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Abstract

We consider Banach spaces of functions or distributions on R? for which the norm
is defined in terms of a weighted L”-norm of the Fourier transform of the elements
and the weight w in question is assumed to be tempered and moderate. We study in
particular subspaces of these spaces obtained by taking the closure in the corre-
sponding norm of the test functions with compact support in a fixed open subset U
of RY, usually assumed to be bounded. We consider weighted inequalities involving
the LP-norm of the Fourier transform of the elements of the subspace with respect to
a positive Borel measure 1 on R? and the original norm defined on the subspace. We
obtain, in particular, an exact characterization for these inequalities to hold in the
case where U is a ball with a small enough radius using a suitable weighted
version of the Beurling density. Exploiting duality, we then use these results to
characterize the positive Borel measures y having the property that the inverse
Fourier transform of any measure F dyu, where F € L7(u), agrees on any open ball
B of sufficiently small radius with the inverse Fourier transform of a tempered
function g, where g € L(w), for a weight w related to w and, if it is the case, we
also obtain a necessary and sufficient condition for the associated mapping
F'L9(p)|g — F'LI(W)|, to be surjective.
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1 Introduction

In Lemma 4.2 of [20], R. Strichartz proved that if y is a translation-bounded Borel
measure on R? (see (12) for the definition) and F € L?(u), then the Fourier
transform of the (complex) measure Fdyu is locally square-integrable on R
Although this is not mentioned in [20], the converse of this statement is also true: if,
for any F € L?(u), the Fourier transform of Fdu is in L} (R?), then u must be
translation-bounded. We note that the condition that u is translation-bounded is
equivalent to the upper-Beurling density of x, D* (), being finite (see Sect. 5, for
more details and for the definition of Beurling densities). If, in addition, the lower-
Beurling density of y, D™ (u) is strictly positive, then any locally square-integrable
function # on R? can in fact be expressed, in any ball having sufficiently small
radius, as the Fourier transform of a measure F du, for some F € Lz(,u) (which
depends on the ball). As an example, consider in one dimension the measure
u= ZnEZ dn, Where J, denotes the Dirac mass concentrated at the point a. It
satisfies D~ (1) = D" (u) = 1 and the set of inverse Fourier transforms of measures
F du, where F € L*(p), consists exactly of the 1-periodic locally square-integrable
functions on the line. It is then clear that, on any open ball B of radius 1/2, any
square integrable function f can be expressed as the inverse Fourier transform of
F dy, for some function F € L*(u).

One of our main goals in this paper, is to generalize these results to spaces more

2 (R%). We will consider here Banach spaces or functions or

general than Lj

distributions on R? for which the corresponding norm is defined using the weighted
L[P-norm of the Fourier transform of the elements, where the associated weight is
assumed to be moderate and tempered (see Sect. 2, for the exact definitions). When
p = 2, the corresponding spaces have been studied by the author in [8] and many of
the results in [8] are generalized here in the case 1 <p<oo. It turns out that
multiplication by a function in the Schwartz class, S(R?), defines a continuous
linear map on these spaces and this will allow us to define a “local” version of this
spaces, in analogy with the relationship between L*(R?) and L2, (R?). We will be
mostly interested in subspaces of these spaces obtained by taking the closure in the
corresponding norm of the test functions with compact support in a fixed open set
U. Given a locally finite positive measure x4 on R? as well as a moderate and
tempered weight w defined on R? and p with 1 <p<oo, we will be interested in
comparing the norms

o= ([, Ié(é)”W(é)dé>l/p ad ol = ( [ |¢<¢>|”du<z>)l/p,

where ¢ ranges over all test functions with compact support in the open set U. As
we will show in Theorem 9 (see also Theorem 8 for the unweighted case w = 1),
the fact that [|¢l|, , < B |||, for some positive constant B and for all test functions
@ supported in a ball of sufficiently small radius is equivalent to having

D (w™! ) <oco. If this is the case, a duality argument shows that if F € L9(u),
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Local Fourier spaces and weighted Beurling density 1231

where ¢ is the dual exponent of p, then the inverse Fourier transform of the measure
Fdu (in the sense of tempered distributions) coincides on any fixed ball with the
inverse Fourier transform of some tempered function /4 (that depends on the ball)
satisfying [ [R(&)[7W (&) d& <oo, where w = w! 7 if 1 <p <oo, or [|hw|, <oo if
p =1 where w = w~!. This generalizes thus the result of Strichartz mentioned
above which corresponds to the case p = 2 and w = 1, since the required condition
DT (n) < oo is equivalent to p being translation-bounded by Proposition 6. We will
also prove in Theorem 7, that the two norms above are equivalent in the case where
U is a ball in R? with sufficiently small radius if and only if D~ (w~' &) > 0 and
DT (w™! ) <oo (see also Theorem 6 for the unweighted case). This implies, again
by a duality argument, that, if both these conditions are met, the inverse Fourier
transforms of the tempered measures F du with F € LI(u) and those of the tem-
pered functions h satisfying [iq [2(&)|? w(&) dé<oo if 1 <p<oo or ||hw|, <oo if
p = 1, where w is as above, generate the same space of distributions when restricted
to any ball of sufficiently small radius. This generalizes the fact mentioned earlier
that if a positive measure u satisfies D~ () > 0 and D" () < oo, the restrictions to
any ball with sufficiently small radius of the inverse Fourier transform of measures
of the form F du where F € L*(u), generate exactly the space of square-integrable
functions on that ball.

The paper is organized as follows. We consider Banach spaces of functions or
tempered distributions where the norm of an element is defined by a weighted L”-
norm of their Fourier transform in Sect. 2 and prove some of their basic properties
and characterize their dual spaces. In Sect. 3, we prove that if a positive Borel
measure 1 on R? has the property that its associated ”-space contains the Fourier
transform of all the test functions supported in a small ball, then u is necessarily a
tempered measure, i.e.

1
L. (1 ey A=

for some M > 0. We then define certain weighted inequalities associated with a
positive Borel measure and show that they are equivalent to some properties of the
adjoint of certain operators defined by the Fourier transform on those spaces. These
type of inequalities have been considered by researchers in sampling theory in
various frameworks such as Gabor frames or Fock spaces (e.g. [1, 17]) and the
measures giving rise to these inequalities are often called “sampling measures”.

In Sect. 4, we prove a useful result which allows us, for example, to deduce a
weighted inequality from an unweighted one (i.e. for the weight w = 1) and vice-
versa. Finally, the last section, Sect. 5, is the most technical. Here, we prove our
main results which generalize Strichartz’s result mentioned above.

Let us mention some notations and definitions used in this paper. If U is an open
subset of RY, we denote by Ci°(U) the space of test-functions supported in U,
i.e. the infinitely differentiable functions compactly supported in U and if K € R? is
compact, C*(K) denotes the space of functions in C°(R?) whose support is
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1232 J.-P. Gabardo

contained in K. The Schwartz class, denoted by S (Rd), consists of all functions ¥ on
R9, such that
sup D"y (x) (1+ [x*)"| <00

xeR?

for any multi-index a. Co(RY) is the space of continuous functions on R? that vanish
at infinity.

If w> 0 is a weight on R? and 1 <p< oo, the space L{’V(Rd) is the Lebesgue
space of measurable functions f on RY satisfying

QP w(e) de <o,
R
If w =1, L,(R’) is denoted by I(R?) and we let ||f]l, = (fus [F(&)" d€)"” and
|l = ess sup;cpalf ()] If A, B are subsets of R¢ and t € RY, we will denote by
A+Btheset {a+b: acA, beB} and by t+A the set {t+a: acA}. We
also denote by B(a, r) the open ball of center a € RY with radius r > 0,

ie. {x e RY: |x —a|<r}. If f € L'(R?), we denote its Fourier transform by f or
F(f). It is defined by

FO=F@ = [ s, cer

This definition extends in the usual way to the dual of S(R?), the space S'(R¢) of
tempered distributions on R? . If U is open, we also denote by 7’ (U), the space of
distributions on U (which is the dual of the space C5°(U) defined earlier). If X is a
Banach space, its dual, the space of continuous linear functionals on X, is denoted
by X’ (see [19] for more details on these various spaces).

2 Weighted Fourier LP-spaces
A moderate weight on R? is a continuous function w > 0 defined on R? and
satisfying

w(&+n) <w@)v(n), &neR, (1)

for some function v > 0 on RY. In the following, we will always assume that v is
tempered, i.e. that there exists a constants C, M > 0 such that

v <c+ g™, ceRr? (2)

This implies, in particular, that w is tempered as well and, in fact, it is easy to see
that, for some integer M >0, the function w(&) (1 + |£]*)™ is bounded, and so is

the function w="(&) (1 +|&]*)™ (since w! satisfies the inequality (1) with v(i)
replaced by v(—#)). We will assume that v is submultiplicative, i.e. that v(& +
) <v(&)v(t) for any & 1 € RY. This is not a restriction since v can be defined as

& Birkhauser



Local Fourier spaces and weighted Beurling density 1233

V() = sup;cpe w(E+1)/w(E), for T € RY. It is easily checked that any power of w,
w* with a € R, defines a moderate weight which is also tempered. An example of a
weight w satisfying (1) and (2) is the weight

w(d) = (1+[eP), ¢eRr,

with s € R, which is used in the definition of the standard Sobolev space H*(R¢)
corresponding to the case p = 2 below. Using Peetre’s inequality, it is easily seen
that the corresponding v satisfies

V(&) ~ (1 + [/,

where w; ~w, means that Aw; <w, <Bw); pointwise for two positive constant
A and B. We refer the reader to Grochenig’s paper [11] for more examples of
weights satisfying (1) as well as an extensive overview of their properties and
applications in harmonic analysis (see also [6, 8, 13]).

Definition 1 If 1 <p<oo, let
FL(R) = {u € S'(RY), i € L (R) and / (&) w(&) dé<00} (3)
[Rd
and let

FLO(RY) = {u e S'(R?), 4 €L (R?) and dw € L(R)}.

loc

The norm of an element u € F~'17,(R?) is defined by

1/p
el = ([, @Pw@a) L 1 <p<oe, and fulle, = linl.

Proposition 1 For any p with 1 <p <oo, F 'I2(R?) is a Banach space. When
p =2, F 'L2(RY) is Hilbert space with inner product

ugh = [ HOFDwEdE, hgeF LR,
R
We have the continuous embeddings
S(RHY—F 'L (R))—S' (RY)

and F : f_lL/vL(Rd) — LfV(Rd) an isometric isomorphism, where F is the Fourier
transform.

Proof As the statements to prove are easily checked, we just verify the continuity
of the embeddings above as well as the completeness property. To show the
continuous embedding S(R?)—F 17 (R?), choose M > 0 large enough so that

W Birkhiuser
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both functions w(&) ™" (14 |€*)™ and w(¢&) (1 + |£]*) ™ are bounded on R?. For
p =00 and u € S(R?), we have the estimate

ldwll oo < 11a(E) (14 1€ oo 1 w(&) (14 1E1) ™ .

and for 1 <p < oo, by Holder’s inequality, we have

[ i@ woas <l (o + 1y

where C := [ <1f\<§gw di<oo if sp>M+d/2. If ueF 'LO(RY), the

inequality

|a(S)]
dé<c "
L ey de=C

where C = [ (Kl‘éé)) dé<oo if s>M+d/2 shows the continuity of the
embedding F 'L (RY)—8'(RY). If 1<p<oo and sq > Mq/p + d/2 where g is
the dual exponent of p defined by 1/p + 1/g = 1, Holder’s inequality shows that,

for any u € F~'12(RY),

G orwea)” ([ 2 )
Jo ey ([ e waa) </ 0+ 2P) dé)

<Clluf

pw?

where

lp 1 1/q
= | sup (w(&)™! 2\—M I o
C= (csdg( &7 @+1er) )) </R (1 [g[?yrealr dé) <

For p = 1, we have the estimate

O e (e 12 161
. T s s (@7 ™) el

This shows that the space F 'L (R?) is continuously embedded in S'(R?) if
1<p<oo.

In particular, if {u,} is a Cauchy sequence in F~'1? (R?), the sequence {i,} is
Cauchy in 12 (R?). Since this last space is complete, there exists & € L7, (RY) such
that #, — h in LZ,(R?) and the previous estimate yields

MO .
/Rd R

if s is large enough, showing that & defines a tempered distribution. If the element
u € S'(R?) is defined by the equation i = h, it follows thus that u belongs to

& Birkhauser



Local Fourier spaces and weighted Beurling density 1235

F *1L{’V(Rd) andu, — uin F *lLfv([Rid), proving the required completeness property.
O

We should point out that, for a general moderate weight w as above, it might not
be true that @, the complex conjugate of u, belongs to F 'L (R?) whenever u does.

This will be the case, however, if w is even (w(—¢) = w(&)), or more generally, if
w(—=¢) < Cw(¢&) for some constant C > 0. The following two results show that the

dual of 'L (R?) can be identified with F 'L, (RY) if 1<p<oo and with
F'L>,(RY) ifp = 1.

Proposition 2 Let p with 1 <p <oo and let h € fﬁlL‘V]VI,,,([R{d), where q is the dual
exponent of p. Then, the mapping

G = [ QRO AL we FLR), @)

is well defined as an element of (]:_IL{’V(R’])),. Furthermore, we have
[1€nll = [|All, 1-s- Conversely any element £ of the dual space (]:_IL{’V(Rd))/ is of the
form £ =), as in (4) for some h € fﬁlL?v,,q(Rd).

Proof 1If h€ F'L!, ,(R?) and ¢, is defined by (4), we have, using Holder’s
inequality, that

OE / 14(&)] V()| d = / &) w(&) P w(&)™ VP de

showing that ¢, € (fflL{’v(Rd))/ and ||[4,]| <Al
F'12 (R?) by the formula

Y 1 £) 1972 -alp
& = {h(g) @2 w(&)™7 it h(&) #0,

gwi-o- Furthermore, defining u €

0 if h(&) =0,

we have £,(u) = ||u||p7w (17|l
the mapping F:F 'IZ(RY) — LZ(R?) is an isometric isomorphism and
(L{’V(Rd))/: L4 (R?) in the sense that any continuous linear functional £ on LZ,(R?)
has the form

showing that |4, = ||4]] Conversely, since

A gw'—a-

)= [ FOR@wmE e, 1< LR,

for some g € L (R), it follows that any element ¢ of (FLZ(R?))" has the form

W Birkhiuser



1236 J.-P. Gabardo

o) = / i(&) GO w(E)de, f e I (RY),
R
for some G € L7(R?). Defining h by the formula h = Gw, it is easily checked that
heF 'L (RY) and that £ = ¢}, as above. This proves our claim. O

We can deal with the case p =1 in a similar way. The proof of the next
proposition is left to the reader.

Proposition 3 If h € F 'L, (R?), the mapping

Oa(u) = /[R W R de, ue FLL(RY), (5)

is well defined as an element of (]:_ILSV([R‘{))’. Furthermore, we have
1€nll = 12]| o -1~ Conversely any element £ of (]—‘_IL}IV(R‘I))/ is of the form £ = ¢,
as in (5) for some h € F 'L, (R?).

We can use the previous duality characterization to prove the density of the test
functions 7 ~'12 (R?) when 1 <p<oc.

Proposition 4 If 1 <p<oo, the space C*(RY) is dense in F~'L17(R?).

Proof We argue by contradiction. If C3°(R?) were not dense in F 'L (R?), the
Hahn-Banach theorem would show the existence of a non-zero element ¢ of
(F 'z (RY)) satisfying £(p) = 0 for all ¢ € C°(R?). If 1 <p < oo, Proposition 2
would imply the existence of » € F~ 'L _ (R?) with h # 0 such that

Wwi—a

o) = [ @R =0, oeCF®.

Since the space F ’lLfvl,q([R{d) is continuously embedded in S'(R?) and the space

C(RY) is dense is S(R?), it would follow that i = 0, a contradiction. If p = 1, the
proof is similar and uses Proposition 3. O

Definition 2 If U is an open set of R? and 1 < p < oo, we will denote by F L2 (U)
the closure of the space C°(U) in F~'L2 (RY).

Note that Proposition 4 shows that there is no ambiguity between Definitions 1
and 2 in the case where U = R?.

Lemma 1 If1<p<ooandy € S(RY), the mapping u—\y u is a continuous linear
mapping from F L2 (R?) to itself.

Proof 1f 1<p<oco and u€ F'IZ(R?), the integral form of Minkowski’s
inequality yields

& Birkhauser
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1wl = ( JRCRIICIETG df)””

— (/[Rgd /Rd (¢ —n)yin)dn W(f)d§>1/p
/Rd ()| (/Rd (& =)l w(é) d5>l/pdn

< [ i ([ i =P wie =i di)l/pdn A

p

IN

where C:= o ()| v(n)'"? dy<oo. The case p = oo follows from a similar
argument. (I

The next lemma will help us define tempered distributions on R? which are
locally in F~'12 (R?).

Lemma 2 Let 1 <p < oo and let w be a weight on R? satisfying (1) and (2). Then,
given T € S'(RY), the following are equivalent.

(a) For any ¢ € C¥(RY), the distribution ¢ T belongs to F L7 (R?).
(b) For any bounded open set U C R?, there exists u € F 71Lfv(Rd) such that
u=TonU.

Proof 1f (a) holds and U C R is a bounded open set, we can find ¢ € C3°(R?)
suchthat p = 1on U. Then,u = ¢ T € f_lLﬁ,([Rd) and u = T on U. Conversely, if
(b) holds and ¢ € C° ([R{d), let U be a bounded open set containing the support of ¢.
If TeS (R, let ue F'I2(RY) with u=T on U. We have then ¢ T = gu €
F'12 (R?) by Lemma 1, which proves our claim. O

We will denote by ;17 (RY) the set of tempered distributions on R? which

loc™w
satisfy any of the equivalent statements of the previous lemma.

3 Weighted inequalities in measure spaces

We now introduce certain weighted inequalities which will play a central role in the
following sections.

Definition 3 Let w > 0 be a weight on R4 satisfying (1) and (2) and let u be a
positive, locally finite Borel measure on R?. Let U C R? be open and non-empty, let
p with 1 <p<oo and let A,B > 0.

(a) We say that the couple (u,w) belongs to B’ (U, B) if we have the inequality

[oracs<s [ @reed ver g, ©
R¢ R
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(b) We say that the couple (u, w) belongs to ¥ (U, A, B) if, for any u in the space
F'12 (U), we have the inequalities

A / QP w(e) e < / N du() < B / P w@de (1)

Since, by definition, the space C3°(U) is dense in F~'L? (U), in order to establish
that a couple (p, w) belongs to 87 (U, B) or F¥(U, A, B), it is thus sufficient to verify
the inequalities in (6) or (7), respectively, for test functions u = ¢ € C3°(U). Note
that, for any a € R?, we have

B’(U,B) =B (U+a,B) and F’(U,A,B)=F"(U+a,AB). (8

Clearly, if y is any tempered positive Borel measure on R?, we have

[ 16top duti) <oc
R

if 1<p<oo and ¢ € C°(R?). However, it is not immediately obvious that a
positive Borel measure p must be tempered if the previous integral is finite for all
the test functions in C3°(U) where U C R? is a non-empty open set. The next
lemma will be needed to show that it is indeed the case.

Lemma 3 Let g with 1 <g<oo, let u be a positive, locally finite Borel measure on

R? and suppose that, for every F € L1 () with F > 0, the measure F dy is tempered,
i.e. there exists an integer m = m(F) such that

FO .
i e <o

Then, the measure u must itself be tempered, i.e. there exists an integer M such that

1
A 1+ [y e =ee

Proof We first show that there exist an integer my > 0 such that

F) N
Jo i o<

for all F € L7(u) with F > 0. Indeed, if it weren’t the case, we could find a sequence
{Fi}is, € LY(n) with Fr >0 and

Fi(&) — o
L. 1+ [P ) =0

& Birkhauser
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Letting F = 0, 27* ||Fk||;L Fy, we have F € L1(u), F >0 and, for any k > 1,
F($) P Fi($)
@ =2 IR [ ) = o,
/[Rd (141" © el r (14 (¢ ©
in contradiction with our hypothesis. Letting thus m be as above, we can define the
linear mapping ¢ : LY(u) — C by
G(¢)
66 = [, T aud). Gerw.
me (14 ]E)™ ( :

Define also for N > 1, the linear mappings ¢y : L?(u) — C by

_ GO .
@)= /{asm (L jepys 40 Ger).

Each ¢y defines a bounded linear map since, for any G € LY(u), we have

, 1/q | 1/p
@< ([ le@rans) ( | Wdu(f)) .

Furthermore, for any G € L%(u), the sequence {¢y(G)} is bounded since
Iy(G) — £(G), N — oo, by the Lebesgue dominated convergence theorem. It fol-
lows thus from the uniform boundedness principle that the sequence of operators
{€y} is bounded, i.e. there exists B > 0 such that ||¢y|| < B for all N. This implies
that ||4|| < B, i.e. the linear functional £ is continuous. The fact that the dual of L7(u)
is LP(u) (with 1/p + 1/g = 1) shows that

1
4
/Rd (1 jeppm =

proving that our claim holds with M = pmy,. O

Note that the previous result does not hold for ¢ = 1 since the measure F du is
automatically bounded if F € L.

Proposition 5 Let p with 1 <p<oo, let u be a positive Borel measure on R? (not
necessarily locally finite) and suppose that, for some € > 0, we have

161 due) <ce, o € G (B0.0)

where B(0,¢) = {x € R?, |x|<e}. Then, u is a tempered measure, i.e. there exists
M > 0 such that

1
Je e <

W Birkhiuser



1240 J.-P. Gabardo

Proof We first show that u is locally finite. By a compactness argument, it is
enough to show that each point in R? is the center of a ball with finite y-measure.
Let ¢, € C¥(B(0,¢)) with ¢y,#0 and choose ¢& € RY such that
|#0(&o)| := 2 r > 0. By continuity, we have thus, for some ¢ > 0, that |@,(&)| >r
if |&—¢&|<e If & € RY, the function @, defined by @, (x) = e>™(&17%) ¢ (x),
belongs to C3°(B(0, €)) and we have the inequality |@,(&)| > rif |£ — & | <e. Hence,

1 . 2 1 . 2
wsE < g [ P g [ 6i@F e <o

showing that p is locally finite. To show that u is actually tempered, we consider
first the case where 1 <p<oo. Using Lemma 3, it suffices to show that for any
F € L1(u) with F >0, the measure F dyu is tempered. For such an F, let N > 1 and
define, for any ¢ € C°(B(0,¢)),

(T, ) = / F(O) ¢(&)du(e) and (Ty, @) = / F(&) $(2) du?).
R4 B(O,N)

It is easy to check that for each N > 1, Ty € D'(B(0, €)) since it is the restriction to
the ball B(0,¢) of the inverse Fourier transform of the bounded measure
F yp(o,) dut Furthermore, the sequence {7y}, is bounded in D'(B(0,¢)) since
this is equivalent to the boundedness of each sequence {(Ty,®)}y~; With ¢ €
Ci°(B(0,¢)) and, for such ¢, we have B

1/q
I A CILCIETCE ([ r@a@) ol

where [|o||, , = (Jaa @O du(E)) "7 It follows then from elementary distribution
theory, that there exist an integer K >0 and a constant C > 0, such that
(Tv, o) <C > 1070l @ € CF(B0,€/2)).

lo| <K

Hence, T € D'(B(0,€)) and satisfies

(T, @)l <C D" 00l @€ CF(B(O,€/2)).

lo| <K

Let p € C(B(0,1)) satisfy p(0) =1 and for r > 0, define p,(x) = p(x/r) and

p,(x) = p(—=x/r). Clearly, p, * p, € C°(B(0,¢/2)) if 0<r < ¢/4. Furthermore, for
any x € RY, we have

O(p, * p,)(x) = ((@%p,) % f,)(x) = r / ©@p)((y =x)/r) p(y/r) dy.

R4

Hence, for any multi-index «, we have

18 (o, % )l < 771071y N0l

& Birkhauser



Local Fourier spaces and weighted Beurling density 1241

It follows that, there exists a constant C; > 0 such that
(T, p, * p)|<C rt K if 0<r<e/d<l.

Since p,(&) = r? p(ré), we have thus the inequality
[ QIR @ < cirt k. o<r<ea<i.
Let & > 0 be small enough so that |j(&)|> >1/2 if |¢| < 5. We have then
/ F(&) du(é)<2C, K, 0<r<e/d<l,
{lg[<o/r}

and

_F©) NG
,/Rd (1+ |5|2)M du(é) < /{cfgl} i+ |€|2)M du(é)

o0

+) kM F(E)du(é).
; /{k<|:<k+1} (&) au(d)

For k large enough, we have

1 d+K
[RCIICEEEY ey
{k<|é] <h+1}

and the series above converges to a finite value if M > (d + K + 1) /2, proving our
claim. If p = 1, it suffices to reproduce the above argument with F = 1. (]

Corollary 1 Under the previous assumptions, if the couple (u,w) belongs to
B’ (U, B) for some p with 1 <p <00, then y must be a tempered measure and so is
the (complex) measure Fdu if F € LI(p) with 1 <g < oo.

Proof The open set U contains a ball of radius ¢ > 0, which we can assume to be
centered at the origin. Since C3°(B(0,€)) is contained in F~'L? (U), Proposition 5
shows that p is tempered if 1 <p<oo. If M > 0 is such that

1
/R T @ e

and F € L1(u), where 1 <g< oo, we have, letting p be the conjugate exponent of ¢
1/p
and C = (f[Rd W du(f)) 5 that

L % ansc( [ IForas) Y

if s>M/p. If ¢ =1, Fdu is a bounded measure and is thus also tempered. If
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q = oo, the fact that Fdu is tempered follows from the fact that y is tempered
together with the inequality |F|du <||F||,, du. d

The next result gives a different interpretation of the fact that (1, w) belongs to
B (U,B) or F?(U,A,B). We will use the property that for any F € L?(u) with

1<g<oo, F ’I{F du} is well-defined as a tempered distribution by the previous
corollary.

Theorem 1 Let u be a tempered positive Borel measure on R¢ and let w be a

moderate R? satisfying (1) and (2). Let p with 1 <p<oo, let g be the conjugate

exponent of p and let U be a non-empty open subset of RY. Then, the following are

equivalent.

(@ (u,w) € B”(U,B) for some B > 0.

(b) Forany F € L9(p), there exists h € F~'LL(RY) with F~'{F du} = h on the
open set U, where w = w9 if 1 <p<oo and w =w' ifp = 1.

Proof Assume first that (u,w) € B’(U,B). This means that mapping T :
F'I2(U) — IP(u) : u—i is bounded and, thus, so is the adjoint mapping
T : P (p) — (]—"’IL{’V(U)),. Using the (LP(u),L9(p)) duality, given any
F € L4(p), there exists thus an element £z of (F~'12(U))" such that

[ i@ F@du = trtw), we 71 w).

By the Hahn—Banach theorem, the continuous linear form /5 can be extended to an

element of (foV(Rd))/ and using the duality results in Proposition 2 and Propo-
sition 3, this means that, given any F € L7(u), there exists a corresponding element
h € F'LL(R) such that

[ @i = [ o@F@dud. oecr). ©)
This last identity means exactly that F ! {F du} = h as distributions on the open set
U. Conversely, if (b) holds, given any F € L9(y), there exists h € F~'LL(R?) such
that F~'{F du} = h on U. In particular, there exists a constant C(F) > 0 such that

[ @ F@aua| <ce)lol, . o€ )

Thus, for any F € L9(p), the linear functional ¢ defined by

o) = [ HOF@AD, o< CFO).

can be extended to a continuous linear functional on 'L (U), i.e. an element of
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(f’lLfV(U))/. Note that if F, — F in L?(p) and ¢f, — £ in (]—"’IL{’V(U)),, we have,
for any ¢ € C3°(U),

o) = fim [ o F@due) = [ o FEdu(e) = tr(o),

n—o0 Rd

and thus ¢ = {r, using the density of C5°(U) in F~'L2,(U). It follows that the linear
mapping L(u) — (F ’IL{’V(U))/: F—/F is closed and thus continuous, using the
closed graph theorem. There exists thus a constant B > 0 such that

o F@au)| <8 ([ FOraud) ol
L <o (], )

whenever ¢ € Ci°(U) and F € L(u). Hence, we obtain the inequality

([ corans) i =

(f 1FIdp) "= 1

for any ¢ € C3°(U), proving (a). O

/Rd Wf)ﬁdu(f)\ <B|¢ll,,

Corollary 2 Under the previous assumptions, the following are equivalent.

(@ (u,w) € B(U,B) for some B >0 and some non-empty bounded open set
UcCR.

() (u,w) € B (U,B(U)) for all non-empty bounded open set U C R where
B(U) > 0 depends on U.

(¢c) ForanyF € Lq( ), FHFdu} € FilLL(R?) where v = w' ™ if 1<p<oo
and w=w"lifp=1.

Proof Clearly (b) implies (a). Conversely, if (a) holds, there exists ¢ > 0 such that
(1, w) € B’ (B(0, ), B) for some B > 0, using (8). If U is a bounded open set in R?,
we can use a partition of unity argument to construct N functions {;,...,{y €
Cr(R?Y) with supp({;) C B(ai,¢), where a; € R? such that YV, {;=1 on a
neighborhood of U. We have then, for ¢ € C{°(U), that

(/R |</3(é)|”du(é)l/p (/ llNl @*&)(é)lpdu(é))

N

R l/p N
<3 ([ 1@ an®) <5 ot <50 o

i=1

1/p

pw?

where Lemma | was used in the last step, showing that (a) holds. The equivalence
of (b) and (c) then follows directly from Theorem 1. O
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Theorem 2 Let u be a tempered positive Borel measure on R¢ and let w be a

moderate weight on R? satisfying (1) and (2). Let p with 1 <p<oc, let g be the

conjugate exponent of p and let U be a non-empty subset of R%. Define the weight v

by w=w!'" if l<p<oco and w =w~" if p=1. Then, (u,w) € F*(U,A,B) for

some A,B > 0 if and only if

(a) Forany F € L1(p), there exists v € fﬁlLi’;(Rd) with F’I{Fd,u} =v on the
open set U.

(b) Foranyh € F'LL(R?), there exists F € L(u) such that F~'{F du} = h on
the open set U.

Proof If (u,w) e F?(U,A,B), then (u,w) € B°(U,B) and (a) follows from
Theorem 1. Since the linear mapping T : F'I2(U) — LP(u) : u—i is bounded
and also bounded below the adjoint mapping T* : (I”(u))' — (]-"’IL';’V(U))/ is
bounded and surjective. If 1 € F'LL(R?), the linear mapping

o) = [ o@RDE oecrw)

can be extended uniquely to an element of (}' ’IL{’V(U))/. Hence, using the sur-
jectivity of T*, there exists F € L9(u) such that

o= [ o@ @
which is equivalent to the identity 7~ '{F du} = h on the open set U, so (b) holds.
Conversely, the statement in (a) is equivalent to the boundedness of 7* and thus of T
and the statement in (b) is equivalent to the surjectivity of 7* which is equivalent to
the topological injectivity of 7, i.e. to the lower-bound inequality in (7), showing
thus that (1, w) € FP(U,A, B) for some A, B > 0. O

4 Perturbation by multiplication

In this section, we consider the following natural problem. Suppose we know, for
example that a weight w) satisfying(1) and (2) and a tempered measure yu; are such
that the couple (i, w;) belongs to F”(U, A, B) for some open set U C R?. Does it
follow that the couple (w~!pu;,w='w;) also belongs to F7(U,A,B) if w also
satisfies (1) and (2)? Simple examples with p = 2 ([8]) show that this is not the case
in general. However, we will show that (w=! 1t;, w=!w1) belongs to a larger class
FP(V,A’,B) if V is an open set slightly smaller than U in the sense that
V + B(0,¢) C U, for some ¢ > 0. Note that, letting , = w~! y; and wy = w=wy,
we have then wi!dyu, = w; ' du,. Our goal in this section can then be rephrased
more generally as follows. Given two moderate weights w;,w, on R satisfying
both (1) (with v =v; for w;, i = 1,2) and (2), we will show that if the couple
(uy,wr) belongs to B’ (U,B) (resp. F7(U,A,B)) for some open set U, then the
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couple (p,,w2) belongs to B7(V,B’) (resp. F7(V,A’,B')) if the open set V is as
above.

We will need the following lemma which can be found in ([8]). We reproduce it
here for the reader’s convenience.

Lemma 4 Let w and v satisfy (1) and (2) and let F > 0 be a measurable function on
R? satisfying

[ rev-gae<c.

Then, for any ¢ € RY, we have the inequalities

w@ ([ ronoe) <o p@ < ([ Fovena). o

Proof Note first that, since 1 = v(0) <v(y)v(—7y), we have

/d F(V)V"(v)dvﬁ/ F(y)v(=y)dy<oo,
R

Rd
Hence,
o F)E) = [ FE=wt)dr<w@) [ PO an
Rd Rd
and
(v F)E) = [ FE=nwidrzw@ [ POV 0)an
Rd Rd
which proves the inequalities in (10). O

The next result can be used to deduce weighted inequalities, such as (6) or (7),
from unweighted ones (i.e. with w = 1) holding for a slightly larger space and vice-
versa. The case p = 2 of this theorem was proved in ([8]). The case 1 <p<oo is
proved below by a similar method.

Theorem 3 Let ¢ >0 and consider open sets V and U in RY such that
V + B(0,e) C U. Let p with 1 <p <oo and let wi,w, > 0 be two moderate weights
on R? satisfying

wi(E+n) <wi(&)viln), &neRY,

where v; is tempered fori = 1,2. Let U,V C R? be open and suppose that, for some
€>0,V+B(0,e) CU. Let uy, 1, be positive Borel measures on R satisfying

witdp = wy'dp,

and, letting v := v\ v,, define the quantity
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M(e) = -nf{fw WP v(=¢)dc
Jro WP v-1(8) dé

Y€ C?(B(O,G))\{O}}Zl- (11)

(@ If (u,w1) € B(U,B), then (p,,w2) € B°(V,B(¢)) where B(e) = BM ().
() If (uy,wi) € FP(U,A,B), then (p,,w,) € FP(V,A(e),B(€)) where A(e) =
BM(e)"" and B(e) = BM(e).

Proof As we mentioned before, it suffices to prove the required inequalities for test
functions in C{°(V) instead of general elements of F~'I2 (V). Letting w = w; w3
and v =v;v,, it is easily checked that both (1) and (2) hold. Suppose that
Y € C(B(0,€))\{0}. Since v is tempered, so is v_! using the inequality 1 =
v(0) <v(&)v(=¢) for ¢ € R?. Furthermore, we have

0< /R WP v (9 ae< /R W (&) v(=¢) dé < oo.

Using Lemma 4 with w and v replaced with w=! and v(—-), respectively, , we have
the pointwise inequalities

wl<q (|zﬁ|”*w’1> and Y7 xw '<Cow ! on R
where
-1
a= ([ warvicodw) e e- [ lieriod
R? Re

Suppose that (u;,wy) € BP(U,B). If ¢ € C;°(V), we have thus

[ 100F dn@ = [ 106 wal@)wi' (@) din ()
R R

- [ 16

<c [ 1o (15w )@ (@

—a [ to@r ([ - @) i
—ci [ v ([ 1@ i - o an@ ) a-

Since for fixed 7, the function é—@(&)Y(¢é — 1) is the Fourier transform of the
convolution of ¢ with ¢*™™ ), a function which belongs to C°(V + B(0,¢€)) C
C;°(U) and (p;,w1) € B(U,B), we obtain that

P (&) dpy (€)
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[s@ranoscs [ v [ 0@rie-armead)
R
—cis [ 1o ([ - apw@a) e e
-cB /|<p |"(|w|”*w) (&) de
<aBC [ BOr T (©m (o) d:
—CBC [ 1@ w9

from which the conclusion of statement (a) immediately follows.
Suppose now that (y,,w;) € F?(U, A, B). By part (a), it suffices to prove the first
inequality in (7). If ¢ € C3°(V), we have thus

[ s@ran© = [ 6@ @ dn
R
S Gl (W*w-‘)@dul(f)
R
=it [1o@r ([ - ore e ar) du@
¢ [ ([ o@r i - or an o) ae

Since for fixed 7, we have (&) /(¢ — 1) = (&) with ¢ € C;°(U), we obtain, using
our assumption, that

[oran@zcita [ v ([ 10@r e - orm@ ) a
i [ 1o ([ W -arwma) mia:
—czlA/ O (10w ) @ m(@) a2
eac [ a@re @wiod
—ctac! [ oo

Our proof is completed by noticing that the constants A(e) and B(e) can be obtained
by taking the infimum of the quantity C; C; as i vary over all non-zero functions in
Ci°(B(0,¢)) and by using the inequalities obtained above. O
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5 Weighted inequalities for functions with a spectrum in a small ball

In this section, our main goal will be to characterize when a pair (¢, w) belongs to
B’(U,B) (for some B > 0) or to 7”(U, A, B) (for some A, B > 0) in the case where
U is a ball with a sufficiently small radius. Using Theorem 3, we can reduce the
problem to the unweighted case, i.e. the case where w = 1. We first need to define
the upper and lower-Beurling density of a positive Borel measure on RY. If r > 0,
weletl, = {x € RY, |x;| <r/2, i=1,...,d}, the closed hypercube of side length r
centered at the origin in R?. We will write 7 for I; for simplicity. If y is a positive
Borel measure on R?, the quantities
. z+1Ig _ S z+ 1k
D (u) = lllrerS()lClp ZSEUHEI L R ) and D (p) = thrigolf zleand L R )

are called the upper and lower-Beurling density of the measure p, respectively. If
both these densities are equal and finite, we say that the Beurling density of the
measure p exists and we define it to be the quantity D(u) := DT (u) = D~ (u). Note
that the notion of Beurling density, particularly that of a discrete set of points in R?
(which corresponds to a mesure that assigns a mass of 1 unit at each of these points),
is a very useful tool in sampling theory where the type of inequalities we are
considering in the case p = 2 play an essential role (see [4—-10, 12, 14, 16, 18]). A
positive Borel measure p is called translation-bounded if there exists a constant
C > 0 such that

u(x+10,1y<Cc VxeR% (12)

Note that the space of (complex) measures ¢ whose total variation |o]| is translation-
bounded is a special case of amalgam space and is denoted by W (M, I*°) (see [2, 3]
for more details).

Proposition 6 (/5]) Let u be a positive Borel measure on R%. Then, the following
are equivalent:

(a) w is translation bounded.

(b) D (u)<oo.

(c) There exists f € L'(RY) withf >0, [ fdx = 1 and a constant C > 0 such that
uxf<C ae. on R

As the last condition in the previous proposition shows, the notion of upper-
Beurling density is related to certain convolution inequalities satisfied by the
measure u. The following result will also be used in the proof of our main result in
this section.

Theorem 4 ([5]) Let u be a positive Borel measure on R? and let h € L' (R?) with
h>0. Let A, B > 0 be constants. Then

(@) If uxh<B ae. on R, then D* (1) [ hdx<B.
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(b) If u is translation-bounded and the inequality A < u * h holds a.e. on R?, then
A<D (u) [ hdx.

Lemma 5 Let u be a positive Borel measure on R?. For any r > 0, let E, be a Borel
measurable subset of R, such that

{xe R, |x|<r/2, i=1,...,d} CE, CI,.
Then

E E
D*(u) = limsup sup w and D (p) = liminf inf H(C+ Er)

R—00  geRd R—oo  ¢tcpd R4

Proof Let 0<d <1, using the inclusion I;x C Ex C Iz, we have the inequalities

a H(E+1Tsg) _ p(E+Er)  w(E+1Ig)
0 (OR)? < Rl < Rl

which imply that

E
0 D*(u) < limsup sup we+ Er)

+
R—oo  gepd R? S P (‘u)
— 14 a

and

_ oo M(EHER) _
0D () < liminf inf =22 <D (p).
(1) < lim in nf =R = (W)

The result follows by letting 6 — 1~ in the previous inequalities. O

The following lemma will also be needed. It shows, in particular, the continuous
embedding of the Schwartz space S(R?) in the amalgam space W(C, £'). (see [2, 3]
for the precise definition of this last space and for an overview of applications of
general amalgam spaces in Fourier analysis).

Lemma 6 Let |y € S(RY). Then, there exists C > 0 such that

5y sup [p(E—kd—y)|<C, EeR, 0<S<I

kezd 1<l

Proof Let us define

1
IR
and suppose that 0<06 < 1. If & € [-0/2,0/2] and k € Z\{0},

g() 7 ER.
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nt €= 0k — 5] = min{|¢ — ko — /2. 1€ k5 +5/20} > 5 (k] ~ 1),
J<o

Hence,

0
5 sup g(é—kd—p)< |5+ ——
é hl<d/2 7oy 1+ 0% (k| - 1)?

o
_35+2Z 5 273+2/0 T o<

Since the left-hand side of the previous expression is d-periodic as a function of &, if
follows that the inequality holds for all & € R. If y € S(R?), we have the estimate

d
mi<a I sk, ver:
i=1

Therefore, for any & € R9, we obtain

5"Zsup|x//£ 5k—y|<ZC1H5 sup g(& — ok — ;)

5 vels iz it hlsép

=C H o Z sup  g(& — ki — ;) <C ¢! = C< 0.
=1 kez ml<d/2

O

The inequalities (13) in the following theorem are known as the Plancherel-Polya
inequalities (see [21]) and one can show that they hold for 0 <1 (i.e. one can take
09 = 1 in Theorem 5). For the convenience of the reader, we provide a quick proof
for the weaker result stated below as this is all we will need. Furthermore,we do not
know of a reference for (14) which gives the limiting values for the best constants in
the inequalities as 6 — 0. These will be used in the proof of Theorem 6.

Theorem 5 (Plancherel-Polya) Let p with 1 <p<oc. Then, there exists dy with
0< 9 <1 such that, if with 0 <0 <Jy, there exists constants C1(0), C2(0) > 0 such
that

1/p
5 191, < <25d|<p5k ) <)ol peCrw.  (13)

kez?

Furthermore, if Ci(5) and C,(0) are the best constants in the inequality (13), we
have

Jim €(9) = lim () = 1. (14)
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Proof As usual we let g be the dual exponent of p. We give the proof for the case
1 <p< o0, as the case p = 1 (where ¢ = oo) can be dealt with in a similar way by
replacing by 1 any term raised to the power ’5’ or é in the proof below.

We have, using Minkowski’s inequality,

. ’ 1/P: A ’ 1/p
> 5e(sk)) > - |p(ok)|" dy

kez? kez?
1/p
= (Z / | (k) — @(7) +¢(~,)de>
kezd Ok—+Is

Vp 1/p
<;§Z:d /(5k+1(5 [9(3k) = eI dy) +<Z /tSkJrl(; lp(n)I” d?)

kez?

= <I§ /o‘km |p(Sk) — @(v)lpdy>l/p+(/w |¢(y)|”dy>l/p,

Similarly, we have also

1/p 1/p

(/R 6] dv) = (kezz /Mo 6()] dy)
1/p

B (kegf /&km () = @(0k) + @ (ok)I" d“/)

/p 1p
<,§4 /5k+1,5 [9(0k) = o) dy) *(Z /6 - | (3k)| dy)

IN
>

<
kez?
1/p 1/p
= |p(0k) — p(n)I" dv) + ( 5 |</3(5k))|”)> :

Hence, to prove (13) and (14), it suffices to show that

1/p
(Z/ |¢>(5k)—¢(v)lpdv> <C©)lloll,, ¢@ec). (15)
kezd Ok—+1s

where C(3) — 0 as d — 0. Choosing f# € C3°(R?) so that # = 1 on a neighborhood
of I and letting = B, we have ¢ = ¢ = if ¢ € C3°(R?) is supported in 1.
We have thus, using Holder’s inequality,
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> 10000 = )P d

kez?
- ;;zd /BM /R [W(0k — 1) —¢(y — D)) p(r) dz| dy
< Z /5k+1ﬁ ( ” [W(0k — 1) —Y(y — 1) Qb(f)|pdr) S(y) d,

kez?

where S(7) = (fpa [W(0k — 1) = Y(y — 1)] dr)p/q < (2]Jl,)"?. 1t follows thus that
S [l - ot
Ok+1s

kez?d
p/q W (Ok — v —
<(21lyl,) /{ /m% k—1)—y(y—r1)

Hie) = [ k=0 - g -ld ceR

kezd

d“/}lé)(f)l” dr.

kez?

Let

By the mean-value theorem, if y € ok + I5, we have

(k=) —y(y— o) <6Vd Y sup [ (&+ ok — 7).

1<i<d ¢€ls
Hence,
d+1 A
<N 8VA ST sup |y (E-1)ldy
kez? 1<i<d Eeok+ls

=0oVd Z 5‘12 sup [ (& — 1), € R

1<i<d  egd SEKHs

Applying Lemma 6 to each of the functions v € S(RY), i=1,...,d, we deduce
the existence of a constant A > 0 such that Hs(t) <A 0. It follows that the inequality
(15) holds with C(8) = (2 ||y|,)"/4A"/P 67 — 0 as 6 — O, proving our claim. [J

The following theorem is related to the Logvinenko—Sereda theorem ([15]; see
also Proposition 3.34 in [18]) in which the measure u in the next theorem is of the

form du = yz(&) d¢é where E is a measurable subset of R?.

Theorem 6 Let pi be a locally finite, positive Borel measure on R and let p with
1 <p<oo. Then, the following are equivalent.

(a) There exist constants A,B > 0 and € > 0 such that
Al < [ 1p@P au@ <Blpl, pecri. (o)
(b) We have 0<D~ (u) <D (n) <cc.
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Moreover, if (a) holds for € > 0 and we denote by A(n) and B(n) respectively the
best constants A and B such that the inequalities in (16) holds for all functions
p € CY(l;), where 0<n<e, then these constants satisfy the inequalities
A(n) <D™ () <D* () <B(n) and

lir(l)l A(n) =D (u) while lir(l)l B(n) = D" ().
n—=0* n—0*

Proof The proof below deals only with the case 1<p<oo, as the case p =1
(where g = 00) can be dealt with in a similar way by replacing by 1 any term raised
to the power g or é Suppose first that (a) holds for some € > 0. Then, letting

plx) = polx) €%, where py € C3<(I.) and py # 0, we have |6(2)| = |go(n — &)|
and using the inequalities in (16), we obtain that

Alboll < [ 1500 = OF di(& < Bl n R,
or, equivalently, that
Allpolly < (ux 1pol”) (m) < Bllpolly,  n € RY.
This implies, using Proposition 6 and Theorem 4, that
A<D (u)<D' (W) <B

and thus that (b) holds. Conversely, if (b) holds, and ¢ > 0 is given, note that any
function p € C5°(I,) can be written in the form p(x) = e “1=1/P) o(x/¢), where

@ € C(1) and [|pl, = [|@]l,,
It follows that the inequalities in (16) are equivalent to

Alloll, < /Rd e p(e&)l du(@) <B|olly, o € (). (17)

For any € > 0, let ¢, be the measure defined by

HOAE = [ oeDdue), ¢ R,

RY

The inequalities in (16) can thus also be written using (17) as
Allgll, < /Rd (I du (&) <Bllolly, @ € C(D). (18)

Note that if 5 > 0 and ¢ € R?, we have

o WS+ 1)

p(E+15) = € p(fe + 1) = 6/

and, in particular,
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5(1 inf ,u(é +Iz3/e) <'u€(6+15)§5d sup :u(é +I(S/e)' (19)

inf —————
¢erd (5/6)d N gerd (5/€)d

Let f € C(RY) with f = 1 on a neighborhood of I and let } = B. As before, we
have then ¢ = ¢ *, for ¢ € C3°(I) and, in particular, for any & € RY, using
Holder’s inequality, we have

-| [ we=notar|
< [we=nllaora ([ |w<¢—y>|dy)p/q

= WIEY [ W=l dr

Letting 6 =1 , we can use (19) and the fact that D*(,u) <00, to find a number
My > 0 and ¢y > 0 such that

w(E+N) <My E€R! 0<e<e.
We have, in particular,

e (E+T) <My, E€R

Hence, letting C = ||xp|\"1’/ ? and using Fubini’s theorem, we have, for any
@ € Ci°(I), that

[s@ra@=c [ [ we-nloar ade

—c [ { [ wee=man@ poor e

Using Lemma 6, there exists thus a number M; > 0 such that

(& =ldpe,(S) < =l dhg, ()
/Rd Mldu 2 /H 7l du

<My Y sup [Y(E—k— )| <M.
ezt V€l

Hence, it follows that there exists thus a number M > 0 such that

L o@r dn & <mlioly. o e G
If 6>0, define the set Qs as {¢€RY, —/2<¢<6/2,i=1,...,d}. If

@ € Co(I), let Yis.e(@) = [55,0, 10(0K)" dp (&). If 0<e<eo, we can write, using
Minkoswki’s inequality twice, that
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(/Rd (&) dﬂg(f))l/p: <I;Zd /($k+Qo @(C)V’d'ue(é))l/p

1/p
) e
(gzdj / ., 1900+ (9(0) - 9(000) dm(é))

1/p7P\ VP
X 1/p S(E) — (SN
< (,;Z, |‘(Ykﬁb,e(90)) +</MQ6 [9(&) — @(k))| due(i)) ] )
1p 1/p
< (Z YkM@) +<Z / lp(&) — @(5k))l”duf(é)> :
kez? rezd 7 Ok+0s

Similarly, letting Zes.c(@) = [5. 0, 19(E)I” dpc(&), we have

1/p
I
(kz /Q 16(6K))| dm(é))
1/p
< (2 zkﬁ,f«o) (Z /Q GNP du(¢ >>

/p 1/p
- (/R |¢(5)|’7due(f)> +<k§ /{mgé |p(&) — (k)| d,uf(é)> ,

showing that

1/p
6(0,e.0) ~16,e.0) < ([ 1007 d00)  <6(6.e.0) +16c0) (0

where

1/p
G(d,¢6,0) = E @(0k))|P du,
( ) (keZd /6k+Q(,~ | ( ))| (@)

and

1/p
S.e. ) = 5(6) — ¢(0k))|P d, ‘
16,¢, ) (Z /M 16(2) — p(6k))| u(é))

We first estimate I(J, €, ¢). We have, using the inclusion Q5 C I,
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(I(d,¢,9)) kEZd /ak.u) GO dp, (&)
/M / )—lﬂ((sk—y)]ﬁ?)()’)dvpdﬂf(é).

Since

4

| we=n-vk-nyowar

<ai [ =0 - vE=Dl160)F dy

where C; = (2||y/|,)”/4, Fubini’s theorem yields

(G.coy<c S [ | e -wiok-o)
Sk+15 JRY

kez?

P dy du (&)

= - - — (P n
=C /R{kezz: /(WS (& —7p) —(ok /)Idyg(g)}kp(/” dy
Let

() — o - )
H;(y) = C, gzjt /MM [W(E—7) — p(0k — )| du (&), 7e R
We have

Hs(p)<Cr Y sup (& —7p) — (Sk — )| p(Sk + I).
kezd Eeok+ls

By the mean-value theorem, if & € ok + 15, we have

(& —7) = (ok — )| < sup [P (& = 7).

1<i<d &€dk+ls

Using (19), it follows that

H)<C Y oV S swp (€ =)ot sup M T

ez 1<i<d &€dk+Is erd (0/€)

= C,3Vd sup 7M(C+I(Z/E) SY 0 sup (& =)l

cert (0/€)" 1 SiZajcge Eedkls

Applying Lemma 6 to each of the functions v € S(RY), i=1,...,d, we deduce
the existence of a constant C > 0 such that
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I.
Hy(y) < Co sup MET 1) ‘Z{‘)
ert (6/€)

It follows that, for any 6 > 0, we have the inequality
(C + ) 5)
(I5,c.0)) < €3 sup == ||},
cert  (0/€ )!

We now consider G(J, ¢, ) and assume that 0 <Jdy where Jy is as in Theorem 5 .
Let C;(6) and C,(9) be the best constants in the inequalities (13). Since Q5 C I5, we
have, for any ¢ € C3°(I), using (19),

, yER

@ e Cr().

GEco)y=3 [ 1P dn(& < Y 60 10k + 1)
Sk+05

kez? kez?
su M 5d 505 14 5 p(su M) Anp
S(ge[@ /0" )ke%: | (k)" < (Ca(9)) geu}fd 5/0) [

Similarly, letting E5 = {x € RY, |x;j|<6/2, i=1,...,d} for § > 0, we have

(Go,60)=3 / GO din (&) > 3 (3K (3K + Es)
‘k+Q¢>

kez? kez!
5(1 ~ 5]{ P f :u(C—i—E(S/E) C 5 p - f H(C+E¢S/E) A p.
> 3 o loe)r i, > (@) int S ol

Using (20), we obtain thus, for ¢ € C3°(I), the inequalities

1/p ) 1/p
([ 1o an) s[c2<5>+cw6‘/"}<su£ %ﬂ“) Il 1)
R leR? €

and

(/Rd lp(&)F dﬂe(§)> 1/p

1+ Esje) v w(C+1sse) v %2
in 5/6 — l/p l/p su 75/6 (A .
2[C1(5)<ceu§d (8/€)" ) cro (CGRPJ (0/e)? ) }”M”

Fix p with 0<p <D~ (p). Since C;(6) — 1 as 6 — 07, for i = 1,2, by Theorem 3,
we obtain, letting 6 = /e in (21) and (22), the existence of €; > 0 such that

1/p
([ o@ra©) <o+, o<esa, e,
@3)

and, using Lemma 5,
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1/p
([ s@ran@) " == 16, o<csa. occr.

(24)
Using the first part of the proof, we deduce the inequalities
D (u) —p<A() <D (W) <D (W) <B(e) <D (1) +p, 0<e<e.
This proves our claim. O

Since every set I, contains the translate of a small ball centered at the origin, we
can replace the set /. by the ball B(0, ¢) in the statement of the previous theorem. A
consequence of the previous result, of the statement (b) in Theorem 3 and of
Theorem 2, is the following characterization.

Theorem 7 Let u be a tempered positive Borel measure on R and let w be a
moderate R? satisfying (1) and (2). Define the weight w = w'~% if 1 <p <oco and
w =w"! if p = 1. Then, the following are equivalent.

(a) There exists € > 0 such that (u,w) € F?(B(0,¢),A, B) for some A,B > 0.

(b) Forany F € L), F-"{Fdu} € FilLL(R?), and if € > 0 is small enough,
for any h € F~'LL(RY) and any a € R, there exists F € L9(u) such that
FYFdu} = h on the open set B(a,e).

(c) We have the inequalities 0<D~ (w™! ) <D (w1 ) < o0.

Proof The equivalence of (a) and (b) following directly from Theorem 2 and
Corollary 2, it suffices to prove the equivalence of (a) and (c). Assume first that (a)
holds. Using (b) of Theorem 3 with y; = u, w; = w, dyy, = w™'duand w, = 1 and
using the inclusion B(0,¢/2) + B(0,¢/2) C B(0,¢), we deduce that (w™!u, 1) €
FP(B(0,¢/2),A’,B") for some A’,B' > 0. This implies (c) using Theorem 6.
Conversely, if (c) holds, then Theorem 6 shows the existence of ¢ > 0 such that
(w™lu, 1) € F(B(0,€),A, B) for some A,B > 0. Using (b) of Theorem 3 with
duy =w'lduy wy =1, py=pu and w, =w and using again the inclusion
B(0,¢/2) + B(0,¢/2) C B(0,¢), we deduce that (u,w) € F7(B(0,¢/2),A’,B’) for
some A’, B’ > 0, yielding (a). O

There is also a version of the Theorem 6 above where we only assume the
inequality on the right-hand side. The proof is similar to that of the previous
theorem. Alternatively, one can also prove it by applying the previous theorem to
the measure du + sd& where s > 0 is a small constant and letting s approach zero.

Theorem 8 Let pu be a positive Borel measure on R which is locally finite and let p
with 1 <p <oo. Then, the following are equivalent.

(a) There exist constants B > 0 and € > 0 such that

[ o@ras<s [ o@ra eecri. @)
R R
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(b) We have D* () <oo.

Moreover, if (a) holds for € > 0 and we denote by B(n) the best constant B such that
the inequalities in (25) holds for all functions ¢ € C (1), where 0<n < ¢, we have
the inequality D" (1) < B(n) and

lim B(y) = D* (n).
n—0+*

Combining the previous theorem, the statement (a) in Theorem 3 as well as the
equivalence of (a) and (b) in Corollary 2, we can prove following result, following
arguments similar to those used in the proof of Theorem 7. The details are left to the
reader.

Theorem 9 Let u be a tempered positive Borel measure on R and let w be a
weight on R? satisfying (1) and (2). Let U C RY be a bounded open set. Then, the
following are equivalent.

(@ (u,w) € B’(U,B) for some B > 0.

(b) For any F € L1(u), F ' {Fdu} € F,,lLL(RY), where w = w'~4 in the case
where 1 <p<oo and w=w"' ifp=1.

() DHwp)<oo.
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