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Abstract

The paper considers the problem of finding common solutions of a system of
pseudomonotone equilibrium problems and fixed point problems for quasi-nonex-
pansive mappings. The problem covers various mathematical models of convex
feasibility problems and the problems whose constraints are expressed by the
intersection of fixed point sets of mappings. The main purpose of the paper is to
design and improve computations over each step and weaken several assumptions
imposed on bifunctions and mappings. Two parallel algorithms for finding of a
particular solution of the problem are proposed in Hilbert spaces where each sub-
problem in the family can be computed simultaneously. The first one is a modified
hybrid method which combines three methods including the generalized gradient-
like projection method, the Mann’s iteration and the hybrid (outer approximation)
method. This algorithm improves the hybrid extragradient method at each com-
putational step where only one optimization problem is solved for each equilibrium
subproblem in the family and the hybrid step does not deal with the feasible set of
the considered problem. The strong convergence of the algorithm comes from the
hybrid method under the Lipschitz-type condition of bifunctions. The second
algorithm is a viscosity-like method with a linesearch procedure that aims to avoid
the Lipschitz-type condition imposed on bifunctions. With the incorporated vis-
cosity technique, the algorithm also provides strong convergence. Several numerical
experiments are performed to illustrate the efficiency of the proposed algorithms
and also to compare them with known parallel hybrid extragradient methods.
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1 Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Let
f:CxC— N be a bifunction with f(x,x) =0 for all x € C. The equilibrium
problem (EP) for f on C is to find x* € C such that

f(x*,y)=0,vy € C. (1)

The solution set of EP (1) is denoted by EP(f, C). Mathematically, EP (1) is a
generalization of many other mathematical models including variational inequality
problems, Nash-Cournot equilibrium point problems, optimization problems and
fixed point problems [8, 13, 24]. Some methods for solving EP (1) can be found, for
example, in [14-20, 25, 30, 31, 33-35, 38, 40, 41]. The problem of finding common
solutions of a system of equilibrium problems has received a lot of attention by
many authors in recent years, see for instance [12, 22, 25] and the references therein.
This common problem covers in particular various forms of convex feasibility
problems [4, 11]. The paper interests in the following problem.

Problem 1.1 Find an element x* € Q := (Nie/EP(f;, C)) ((NjesFix(S;)), where f; :
CxC—-RieJI={,, ..., are bifunctions and S;:C—C,jeJ=
{1,2,...,M} are quasi-nonexpansive mappings.

The motivation for studying this problem is in its possible application to
mathematical models whose constraints can be expressed as the common fixed point
set of finitely many mappings. This happens, in particular, in the practical problems
as signal processing, network resource allocation, image recovery, for examples
[10, 23, 42]. Some algorithms for solving Problem 1.1 can be found in
[3, 27, 34, 36] and the references therein. Almost existing methods are designed
sequentially and used the proximal method for each equilibrium subproblem in the
family. The proximal method for EP (1) consists of solving a strongly monotone
regularized equilibrium problem per each iteration, i.e., given xy € C, find, for all
n>1, x,.1 € C such that

f(xn+17y)+l<y_xn+laxn+l _xn)zovvy €C, (2)
where {r,} is a positive control parameter sequence. In this paper, we focus on the
projection methods. In [26], Korpelevich introduced the extragradient projection
method for solving saddle point problems in Euclidean spaces. After that this
method was extended to solve variational inequality problems (VIP) involving
Lipschitz continuous and monotone operators in Hilbert spaces. Recall that the VIP
for an operator A : C — H is to find x* € C such that

(Ax*,x —x") >0, Vx € C. (3)

The VIP (3) is known as a special case of the EP (1) when f(x,y) = (Ax,y — x). The
extragradient method for the VIP (3) is of the form
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{ Yn = PC(xn - )A(xn)), (4)

Xn+l = PC(xﬂ - M(yn))’

where /1 € (0, %), L is the Lipschitz constant of A, and P¢ denotes the metric
projection from H onto C.

In 2008, the extragradient method was extended to equilibrium problems by Tran
et. al. [35] in Euclidean spaces. In that case, two projections in the extragradient
method become two optimization programs

o 1
o = argmin (i (5,.3) + 1 1 I,
yeC (5)
. 1
xer = argmin{Af (v, y) + 5 [l — 1%}
yeC

The sequence {x,} generated by algorithm (5) converges to some point in EP(f, C)
under the assumptions of pseudomonotonicity and the Lipschitz-type condition of
bifunction f. In infinite dimensional Hilbert spaces, the extragradient method, in
general, is weakly convergent. A question is how to design an algorithm which
provides the strong convergence. The hybrid (outer approximation) method and the
viscosity method were sucessfully proposed to answer to the above question. Some
strongly convergent algorithms for solving Problem 1.1 with M = N = 1 in Hilbert
spaces can be found in [2, 29, 30, 40, 41]. For solving Problem 1.1 with M, N > 1,
the authors in [22] introduced three parallel hybrid extragradient methods, and one
of them [22, Algorithm 1] is designed as follows:

Algorithm 1.1

' . 1 .
¥y = argmin{ifi(x,,y) + 5 [l = YIF}i €1,
yeC 2
‘ . | 1 .
Z = argm1n{)ji(yj1,y) +—||xn _YHZ]’vl el,
yeC 2
Z = argmax{ ||z, —x,|| : i € I},
u{z = OyXy + (1 - O(n)Sjij € J’
ity = argmax{ |, — x,|| : j € J},
C, = {z € C: iy — 2| < || —z||2}7
O, = {Z c(C: <xo —)Cn,Z_xn> SO},

Xnr1 = Pc,no, (%0),

where xo € C and 1 >0, {o,} C (0,1) are parameters satisfying the following
conditions:

1 1
limsupo, <1 and 0< A< min{— } (6)

2C1 ’2_6‘2

with ¢y, c; being two Lipschitz-type constants of f (see, Definition 2.2 (iv) in
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Sect. 2). Two tasks of Algorithm 1.1 are to solve 2N optimization problems and find
the projection x,+1 = Pc,ng,(x0). The additional computations Z, and i, are neg-
ligible. It has been proved that the sequence {x,} generated by Algorithm 1.1
converges strongly to Pq(xp) under assumption (6) and the nonexpansiveness of
mappings §;. The advantages of the extragradient method are that two optimization
problems are solved per each iteration which seems to be numerically easier than
nonlinear-inequality (2) in the proximal method and it is used for the class of
pseudomonotone bifunctions. Another possible advantage of parallel algorithms, in
computations on computing clusters or multi-core computers, is that intermediate
approximations can be found simultaneously over each subproblem in the family
while sequential ones are not. In this paper, we concern about the followings in
Algorithm 1.1 for solving Problem 1.1.

(a) The number of solved optimization problems per each iteration in
Algorithm 1.1 is 2N. This can be costly and it happens if the feasible set C
and the bifunctions f;,i € I have complex structures. We want to reduce the
number of solved optimization programs in this intermediate step.

(b) At the last step of Algorithm 1.1, we see that the projection x,1 = Pc,ng, (X0)
still deals with the feasible set C. In the first proposed parallel algorithm, this
projection is a more relaxation without dealing with C.

(c) The class of mappings is used in Algorithm 1.1 is nonexpansive. We would
like to extend this class to the one of quasi-nonexpansive and demiclosed at
zero mappings. An example for the class of quasi-nonexpansive mappings
S;,j € J is presented in Sect. 5.

(d) Algorithm 1.1 and the first proposed algorithm (Algorithm 3.1 in Sect. 3) are
strongly convergent under the slightly strong assumption of the Lipschitz-type
condition of bifunctions. Using the linsearch procedure, we proposed the
second parallel algorithm for Problem 1.1 which avoids this strong condition.
The proof of the convergence of the second algorithm is based on the obtained
ones in the paper [40, Sect. 4].

(e) The strong convergence of two proposed algorithms comes from the hybrid
(outer approximation) method and the viscosity method. The efficiency of the
new algorithms is also illustrated by some numerical experiments in
comparison with Algorithm 1.1.

This paper is organized as follows: In Sect. 2, we collect some definitions and
preliminary results for further use. Sects. 3 and 4 present the proposed algorithms
and analyze their convergence. In Sect. 5, we perform some numerical examples to
check the convergence of the algorithms and compare them with Algorithm 1.1.

2 Preliminaries
Let C be a nonempty closed convex subset of a real Hilbert space H. The metric

projection P¢ from H onto C is defined by Pcx = argmin{||x — y|| : y € C},x € H.
It is well - known that P¢ has the following properties.
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Lemma 2.1 Let Pc : H — C be the metric projection from H onto C. Then

@) <ch—Pcy,x—y>2||ch—PCy||2,Vx,y € H.
Q) |lx = Poyl*+l|1Pcy =y < llx =y, x € C,y € H
(i) z=Pex<= (x—2z,z—y)>0,Vye C.

Let {x;}Y, be a finite sequence in H and {y,}Y,C [0, 1] be a sequence of real
numbers such that Zf': o Vi = 1. By the induction, it is easy to show that the
following inequality holds

= 2 = 2 2 = 2 = 2
1D vl = vl P =D vl = 517 <D vlll P =D vonlleo — x|
i=0 i=0 i#j i=0 J=1

(7)

A mapping S: C — C is called nonexpansive if ||S(x) — S»)|| <||x — y|| for all
x,y € C. The class of mappings mentioned in Algorithm 1.1 is nonexpansive while
certain mappings arising for instance in subgradient-projection techniques are not
nonexpansive. In this paper, we consider the following mappings.

Definition 2.1 [29] A mapping S : C — C is called:

(i) quasi-nonexpansive  if  Fix(S) # 0 and  ||S(x) — x| <|]x — x*||,
Vx* € Fix(S),Vx € C.
(i) - demicontractive if Fix(S) # (), and there exists 8 € [0, 1) such that

1S(x) = x*||> <||x — x*||* + Bl]x — S(x)||*, Vx* € Fix(S),Vx € C.

(iii)  demiclosed at zero if, for each sequence {x,} C C, x, — x, and ||S(x,) —
Xu|| — O then S(x) = x.

From this definition, we see that each nonexpansive mapping with fixed points is
quasi-nonexpansive while the class of demicontractive mappings contains the one of
quasi-nonexpansive mappings. Also note that, if S : C — C be a /— demicontrac-
tive mapping such that Fix(S) # ) then S,, = (1 — w)I + wS is a quasi-nonexpan-
sive mapping over C for every w € [0,1 — ] [29, Remark 4.2]. Furthermore,

1Sy — x*]| < []x — x*||* — w(1 — B — w)]|Sx — x||*, Vx* € Fix(S),Vx € C.

It is routine to see that Fix(S) = Fix(S,,) if w # 0 and Fix(S) is a closed convex
subset of C.

In Sect. 4, to find a particular point in the solution set Q of Problem 1.1, we focus
our attention on an operator F': C — H which is n—strongly monotone and L -
Lipschitz continuous, i.e., there exist two positive constants # and L such that, for all
x,y € C, (F(x) = F(y),x —y) Znllx = y|* and ||F(x) = FO)|| <L|lx =yl We
need the following result for proving the convergence of our parallel viscosity
algorithm.

& Birkhauser



Parallel modified methods for pseudomonotone... 1689

Lemma 2.2 (cf. [42, Lemma 3.1]) Suppose that F : C — H is an n—strongly
monotone and L—Lipschitz continuous operator. By using arbitrarily fixed

ue (O,Lz) Define the mapping G : C — H by G*(x) = (I — uF)x,x € C. Then

(i) G* is strictly contractive over C with the contractive constant

1 — pu(2n — pL?).
(ii)) Forall v e (0,p),

) VT
|wa—xn<(r—;)w—xn+ww&m,
where t =1 — /1 — u(2y — ul2) € (0,1).

Proof (i) From the definition of G*, the n—strong monotonicity and L—Lipschitz
continuity of F, we obtain

16 (x) = G*W)II* =l(x = y) = u(F(x) = F)IP
=[x = yII* = 2u(x =y, F(x) = F(y)) + i|F (x) = FO)I
< e = yIP = 2unllx = yII* + 1L Jx =y
=(1 = p(2n — pL?))[]x = y|P*.

This yields conclusion (i). Next, we prove claim (ii). From the defition of G and (i),
we have

1G"(v) — [ =l
<[l

y = VF(y)) = (x = vF(x)) = vF(x)]|
y = vE(y)) = (x = vE))[| + v|[F ()]

I(l > ;y () = (x = pE))]I| + V][ F ()|
(1-3)o=

(
(

=[I{1- GH(y) = G* Il +VIIF)|

Vv
u
Vv
U
v
- )WxH+u¢1 W= Ry — x|+ IF @)

<(
~(1=Z )ity =l + 1L

Next, we recall some concepts of monotonicity of a bifunction (see [8]).
Definition 2.2 A bifunction f : C x C — ‘R is said to be:

(i) strongly monotone on C, if there exists a constant y > 0 such that

) +F0,x) < = yllx = |, Vx,y € G

(i)  monotone on C, if f(x,y) + f(y,x) <0,Vx,y € C;
(iii)  pseudomonotone on C, if f(x,y) >0 = f(y,x) <0,Vx,y € C;
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From above definitions, it is clear that a strongly monotone bifunction is
monotone and a monotone bifunction is pseudomonotone. We say that a bifunction
[ C x C — M satisfies a Lipschitz-type condition on C, if there exist two positive
constants ¢y, ¢, such that

f('xay) +f(y71) Zf(x7z) —Cl||x_y|‘2 —02||y_Z||2> Vx7y7Z eC.

The Lipschitz-type condition of a bifunction was introduced by Mastroeni [31]. It is
nesessary to prove the convergence of the auxiliary principle method for solving an
equilibrium problem. If A : C — H is a L—Lipschitz continuous operator then the
bifunction f(x,y) = (A(x),y —x) satisfies the Lipschitz-type condition with
Cl =C) = L/ 2.

We need the following technical lemmas for establishing the convergence of the
proposed algorithms.

Lemma 2.3 [39, Sec.7.1] Let C be a nonempty closed convex subset of a real
Hilbert space H and g : C — R be a convex and subdifferentiable function on C.
Then, x* is a solution to the following convex optimization problem
min{g(x) : x € C} if and only if 0 € 0g(x*) + Nc(x*), where 0g(.) denotes the
subdifferential of g and N¢(x*) is the normal cone of C at x*.

Lemma 2.4 [29, Remark 4.4] Let {¢, } be a sequence of non-negative real numbers.
Suppose that for any integer m, there exists an integer p such that p>m and
€p < €py1. Let ng be an integer such that €,, < €, and define, for all integer n > ny,

7(n) = max{k € N : ng <k <n, e < €41}

Then 0 < €, < €)1 for all n>ny. Furthermore, the sequence {t(n)}, ., is non-

decreasing and tends to +0oo0 as n — oo.

Lemma 2.5 [28] Let {o,}, {f,}. {v.} be nonnegative real sequences, a,b € R and
for all n>0 the following inequality holds o, < f, + by, — ay,yi- If Do Pu < +
oo and a > b >0 then lim,_ o, = O.

3 Parallel modified hybrid method

In this section, we propose a parallel modified hybrid algorithm for solving
Problem 1.1. Without loss of generality, we can assume that M =N, i.e.,
I=J=1{1,2,...,N}. Indeed, if M > N then we can consider additionally f; = 0
for all i=N+1,...,M. Otherwise, if N > M then we can set S; =1 for all
j=M+1,...,N. In order to obtain the convergence of Algorithm 3.1 below, we
assume that the bifunctions f;, i € I satisfy the following conditions.

Condition 1

Al. fi(x,x) =0 for all x,y € C and f; is pseudomonotone on C;

A2. f; satisfies Lipschitz-type condition on C with two constants cy, ¢;;

A3, limsup,_, fi(x,,y) <f(x,y) for each sequence {x,} C C converging weakly
to x;
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A4, fi(x,.) is convex and subdifferentiable on C for every fixed x € C.

If f; satisfies conditions A1-A4 then E(f;, C) is closed and convex, see [32, 35].
Thus, the set M;c;EP(f;, C) is also closed and convex. Hypothesis A3 was used by
several authors in [21, 41]. We assume that the bifunctions f;, i € I satisfy Lipschitz-
type condition with the same constants c,c,. This assumption does not make a
restriction on the considered problem because, if, for each i €1, f; satisfies
Lipschitz-type condition with two constants ¢}, cb. By putting ¢; = max{c} : i € I}
and c; = max{c} : i € I}, we see that f;,i € I also satisfy Lipschitz-type condition
with two constants ¢y, c;.
The first algorithm is described as follows.

Algorithm 3.1 (Parallel modified hybrid method)

Initialization. Take the parameters A € (0,0), k € (0,00) and the sequence {%,} C (0,1).
Choose xo, x| € H; yi), y, € C; C) = Qo =H foralli € I.
Step 1. Foreachic€/andn > 1,

Step 1.1. Solve strongly convex optimization program

. ) . 1
Yt = argmin{A fi(y,,3) + 3 [l =y}
yeC
Step 1.2. Compute 2/, | = %y, + (1 —%)Sp,, and
€ = kil —xu 1P+ 221 |y = i1 ]12 = (1 = =~ 2Aea) |yt — 3412
n Xp —Xn—1||” F2AC1|yy —Yn—1 ( k )1 Ynt+1 = Yull -
Step 1.3. Construct the following halfspaces

Co={z€H g~ < Ilhsr =2l < [l —2lP+3}
On :{ZEH: <x0_xn7Z—Xn> SO}

Step 2. Compute x,+1 = Pc,ng, (x0), where C, = NicsCl. Set n:=n-+ 1 and go back Step 1.

Before analyzing the convergence of Algorithm 3.1, we discuss the differences
between Algorithm 3.1 and the hybrid extragradient methods in [2, 21, 22, 33, 40].
Firstly, for N = M = 1, while the hybrid extragradient methods [2, 33, 40] require
solving two optimization programs onto the feasible set C per each iteration, then
our Algorithm 3.1 only needs to solve one problem. Besides, the intersection C, N
0, in the hybrid methods [33, 40] still deals with the feasible set C, in fact, it is the
intersection of C with two halfspaces. In contrary to this, C, N Q, in our algorithm is
only the intersection of three halfspaces which is not relative to the feasible set C.
Next, for N,M > 1, three parallel hybrid extragradient algorithms were proposed in
[22] for solving Problem 1.1 where combine the extragradient method [35] and the
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hybrid projection method. These algorithms require solving 2N optimization
programs per each iteration and C, N Q, is still the intersection of C with two
halfspaces. While the main task of our Algorithm 3.1 per each iteration is to solve
only N optimization problems. The reason for this is that the constructed sets
C!,i € I'in Step 1.3 (hybrid step) are slightly different to the hybrid projection step
in [22, 33, 40]. Moreover, also in Step 1.3 of Algorithm 3.1, Q, is a halfspace and
for each i € I, the set CZ is the intersection of two halfspaces, thus C, N Q, is the
intersection of 2N 4 1 halfspaces. Since the projection on halfspace is explicit,
Xnt1 = P¢,ng, (X0) in Step 2 can be found effectively by Haugazeau’s method [7,
Corollary 29.8] or the available methods of convex quadratic programming [9,
Chapter 8].

Together with Condition 1, we also assume that each mapping S;,j € J satisfies
the following conditions.

Condition 2

B1. §; is quasi-nonexpansive on C;
B2. §;is demiclosed at zero.

The subgradient—projection mappings presented in Sect. 5 are well—known to
satisfy Condition 2. As mentioned above, under Condition 2, the fixed point set
Fix(S;) of S; is closed and convex. Thus Q is closed and convex. In this paper, we
assume that Q is nonempty. Hence, the projection Pq(xo) is well-defined. In this
section, we also suppose that the two parameters A, k and the sequence {7, } satisfy
the following conditions.

Condition 3

Cl. 0<i<gy L k>

1 .
c1+c2)? 1-2/(c1+c2)
C2. liminf,—7,(1 —7,) > 0.

Comparing with condition (6) in Algorithm 1.1, we see that the stepsize 4 in
condition C1 is smaller. We have the following lemma which plays a central role in
proving the convergence of Algorithm 3.1.

Lemma 3.1 Let {x,}, {y;} and {z;} be the sequences generated by Algorithm 3.1.
Then, there hold the following relations for all i € I and n> 1.

@ Gy =Xy — Vi) = AfGL ) —fi(,y), Yy € C.
() |2 —x*||2 < ||y£l+1 —x*Hz <||x, —x*H2 + € for all x* € Q.

Proof (i) Lemma 2.3 and the definition of y’, +1 imply that
. 1 . .
0 € 2 (04) +5 1~ 1P ) ) + Nl
Therefore, from 6(||x,, — ||2) =2(. —x,), one obtains Aw +y' ., —x, +w =0,

or, equivalently
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yihLl — X, = —w — W, (8)

where w € Oofi(y!, ¥y ) == 0fi(y,,.)(',,;) and W € Nc(yi,,). From the relation
(8), we obtain

Ot = XY = Yg1) = KW,V = 2) + (WY —y), ¥y € C
which, from the definition of N¢, implies that
(it = Xy = Yoi1) = A(w,3hyy — ), Wy € C. 9)
Since w € Oof (vi, ¥ 11 )» Fi(hs¥) = fiVh ¥iy) = (w,y — ¥i 1), Vy € C. Thus,
<W7yf1+1 _y> Zﬁ(y;nijrl) _fl(y;ﬁy)7vy ecC.
This together with the relation (9) implies that
<y51+1 —Xn, Y _y;+1> Z;L(fl(y;uy;l+l) _ﬁ(y;uy))av.y eC. (10)
(ii) By the definition of Z,,, and the convexity of |||, we obtain
l2hsr = X117 =19 Ohgr =27 + (1= 2,) vy — x|
i %12 i %12 i i 2
:Vn||yn+l —X H + (1 - yn)”SfyrH»l - X H - Vn(l - Vn)HSiyn+l _yn+1||
i *112 i *112 i i 2
SVnHyn-H - X H + (1 - yn)||yn+1 - X H _Vlz(l _’Vll)HSiyn+] _yn-HH
i %12 i i 2
< ||yln+1 —X || - yn(l - yll)||Siyn+1 _yn+1||
(11)
<Yy =¥ (12)
From Lemma 3.1(i) we have
O = x-1, = ) 2 2(fi0100) = fin-1:)), ¥y € C. (13)

Substituting y = /., € C into (13), we obtain

(V= X1, Yoo = V) Z A Oh_ 1Y) — i1 Y1)

Thus,
A0 Vi) =Fi0h-1538)) 2 (0 = %1, = Yy )- (14)
Substituting y = x* into (10), we get
Ot = 2% = 1) 2 20600 Vi) = fild, 1)) (15)

Since x* € EP(f;,C) and y' € C, fi(x*,y") > 0. Hence, fi(y’,x*) <0 because of the
pseudomonotonicity of f;. This together with (15) implies that
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<Yf1+1 Xpy X yn+l>>ifl(yn7yn+]) (16)

Using the Lipschitz-type condition of f; with x =/, |, y =i and z =i, we get

o o o A - S
Fi0nets3) F L0 Y1) 20t Vart) — oy = Yol = eallyn, = vl

which implies that

N . . . . . - ) . 2
fi(y;vyilﬂ)zfi(y;fhyhrl) _fl'(yilflayjq)_clnyihl _y;1|| _CZHyil _y;HrlH .

(17)
Combining (16) and (17), we see that
<yf1+, Xy X yn+l> >’1{fl Voo I’yn+l) *fi()’i—l,)’fq)}
i 12 i P2
- )°c1|‘yn71 - yn|| - )“C2Hyn - yn+1|| .
From this and relation (14), we come to the following one,
) ) . ) ) .
Vot = %X = Vo) = = X1, Y = Vor) — Aty = Yl
i P2
- )‘CZHyn - yn+] || .
Multiplying both sides of the last inequality by 2, we obtain
2<y£,+1 Xny X y,,+1> 2<yi1 - xnflvyil _y;1+l> Z - 2AC1||y;71 - y;” (]8)
' )
= 22¢2|ly, = yunll™
We have the following fact
' )
20yt = Xun X" = Vi) = [ = X1 = Yoy = X1 = [l = Y
= [|xn *X*H - Hyn+1 *X*” — [|xn *xn—l|| - 2<x,, — Xn—1,Xn—1 *y;+1>

i 2
- ||xn*1 _ynJrlH
= [t =12 = ey = X717 = [ = Xl P = 200 = X1, X1 = i)

S0 o . . S
= et = yall” = 2001 = Y v = Vagr) = I = Yol

(19)
We also have
- 2<)C,, — Xp—1,Xn—1 7yi1+l> SQ,H)C,, 7xn*1||||xn*1 7y51+l||
<2030 = x| [[Pa—1 = Y1l =+ 2[xn — a1 ][Iy, *yln+1‘| (20)

. 1, . .
2 2 2 2
< e = 17l = 3l [7 o+ Kl = 2|7+ i = v I

in which the first inequality follows from the Cauchy-Schwarz inequality, the
second one follows from the triangle inequality and the last ones is true by the
inequality 2ab < a® + b*. From the relations (19) and (20), we derive
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2~ 05" = i) <l = ey =+ Ky = P
+ 200 =512 =)+ (1 1)Ibh =l
Thus,
2Vt =% = Vo) = 200 = %, Y = Vo) < b — x|
=y = 1R+l =5 P+ (= 1)1 = P

which, together with (18), leads to the following inequality

, i i 112 i 02 2 - 2
=21y, = VIl =22elly, = v 17 < lbon = X717 = [y = 27|

bl = sl (= 1)1 =51
Hence,
s =21 < e — €1+ Kl — 5P+ 2icrl 1y — 1P
~ (1-3- 2 )~ st P
=||xn — X*Hz + Efﬁ

in which the last equality follows from the definition of €. Combining this with
(12), we obtain the desired conclusion. O

Lemma 3.2 Let {x,}, {y;} be the sequences generated by Algorithm 3.1. Then,
there hold the following relations:

i QCC,NQ,foraln>0.
(il)  The sequence {x,} is bounded and

Jim [0 = x| = lim [ly, —x[[ = lim [ly,,, =y,]| = lim [|Sy, || =0.

Proof (i) Lemma 3.1(ii) and the definition of C', ensure that Q C C! for all n>0
andi € I. Thus, Q C C, for all n> 0. It is clear that Q C H = Cy N Q. Assume that
Q C C, N Q, for some n>0. From x,+; = Pc,ng, (x0) and Lemma 2.1(iii), we see
that (z — x,41,%0 — Xp41) <0 for all z€ C, N Q,. Since Q C C, N Q,,

(2 = Xng1,%0 — Xpp1) <0

for all z€ Q. Thus, QC Q,,; because of the definition of Q,.; or
Q C Cyi1 N Q1. By the induction, Q C C, N Q, for all n>0. Since Q is none-
mpty and the set C,, N Q, is closed and covnex for each n >0, we obtain that the
projection Pc¢,ng, (xo) is well-defined.
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(ii) From the definition of Q, and Lemma 2.1(iii), we see that x, = Pg, (x).
Thus, by Lemma 2.1(ii), we have

llz = xalI” <1z = %ol = [0 — %ol %, V2 € Q- (21)
Substituting z = x := Pg(x0) € Q, into (39), one has
[t — ol [ = [ — xo]|* > | — x| > 0. (22)

Hence, {||x, — xo||} is a bounded sequence, and so is {x,}. Substituting z = x,4; €
0, into (39), one also has

0 < [t — x| [* < [pwsr = xol|* = [brn — 0] (23)
This implies that {||x, —xo||} is non-decreasing. Hence, there exists the limit of

{llx» — xo[[}. By (23),

K
D bt =l [P < [t = xol* =[x — xol[*, VK > 1.
n=1

Passing to the limit in the last inequality as K — oo, we obtain

Z |[Xng1 — xa]]* < + o0. (24)

n=1

Thus,
lim ||x,+1 — x,4|| = 0. (25)
n—oo
Since x,41 € C, =N, C!, x,41 € C.. From the definition of C',
et = %t 17 < s = Tt 2 < bw = x| + 6, (26)

Set Mrll = ||Ziz+1 —x,1+1||2, Mrzl = ||)’f;+1 _xn+1|‘2’
N, = ||xil_x11+1”2+k||xn_xn—1||29 P, = Hyi,—yi,_1||2, b:2;LC], and
a=1-1—-2jc, From the definition of €, ¢ = k|x, —x,_1|]" + bP, — aPy .
Thus, from (26),

M! <M? <N, +bP, —aP,,. (27)

By the hypothesises of A,k and (24), we see that a > b>0 and > > | N, < + oc.
Lemmas 2.5 and (27) imply that M}, M? — 0, or

)Ltg||12+1 _xn+l|| = nlLHOIO HYLH — Xpy1]| = 0.

This together with relation (25) and the following inequalities
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her = Yol S IVosr = Xl + [ = xall + [Pe = V11,
1zt = Yustll S Mlznsr = Xna || 4 a1 — 2,4 1]
implies that
lim Iy, — 3| = dim [l — 2l = 0.ie . (28)
In addition, the sequences {y;} {zﬁl} are also bounded because of the boundedness

of {x,}. From relation (11), we obtain

i i 2 i 2 i 2
(1= Vn)||siy;+1 _YZJAH < ||yln+1 = X" = HZ;;H = x|
< (e =21 = Nz = 21D (s = >N+ Mz —x7[1)

St = 21U =271+ [y = 2[])-
This together with (28), the boundedness of {yi,}, {z;} and the hypothesis of {y,}
implies that
Tim ISiy, .y =¥yl = 0,0 €1 (29)
O
We have the following first main result.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H.
Assume that Conditions 1, 2 and 3 hold and the solution set Q is nonempty. Then,
the sequence {x,} generated by Algorithm 3.1 converges strongly to Pq(xo).

Proof Assume that p is any weak cluster point of {x,}. Without loss of generality,
we can write x, — p as n — oo. Since |[x, — y|| — 0, yi — p. This together with
(29) and the demiclosedness at zero of S;, we obtain p € N;e/Fix(S;). Next, we show
that p € Nig;EP(f;, C). From Lemma 3.1(i), we get

Mi(¥) = 20 Vopt) + (% = Yoitsy = ¥ )s Wy € C. (30)
From relations (14) and (17), we have
M s V1) = (0 — L= Vi) = 2aillhoy = YIIP = deallyl — il
Ltynvyn.H A Xn—1,Yp yn+l CL 1 Yp—1 Yn 2y, yn+] .
(31)
Combining (30) and (31), we obtain
1L ><i7 i7i>7) N TP | i Q2
/Lﬁ<yn7y)— yn xn*hyn yn+l ‘Cl||yn71 yn|| 62||yn yn+l”
+ <x,, = Yus1oY —yﬁ,+]>.

Passing to the limit in the last inequality as n — oo and using Lemma 3.2(ii), the
bounedness of {y!}, 7 > 0 and A3, we obtain
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fip,y) = lim sup fi(v},y) >0,Vy € C,i €I

n—oo

Thus, p € Ni;EP(f;, C) and p € Q. Finally, we show that x, — x' := Pg(xo) as
n — oo. Indeed, from inequality (22), we get ||x, — xo|| < ||x" — xo||. Thus, by the
weakly lower semicontinuity of the norm ILIl and x,, — p, we have

[lp — xo|| < lim inf ||x, — xo|| < lim sup ||x, — xo|| < HxT — xo|-
n—oo n—oo

By the definition of xf, p = x' and lim,_.o. ||x, — xo|| = ||x! — xo]|. Since x, — xT,
X, —xo — x| — xo. By the Kadec-Klee property of the Hilbert space H, we have
X, — Xo — x1 —x or x, — xT = Pq(x0) as n — oo. O

4 Parallel viscosity linesearch method

The convergence of Algorithm 3.1 requires the hypothesis A2 of the Lipschitz-type
condition of equilibrium bifunction. Actually, this assumption is not easy to check and
even if yes, then two Lipschitz-type constants ¢y, c; can be difficult to approximate.
This can make restrictions in implementing numerical experiments of Algorithm 3.1.
In this section, we propose a parallel viscosity linesearch algorithm for Problem 1.1
without the assumption A2. The algorithm combines the Armijo linesearch technique
[35] with the hybrid steepest descent method [29, 42]. This algorithm is described as
follows: at the n™ step, given x,, we first split and use the auxiliary principle problem
[31] to find component approximations y’, on each equilibrium subproblem for f; in the
family. After that, for each equilibrium subproblem, the Armijo linesearch technique
is used to find a suitable approximation v/, which lies on the segment from x, to y’.
Based on v, we construct a halfspace H’ which contains the solution set Q and splits it
with x,,. And now we find z/, as the projection of the previous iterate x, on C N H’. Next,
use a convex combination of component approximations z',i € I to compute an
intermediate approximation 7, by the hybrid steepest descent method [29, 42]. Finally,
the next iterate x,; is defined as a convex combination of 7, and values S;t,,j € J.
Following the auxiliary problem principle which was introduced by Mastroeni in
[31], let us define a bifunction & : C x C — R satisfying the following conditions.

L1. There exists a constant § > 0 such that ¥ (x,y) > §||x —y|[* and Z(x,x) =0
for all x,y € C;

L2. & is weakly continuous; #(x,.) is differentiable, strongly convex for each
x € Cand Z (y,y)=0forallyeC.

Considering the bifunction ¥ which satisfies the conditions L1 and L2 in this
section allowing us a more flexibility. For instance, % is the Bregman-type distance
function as Z(x,y) = g(x) — g(y) — (Vg(y),x —y) where g: C — R is a differ-
entiable, strongly convex function with modulus > 0. If g(x) :%||x||2, then

L(x,y) =3|lx—y %, A generalization of this form is g(x) = 1 (Mx,x), where M is
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a positive definite and self-adjoint linear operator on H, then
g(xu)}) = %<M('x _y)vx _y>

Moreover, from the ideas of Maingé and Moudafi in [30], Yamada in [42], Vuong
et al. in [41], we associate the problem of finding a solution x € Q with a variational
inequality problem (VIP) on Q which is to find x € Q such that

(F(x),y —x)>0,V¥y € Q, (32)

where F : C — H is an 1 - strongly monotone and L - Lipschitz continuous operator.
Since Q is closed, convex and nonempty (assumed), it follows from the hypothe-
sises of F that VIP (32) has the unique solution, denoted x*. In the special case,
when F(x) = x — u where u is a suggested point in H, then VIP (32) is equivalent to
the problem of finding a solution x* in Q which is the best approximation of u, i.e.,
x* = Pq(u). And now, we are in a position to present the second algorithm in
details.

Algorithm 4.1 (Parallel viscosity linesearch method)

Initialization. Choose xp € C, o € (0,1), 7 € (0,1) and the control parameter sequences
{pa} € (0,00), {a,,},{w;},{%’} C(0,1) foralli e and j € J.

Step 1. For each i € I, compute y, € C by
. ' 1 .
v, = argmin{ f;(x,,y) + p—f(xn,y) :yeC}h iel
n

Putl, = {i €1:x,—y,#0}.If I, = 0 then set v, = x,, i € I and go to Step 3. Otherwise,
Step 2. For eachi € 1,

Step 2.1. If i € I\I, set v, = x;,.

Step 2.2. (Linesearch) If i € I,,, find the smallest positive integer number mfl such that

vi=(1— 1]'”5.1))6,1 -i-T[mf'yf,7
[i(sxn) = fi(Vi, ) = 558 (6ns )

Step 3. For each i € I, select g, € 5 f;(vi, x,) and compute 7/, = Perpgi (%), where
H,’; = {x cH: <gf1,xn fx> > fl-(vﬁl,x,,)}.

Step 4. Compute
in = ZIW:;Z:;’ Iy = PC (Zn - anF(Zn)) 5
e

Xn+1 = Yr(z)tn+ Y Yr{Sjtn-
jeJ

Set n=n+1 and go back Step 1.

The tasks of Algorithm 4.1 are to solve N optimization programs at Step 1, find
intermediate approximations v/, which are not costly and compute projections for z,
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and #, dealing with the feasible set C. If f;(x,y) = (A;(x),y — x), where A; : C — H
is an operator then the hyperplane H! in Step 3 becomes H' =
{x e H: (Aw},vi —x) >0}, which was introduced by Solodov ans Svaiter [37]
for solving variational inequality problems. From Remark 4.3 below, we see that H'
contains the solution set Q. Also, like as the remarks of the authors in [37], the
computed projection zi = Permi (x,) is closer to any solution in Q than x,. The
projection #, = Pc(z, — ,F(z,)) in Step 4 can be replaced by t, = z, — o, F(z,) if
fi, £, S; are defined and satisfy respective conditions on the whole space H.

In order to obtain the convergence of Algorithm 4.1, we install below conditions
on the bifunctions and the control parameters. In this section, assumption A2 is
redundant, however, hypothesis A3 in Condition 1 is replaced by more slightly

restrictive one A3a below.
Condition 4 Hypotheses Al, A4 in Condition 1 hold and

A3a.
f; is jointly weakly continuous on the product A x A where A is an open convex
set containing C, in the sense that if x,y € A and if {x,} and {y,} are two
sequences in A converging weakly to x, y, respectively, then f;(x,,y,) — fi(x,y).

The control parameter sequences in Algorithm 4.1 satisfy the following conditions.
Condition 5

Dl. p,—p€(0,1);

D2. 3%, =00, Y oo 02 <00;

D3. >, w, =1, lim,infw!, >0 forall i € I and n>0;

D4. 90+ > v = 1, lim,inf )9y, > 0 for all j € J and n>0.

An example for the sequence {o,} satisfying assumption D2 is o, = #, where
pE (%, 1]. We need the following lemma for proving the convergence of

Algorithm 4.1.
Lemma 4.1 Assume that i € I, for some n. Then

(i)  The linesearch (Step 2) of Algorithm 4.1 is well - defined, f (vil, X,) > 0 and
0¢ ani(Viuxn)-

(i)  If 2, = Pcopi (xa) then z, = Peapi () where ul, = Py (x,).

Proof See, Propositions 4.1 and 4.5 in [40]. O

Remark 4.1 From Lemma 4.1(i), we see that for each i € I,, then gil # 0. Thus, we
define ¢! by

l. LV”,’XZ") ifiel,
o, =19 gl (33)
0 if i € I\I,.
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Remark 4.2 ul, = Pyi(x,) = x, — oi,g, for all i € I. Indeed, if i € I\I, then v}, = x,.
Thus, from the definition of H! and f(v',x,) = f (x4, x,) = 0, we obtain

H; = {x €H: <g£1,x,, —x> 20}.
Hence, x, € H'. This together with the definition of ¢’ in (33) implies that
u = Ppi(Xn) = X = X — ol gl . If i € I, then, from Lemma 4.1(i), we obtain g/ #

0 and f(v%,x,) > 0. Thus, from the explicit form of the projection onto a half-space
and the definition of o, we obtain u}, = Pyi (x,) = x, — 0,8},

Remark 4.3 If x* € EP(f;, C) then (g’ x, — x*) > d'||gi||* and x* € C N H! for all
i €l and n>0. Indeed, from the facts x, € C, y, € C and V! is the convex
combination of x, and yfl, we obtain that vﬁl € C. Thus, since x* € EP(f;,C),
fi(x*,¥1)>0. From the pseudomonotonicity of f, f;(vi,x*)<0. Thus, by
g € 0ofi(vi, x,), we have

<g£17xn —.X*> Zﬁ(vilaxn) _ﬁ(vi,7X*) Zﬁ‘(Vﬁl,xn) = O—iz||giz||2

in which the last equality follws from the definitions of ¢’, v/ and f(x,x) = 0 for
both two cases i € I, and i € I\,. So, from the definition of H!, we obtain x* € H'.
Thus x* € CNH! for all i € I and n>0.

Lemma 4.2 Suppose that x* € Q. Then
: )2 )
O R N D DA A | A )i
(i)
e e N e AN A e S TA CA A )

jeJ i€l
_ 205;1<Zn — x*,Fz,,> + OCiHFZnHz.

Proof (i) It follows from the definition of 7., >",.,w\, = 1, the convexity of ||.||*
and Remarks 4.2, 4.3 that

llen =21 =I1 D wilzh =P < D willz, =1

i€l i€l
—ZW ||PCﬁH' PCmH'( )Hz

i€l

iy, x|2 i i i *)(2

< ZW”HL{”—X H :anH)Cn—O'”g”—x H

iel i€l
=D _wilbon =P =23 wian (g0 — 2 + 3 wi(allgl)

icl iel iel
< = x|P =2 wh(ahllghl)® + D wh(ahllshll)?

iel icl

=l = x| = D wh (il

i€l

(ii) By the definition of x4, yg + Zje ; yf{ =1 and relation (7), we obtain
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1 = x| =190 = x7) + D 7 (Sjt — x°
jeJ
<oplltn =217+ D lISit = X712 =D valISitn — 1l
el =] (34)
<oplltn =2 NP 4Dl = I = D ISt — tal?
= =
:”tn_X*HZ_ZVSVLHSjln_thZ‘
=
<t — x| (35)

From (34), the definition of #,, the nonexpansiveness of the projection and
Lemma 4.2(i),

e R [ [ A N T T
jeJ
=||Pc(zn — 0uF (20)) — PC(X*)Hz - ZVSVZHSJ% - lnHz
=
<|lzn — 0F(z0) — x || ZVnV]HStn tn||
jeJ

2 * j 2
=z = |I* = 200 (20 — ", F(z0)) + ol [Fzal” = Y v 1Stn —

jeJ
< ||Xn _x*Hz - ZW;1(6:1||g:1||)2 - 2(xn<Zn - x*,F(Zn)>
iel
2 i 2
+ ol [Fal [ = vvilISitn — wall.
jeJ

Lemma 4.3 The sequences {x,}, {zn}, {t.} are bounded.

Proof For a fixed p € (O,%). It follows from hypothesis D2 in Condition 5 that
o, — 0, thus, without loss of generality, we can assume that {o,} C (0, 1). From the
definitions of G* in Lemma 2.2 and of ¢, in Algorithm 4.1, we have t, = PcG"(z,).
Using the nonexpansiveness of P¢, Lemma 2.2(ii) for y = z,, x = x*, v = o,, and
Lemma 4.2(i), we obtain

Ity = 2| =1PeG (@) — Pele)|| 116G () — x|
0 T .
g( ;)mfn+mw&m

«

where 7 is defined as in Lemma 2.2. From relation (35) with n :=n — 1, we have

(36)

O(nT * *
#>Hw—XI+amF@)w
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[bon = X" < 1 — X7

This together with (36) implies that
* O(nT * *
=11 (1= 25 et =1+ 3l

0T 0T (U
=(1= 25y =21+ 22 (B iFe))
(-%) it
* ,l,t *
< max{ 1 = 'l E PG
Thus
Ity =" < max{[|ro — |, £ [[F ()1, ¥n 0.

Hence the sequence {#,} is bounded. This together with (35) and Lemma 4.2(i)
implies that the sequences {x,} and {z,} are also bounded. O

Lemma 4.4 There exists a subsequence {x,} of {x,} converging weakly to p € C
and the sequences {yfn}, {vfn}, {gjn} are bounded for all i € I.

Proof See, Step 4 in the proof of Theorem 4.4 in [40]. O

Lemma 4.5 If there exists a subsequence {x;} of {x,} such that x, —t € C and
aillgi|| — 0,Vi € I. Then t € NiiEP(f;, C).

Proof It follows from Lemma 4.4 that the sequences {y} }, {vi}, {g}} are bounded
for all i € I. Now, without loss of generality, taking a subsequence if necessary, we
show that

lim ||, — y;|| = 0, and so y, —1,Viel (37)
k—00
Indeed, since ||x; —yi|| =0 for all i € I\l,, we can consider i € I,. From the

convexity of fi(x,.), f(x,x) = 0 and vi = (1 — 5")x; 4 n"yi, we have

0 =£i(Ves vi) = filvies (1= ")+ 0" y) < (1= "™ )i ) + 0" i (v 33)-
Thus
Fivixe) > 0" (fi(vi, xi) — (Vi ¥))-
This together with the linesearch technique, f,-(v;'(, X)) = o';;” g2||2 and
L (o, ¥) > Bl — yi||* implies that
m ml

. . : oank i o
oillgkl* =filvio ) > = — L (o 33) >
o ‘ Pr T o

[l = Vil

Thus,
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i 12 < 2p; 20K 1 i1 (i {1 ;
1"l — yil|” < B A ﬁ||g2||(02||g2||)7vleln.

This together with the boundedness of {gi}, the hypotheses o%|[gi|| — O and
pr — p, we have

Jlim 0" |l — yilP = 0. (38)

Now, we consider two distinct cases:
Case 1. If lim sup,_, ., n’”i' > ( then from (38), without loss of generality, we can
conclude that limy_ ||xx — y|| = 0. Thus, the relation (37) is true in this case.
Case 2. If limsup,_. 7" = 0, and thus lim_. 7" = 0 then, since {yi} is
bounded, we can assume, taking a subsequence if necessary, that yi. — y’ as k — oo.
From the definition of yfc, we have

1 . 1 .
ﬁ(-x/ﬁy) +p_g(xkay) Zﬁ(x/ﬁy;() +p_g(xk7)’;<)yv)’ eC. (39)
k k

Passing to the limit in the last inequality as k — oo and using A3a,L2, p, — p with
noting that x; — f, y, — y', we obtain

1 PR ;
fi(t,y)+;$(t,y)2fi(t7y)+;$(t,y),\7y6C- (40)
Substituting y = ¢ into the relation (40) and employing Al,L1, one has
. 1 .
fi(t,y") +;ff(t,y')§0. (41)

By limy_, o n™ =0 (it is obvious that mi > 1). Since m} is the smallest positive
integer number satisfying the linesearch rule,

mi— mi—1_i i i1 o i
[ =" Dxge — "y ) — (1 — ™ D — ™ 'yk,yk)—p—o?f(xk,ykko-
k

mi

Letting k — oo in the last inequality, using A3a, L2 with noting that 17’”2 ! ”f —
0 and p, — p, we get
ilt:0) = it == #(0.5) <0,
which, from f;(z, ) = 0, implies that
(1) = L (1.5) <0 (42)

From (41), (42) and Z(1,y') > £||t — y/|>, we obtain
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(1-a)p

. 1 —o .
2
t=y"< ——=2(1,y") <0.
2p || H 0 ( )

Thus, from (1 — «)B/2p > 0, we obtain ¢ =y’ or ||xx — yi|| — 0 as k — co. Con-
sequently, (37) is also proved in this case.

Finally, note that (39) is true for all i € I. Passing to the limit in the relation (39)
as k— oo and wusing the assumption x; — ¢, the relation (37) and
Al,L1,A3a,L2, p, — p, we obtain immediately that

1
fi(t,y) +;$(t7y) 20,vyeCiel,
which, from the auxiliary principle problem [31, Proposition 2.1], implies that
t € EP(f;,C),i € I. Thus, t € NicfiEP(f;, C). O

Theorem 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H.
Assume that Conditions 2, 4 and 5 hold and the solution set € is nonempty. Then,
the sequence {x,} generated by Algorithm 4.1 converges strongly to Pa(xo).

Proof 1In this proof, we consider x* which is the unique solution of VIP (32). Since
F is Lipschitz continuous and {z,} is bounded (see, Lemma 4.3), there exist two
positive constants K, K, such that

2{zy — x*, Fz,)| < K; and ||Fz,|| < Ka. (43)
Set €, = ||x, — x*||>. From Lemma 4.2(ii), we obtain

enet = 6t Y TISitn — 6l + Y _wi(allgnD)? < Kia + Kia gg
jes i€l

We consider two distinct cases.

Case 1. There exists ny > 0 such that {En}nZno is decreasing. In this case, since
€, >0 for all n>0, there exists the limit lim, ., €, =€¢>0 and ¢, — ¢, — 0.
Moreover, since En oci < +o00, o, — 0. These together with (44) and the
hypotheses liminf,_ 7%/ > 0, liminf,_., wi > 0 imply that

[1Sjtn = 1al[* — 0 and a3 |gy || — 0, Vi€ 1,j € J. (45)
From the definition of x,,; and the convexity of ||.||>, we have

et = gl =l (n = 1) + > 2 (Sjta — 1)l

jeJ

. , (46)
<oolltn =l * + Y AlISitn = 1l =D 7180 — 1l
jel jel
By (45) and (46), we obtain
lim [[x,1 — ]| = 0. (47)

From the definition of #,,, z, € C, the nonexpansiveness of P and o, — 0, we have
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[tn — zal| =[1Pc(zn — 0aF2zn) — Pezall < (20 — 0 F20) — zal| (48)
=0, ||Fzy|| < 0, K2 — 0.
Since €, = ||x, — x*||* — ¢, we also have that €, = ||[x,.1 — x*||* — e. Thus, by

the relation (47), we get ||z, —x*HZ — ¢, which, by the relation (48), follows

||za — x*||> — €. Since {z,} is bounded, there exists a subsequence {z,,} of {z,}
converging weakly to p such that

lim inf (z, —x*, Fx*) = lim (z,, — x*, Fx"). (49)

n—oo m—oo

From (47), (48) and z,, — p, we obtain #, — p and x, — p. Thus, by (45), the
demiclosedness of S; at zero and Lemma 4.5, we see that p € Q. Hence, by z,, — p,
relation (49) and x* solves VIP (32), we obtain

lim inf (z, — x*, Fx*) = lim (z, — x", Fx*) = (p — x*, Fx*) > 0. (50)

n—00 m=00
From the # - strong monotonicity of F, we have

(zn — X", F2p) = (zy — X*, Fzy — FX*) + (20 — X*, FX*) > |20 — X*||* + (20 — x*, Fx*).
Thus, from ||z, — x*H2 — € and (50), we obtain

lim inf(z, — x*, Fz,) > ne + lim inf(z, — x*, Fx") > ye. (51)

n—oo n—oo

Assume that € > 0, then there exists a positive integer Ny such that
1
<Z,1—X*,FZ,1>Z§17€,VVZZN0. (52)
It follows from Lemma 4.2(ii), (43) and (52) that, for all n > N,

{211 _x*”z <|lx, _X*Hz — 204 (2n — X", F2y) + O‘iK% <||xa _X*Hz — 0yhE + OC,211(22'

Thus, from the definition of ¢,, we obtain ¢, — ¢, < — a,ne + ociK%, Vn > Ny. This
implies that

n+1 n+1

w1 — Ny < — €Y o+ K3 > o (53)
k:

=Ny k=Ny

Since e >0, Yo" o = 400 and Y oo, 02 < + oo, it follows from (53) that

n=1
€, — —oo. This is absurd. Therefore ¢ = 0 or x, — x*.

Case 2. There exists a subsequence {e,. } of {€,} such that ¢, <¢, ; forall i >0.
In this case, it follows from Lemma 2.4 that

€1(n) < €z(n)+15 €n < €z(n)+1> Vn > ny. (54)

where 1(n) = max{k € N :ny<k<n,e <e}. Furthermore, the sequence
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{z(n)},>,, is non-decreasing and t(n) — +o00 as n — oc. It follows from (44) and
€(n )< €(n)+1 that

2 i i
Z’yrn ‘StT tf(”)” +Zwr(n)(o—r(n)||grn ||) <K10{r +K§OC12'(}1)

= icl

Thus, from oy, — 0 and the hypotheses liminf, . y8<n>~/i(n> > 0,

liminf,_ wiw > 0, we obtain
1jte(a) — teylI> — 0 and ot |8 || = 0,¥i € 1,j € J. (55)
From the definition of x;(,),, we have

er(n)+1 - tr(n)Hz :||y8(n)(t‘f(ﬂ) - tr(n)) + Z Vi(n) (Sjtf(") - tf("))”z

=
0 2 j 2
<l = tel P+ D 7 ISty = Lol (56)
=
= V1St — eI
=
By (55) and (56), we obtain
nlggc ||xr(n)+1 - tt(ll)” =0. (57)

Since {zf(n)} is bounded, there exists a subsequence {zr(,u)} of {zr(n)} converging
weakly to p such that

11m1nf<zr ) —x*,F(x*)> = 1irg10<zr(nk) —x*,F(x*)>. (58)

n—oo k—
From the definition of #,(,,), the nonexpansiveness of Pc and o, ) — 0, we have

||[f(nk) - ZT("k)H :HPC(ZT(W) - “T(Vlk)FZT(Vlk)) - PCZr(nk)H < H(Zr(nk) - ar(nk)FZr(nk)) - Zr(nk)H
< O(T("1<)||1'Tzr(m()|| < ar(rlk)KZ — 0.

Thus, t;(,,) — p € C. This together with (55) and the demiclosedness at zero of S;
implies that p € N;c;Fix(S;). Moreover, from t,(,,) — p and (57), one has x,(,,) — p
Thus, from (55) and Lemma 4.5, we also have p € N;;EP(f;, C) or p € Q. It fol-
lows from (58) and x* solves VIP (32) that

liminf(z,(,) — x*, F(x")) = kli»%lo<zf(”*') — X F(x")) = (p—x",F(x*)) >0. (59)

n—oo

Now, we prove that x;(,,) — x*. It follows from Lemma 4.2, the definition of ¢, and
€1(n) < €r(n)+1 that
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* 2
2ar(n)<zr(n) —-X aFZr(n)> < €t(n) — Ec(n)+1 — ||x‘r(n)+l - tr(n)”
i i i 2 2
- E :Wr(n)(o-r(n)”gr(n)”) + Ocz(n)”FZT(n)H < a%(n)Kg

il
Thus, from Ole(n) > 0, we obtain

L
2

(zetn) = X7 Fae)) <
From the #n—strong monotonicity and the relation (60),

Mlzen) = X112 < (2en) = X" Faegu) = Fx*) = (zen) = %" Faa(u)) = (2etn) — %7 Fx")
< OCT(,,)KZZ
=7

= (e — 2", Fx).

This together with (59) and o,y — 0 implies that

lim sup 77{[z;(,) — x*||2 < —lim inf (z,(,) —x", Fx") <O0.

n—oo

Thus, from 1 > 0, we obtain

lim |[z;(,) — x)* = 0. (61)

n—oo

From the definition of #;(,), z;(,) € C, the nonexpansiveness of P¢ and o (,) — 0, we
have

||tr(n) - Zr(n)” :||PC(Zr(n) - O(r(n)FZ‘t(n ) PCZT (n) ||
< H(Zr(n) - O‘r(n)FZr(n)) - r(n)” = fxr(n)”FZr(n)H < O‘r(n)KZ — 0.

This together with (57), (61) and the definition of ¢, implies that
limy oo [[2Xe(n)+1 — x*[* =0. Thus, €(m+1 — 0. It follows from (54) that
0<e < €41 — 0. Hence, €, — 0 or x, — x* as n — oo. Theorem 4.1 is proved.

O

Remark 4.4 1f S;: C — C,j € J are f§; - demicontractive with f8; € [0, 1) such that
Fix(S;) # 0, then S; = (1 — w;)I 4+ w;S;,j € J are quasi-nonexpansive and Fix(S;) =
Fix(S;) [29, Remark 4.2], where w; € (0,1 — B;). Thus, the conclusions of
Theorems 3.1 and 4.1 are still true for the family of demicontractive and
demiclosed at zero mappings {Sj}jef by replacing S; in Algorithms 3.1 and 4.1
by S; = (1 — w)l +w;S;,j € J.

Remark 4.5 In this paper, we consider Problem 1.1 where, for eachi € I and j € J,
the bifunction f; and the mapping S; are defined on the feasible set C, and
Algorithm 3.1 and Algorithm 4.1 can be applied under Conditions 1 - 5, L1, L2 and
the operator F' : C — H is 1 - strongly monotone and L— Lipschitz continuous on
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C. The results in this paper is still true if f;, S;, &%, and F are defined on the whole
space H, and all their respective conditions are satisfied on H.

5 Numerical experiments

In this section, we perform some numerical experiments to illustrate the
convergence of Algorithms 3.1 and 4.1 and compare them with Algorithm 1.1
(Parallel Hybrid Extragradient - Mann Method - PHEMM). We consider the
bifunctions f; : R™ x K™ — R which are generalized from the Nash-Cournot
equilibrium model in [13, 35] and defined by

ﬁ(-xay) = <Pi-x+Qiy+qi7y_x>7i S I= {1727aN}7(N: 10), (62)

where ¢; € R (m = 5,10 or 20) and P;, Q; are matrices of order m such that Q; is
symmetric, positive semidefinite and Q; — P; is negative semidefinite. The bifunc-
tion f;(i € I) satisfies Condition 4 and Condition 1 with ¢} = ¢, = ||P; — Q| /2 [35,
Lemma 6.2]. We chose two Lipschitz-type constants ¢; = ¢; = max{ci1 riel }, the
bifunction Z(x,y) = 1 [|x — y||* and the operator F(x) = x — xo, where xo € R™ is
a suggested point.

Example 1 The feasible set C € R™ is a polyhedral convex set as

C={xeR™ Aéx<b},

where A € R™™ (I = 15) is a matrix with its entries generated randomly and uni-
formly in [—5, 5] and b is a positive vector in R' with its entries generated uniformly
from [1, 5], and so C is nonempty because 0 € C. Let g : R" — R,je J=
{,,..,M} (M =10) be convex functions such that 0 € Njcslev<g;, where
levog = {x € R™ gi(x)<}. We define the subgradient projection relative to

gj»J € J by

S =1" Izg-éj))llsz(x) if g(x) >0,

X otherwise ,

(63)

where zj(x) € 0g;j(x),x € R™. The mapping S; is quasi-nonexpansive and demi-
closed at zero [5, Lemma 3.1]. Besides, Fix(Sj) = lev < g;. In fact, the mapping S;
does not act from C to C, but it maps from C to H = R™. However, the bifunctions
fi» & and the operator F are defined and satisfied their conditions on the whole space
H = R™. Thus, Algorithms 3.1 and 4.1 can be used to solve our problem. While
PHEMM in [22] is not applied because the class of mappings considered in [22] is
nonexpansive. We need to solve the following optimization program in R™ per each
iteration,
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1
arg min{EyTH,'y +bly:Ay< b}, (64)

where H; = 2A4Q; + I and b; = A(P;y, — Qiyn + ¢i) — x, for Algorithm 3.1 or H; =
20,0 +1 b; = p,(Pix, — Qix, + qi) — x, for Algorithm 4.1. Problem (64) is a
convex quadratic program. We use the function quadprog in Matlab 7.0 Opti-
mization Toolbox to solve this problem. The set C, N Q, in Algorithm 3.1 is the
intersection of 2N + 1 halfspaces. Thus, the projection x,y; = Pc,ng,(%0) is
rewritten equivalently to a convex quadratic optimization program like as (64). The
projections onto C and C N H! in Algorithm 4.1 are performed similarly.

In the numerical experiments for this example, the matrices P;, Q; are randomly
generated' and ¢; is chosen as the zero vector for all i. From the property of Q;, we
see that 0 € Nie/EP(f;, C). The functions g;(x) = max{0, {c;,x) + d;}, where d; €
R_(j € J) is a negative number chosen randomly in [—5, —1] and ¢; € R"(j € J) is
a vector generated randomly with its entries being in [—5,5] and ¢; # 0. Since
0 € Njeslev< g = NiesFix(S;), 0 € Q. We use D, = ||x, —x*||,n=0,1,2... to
check the convergence of the sequence {x,}. The convergence of {D,} to 0 implies
that {x,} converges to x*. The starting points are xo = (1,1,...,1)" € ®™ and
yo = (0,0,...,0)7 € ®R™

We consider four experiments with some different control parameters. Figures 1
and 2 illustrate the behavior of {D,} for first 5000 iterations in R while Figures 3
and 4 are performed in R. From these results, we see that the convergence of
Algorithm 3.1 is better than the one of Algorithm 4.1 and they also depend on the
control parameters. Besides, {D,} generated by Algorithm 3.1, in general, is
decreasing but not monotone while the one generated by Algorithm 4.1 is stable and
monotone decreasing. Moreover, the execution times for Algorithm 3.1 are
significantly smaller than those ones for Algorithm 4.1. The reason for this can
be from the linesearch step in Algorithm 4.1 which is time-consuming per each
iteration for every bifunction.

Example 2 Let By[a,,r,] be a closed ball centered at point a, with the radius r,,
p=12,...,P (P =10,20 or 40) such that 0 € By[a,, r,| for all p. The feasible set

C considered here is the intersection of these balls, i.e., C = ﬂ[}::l Bylay,, ). Let H;
be a halfspace such that 0 € H; defined by H; = {x € R"™ bix+ Wy + ...+
Wox,<d},jeJ={1,2,...M}(M = 10), where hﬁc and d; are real numbers
generated randomly in [—5,5] and [1, 5], respectively. Define the mapping S; by
Sj = Py;. From the property of the metric projection, §; is nonexpansive (and so
quasi-nonexpansive) and 0 € N;e;H; = NjesFix(S;). Thus, Algorithms 3.1, 4.1 and
PHEMM [22, Algorithm 1] can be applied in this case. We also chose g; being the
zero vector and the matrices P;, Q; are generated randomly as in Example 1. Hence

' We randomly chose }f'l,‘, € [—m,O],),ék el,m,k=1,....mi=1...,N. Set Q’i, @2 as two diagonal
matrixes with eigenvalues {i’ik}zlzl and {/1;,( }Zzl, respectively. Then, we make a positive definite matrix

Q; and a negative semidefinite matrix 7; by using random orthogonal matrixes with Q’z and Q’l,
respectively. Finally, set P; = Q; — T;.
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Fig. 1 Behavior of D, = ||x, — 10’ ‘
x*|| in R for Algorithm 3.1 with
A=1/5¢1,k=6,7,=1/2 and

Alg 3.1
- Alg4.1

Algorithm 4.1 with oo = 5 = 10 E

o =0.5,w =1/N,7, =

1/(M+1)*,an: l/n (thC 107R E

execution times for first 5000 _ '

iterations are 286.041s, x ‘

730.708s, resp.) %: 107} il 3
o Wk~

0 1000 2000 3000 4000 5000
Number of iterations

Fig. 2 Behavior of D, = ||x, — 10’ . . . ‘

x*|| in R for Algorithm 3.1 with
2=1/10ci,k=2,y, = , (== g 4
n/3(n+ 3) and Algorithm 4.1 Ok E
with o = 0.01,7 = 0.99, p,, = s

9n/(10n + 1), w), = 1/N, 7}, = o T T -—

1/(M 4 1), 0, = 1/n%3" (the

execution times for first 5000 ',:: .
iterations are 379.596s, z 10°F J
825.142s, resp.) o

0 1000 2000 3000 4000 5000
Number of iterations

0 € Q. From Step 1 of Algorithm 3.1, we need to solve the following optimization
problem,

1 P
arg min EyTH,-y +bly:yeC= rpr[ap7 ) ps (65)

p=1

where H; =20Q; +1 and b; = A(Piy, — Qiyn + qi) — X,. We use the function
fmincon in Matlab 7.0 Optimization Toolbox to solve problem (65). All other
optimization programs and projections dealing with the feasible set C in Algo-
rithm 4.1 and PHEMM are similarly performed as problem (65). Note that the
projection x,+1 = P¢,ng, (Xo) in Algorithm 3.1 does not deal with C and is found as
in Example 1. In this example, we perform four experiments in R"™ (m = 5, 10, 20)
and C is the intersection of 2m balls (i.e., P = 2m) with the same radius r, = 7 and
the center g, belongs to the x;—axis such that ||a,|| =4 (i =1,2,...,m).
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Fig. 3 Behavior of D, = ||x, — 10’
x*|| in R for Algorithm 3.1 with Alg. 3.1
4 =1/10c;,k =2y, = ‘ == Alg 41
2n/3(n + 3) and Algorithm 4.1 AN

with o = 0.8,7 =0.01, p, = 10 S E
80/ (10 + 1),w}, = 1/N, ), = R

1/(M 4 1), 0, = 1/n°8 (the _ Bt T e
execution times for first 5000 x

iterations are 184.202s, X
488.013s, resp.) a°

0 1000 2000 3000 4000 5000
Number of iterations

Fig. 4 Behavior of D, = ||x, — 10'
x*|| in R for Algorithm 3.1 with Alg. 3.1
J.=1/4.1c;,k =507, = = = Alg 41
2n/3(n+ 3) and Algorithm 4.1 “

with o = 0.8, = 0.01,p, = 10 . 1
9.99n/(10n + 1), w!, = e

1/N,3, = 1/(M +1),0, = - Il TS
1/n%3 (the execution times first ¥

1000 iterations are 486.317s, X
692.574s, resp.) a°

0 1000 2000 3000 4000 5000
Number of iterations

Figures 5 and 6 describe the behavior of {D, } generated by Algorithms 3.1, 4.1
and PHEMM in R for first 3000 iterations. Next, it is seen that Algorithm 3.1 and
PHEMM in [22] are used for the same class of pseudomonotone and Lipschitz-type
bifunctions. However, the stepsize A in Algorithm 3.1 is smaller than that one in

PHEMM. Figure 6 is performed with i:m—e for Algorithm 3.1, A=

min{zi,zi} — ¢ for PHEMM and p, = 1 — € for Algorithm 4.1, where ¢ = 107,
C1 C2

From these results, we also see that {D,} generated by Algorithm 3.1 and PHEMM
is not monotone decreasing while that one generated by Algorithm 4.1 is stable.
Moreover, the convergence rate of Algorithm 3.1 is the best. The execution times
for Algorithms 4.1 and PHEMM are also significantly larger than that one for
Algorithm 3.1. This comes from 2N solved optimization problems in PHEMM, the
linesearch procedure in Algorithm 4.1 and the projections dealing with the feasible
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—— Alg. 3.1
““““ PHEMM

‘== Alg. 4.1

0 500 1000 1500 2000 2500 3000
Number of iterations

Fig. 5 Behavior of D, = ||x, — x*|| in R for Algorithm 3.1 with A = 1/4.1¢y,k = 50,7y, = 2n/3(n + 3);
Algorithm 4.1 with o = 0.01,5 = 0.01, p, = 9.99n/(10n + 1), w, = 1/N,7, = 1/(M + 1),0, = 1/n"8
and PHEMM with 4 = 1/4c;, 0, =2n/3(n+3) (the execution times for first 3000 iterations are
280.186s, 608.079s and 574.207s, resp.)

0 500 1000 1500 2000 2500 3000
Number of iterations

Fig. 6 Behavior of D,=|x,—x*|| in R for Algorithm 3.1 with A=1/2(c; +c2)—
e,k = 1/e(ct + c2),7, =2n/3(n+3); Algorithm 4.1 «=0.01,7 =0.01,p, =1 —¢,w’ =1/N,y., =
1/(M+1),0, =1/n*® and PHEMM with 1 =min{l/2¢;,1/2¢c;} —€,0, =2n/3(n+3) (the
execution times for first 3000 iterations are 251.222s, 611.694s and 574.234s, resp.), where € = 107

set C in these two algorithms while the main task of Algorithm 3.1 is only to solve
N optimization problem per each iteration.

Finally, Figs. 7 and 8 illustrate the behavior of {D, } for mentioned algorithms in
R and R, respectively. The convergence results are similar, but {D,} generated by
PHEMM in R seems to be stable and monotone decreasing which is seen in Fig. 8.
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0 500 1000 1500 2000 2500 3000
Number of iterations

Fig. 7 Behavior of D,=|x,—x*|| in R for Algorithm 3.1 with A=1/2(c; +c2)—
e,k =1/e(ci +c2),7, =2n/3(n+3); Algorithm 4.1 with «=0.01,7=0.01,p,=1—¢€,w =
1/N,y, =1/(M +1),0, = 1/n®® and PHEMM with Z=min{1/2c;,1/2¢;} — €,0, = 2n/3(n +3)
(the execution times for first 3000 iterations are 646.246s, 1.7080e+003s and 1.5611e+003s, resp.),
where € = 10~*

10 ; ; ; ; ;
——— Alg. 3.1
““““ PHEMM
. - = Alg. 4.1
\,~.
10° Seeal i
= ‘ .
“x e
I: _ ...
x 10 F R e - ]
TC
a] -
107} .
107 ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000

Number of iterations

Fig. 8 Behavior of D, =||x, —x*|| in R for Algorithm 3.1 with A=1/2(c; +¢c2) — €,k =
1/e(cr + ¢2),7, =2n/3(n+3); Algorithm 4.1 with «=0.01,7=0.01,p, =1 —¢,w, =1/N,y., =
1/(M+1),0, =1/n*® and PHEMM with 1 =min{1/2¢c;,1/2¢c;} —€,0, =2n/3(n+3) (the
execution times for first 3000 iterations are 2.0322e+003s, 1.3127e4004s and 5.4796e+003s, resp.),
where € = 1074

From the reported numerical results, we see that the convergence of
Algorithm 3.1 is the best. While Algorithm 4.1 is slowly convergent. A reason
for this is that at each iteration Algorithm 4.1 uses a linesearch procedure which is
time-consuming. However, the advantage of Algorithm 4.1 is that it can be applied
for non-Lipschitz-type bifunctions.
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6 Conclusion

The paper proposes two parallel algorithms for finding a particular common solution
of a system of pseudomonotone equilibrium problems and finitely many fixed point
problems for quasi-nonexpansive mappings. The first algorithm is applied to the
class of Lipschitz-type bifunctions where only one optimization problem for each
bifunction is solved without any extra-step dealing with the feasible set. This comes
from constructing slightly different cutting-halfspaces in the hybrid method. The
algorithm can be considered as an improvement of hybrid extragradient methods per
each computational step. The second algorithm combines the viscosity method and
the linesearch procedure which aims to avoid the Lipschitz-type condition. Thanks
to the hybrid (outer approximation) method and the viscosity method, the strongly
convergent theorems are established. Some numerical experiments are implemented
to illustrate the effectiveness of the proposed algorithms in comparison with a
known parallel hybrid extragradient method.
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