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Abstract
We study probability inequalities leading to tail estimates in a general semigroupGwith a

translation-invariant metricdG. (An important and central example of this in the functional

analysis literature is that of G a Banach space.) Using our prior work Khare and

Rajaratnam (Ann Prob 45(6A):4101–4111, 2017) that extends the Hoffmann–Jørgensen

inequality to all metric semigroups, we obtain tail estimates and approximate bounds for

sums of independent semigroup-valued random variables, their moments, and decreasing

rearrangements. In particular, we obtain the ‘‘correct’’ universal constants in several cases,

extending results in the Banach space literature by Johnson et al. (Ann Prob 13(1):234-

253, 1985), Hitczenko (Ann Prob 22(1):453–468, 1994), and Hitczenko and Mont-

gomery-Smith (Ann Prob 29(1):447-466, 2001). Our results also hold more generally, in a

very primitive mathematical framework required to state them: metric semigroups G.

This includes all compact, discrete, or (connected) abelian Lie groups.
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1 Introduction and main results

This paper follows our prior work [15] and continues the study of probability theory

beyond—but also subsuming—the Banach space setting. In the present work, we

estimate sums of independent random variables in several ways, under very

primitive mathematical assumptions that suffice to state our results. The setting is as

follows.

Definition 1.1 A metric semigroup is defined to be a semigroup ðG; �Þ equipped

with a metric dG : G� G ! ½0;1Þ that is translation-invariant. In other words,

dGðac; bcÞ ¼ dGða; bÞ ¼ dGðca; cbÞ 8a; b; c 2 G:

(Equivalently, ðG; dGÞ is a metric space equipped with a associative binary opera-

tion such that dG is translation-invariant.) Similarly, one defines a metric monoid
and a metric group.

Metric groups are ubiquitous in probability theory and functional analysis, and

subsume all normed linear spaces as well as compact and (connected) abelian Lie

groups as special cases. More modern examples of recent interest are mentioned

presently.

Now suppose ðX;A; lÞ is a probability space and X1; . . .;Xn 2 L0ðX;GÞ are G-

valued random variables. Fix z0; z1 2 G and define for 1 6 j 6 n:

Sj :¼ X1X2 � � �Xj; Uj :¼ max
16i6j

dGðz1; z0SiÞ;

Yj :¼ dGðz0; z0XjÞ; Mj :¼ max
16i6j

Yi:
ð1:1Þ

In this paper we discuss bounds that govern the behavior of Un—and consequently,

of sums Sn of independent G-valued random variables Xj—in terms of the variables

Xj, and even Yj or Mj. We are interested in a variety of bounds: (a) one-sided

geometric tail estimates; (b) approximate two-sided bounds for tail probabilities;

(c) approximate two-sided bounds for moments; and (d) comparison of moments.

For instance, is it possible to obtain bounds for El½Up
n �

1=p
in terms of the tail

distribution for Un, or in terms of El½Uq
n �

1=q
for p; q[ 0? The latter question has

been well-studied in the literature for Banach spaces, and universal bounds that

grow at the ‘‘correct’’ rate have been obtained for all q � 0. We explore the

question of obtaining correctly growing universal constants for metric semigroups,

which include not only normed linear spaces and inner product spaces, but also all

connected abelian and compact Lie groups. Our results show that the universal

constants in such inequalities do not depend on the semigroup in question.

1.1 Motivations

Our motivations in developing probability theory in such general settings are both

modern and classical. An increasing number of modern-day theoretical and applied

settings require mathematical frameworks that go beyond Banach spaces. For
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instance, data and random variables may take values in manifolds such as (real or

complex) Lie groups. Compact or connected abelian Lie groups also commonly

feature in the literature, including permutation groups and other finite groups,

lattices, orthogonal groups, and tori. In fact every abelian, Hausdorff, metrizable,

topologically complete group G admits a translation-invariant metric [17], though

this fails to hold for cancellative semigroups [18]. Certain classes of amenable

groups are also metric groups (see [14] for more details). Other modern examples

arise in the study of large networks and include the space of graphons with the cut

norm, which arises naturally out of combinatorics and is related to many

applications [21]. In a parallel vein, the space of labelled graphs GðVÞ on a fixed

vertex set V is a 2-torsion metric group (see [12, 13]), hence does not embed into a

normed linear space.

With the above settings in mind, in this paper we develop novel techniques for

proving maximal inequalities—as well as comparison results between tail distri-

butions and various moments—for sums of independent random variables taking

values in the aforementioned groups, which need not be Banach spaces.

At the same time, we also have theoretical motivations in mind when developing

probability theory on non-linear spaces such as GðVÞ and beyond. Throughout the

past century, the emphasis in probability has shifted somewhat from proving results

on stochastic convergence, to obtaining sharper and stronger bounds on random

sums, in increasingly weaker settings. A celebrated achievement of probability

theory has been to develop a rigorous and systematic framework for studying the

behavior of sums of (independent) random variables; see e.g. [20]. In this vein, we

provide unifications of our results on graph space with those in the Banach space

literature, by proving them in a more primitive mathematical framework encom-

passing both of these (and other) settings. In particular, our results apply to compact/

abelian/discrete Lie groups, as well as normed linear spaces.

For example, maximal inequalities by Hoffmann–Jørgensen, Lévy, Ottaviani–

Skorohod, and Mogul’skii require merely the notions of a metric and a binary

associative operation to state them. Thus one only needs a separable metric

semigroup G rather than a Banach space to state these inequalities. However, note

that working in a metric semigroup raises technical questions. For instance, the lack

of an identity element means one has to specify how to compute magnitudes of G-

valued random variables (before trying to bound or estimate them); also, it is not

apparent how to define truncations of random variables. The lack of inverses, norms,

or commutativity implies in particular that one cannot rescale or subtract random

variables.

In the present work, we explain how to overcome these challenges. We also hope

to show that the approach of working with arbitrary metric semigroups turns out to

be richly rewarding in (i) obtaining the above (and other) results for non-Banach

settings; (ii) unifying these results with the existing Banach space results in order to

hold in the greatest possible generality; and (iii) further strengthening these unified

versions where possible.
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1.2 Organization and results

We now describe the organization and contributions of the present paper. In Sect. 2

we prove the Mogul’skii–Ottaviani–Skorohod inequalities for all metric semigroups

G. As an application, we show Lévy’s equivalence for stochastic convergence in

metric semigroups.

In Sect. 3, we come to our main goal in this paper, of estimating and comparing

moments and tail probabilities for sums of independent G-valued random variables.

Our main tool is a variant of Hoffmann–Jørgensen’s inequality for metric

semigroups, which is shown in recent work [15]. The relevant part for our purposes

is now stated.

Theorem 1.1 (Khare and Rajaratnam [15]) Notation as in Definition 1.1 and

Equation (1.1). Suppose X1; . . ., Xn 2 L0ðX;GÞ are independent. Fix scalars

n1; . . .; nk 2 N; t1; . . .; tk; s 2 ½0;1Þ;

and define

I0 :¼ 1 6 i 6 k : Pl Un 6 tið Þni�di1
6 1=ni!

n o
;

where di1 denotes the Kronecker delta. Now if
Pk

i¼1 ni 6 nþ 1, then:

Pl Un [ ð2n1 � 1Þt1 þ 2
Xk
i¼2

niti þ
Xk
i¼1

ni � 1

 !
s

 !

6 Pl Un 6 t1ð Þ11 62I0
Y
i2I0

Pl Un [ tið Þni
Y
i62I0

1

ni!

Pl Un [ tið Þ
Pl Un 6 tið Þ

� �ni

þ Pl Mn [ sð Þ:

Remark that Theorem 1.1 generalizes the original Hoffmann–Jørgensen inequal-

ity in three ways: (i) mathematically it strengthens the state-of-the-art even for real

variables; (ii) it unifies previous results by Johnson and Schechtman [10], Klass and

Nowicki [16], and Hitczenko and Montgomery-Smith [6] in the Banach space

literature; and (iii) the result holds in the most primitive setting needed to state it,

thereby being applicable also to e.g. Lie groups.

We now discuss several ways in which to estimate the size of sums of

independent G-valued random variables, for metric semigroups G. We present two

results in this section, corresponding to two of the estimation techniques discussed

in the introduction. (For a third result, see Theorem 3.1.)

The first approach, informally speaking, uses the Hoffmann–Jørgensen inequality

to generalize an upper bound for El½kSnkp� in terms of the quantiles of kSnk as well

as El½Mp
n �—but now in the ‘‘minimal’’ framework of metric semigroups. More

precisely, we show that controlling the behavior of Xn is equivalent to controlling Sn
or Un, for all metric semigroups.
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Theorem A Suppose A � N is either N or f1; . . .;Ng for some N 2 N. Suppose

ðG; dGÞ is a separable metric semigroup, z0; z1 2 G, and Xn 2 L0ðX;GÞ are
independent for all n 2 A. If supn2A dGðz1; z0SnÞ\1 almost surely, then for all
p 2 ð0;1Þ,

El sup
n2A

dGðz0; z0XnÞp
� �

\1 () El sup
n2A

dGðz1; z0SnÞp
� �

\1:

This result extends [7, Theorem 3.1] by Hoffmann–Jørgensen to the ‘‘minimal’’

framework of metric semigroups. The proofs of Theorem A and the next result use

the notion of the quantile functions, or decreasing rearrangements, of G-valued

random variables:

Definition 1.2 Suppose ðG; dGÞ is a metric semigroup, and

X : ðX;A; lÞ ! ðG;BGÞ. We define the decreasing (or non-increasing) rearrange-
ment of X to be the right-continuous inverse X� of the function

t 7!Pl dGðz0; z0XÞ[ tð Þ, for any z0 2 G. In other words, X� is the real-valued

random variable defined on [0, 1] with the Lebesgue measure, as follows:

X�ðtÞ :¼ supfy 2 ½0;1Þ : Pl dGðz0; z0XÞ[ yð Þ[ tg:

Note that X� has exactly the same law as dGðz0; z0XÞ. Moreover, if ðG; k � kÞ is a

normed linear space, then dGðz0; z0XÞ can be replaced by kXk, and often papers in

the literature refer to X� as the decreasing rearrangement of kXk instead of X itself.

The convention that we adopt above is slightly weaker.

The second approach provides another estimate on the size of Sn through its

moments, by comparing kSnkq to kSnkp—or more precisely, El½Uq
n �

1=q
to

El½Up
n �

1=p
—for 0\p 6 q. Moreover, the constants of comparison are universal,

valid for all abelian semigroups and all finite sequences of independent random

variables, and depend only on a threshold:

Theorem B Given p0 [ 0, there exist universal constants c ¼ cðp0Þ; c0 ¼
c0ðp0Þ[ 0 depending only on p0, such that for all choices of (a) separable abelian
metric semigroups ðG; dGÞ, (b) finite sequences of independent G-valued random
variables X1; . . .;Xn, (c) q > p > p0, and (d) � 2 ð�q; logð16Þ�, we have

El½Uq
n �

1=q

6 c
q

maxðp; logð�þ qÞÞ El½Up
n �

1=p þM�
nðe�q=8Þ

� �
þ cEl½Mq

n �
1=q

6 c0
q

maxðp; logð�þ qÞÞ El½Up
n �

1=p þ El½Mq
n �

1=q
� �

if � > minð1; e� p0Þ:

Moreover, we may choose
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c0ðp0Þ ¼ cðp0Þ � 81=p0eþ max 1;
logð�þ p0Þ

p0

� �� �
:

Theorem B extends a host of results in the Banach space literature, including by

Johnson–Schechtman–Zinn [11], Hitczenko [5], and Hitczenko and Montgomery-

Smith [6]. (see also [20, Theorem 6.20] and [19, Proposition 1.4.2]) Theorem B

also yields the correct order of the constants as q ! 1, as discussed by Johnson

et al. in loc. cit. where they extend previous work on Khinchin’s inequality by

Rosenthal [24]. Moreover, all of these results are shown for Banach spaces.

Theorem B holds additionally for all compact Lie groups, finite abelian groups and

lattices, and spaces of labelled and unlabelled graphs.

2 Lévy’s equivalence in metric semigroups

In this section we prove:

Theorem 2.1 (Lévy’s Equivalence) Suppose ðG; dGÞ is a complete separable metric

semigroup, Xn : ðX;A; lÞ ! ðG;BGÞ are independent, X 2 L0ðX;GÞ, and Sn is
defined as in (1.1). Then

Sn �! X a:s:Pl () Sn�!
P
X:

Moreover, if the sequence Sn does not converge as above, then it diverges almost

surely.

Special cases of this result have been shown in the literature. For instance, [2,

§9.7] considers G ¼ Rn. The more general case of a separable Banach space B was

shown by It ô –Nisio [9, Theorem 3.1], as well as by Hoffmann-Jørgensen and

Pisier [8, Lemma 1.2]. The most general version in the literature to date is by

Tortrat, who proved the result for a complete separable metric group in [25]. Thus

Theorem 2.1 is the closest to assuming only the minimal structure necessary to state

the result (as well as to prove it).

In order to prove Theorem 2.1, we first study basic properties of metric

semigroups. Note that for a metric group, the following is standard; see [17], for

instance.

Lemma 2.1 If ðG; dGÞ is a metric (semi)group, then the translation-invariance of
dG implies the ‘‘triangle inequality’’:

dGðy1y2; z1z2Þ 6 dGðy1; z1Þ þ dGðy2; z2Þ 8yi; zi 2 G; ð2:1Þ

and in turn, this implies that each (semi)group operation is continuous.

If instead G is a group equipped with a metric dG, then except for the last two
statements, any two of the following assertions imply the other two:

1. dG is left-translation invariant: dGðca; cbÞ ¼ dGða; bÞ for all a; b; c 2 G. In other

words, left-multiplication by any c 2 G is an isometry.
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2. dG is right-translation invariant.

3. The inverse map : G ! G is an isometry. Equivalently, the triangle inequal-

ity (2.1) holds.

4. dG is invariant under all inner/conjugation automorphisms.

In order to show Theorem 2.1 for metric semigroups, we recall the following

preliminary result from [14], and will use it below without further reference.

Proposition 2.1 [14] Suppose ðG; dGÞ is a metric semigroup, and a; b 2 G. Then

dGða; baÞ ¼ dGðb; b2Þ ¼ dGða; abÞ ð2:2Þ

is independent of a 2 G. Moreover, a set G is a metric semigroup only if G is a

metric monoid, or the set of non-identity elements in a metric monoid G0. This is if

and only if the number of idempotents in G is one or zero, respectively. Further-

more, the metric monoid G0 is (up to a monoid isomorphism) the unique smallest

element in the class of metric monoids containing G as a sub-semigroup.

Remark 1 In the sequel, we denote—when required—the unique metric monoid

containing a given metric semigroup G by G0 :¼ G [ f10g. Note that the idempotent

10 may already be in G, in which case G ¼ G0. One consequence of Proposition 2.1

is that instead of working with metric semigroups, one can use the associated

monoid G0 instead. (In other words, the (non)existence of the identity is not an issue

in many such cases.) This helps simplify other calculations. For instance, what

would be a lengthy, inductive (yet straightforward) computation now becomes much

simpler: for nonnegative integers k, l, and z0; z1; . . .; zkþl 2 G, the triangle inequal-

ity (2.1) implies:

dGðz0 � � � zk; z0 � � � zkþlÞ ¼ dG0 ð10;
Yl
i¼1

zkþiÞ 6
Xl
i¼1

dG0 ð10; zkþiÞ

¼
Xl
i¼1

dGðz0; z0zkþiÞ:

2.1 The Mogul’skii inequalities and proof of Lévy’s equivalence

Like Lévy’s equivalence (Theorem 2.1) and the Hoffmann–Jørgensen inequality

(Theorem 1.1), many other maximal and minimal inequalities can be formulated

using only the notions of a distance function and of a semigroup operation. We now

extend to metric semigroups two inequalities by Mogul’skii, which were used in

[22] to prove a law of the iterated logarithm in normed linear spaces. The following

result will be useful in proving Theorem 2.1.

Proposition 2.2 (Mogul’skii–Ottaviani–Skorohod inequalities) Suppose ðG; dGÞ is

a separable metric semigroup, z0; z1 2 G, a; b 2 ½0;1Þ, and X1; . . .;Xn 2 L0ðX;GÞ
are independent. Then for all integers 1 6 m 6 n,

Probability inequalities and tail estimates for metric semigroups 785



Pl min
m6k6n

dGðz1; z0SkÞ 6 a

� �
� min
m6k6n

Pl dGðSk; SnÞ 6 bð Þ

6 Pl dGðz1; z0SnÞ 6 aþ bð Þ;

Pl max
m6k6n

dGðz1; z0SkÞ > a

� �
� min
m6k6n

Pl dGðSk; SnÞ 6 bð Þ

6 Pl dGðz1; z0SnÞ > a� bð Þ:

These inequalities strengthen [22, Lemma 1] from normed linear spaces to

arbitrary metric semigroups. Also note that the second inequality generalizes the

Ottaviani–Skorohod inequality to all metric semigroups. Indeed, sources such as [2,

§ 9.7.2] prove this result in the special case G ¼ ðRn;þÞ; z0 ¼ z1 ¼
0;m ¼ 1; a ¼ aþ b; b ¼ b, with a; b[ 0.

We omit the proof of Proposition 2.2 for brevity as it involves standard

arguments. Using this result, one can now prove Theorem 2.1. The idea is to use the

approach in [2]; however, it needs to be suitably modified in order to work in the

current level of generality.

Proof of Theorem 2.1 The forward implication is easily verified in the more general

setting of a separable metric space; see e.g. [2, Section 9.2]. Conversely, we claim

that Si is Cauchy almost everywhere, if it converges in probability to X. Given

�; g[ 0, the assumption and definitions imply that there exists n0 2 N such that

Pl dGðSm;XÞ > �=8ð Þ\ g
2ð1 þ gÞ ; 8m > n0:

This implies that Pl dGðSm; SnÞ > �=4ð Þ\ g
1 þ g

for all n > m > n0. Now define

S0i :¼
Qi

j¼1 Xn0þj. Fix n[ n0 and apply Proposition 2.2 to fXn0þi : 1 6 i 6 n� n0g
with m ¼ 1; a ¼ �=2; b ¼ �=4, and z0 ¼ z1:

Pl max
n0þ16m6n

dGðSn0
; SmÞ > �=2

� �
¼ Pl max

16i6n�n0

dG0 ðz0; z0S
0
iÞ > �=2

� �

6

Pl dG0 ðz0; z0S
0
n�n0

Þ > �=4
� �

1 � max16i6n�n0
Pl dG0 ðS0i; S0n�n0

Þ > �=4
� �\ g=ð1 þ gÞ

1 � g=ð1 þ gÞ ¼ g:

Now define Qn0
:¼ supn[ n0

dGðSn0
; SnÞ and dn0

:¼ supn[m[ n0
dGðSm; SnÞ. Then

dn0
6 2Qn0

; moreover, taking the limit of the above inequality as n ! 1 yields:

Pl Qn0
> �=2ð Þ 6 g ) Pl dn0

> �ð Þ 6 g:

But then Pl supn[m dGðSm; SnÞ > �ð Þ 6 g for all m[ n0. Thus, Sn is Cauchy almost

everywhere. Since G is complete, the result now follows from [2, Lemma 9.2.4];

that the almost sure limit is X is because Sn�!
P
X. Finally, since the Xn are
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independent, the convergence of the sequence Sn is a tail event. In particular, it has

probability zero or one by the Kolmogorov 0–1 law, concluding the proof.

We remark for completeness that the other Lévy equivalence has been addressed

in [1, 3, 25] for various classes of topological groups. See also [23] for a variant in

discrete completely simple semigroups, [2, 9] for Banach space versions, and [14]

for a version over any normed abelian metric (semi)group.

3 Measuring the magnitude of sums of independent random
variables

We now prove Theorems A and B using the Hoffmann–Jørgensen inequality in

Theorem 1.1. Recall that the Banach space version of this inequality is extremely

important in the literature and is widely used in bounding sums of independent

Banach space-valued random variables. Having proved Theorem 1.1, an immediate

application of our main result is in obtaining the first such bounds for general metric

semigroups G. We also provide uniformly good Lp-bounds and tail probability

bounds on sums Sn of independent G-valued random variables.

3.1 An upper bound by Hoffmann–Jørgensen

In this subsection we prove Theorem A. The proof uses basic properties of

decreasing rearrangements (see Definition 1.2), which we record here and use

below, possibly without reference.

Proposition 3.1 Suppose X; Y : ðX;A; lÞ ! ½0;1Þ are random variables, and

x; a; b; c[ 0; t 2 ½0; 1�:

1. X�ðtÞ 6 x if and only if Pl X[ xð Þ 6 t.

2. X�ðtÞ is decreasing in t 2 ½0; 1� and increasing in X > 0.

2. ðX=xÞ�ðtÞ ¼ X�ðtÞ=x.

3. Suppose Pl X[ xð Þ 6 bPl Y [ cxð Þ for all x[ 0. Then for all p 2 ð0;1Þ and

t 2 ð0; 1Þ,

El½Yp� > b�1cpEl½Xp�; El½Xp� > tX�ðtÞp:

4. Fix finitely many tuples of positive constants ðai; bi; ci; diÞ
N
i¼1, and real-valued

nondecreasing functions fi such that for all x[ 0 there exists at least one i such that

fiðPl X[ aixð ÞÞ 6 biPl Y [ cixð Þdi : ð3:1Þ

Then

Probability inequalities and tail estimates for metric semigroups 787



X�ðtÞ 6 max
16i6N

ai
ci
Y� ðfiðtÞ=biÞ1=di
� �

: ð3:2Þ

If on the other hand (3.1) holds for all i, then

X�ðtÞ 6 min
16i6N

ai
ci
Y� ðfiðtÞ=biÞ

1=di
� �

:

Proof These properties are shown using the definitions via straightforward

arguments, and so we omit the proofs, except for the final part. By assumption

there exists at least one i such that if Pl X[ aixð Þ[ t for some t, then

biPl Y [ cixð Þdi [ fiðtÞ since fi is nondecreasing. For this choice of i, we obtain:

a�1
i y : Pl X[ yð Þ[ t
� 	

� c�1
i y : biPl Y [ yð Þdi [ fiðtÞ
n o

¼ c�1
i y : Pl Y [ yð Þ[ ðfiðtÞ=biÞ1=di
n o

(where we only consider y > 0). Therefore for all t 2 ½0; 1�,

y > 0 : Pl X[ yð Þ[ t
� 	

�
[N
i¼1

ai
ci

y > 0 : Pl Y [ yð Þ[ ðfiðtÞ=biÞ
1=di

n o
:

Taking the supremum of both sides yields Eq. (3.2). If on the other hand Eq. (3.1) holds

for all i, then the preceding inclusion holds with the union replaced by intersec-

tion. Now taking the supremum of both sides yields Eq. (3.2) with maximum replaced

by minimum (since each set in the intersection is an interval containing 0).

Using Proposition 3.1, we now show one of the main results in this paper.

Proof of Theorem A Note for all n that

dGðz0; z0XnÞ 6 dGðz1; z0Sn�1Þ þ dGðz1; z0SnÞ;

from which we obtain

dGðz0; z0XnÞp 6 2pþ1 sup
n2A

dGðz1; z0SnÞp:

Taking first the supremum over n 2 A and then the expectation proves the backward

implication. Conversely, first claim that controlling sums of G-valued Lp random

variables in probability (i.e., in L0) allows us to control these sums in Lp as well, for

p[ 0. Namely, we make the following claim:

Suppose ðG; dGÞ is a separable metric semigroup, p 2 ð0;1Þ, and X1; . . .;Xn

2 LpðX;GÞ are independent. Now fix z0; z1 2 G and let Sk;Un;Mn be as in Defini-

tion 1.1 and Eq. (1.1). Then,

El½Up
n � 6 21þ2pðEl½Mp

n � þ U�
nð2�1�2pÞpÞ:

Note that the claim is akin to the upper bound by Hoffmann–Jørgensen that bounds

El½kSnkp� in terms of El½Mp
n � and the quantiles of kSnk for Banach space-valued
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random variables (see [7, proof of Theorem 3.1] and [4, Lemma 3.1]). We omit its

proof for brevity, as a similar statement is asserted in [20, Proposition 6.8]. Given

the claim, define:

tn :¼U�
nð2�1�2pÞ ðn 2 AÞ; UA :¼ sup

n2A
dGðz1; z0SnÞ;

MA :¼ sup
n2A

dGðz0; z0XnÞ; tA :¼ U�
Að2�1�2pÞ;

ð3:3Þ

as above, where we also use the assumption that UA\1 almost surely. Now for all

n 2 A, compute using the above claim and elementary properties of decreasing

rearrangements:

El½Up
n � 6 21þ2pEl½Mp

n � þ 2ð4tnÞp 6 21þ2pEl½Mp
A� þ 2ð4tAÞp:

This concludes the proof if A is finite; for A ¼ N, use the monotone convergence

theorem for the increasing sequence 0 6 Up
n ! Up

A.

3.2 Two-sided bounds and Lp norms

We now formulate and prove additional results that control tail behavior for metric

semigroups and monoids—specifically, MA;Un;U
�
n . This includes proving our other

main result, Theorem B. We begin by setting notation.

Definition 3.1 Suppose G is a metric semigroup.

1. Given Xn 2 L0ðX;GÞ as above, for all n in a finite or countable set A, define the

random variable ‘X ¼ ‘ðXnÞ : R ! ½0;1� via:

‘XðtÞ :¼
inffy[ 0 :

P
n2A Pl dGðz0; z0XnÞ[ yð Þ 6 tg; if t 2 ½0; 1�;

0; otherwise.




As indicated in [6, §2], one then has:

Pð‘X [ xÞ ¼
X
n2A

Pl dGðz0; z0XnÞ[ xð Þ;

where P is the Lebesgue measure on [0, 1].

2. Two families of variables P(t) and Q(t) are said to be comparable, denoted by

PðtÞ 	 QðtÞ, if there exist constants c1; c2 [ 0 such that c�1
1 PðtÞ 6 QðtÞ 6

c2PðtÞ uniformly over all t. The ci are called the ‘‘constants of approximation’’.

For the remaining definitions, assume ðG; 1G; dGÞ is a separable metric monoid.

3. Given t > 0 and a random variable X 2 L0ðX;GÞ, define its truncation to be:

XðtÞ :¼
1G; if dGð1G;XÞ[ t;

X; otherwise.




4. Given variables X1; . . .;Xn : X ! G, and r 2 ð0; 1Þ, define:
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U0
nðrÞ :¼ max

16k6n
dGð1G;

Yk
i¼1

Xið‘XðrÞÞÞ:

The following estimate on tail behavior compares Un with its decreasing

rearrangement.

Theorem 3.1 Given p0 [ 0, there exist universal constants of approximation
(depending only on p0), such that for all p > p0, separable abelian metric monoids
ðG; 1G; dGÞ, and finite sequences X1; . . .;Xn of independent G-valued random
variables (for any n 2 N),

El½Up
n �

1=p 	 U�
nðe�p=4Þ þ E½‘pX �

1=p 	 ðU0
nðe�p=8ÞÞ�ðe�p=4Þ þ E½‘pX�

1=p;

where Un and U0
n were defined in Eq. (1.1) and Definition 3.1 respectively.

For real-valued X, the expression E½jXjp�1=p is also denoted by kXkp in the

literature.

To show Theorem 3.1, we require some preliminary results which provide

additional estimates to govern tail behavior, and which we now collect before

proving the theorem. As these preliminaries are often extensions to metric

semigroups of results in the Banach space literature, we will sketch or omit their

proofs now.

The first result obtains two-sided bounds to control the behavior of the

‘‘maximum magnitude’’ MA (cf. Eq. (3.3)).

Proposition 3.2 Suppose fXn : n 2 Ag is a (finite or countably infinite) sequence of

independent random variables with values in a separable metric semigroup ðG; dGÞ.
1. For all t 2 ð0; 1Þ, ‘Xð2tÞ 6 ‘Xðt=ð1 � tÞÞ 6 M�

AðtÞ 6 ‘XðtÞ.
2. Suppose Xn 2 LpðX;GÞ for some p[ 0 (and for all n 2 A). For all t[ 0, define:

WXðtÞ :¼ p
X
n2A

Z 1

‘XðtÞ
up�1Pl dG z0; z0Xnð Þ[ uð Þ du:

Then,
t‘XðtÞp þWXðtÞ

1 þ t
6 El½Mp

A� 6 ‘XðtÞp þWXðtÞ.

Proof The first part follows [6, Proposition 1] (using a special case of

Equation (3.2)). For the second, follow the arguments for showing [4, Lemma

3.2]; see also [20, Lemma 6.9].

We next discuss a consequence of Hoffmann-Jørgensen’s inequality for metric

semigroups, Theorem 1.1, which can be used to bound the Lp-norms of the variables

Un—or more precisely, to relate these Lp-norms to the tail distributions of Un via

U�
n .

Lemma 3.1 (Notation as in Definition 1.1 and Eq. (1.1)) There exists a universal
positive constant c1 such that for any 0 6 t 6 s 6 1=2, any separable metric

790 A. Khare and B. Rajaratnam



semigroup ðG; dGÞ with elements z0; z1, and any sequence of independent G-valued
random variables X1; . . .;Xn,

U�
nðtÞ 6 c1

logð1=tÞ
maxflogð1=sÞ; log logð4=tÞg U�

nðsÞ þM�
nðt=2Þ

� �
:

Proof We begin by writing down a consequence of Theorem 1.1:

Pl Un [ ð3K � 1Þtð Þ

6
1

K!

Pl Un [ tð Þ
Pl Un 6 tð Þ

� �K

þPl Mn [ tð Þ; 8t[ 0; 8K; n 2 N:
ð3:4Þ

If Pl Un [ tð Þ 6 1=2, then this quantity is further dominated by

2 max Pl Mn [ tð Þ; 1

K!
ð2Pl Un [ tð ÞÞK


 
:

Now carry out the steps mentioned in the proof of [6, Corollary 1]. h

The final preliminary result is proved by adapting the proofs of [6, Lemma 3 and

Corollary 2] to metric monoids.

Proposition 3.3 Suppose ðG; 1G; dGÞ is a separable metric monoid and X1; . . .;
Xn : X ! G is a finite sequence of independent G-valued random variables. For

r 2 ð0; 1Þ, define:

U00
n ðrÞ :¼ max

16k6n
dGð1G;

Yk
i¼1

X0
ið‘XðrÞÞÞ;

where X0
iðtÞ equals 1G if dGð1G;XiÞ 6 t, and Xi otherwise.

1. Then U00
n ðrÞ may be expressed as the sum of ‘‘disjoint’’ random variables Vk for

k 2 N. In other words, X can be partitioned into measurable subsets Ek such that

Vk ¼ U00
n ðrÞ on Ek and 1G otherwise. Moreover, the Vk may be chosen such that

V�
k ðtÞ 6 k � ‘ðtðk � 1Þ!=rk�1Þ.

2. Given the assumptions, for all p 2 ð0;1Þ,

El½U00
n ðrÞ

p�1=p 6 2e2pr=pE½‘pX�
1=p:

With the above results in hand, we can now show the above theorem.

Proof of Theorem 3.1 Compute using the triangle inequality (2.1) and Remark 1:

dGð1G;XkÞ 6 dGð1G; Sk�1Þ þ dGð1G; SkÞ 6 2Un:

Hence Mn 6 2Un. Now compute for p > p0, using Propositions 3.1 and 3.2 :
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El½Up
n �

1=p
>

1

2
El½Mp

n �
1=p

> 2�1�p�1
0 E½‘pX �

1=p;

El½Up
n �

1=p
> e�p=8ð Þ1=pU�

nðe�p=8Þ > 8�p�1
0 e�1U�

nðe�p=4Þ:

Hence there exists a constant 0\c1 ¼ c1ðp0Þ such that:

El½Up
n �

1=p
> c�1

1 ðU�
nðe�p=4Þ þ E½‘pX�

1=pÞ:

This yields one inequality; another one is obtained using Proposition 3.2 as follows:

Pl Un 6¼ U0
nðe�p=8Þ

� �
6 PðMn [ ‘Xðe�p=8ÞÞ 6 Pl Mn [M�

nðe�p=8Þ
� �

6 e�p=8:

Now if Pl U0
nðe�p=8Þ[ y

� �
[ g for some g 2 ½e�p

8
; 1�, then by the reverse triangle

inequality,

Pl Un [ yð Þ > Pl Un [ y; Un ¼ U0
nðe�p=8Þ

� �

> Pl U0
nðe�p=8Þ[ y

� �
� Pl Un 6¼ U0

nðe�p=8Þ
� �

[ g� e�p

8
:

Hence by definition and the above calculations,

U0
nðe�p=8Þ�ðgÞ 6 U�

nðg� e�p=8Þ: ð3:5Þ

Applying this with g ¼ e�p=4,

U0
nðe�p=8Þ�ðe�p=4Þ 6 U�

nðe�p=8Þ 6 e81=pEl½Up
n �

1=p
6 e81=p0El½Up

n �
1=p:

Hence as above, there exists a constant 0\c2 ¼ c2ðp0Þ such that:

El½Up
n �

1=p
> c�1

2 ðU0
nðe�p=8Þ�ðe�p=4Þ þ E½‘pX�

1=pÞ:

This proves the second of the four claimed inequalities. The remaining arguments

can now be shown by suitably adapting the proof of [6, Theorem 3].

Finally, we use Theorem 3.1 to prove our remaining main result.

Proof of Theorem B Using Proposition 2.1, let G0 denote the smallest metric

monoid containing G. Thus the Xk are a sequence of independent G0-valued random

variables, and we may assume henceforth that G ¼ G0. Compute using Proposi-

tion 3.2, and the fact that X� and X have the same law for the real-valued random

variable X ¼ Mn:

E½‘qX� ¼
Z 1=2

0

‘Xð2tÞq � 2dt 6 2

Z 1=2

0

M�
nðtÞ

q dt 6 2

Z 1

0

M�
nðtÞ

q dt ¼ 2E½ðM�
nÞ

q�

¼ 2El½Mq
n �:

Using this computation, as well as Lemma 3.1 and Theorem 3.1 for G0, we

compute:
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El½Uq
n �

1=q

6 c01ðE½‘
q
X �

1=q þ U�
nðe�q=4ÞÞ

6 c01 � 21=qEl½Mq
n �

1=q þ c01c1

logð4eqÞ
maxðlogð4epÞ; log logð16eqÞÞ ðU

�
nðe�p=4Þ

þM�
nðe�q=8ÞÞ

6 c01 � 21=qEl½Mq
n �

1=q þ c01c1

logð4eqÞ
maxðlogð4epÞ; logð�þ qÞÞ ðc2El½Up

n �
1=p

þM�
nðe�q=8ÞÞ

since � 2 ð�q; logð16Þ�. There are now two cases: first if ep > �þ q, then

logð4eqÞ
maxðlogð4epÞ; logð�þ qÞÞ 6

qþ logð4Þ
pþ logð4Þ 6

q

p
¼ q

maxðp; logð�þ qÞÞ :

On the other hand, if ep\�þ q then set C :¼ 1 þ logð4Þ
p0

and note that

Cq > qþ logð4Þ. Therefore,

logð4eqÞ
maxðlogð4epÞ; logð�þ qÞÞ 6

qþ logð4Þ
logð�þ qÞ 6

Cq

logð�þ qÞ ¼ C
q

maxðp; logð�þ qÞÞ :

Using the above analysis now yields:

El½Uq
n �

1=q

6 c01 � 21=qEl½Mq
n �

1=q

þ c01c1 1 þ logð4Þ
p0

� �
q

maxðp; logð�þ qÞÞ ðc2El½Up
n �

1=p þM�
nðe�q=8ÞÞ:

Setting c :¼ c01 maxð21=p0 ; c1ð1 þ logð4Þ=p0Þ; c1c2ð1 þ logð4Þ=p0ÞÞ, we obtain the

first inequality claimed in the statement of the theorem.

To show the second inequality, we first verify that if � > minð1; e� p0Þ, then the

function f ðxÞ :¼ x= logð�þ xÞ is strictly increasing on ðp0;1Þ. Now compute:

q

maxðp; logð�þ qÞÞ ¼ min
q

p
;

q

logð�þ qÞ

� �
> min 1;

q

logð�þ qÞ

� �

> min 1;
p0

logð�þ p0Þ

� �
:

Next, use Proposition 3.1 to show: M�
nðe�q=8Þ 6 El½Mq

n �
1=qð8eqÞ1=q

6 81=p0eEl½Mq
n �

1=q
. Using the previous two facts, we now complete the proof of the

second inequality by beginning with the first inequality:
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El½Uq
n �

1=q

6 c
q

maxðp; logð�þ qÞÞ ðEl½U
p
n �

1=p þM�
nðe�q=8ÞÞ þ cEl½Mq

n �
1=q

6 c
q

maxðp; logð�þ qÞÞ ðEl½U
p
n �

1=p þ 81=p0eEl½Mq
n �

1=qÞ þ c � 1 � El½Mq
n �

1=q

6 c
q

maxðp; logð�þ qÞÞ El½Up
n �

1=p þ 81=p0eEl½Mq
n �

1=q
�

þmaxð1; logð�þ p0Þ
p0

ÞEl½Mq
n �

1=q

�
:

The second inequality in the theorem now follows.
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