~w ¼ w�1 if p ¼ 1.

(c) Dþðw�1 lÞ\1.
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