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Abstract
We give applications of the higher Lefschetz theorems for foliations of Benameur and
Heitsch (J. Funct. Anal. 259:131–173, 2010), primarily involving Haefliger cohomol-
ogy. These results show that the transverse structures of foliations carry important
topological and geometric information. This is in the spirit of the passage from the
Atiyah–Singer index theorem for a single compact manifold to their families index
theorem, involving a compact fiber bundle over a compact base. For foliations, Hae-
fliger cohomology plays the role that the cohomology of the base space plays in the
families index theorem. We obtain highly useful numerical invariants by paring with
closed holonomy invariant currents. In particular, we prove that the non-triviality of
the higher ̂A class of the foliation in Haefliger cohomology can be an obstruction to
the existence of non-trivial leaf-preserving compact connected group actions. We then
construct a large collection of examples for which no such actions exist. Finally, we
relate our results to Connes’ spectral triples, and prove useful integrality results.
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1 Introduction

In this paper, we continue our program of investigating invariants for foliations which
come from the fact that their transverse structures carry important topological and
geometric information. These invariants arise from the extension of (generally classical
cohomological) invariants to invariants which involve the Haefliger cohomology of
the foliation. This is in the spirit of the passage from the Atiyah–Singer index theorem
for a single compact manifold to their families index theorem, involving a compact
fiber bundle over a compact base. For foliations, Haefliger cohomology plays the role
that the cohomology of the base space plays in the families index theorem.

This paper is devoted to applications of the higher Lefschetz theorems for foliations
of [17]. Let F be a foliation of the closed Riemannian manifold (V , g), and h a
leaf-preserving diffeomorphism of V which generates a compact Lie group H of
isometries of (V , g). We assume that the fixed point submanifold V h = V H of h is
transverse to the foliation and denote by T Fh = T (F ∩ V h) the induced integrable
subbundle of T V h . So (V h, Fh) is a new closed foliated manifold. Given an H -
equivariant leafwise elliptic pseudodifferential complex (E, d) on (V , F), the H -
equivariant (analytic) index of (E, d) is a class IndH (E, d) in the H -equivariant K -
theory group K H (C∗(V , F)) of the Connes C∗-algebra C∗(V , F) [27]. Note that
the group K H (C∗(V , F)) is a module over the representation ring R(H) of H . The
Lefschetz class L(h; E, d) of h with respect to (E, d) was introduced in [7] as the
localiazation of the class IndH (E, d)with respect to the prime ideal associated with h.
So, L(h; E, d) belongs to the localized R(H)h-module K H (C∗(V , F))h , where the
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subscript h means localization of R(H)-modules with respect to the ideal associated
with h in R(H). The main theorem of [7] was the expression of L(h; E, d) in terms
of topological data over the fixed point foliation (V h, Fh). An easy corollary is that
if there exists such (E, d) with L(h; E, d) �= 0, then V h �= ∅. More precisely, the
K -theory Lefschetz theorem can be stated as follows.

Theorem 2.3 [7] Under the above notations and with i : T Fh ↪→ T F being the
inclusion map, the following fixed-point formula holds in the localized R(H)h-module
K H (C∗(V , F))h :

L(h; E, d) = (

Ind(V h ,Fh) ⊗ idR(H)h

)

(

i∗[σ(E, d)]
λ−1(Nh ⊗ C)

)

,

where Ind(V h ,Fh) : K (T Fh) → K (C∗(V h, Fh)) denotes the topological Connes–
Skandalis index morphism for the foliated manifold (V h, Fh) [33].

Note that i∗[σ(E, d)] is the restriction of the symbol class [σ(E, d)] ∈ KH (T F)

to T Fh , and the fraction i∗[σ(E,d)]
λ−1(Nh⊗C)

is to be understood in the localized module

KH (T Fh)h 	 K (T Fh) ⊗ R(H)h . So, while the RHS of the K -theory Lefschetz
formula belongs to K (C∗(V h, Fh)) ⊗ R(H)h , it is viewed in K H (C∗(V , F))h via a
standard Mortia extension morphism associated with the transverse submanifold V h .

To extract scalar Lefschetz fixed point formulae from Theorem 2.3, we were nat-
urally led in [17] to use equivariant cyclic cohomology. Indeed, any H -equivariant
cyclic cocycle over the convolution algebra C∞

c (G) of the holonomy groupoid G
induces an R(H)-equivariant pairing with K H (C∞

c (G))with values in the continuous
central functions on H . So, whenever this pairing extends to the equivariant K -theory
of the completion algebra C∗(V , F), one gets well-defined higher Lefschetz numbers
by localizing this pairing at h, and also by evaluating the resulting central function at
the same h. In this paper, we have used this method to investigate the case of the equiv-
ariant cyclic cocycle associated with a transversely elliptic Dirac-type operator. More
precisely, if we assume for simplicity that the foliation is Riemannian and transversely
spin, then according to [46], the transverse spin-Dirac operator with coefficients in any
basic hermitian bundle provides an appropriate spectral triple which can be restricted
to the fixed point foliation (V h, Fh). Thenwe obtain the following integrality theorem.

Theorem 5.10 Denote by φCM the even Connes–Moscovici residue cocycle in the
(b, B)-bicomplex associated with a transversely elliptic Dirac-type operator on
(V , F) [32]. Let IndCS

V h ,Fh : K (T Fh) → K (C∗(V h, Fh)) be the Connes–Skandalis

topological longitudinal index morphism for the foliation (V h, Fh) [33]. Then we
have

〈

(IndCS
V h ,Fh ⊗C)

(

i∗[σ(E, d)](h)

λ−1(Nh ⊗ C)(h)

)

, [φCM ]|V h ,Fh ⊗ idC

〉

∈ R(H)(h).

Recall that φCM is represented by a finite list of residues of zeta functions and
the above result says that some rational combination of such residues belongs to the
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integral subgroup R(H)(h).These residues are closely related to Dixmier traces and
more generally to some singular traces on algebras of pseudodifferential operators.
They are in the spirit of the more general singular traces studied by Sukochev and his
collaborators in the semi-finite setting, see for instance [52, 54]. See also [13] where
examples of (semi-finite) Dixmier traces on foliations are also given. Integrality results
are highly important since they can lead to new invariants of great significance. As
examples, the results of Chern–Simons andCheeger–Simons led to differential charac-
ters and the Simons characters, while the Bott vanishing theorem led to the secondary
characteristic classes for foliations. If for instance h is a leaf-preserving involution,
then we obtain an integer. If more generally h has order p ≥ 2, then we obtain an
element of Z[e2iπ/p]. This is in the spirit of the classical Atiyah–Segal theorem and
its corollaries, especially those related with number theory and described in the good
monography [43]. Notice that if the foliation is only a transversely oriented Rieman-
nian foliation, then one may as well use the transverse signature operator as defined in
[46] and get a similar integrality statement. For non-riemanian foliations though, the
computations become highly non-trivial since one needs to use the transverse hypo-
elliptic signature operator on the Connes fibration associated with (V , F), along with
the more complicated dimension spectrum as well as more complicated residues. So
although the result can be stated as above, it can hardly be exploited in practice, so
this general case will be addressed elsewhere.

A different, but closely related approach to the above cyclic pairing method was
investigated in [17]. In particular, we proved in [17] that the above pairing method
works perfectly well for all foliations, when generating the equivariant cyclic cocy-
cles from the Haefliger homology of the foliation. We then proved that the K -theory
Lefschetz formula can always be paired with any given closed holonomy invariant
current C to provide a rich collection of topological fixed point formulae, valid for all
foliations, and given by

LC (h; E, d) =
〈

[

C |V h

]

,

∫

Fh

chC(i∗[σ(E, d)](h))

chC(λ−1(Nh ⊗ C)(h))
Td(T Fh ⊗ C)

〉

.

Here, Td is the Todd class, chC is the complexified Chern character, and
∫

Fh
is the

“integral over the fiber" from the cohomology of V h to the Haefliger cohomology
of (V h, Fh). See Section 2 for the specifics. When the current C corresponds to a
holonomy invariant measure, one obtains the measured Lefschetz theorem proven in
[40]. Even if such a measure does not exist, one can still apply this formula with other
interesting holonomy invariant currents. In the case of simple foliations, this higher
formula reduces to the fiberwise Lefschetz formula proven in [10], while in the case
of foliated flat bundles, it reduces to the formula proven in [11].

Returning to the Riemannian case, the pairings with the Kordyukov equivariant
spectral triples described above turn out to be closely related with the equivariant
pairings with Haefliger homology. More precisely, by applying the machinery of
the Getzler rescaling method [35] to Riemannian foliations and transversely ellip-
tic Dirac-type operators, in [19, 20] we succeeded in representing the class in the
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(b, B)-bicomplex of the Connes–Moscovici residue cocycle by the expected charac-
teristic basic form. Combining these results with our theorems here, we deduce the
following topological integrality result.

Theorem 5.12 Under the above assumptions, the characteristic number

∫

V h

chC(i∗[σ(E, d)](h))

chC(λ−1(Nh ⊗ C)(h))
Td(T Fh ⊗ C)̂A(νh) ch(̂E | V h ) belongs to R(H)(h).

Note that this formula is not expected to remain valid for non-Riemannian foliations,
while as explained above, Theorem 5.10 can certainly be stated for more general
foliations.

We also explore other important consequences of the topological Haefliger Lef-
schetz formulae. In Sect. 3 for instance, we consider the four classical geometric
operators and show that our results give non-trivial extensions of results in [40]. Also,
depending on the context, LC (h; E, d) gives highly useful numerical invariants. A
prime example of this is Theorem 4.1 below, the higher foliation rigidity theorem. Let
̂A(F) be the ̂A-characteristic class of the tangent bundle of the foliation T F . Our higher
topological Lefschetz theorem allows us to generalize Proposition 3.2 of [41] by taking
into account all closed holonomy invariant currents. Note that ̂A(T F) ∈ H∗(V , R),

and that
∫

F
maps H∗(V , R) to the Haefliger cohomology of F .

Theorem 4.1 Suppose that T F is even dimensional and spin, and that there exists a
closed holonomy invariant current C such that

〈

[C],
∫

F

̂A(T F)

〉

�= 0.

Then no compact connected Lie group can act non-trivially as a group of isometries
of V preserving the leaves of F and their spin structure.

In Sect. 4.2, we construct a large collection of examples not already covered by
[41] for which Theorem 4.1 shows that no such actions exist.

2 Review of the higher Lefschetz theorem

In this section, we review the main results of [17] with a brief overview of the main
theorem of [7]. In particular, F is a smooth oriented dimension p foliation of the
smooth compact Riemannian manifold (V , g) with the tangent bundle to F denoted
by T F and normal bundle ν. G is the holonomy groupoid of F , which consists of
equivalence classes of leafwise paths, where two paths are identified if they start at
the same point, end at the same point, and the holonomy germ along them is the same.
The composition of the paths makes G a groupoid, and its space of units G0 consists
of the classes of the constant paths, so G0 	 V . Denote by Gx the elements of G which
start at the point x ∈ V , by G y those elements which end at the point y ∈ V , and
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by G y
x the intersection Gx ∩ G y . We have the maps s, r : G → V , where s(γ ) = x ,

if γ ∈ Gx , and r(γ ) = y of γ ∈ G y . The metric g on V induces a canonical metric
on G, and so the splitting TG = T Fs ⊕ T Fr ⊕ νG . Note that r∗(νG,γ ) = νr(γ ), and
s∗(νG,γ ) = νs(γ ). For details, see [15, 16]. The metric on G gives metrics on the
submanifolds Gx ,G y ⊂ G. So objects such as L2(Gx ) and L2(G y) are well defined,
and do not depend on the choice of metric since V is compact. Note that r : Gx → Lx

is the holonomy covering of Lx , the leaf of F through x , and similarly, s : G y → Ly

is the holonomy covering of Ly .
The (reduced) Haefliger cohomology of F , [38], is given as follows. Let U be a

finite good cover of M by foliation charts as defined in [40]. For each Ui ∈ U , let
Ti ⊂ Ui be a transversal and set T = ⋃

Ti . We may assume that the closures of the
Ti are disjoint. LetH be the holonomy pseudogroup induced by F on T . GiveAk

c(T ),
the space of k-forms on T with compact support, the usual C∞ topology, and denote
the exterior derivative by dT : Ak

c(T ) → Ak+1
c (T ). Denote by Ak

c(M/F) quotient of
Ak

c(T ) by the closure of the vector subspace generated by elements of the formα−h∗α
where h ∈ H and α ∈ Ak

c(T ) has support contained in the range of h. The exterior
derivative dT induces a continuous differential dH : Ak

c(M/F) → Ak+1
c (M/F).

Note thatAk
c(M/F) and dH are independent of the choice of cover U . The associated

cohomology theory is denoted H∗
c (M/F) and is called the Haefliger cohomology of

F .
A holonomy invariant k-currentC assigns a real number to any compactly supported

differential k formdefinedon any transversal,with the stipulation thatC(h∗
γ α−α) = 0.

Any such C gives a continuous (for the smooth topology) linear form on Ak
c(M/F),

and such a form is called a Haefliger current.
Denote byAp+k(M) the space of smooth p+ k-forms on M . As the bundle T F is

oriented, there is a continuous open surjective linear map, called integration over the

leaves,
∫

F
: Ap+k(M) −→ Ak

c(M/F) which commutes with the exterior derivatives

dM and dH , so it induces the map

∫

F
: Hp+k(M; R) → Hk

c(M/F).

Thismap is given by
∫

F
ω =

∑

i

∫

Ui

φiω,where {φi } is a partition of unity subordinate

to the cover U , and
∫

Ui

is integration over the fibers of the projection Ui → Ti .

Let H ⊂ Iso(V , g) be a closed subgroup of the compact Lie group of isometries
of (V , g) which acts by F-preserving transformations. The isometry of (V , g) which
corresponds to the action of an element h ∈ H will also be denoted by h, so such h
takes leaves of F to leaves of F . Connes’ C∗-algebra of (V , F) is as usual denoted
C∗(V , F), see [28]. It is easy to check that C∗(V , F) is an H -algebra, i.e. the induced
action of H is strongly continuous for the C∗-norm. In fact, one can prove as well
that the smooth subalgebra C∞

c (G), or more generally any of its variants C∞
c (G, E)
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corresponding to coefficients in a given H -equivariant vector bundle E over V , is an
H -algebra for the smooth compact-open topology.

Denote by (E, d) a leafwise elliptic pseudodifferential complex on (V , F) which
is H -equivariant, i.e., E = ⊕Ei , d = {di }, the bundles Ei are H -equivariant, while
the operators di are H -invariant leafwise pseudodifferential operators acting between
the sections of Ei and Ei+1, such that di+1di = 0. Ellipticity of the leafwise complex
(E, d) means that the corresponding pointwise complex of principal symbols is exact
when restricted to the leafwise cosphere bundle. Then the H -equivariant index class of
(E, d) is awell defined element of the equivariant K -theory group K H (C∗(V , F)) and
actually factors through the equivariant K -theory of the smooth algebra C∞

c (G, E),
see [15, 16] and also [17]. Since K H (C∗(V , F)) is an R(H)-module, we can localize
it with respect to any conjugacy class [h] in H and obtain the localized index class of
(E, d) at [h].

We proved in [17] that the H -equivariant K -theory group of the smooth alge-
bra C∞

c (G; E) pairs with its H -equivariant cyclic cohomology Hλ(C∞
c (G; E), H) to

produce central functions on H . More specifically, we proved the following result.

Theorem 2.1 [17] For any compact group H acting by F-preserving isometries of
(V , g), there exists a well-defined pairing

K H (C∞
c (G; E)) ⊗ Heven

λ (C∞
c (G; E), H) −→ C(H)H ,

where Heven
λ (C∞

c (G; E), H) is the even H-equivariant cyclic cohomology and
C(H)H denotes the central continuous functions on H.

As we explain below, elements of Heven
λ (C∞

c (G; E), H) are provided by H -
invariant transversely elliptic operators as studied in [32], but also by any holonomy
invariant closed current when for instance H is connected. When H is abelian, local-
ization at a given element h of H is well defined and the following definition was
introduced by the first author in [7].

Definition 2.2 [7] Let h be an isometry of (V , g)which preserves the leafwise tangent
bundle T F , and denote by H the compact (abelian) Lie group generated by h in
Iso(V , g). Then the K -theory Lefschetz class of h with respect to (E, d) is the class

L(h; E, d) := IndH (E, d)h := IndH (E, d)

1R(H)

∈ K H (C∗(V , F))h,

obtained as the image of IndH (E, d) in the localized module K H (C∗(V , F))h at the
prime ideal in R(H) associated with h.

When the foliation is top-dimensional with leaves given by the connected compo-
nents of V , we recover the usual Lefschetz class as introduced and studied by Atiyah
and Segal in [5]. In general, the Lefschetz class can be related to topological data over
the fixed point submanifold of h with its potential induced foliation. More precisely,
assume that the fixed point submanifold V h is transverse to the foliation F and denote
by Fh its induced foliation. Denote by Nh the normal bundle to V h in V . It is then
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easy to check that the image in the localized module KH (V h)h 	 K (V h) ⊗ R(H)h
of the class,

λ−1(N
h ⊗ C) :=

∑

i

(−1)i [�i (Nh ⊗ C)] ∈ KH (V h),

is an invertible element for the obvious ring structure [5].

Theorem 2.3 [7] Under the above notations and with i : T Fh ↪→ T F being the
inclusion map, the fixed-point formula in K H (C∗(V , F))h is

L(h; E, d) = (

Ind(V h ,Fh) ⊗ idR(H)h

)

(

i∗[σ(E, d)]
λ−1(Nh ⊗ C)

)

,

where Ind(V h ,Fh) : K (T Fh) → K (C∗(V h, Fh)) denotes the Connes–Skandalis
(topological) index morphism [33] for the foliated manifold (V h, Fh).

In the above formula, note that theRHS lives in K (C∗(V h, Fh))⊗R(H)h,while the
LHS lives in K H (C∗(V , F))h . We have thus implicitely used the quasi-trivial Morita
extension associated with the transverse submanifold V h , to view K (C∗(V h, Fh)) ⊗
R(H)h 	 K H (C∗(V h, Fh))h as an R(H)h-submodule of K H (C∗(V , F))h . See [33]
as well as [7].

Scalar Lefschetz formulae may be extracted fromTheorem 2.3 by pairing the above
Lefschetz formulawith any H -equivariant cyclic cocycles over the smooth convolution
algebraC∞

c (G) in the sense of [17], as explained above.An important class of examples
is provided by cocycles which are associated with H -equivariant (even) Fredholm
modules (H , F) over the algebraC∞

c (G) [17, 29]. Such equivariant Fredholmmodules
are in turn generated by geometric spectral triples given by transversely elliptic Dirac-
type operators which are H -invariant, see Sect. 5.

We now explain how to generate a large collection of H -equivariant cyclic cocycles
when the space of leaves is H -trivial, meaning that it preserves the leaves and satisfies
an extra natural condition. This latter condition is satisfied in all the examples we
have in mind and by a large class of foliations. Moreover, when H is connected, it is
automatically satisfied for all foliations.

Definition 2.4 A given diffeomorphism f : V → V , which preserves the leaves of
F , is a holonomy diffeomorphism (with respect to the foliation F) if there exists a
smooth map ϕ f : V → G, so that for any x ∈ V , s(ϕ f (x)) = x , r(ϕ f (x)) = f (x),
and the holonomy germ along ϕ f (x) coincides on small enough transversals with the
action of f .

Remark 2.5 Theorem 2.3 shows that the Lefschetz class L(h; E, d) only depends on
the restriction of all data to the F-saturation Sat(V h) of V h in V , say to the smooth
foliated open submanifold composed of those points whose leaves intersect V h . But
the action of the group H restricts to this open foliated submanifold where it obviously
preserves the leaves and is automatically given by holonomy diffeomorphisms.
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To translate the Lefschetz formula of Theorem 2.3 to cohomology, we restrict
ourselves to the case where the group H preserves each leaf of (V , F) and acts by
holonomydiffeomorphisms [17].We now recall the higher Lefschetz formula obtained
in [17] using any closed holonomy invariantHaefliger currentC . The simplest example
of such current in degree 0 is a holonomy invariant transverse measure when this latter
exists. But other interesting currents of any order provide interesting formulae as well.
Recall that H acts on (V , F) by holonomy diffeomorphisms which are isometries of
(V , g).

Every closed even holonomy invariant current pairs with Hev
c (V /F), the even

Haefliger cohomology of F , [38]. In [17], we defined the equivariant Connes–Chern
character

chH : K H (C∞
c (G, E)) −→ Hev

c (V /F) ⊗ C(H)H ,

which extends to the equivariant K -theory of the completion C∗-algebra
K H (C∗(V , F; E)) 	 K H (C∗(V , F)) and yields for general not necessarily abelian
H :

chH : K H (C∗(V , F)) −→ Hev
c (V /F) ⊗ C(H)H .

Moreover, we also proved in [15, 16] that any (even) holonomy invariant current C
produces a well-defined even cyclic cocycle τC on the algebra C∞

c (G; E), so that the
pairing of the class [τC ] with K H (C∞

c (G; E)) given by Theorem 2.1 coincides with
the composition of chH with evaluation against the homology class ofC . Hence, when
H is the topologically cyclic abelian group generated by h, pairing chH (IndHV (E, d))

with the homology class ofC gives a continuous function on H which can be evaluated
at h, to produce the C-higher Lefschetz number LC (h; E, d). Said differently,

Definition 2.6 Let C be a closed even holonomy invariant current. The C-higher Lef-
schetz numbers LC (h; E, d)) of h ∈ H with respect to the H -equivariant leafwise
elliptic complex (E, d) is

LC (h; E, d) := 〈[C], chH (IndHV (E, d))〉 (h),

which is a complex number in general.

This higher C-Lefschetz number was expressed in [17] in terms of characteristic
classes at the fixed points of h. Here is the precise statement.

Theorem 2.7 (Higher Lefschetz Theorem, [17]) Assume that H is a topologically
cyclic compact Lie group of leaf-preserving holonomy diffeomorphisms which is
topologically generated by the smooth diffeomorpism h. Moreover, assume that F
is oriented and that the fixed-point submanifold V h = V H of h is transverse to the
foliation with the induced foliation Fh . Denote by i : T Fh ↪→ T F the inclusion and
by Nh the normal bundle to V h in V . Then for any closed even dimensional holonomy
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invariant current C on (V , F),

LC (h; E, d) = IndC|Vh

(

i∗[σ(E, d)](h)

λ−1(Nh ⊗ C)(h)

)

.

In this formula, C |V h is the closed holonomy invariant current which is the restric-
tion ofC to (V h, Fh); and IndC|Vh : K (T Fh)⊗C → C is the higherC |V h -index map

on the foliation (V h, Fh) defined as IndC|Vh = τC|Vh ◦ (IndV h ⊗ idC) where IndV h is

the Connes–Skandalis index morphism for (V h, Fh). See [15, 16] for more details.
Applying the Connes–Chern character, Theorem 2.7 gives the following more

computable expression.

Theorem 2.8 (Cohomological Lefschetz Formula, [17]) Under the assumptions of
Theorem 2.7, the following formula holds:

LC (h; E, d) =
〈

[

C |V h

]

,

∫

Fh

chC(i∗[σ(E, d)](h))

chC(λ−1(Nh ⊗ C)(h))
Td(T Fh ⊗ C)

〉

,

where Td is the Todd characteristic class, chC = ch⊗ idC with ch being the usual

topological Chern character, and
∫

Fh
: H∗

c (V h) → H∗−p
c (V h/Fh) is integration

over the leaves of the fixed point foliation (V h, Fh).

An interesting situation is when V h is a strict transversal, say with dimension equal
to the codimension of the foliation F , which correspond for top-dimensional folia-
tions to the case of isolated fixed points. In this case, integration over Fh disappears,
Td(T Fh ⊗ C) = 1 and Nh = T F |V h , so we get:

Corollary 2.9 Under the assumptions of 2.8, if V h is a strict transversal, then,

LC (h; E, d) =
〈

[C |V h ],
∑

i (−1)i chC([Ei |V h ](h))
∑

j (−1) j chC([∧ j (T F |V h ⊗ C)](h))

〉

.

We now describe our formula for Riemannian foliations when the holonomy invari-
ant current is induced by a closed basic form. Recall that a form α on V is basic with
respect to F if for any vector field X tangent to F , iXα = 0 and iXdα = 0, where iX
is as usual interior product with X . The space of such forms is denoted A∗

bas(V , F),
and the associated de Rham cohomology is denoted H∗

bas(V , F) and called the basic
cohomology of the foliation. It is well known that, for Riemannian foliations, the
basic cohomology is a honest counterpart for de Rham cohomology of the space of
leaves [34]. It is well known for instance that H∗

bas(V , F) satisfies Poincare duality
if and only if F is minimal (the mean curvature of the leaves of F is zero), and that
Hq
bas(V , F) is either 0 or R, where q is the codimension of F . See [25, 34, 44]. Given

a basic form α, and a smooth compactly supported form β ∈ A∗
c(T ), consider the

complex number

Cα(β) :=
∫

T
β ∧ α|T .
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Then the complex number Cα(β) only depends on the Haefliger form [β] represented
by β and may be denotedCα([β]). Indeed, adding to β forms of the type h∗

γ
̂β −̂β does

not alter the pairing, since basic forms are holonomy invariant, that is, h∗(α|T ) = α|T ,
so
∫

T
α|T ∧(h∗

γ
̂β−̂β) = 0. Hence, any basic form α gives rise to a holonomy invariant

current Cα . In addition, it is easy to see that dCα = Cdα , soCα is closed if α is closed,
and we end up with the induced map on homologies

C : H∗
bas(V , F) −→ H∗(V /F),

from basic cohomology to Haefliger homology.

Remark 2.10 Note that C is an isomorphism if the mean curvature of the leaves of F
is holonomy invariant [44].

For the closed holonomy invariant current Cα given by a closed basic form α,
applying Theorem 2.8 gives

LCα (h; E, d) =
∫

V h

chC(i∗[σ(E, d)](h))

chC(λ−1(Nh ⊗ C)(h))
Td(T Fh ⊗ C) ∧ i∗α, (2.11)

where i : V h → V and i : T Fh → T F .
Finally, we point out that in the general case, all the computations of [6] can be

rewritten from our point of view by replacing the characteristic classes by their power
series. For example, recall from [6], p. 560, that the normal bundle Nh decomposes
under the orthogonal action of h into

Nh = Nh(−1) ⊕
∑

0<θ<π

Nh(θ),

where Nh(−1) is a real bundle on which h acts by multiplication by −1, and each
Nh(θ) is a sum of complex line bundles on which h acts by multiplication by eiθ . Let
s1 = dimR(Nh(−1)), and x1, . . . , x[s1/2] be the standard characters which generate
the Pontryagin dual of the maximal torus of the orthogonal group O(s1). Let s(θ) =
dimC(Nh(θ)), and y1, . . . , ys(θ) be the corresponding characters for unitary group
U(s(θ)). Set

R =
∑

Rr (p1, . . . , pr )

⎡

⎣

[s1/2]
∏

j=1

((1 + ex j )/2) ((1 + e−x j )/2)

⎤

⎦

−1

, and

S =
∑

Sθ
r (c1, . . . , cr )

=
⎡

⎣

s(θ)
∏

j=1

(1 − ey j+iθ )(1 − e−y j−iθ )/((1 − eiθ )(1 − e−iθ ))

⎤

⎦

−1

,
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where pi is the ith symetric function of the x ′
i s (i. e. a Pontryagin class) and ci is the

ith symetric function of the y′
i s (i. e. a Chern class). Then we have

Theorem 2.12 Under the assumptions of Theorem 2.8,

LC (h; E, d)

=
〈

[C |V h ], chC(i∗[σ(E, d)](h))

det(1 − h| Nh)

∏

0<θ<π

Sθ (Nh(θ))R(Nh(−1)) Td(T Fh ⊗ C)

〉

.

For the four classical complexes (de Rham, Signature, Spin, and Dolbeault), there
are refinements of this general formula. We refer the reader to [6] for those formulas.

3 Lefschetz examples

3.1 The de Rham complex

For the deRhamcomplex, things are particularly simple, andwe begin this sectionwith
some general results for this case. In particular, if (E,d) is the de Rham complex along
the leaves, then only the zero component of the closed holonomy invariant current C

is involved. To see this, we compute
i∗[σ(E, d)](h)

λ−1(Nh ⊗ C)(h)
in this case. Now, σ(E, d) is

given by the sequence

0 −→ �0
C
T ∗F ∧ξ−→ �1

C
T ∗F ∧ξ−→ �2

C
T ∗F ∧ξ−→ . . . ,

where ξ ∈ T ∗F and �k
C
T ∗F = �kT ∗F ⊗ C is the complexified k-th exterior power.

Whenwe restrict this sequence to Fh , we get�kT ∗F = ⊕i+ j=k�
i T ∗Fh⊗� j Nh,∗,

and ξ ∈ T ∗Fh acts only on the first factor. Thus we have that

i∗[σ(E, d)] = σ(Eh, d)λ−1(N
h ⊗ C),

where (Eh, d) is the de Rham complex along Fh . So,

i∗[σ(E, d)](h)

λ−1(Nh ⊗ C)(h)
= σ(Eh, d)(h).

Now, chC(σ (Eh, d)(h))Td(T Fh ⊗C) is just χ(T Fh), the Euler class of T Fh , which

is non-zero only in dimension equal to the dimension of Fh . Thus
∫

Fh
χ(T Fh) is a

zero dimensional Haefliger cohomology class, where
∫

Fh
is Haefliger’s integration

over the plaques of Fh , [38]. But,

LC (h; de Rham) :=
〈

[C |V h ],
(∫

Fh
χ(T Fh)

)〉

=
〈

[C0],
(∫

Fh
χ(T Fh)

)〉

,
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whereC0 is the zero component ofC |V h , a holonomy invariant transverse distribution.
So the higher components of C do not contribute to the Lefschetz formula for the de
Rham complex. As an obvious corollary, LC (h; de Rham) vanishes for all holonomy
invariant transverse currents without zero component.

In the special case where V h is a strict transversal, the leafwise tangent bundle T Fh

reduces to the zero bundle and we get:

∑

i (−1)i chC([Ei |V h ](h))
∑

j (−1) j chC([∧ j (T Fh ⊗ C)](h))
=

∑

i (−1)i chC([∧i (T Fh ⊗ C)](h))
∑

j (−1) j chC([∧ j (T Fh ⊗ C)](h))
= 1.

Hence, in the case where C0 is a positive holonomy invariant transverse measure, one
gets

LC (h; de Rham) = LC0(h; de Rham) = C0(V
h) ≥ 0,

compared with [40]. Second, if the foliation is transversally oriented, the zero-th
component of the transverse fundamental class is zero, [30]. More specifically,

L [V /F](h; de Rham) = 0.

To see this, recall that for Haefliger forms, [[V /F]|V h ] (ω) = 0, unless the degree of
ω = q. As q > 0,

L [V /F](h; de Rham) =
〈

χ(T Fh), [[V /F]|V h ]
〉

= [[V /F]|V h ]
(∫

Fh
χ(T Fh)

)

= 0.

3.2 A universal example

The following is an extension of Section 4 in [40],which provides non-trivial Lefschetz
formulae for the four classical geometric operators.Wewill refer to thatmaterial freely.
In this case, the higher terms of theHaefliger Lefschetz class are non-trivial for the four
classical geometric operators, if we twist them by an appropriate universal leafwise
flat bundle.

Consider the following (universal) C bundle over the torus T
2k = R

2k/Z
2k .

Let (x, y) = (x1, y1, . . . , xk, yk) be coordinates on R
2k , and (m, n) =

(m1, n1 . . . ,mk, nk) ∈ Z
2k . Set

W = (R2k × C)/Z
2k,

where (m, n) acts on (x, y, z) by

(m, n) · (x, y, z) = (x1 + m1, y1 + n1, . . . , xk + mk, yk + nk, exp(2π i
∑

n j x j )z).
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If we denote by π j : T
2k → T

2 the projection π j (x, y) = (x j , y j ), then W =
⊗ jπ

∗
j
̂W , where ̂W is the bundle over T

2 given by

̂W = [0, 1] × [0, 1] × C/ ∼,

where (x, 0, z) ∼ (x, 1, exp(2π i x)z) and (0, y, z) ∼ (1, y, z). It is a straightforward
calculation that ch(̂W ) = 1 + ηβ, where η, β is the natural basis of H1(T2; R). It
follows immediately that if η1, β1, . . . , ηk, βk is the natural basis of H1(T2k; R), then

Proposition 3.1 ch(W ) =
∏k

i=1
(1 + ηiβi ).

The surface �4 of genus 4 has fundamental group � generated by eight isometries
(α j )0≤ j≤7 of the Poincaré disk H with the relation

α0α
−1
1 α2α

−1
3 α4α

−1
5 α6α

−1
7 α−1

0 α1α
−1
2 α3α

−1
4 α5α

−1
6 α7 = I d.

The element α j = θ− jαθ j ∈ SL2R, where α =
(

d 0
0 d−1

)

, for proper choice of

d > 0, and θ is rotation by π/16. Then �4 = �\SL2R/SO2, and we may take for a
fundamental domain of�4 a regular 16−gonD centered at 0 ∈ H. The action we have
chosen for � identifies opposite edges of D by translation along the geodesic through
the midpoints of the respective edges.

Given R
2k with coordinates (xi , yi ), i = 1, . . . , k, and a, b ∈ R, denote by A

and B the translations of R
2k given by A(xi , yi ) = (xi , yi + a) and B(xi , yi ) =

(xi , yi + b). For j = 0, 3, 4, 7 set f (α j ) = A, and for j = 1, 2, 5, 6 set f (α j ) = B.
This induces a homomorphism f : π1(�4) → Diff(T2k), and so a foliated bundle
V = (SL2R/SO2) × f T

2k , with foliation F . If a and b are not rationally related, i.e.,
for all (k, �) ∈ Z × Z − (0, 0), ka + �b ∈ R − Q, then all the leaves of the foliation
are isomorphic to H

2. Note that the action given by f preserves W , and that WV , the
pullback of W to V is flat along the leaves of F . It is also not difficult to see that the
manifold V is homotopic to the Cartesian product �4 × T

2k , so

H∗(V ; R) = H∗(�4; R) ⊗ H∗(T2k; R).

We denote a point in V by [gSO2, t] where g ∈ SL2R and t ∈ T
2k . Let r ∈ SO2

be rotation by π/4, and note that the action of r on D is rotation by π/2. Define
h : V → V by

h([gSO2, t]) = [rgSO2, t].

Then, as f (α j ) = f (α j+4) mod 8, it follows just as in [40] that h is well defined and
that it also preserves F . In addition, the fixed point set of h consists of the two fibers
of V over the points v0 and v1 in �4 corresponding to 0, the center of D, and the 16
vertices on the boundary of D, which are all identified when we glue D to get �4.
Thus, V h = T

2k
0 ∪ T

2k
1 , and just as in [40], the action of h at these points is rotation

by π/2 in the �4 direction, and the identity in the T
2k direction.



The higher fixed point theorem for foliations: applications... Page 15 of 44    79 

As V h is a union of strict transversals, we will be applying the second part
of Theorem 2.8, so we need to calculate

∑

j (−1) j chC([∧ j (F |V h ⊗ C)](h)), and
∑

i (−1)i chC([Ei |V h ](h)) for each of the various leafwise complexes we consider.
Wewill do the computations only onT

2k
0 as they are the same atT2k

1 . Note that T F |
T
2k
0

is a trivial R
2 bundle over T

2k
0 and the action of h on the fibers of T F |

T
2k
0
is rotation

by π/2. Thus,

∑

j

(−1) j chC([∧ j (T F |
T
2k
0

⊗ C)](h)) = det((1 − h) |T F |
T
2k
0

⊗C) = 2.

Next, note that the twisting bundle WV | T2k
j = W for j = 0, 1. The action of h on W

is the identity, so at each T
2k
j ,

ch([WV |
T
2k
j
](h) = ch(W ) =

k
∏

i=1

(1 + ηiβi ).

The expression in the numerator of the formula in the second part of Theorem 2.8 is
of the form

∑

i

(−1)i chC([Ei ⊗ WV |V h ](h) = ch([WV |V h ](h)
∑

i

(−1)i chC([Ei |V h ](h)

=
k
∏

i=1

(1 + ηiβi )
∑

i

(−1)i chC([Ei |V h ](h),

sowe need only compute
∑

i (−1)i chC([Ei |V h ](h) for the four geometric complexes.
This is quite simple since each Ei |V h is a trivial bundle: in fact, the pullback of the
fiber of the associated bundle on �4 at the base point of the fixed fiber. It is then easy
to see that

∑

i (−1)i chC([Ei |V h ](h) is just the pullback of the fixed point index at
that point for the action of h on the related complex on �4. These were computed in
[40].

3.2.1 de Rham complex

∑

i

(−1)i chC([Ei |V h ](h) = 2,

so

LC (h; deRham(WV )) =
1
∑

j=0

〈

C |
T
2k
j
,

k
∏

i=1

(1 + ηiβi )

〉

= 2

〈

C |
T
2k
0

,

k
∏

i=1

(1 + ηiβi )

〉

,
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since the Haefliger current C is invariant under holonomy. It is easy to see that each
term in the expression

∏k
i=1(1 + ηiβi ) has a Haefliger current which is dual to it.

3.2.2 Signature complex

∑

i

(−1)i chC([Ei |V h ](h) = −2i,

so

LC (h;Signature(WV )) = −2i

2

1
∑

j=0

〈

C |
T
2k
j
,

k
∏

i=1

(1 + ηiβi )

〉

= −2i

〈

C |
T
2k
0

,

k
∏

i=1

(1 + ηiβi )

〉

.

3.2.3 Dolbeault complex

Since h is a holomorphic map on each leaf, it induces endomorphisms of the Dolbeault
leafwise complexes (for k = 0, 1)

0 −→ C∞(∧kT ∗F ⊗C ∧0T
∗
F) −→ C∞(∧kT ∗F ⊗C ∧1T

∗
F) −→ 0,

where T ∗F and T
∗
F are the holomorphic and anti-holomorphic cotangent bundles,

respectively. We denote these endomorphisms bŷh0 and̂h1, respectively. Then

∑

i

(−1)i chC([Ei |V h ](̂h j ) = i + 1 − 2 j,

so

LC (̂h j ;Dolbeault(WV )) = i + 1 − 2 j

2

1
∑

j=0

〈

C |
T
2k
j
,

k
∏

i=1

(1 + ηiβi )

〉

= (i + 1 − 2 j)

〈

C |
T
2k
0

,

k
∏

i=1

(1 + ηiβi )

〉

.

3.2.4 Spin complex

Using the two liftings, denoted˜h±, defined in [40], we have

∑

i

(−1)i chC([Ei |V h ](˜h±) = ±i
√
2,
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so

LC (˜h±;Spin(WV )) = ±i
√
2

2

1
∑

j=0

〈

C |
T
2k
j
,

k
∏

i=1

(1 + ηiβi )

〉

= ±i
√
2

〈

C |
T
2k
0

,

k
∏

i=1

(1 + ηiβi ),

〉

.

As k is as large as we please and each term in the expression
∏k

i=1(1 + ηiβi ) has
a Haefliger current which is dual to it, we thus have universal non-triviality for the
higher Lefschetz numbers for all four of the classical elliptic complexes.

3.3 Some cancellation relations

We briefly explain in this paragraph the close relation between Lefschetz formulae and
some standard series relations. We concentrate here on a single example which shows
how the triviality of the higher terms in our Lefschetz formula can be used already for
simple foliations, to rediscover surprising cancellation identities. This approach opens
up the way for other more involved relations by using more complicated foliations.
This application is thus in the spirit of the by now classical results which relate the
Lefschetz theoremwith number theory, see for instance [43]. Recall that for any formal
variable z,

coth(z) = ez + e−z

ez − e−z
= 1

z
+
∑

�≥1

22�

(2�)! b2� z2�−1,

where the bn are the Bernoulli rational numbers.

Corollary 3.2 For any integer n ≥ 1 and any sequence of angles 0 ≤ α0 ≤ · · · ≤
αn < π/2, the formal series in the commuting (formal free) variables z0, . . . , zn:

n
∑

j=0

n
∏

j �=k=0

coth
[

zk − z j + i(αk − α j )
] = 1 + (−1)n

2
,

where coth
[

zk − z j + i(αk − α j )
]

is the power series

coth(zk − z j ) + i tan(αk − α j )

1 + i tan(αk − α j ) coth(zk − z j )
.

Said differently, we have for any n ≥ 1 and any commuting (formal) variables
z0, . . . , zn

n
∑

j=0

n
∏

j �=k=0

coth(zk − z j ) + i tan(αk − α j )

1 + i tan(αk − α j ) coth(zk − z j )
= 1 + (−1)n

2
.
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Note that the corollary can be translated into an infinite number of relations corre-
sponding to the coefficients of the series. It is also easy to see that it is equivalent to
the simpler formula for the power series in the 2 by 2 distinct (for instance complex)
variables u0, . . . , un :

n
∑

j=0

n
∏

j �=k=0

coth(uk − u j ) = 1 + (−1)n

2
.

However, the statement makes the proof more understandable. Also notice that these
relations can be derived from a straightforward (rather astute) computation, but we
prove it here as an easy application of the family Lefschetz theorem.

Proof We only need to give the proof of the formula under the assumption 0 < α0 <

· · · < αn < π/2. Set B = CPk0 × · · · × CPkn , k j ≥ n, which has cohomology the
polynomial algebra R[x0, . . . , xn] on two-dimensional generators, truncated by the

relations x
k j+1
j = 0. Denote by E0, . . . , En the natural C line bundles over B, so

c1(E j ) = x j . Denote by P the principal U1 × · · · × U1 	 T
n+1 bundle associated

with ⊕ j E j . The torus T
n+1 acts on CPn by

(u0, . . . , un)[z0 : · · · : zn] := [u0z0 : · · · : unzn].

Set V = P×Tn+1CPn , the quotient of P×CPn by the diagonal action ofTn+1. Choose
a = (a0, . . . , an) ∈ T n+1 with ai = exp(iθ j ), where 0 < θ0 < · · · < θn < π . Define
the fiberwise action of a on V by

a[p, [z0 : · · · : zn]] := [p, [a0z0 : · · · : anzn]].

Note that the fibers of π : V → B are oriented by their complex structures and that
a preserves this orientation. The fixed point submanifold of a is the union of n + 1
connected components (Bj )0≤ j≤n, where Bj is given by

Bj = {[p, [0 : · · · : 0 : 1 : 0 : · · · : 0]] | p ∈ P} with 1 at the j − th position.

Each Bj is a transversal to the fibration, and is diffeomorphic to B underπ . The normal
bundle to Bj is the pullback underπ : Bj → B of the vector bundle⊕n

j �=k=0(Ek⊗E∗
j ).

Moreover, this decomposition into complex line bundles corresponds to the decom-
position of the normal bundle of Bj into the eigenspaces of the action of the isometry
a. We now apply the Lefschetz fixed point formula for families [10] to a with respect
to the signature operator D+

vert along the oriented even dimensional fibers of V . We
get

Sign(a) = ch(L(a; D+
vert )) =

n
∑

j=0

π∗ν j ∈ H∗(B; R),
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where L(a; D+
vert ) ∈ K(B) ⊗ C is the Lefschetz class of the index of D+

vert evaluated
at a. The expression ν j ∈ H∗(Bj ; R) is the local contribution corrsponding to Bj in
the fixed point formula. More precisely, denote by Mθ the multiplicative sequence
associated with the series in the x variable

tanh(iθ/2)

tanh((x + iθ)/2)
.

Then,

π∗ν j =
n
∏

j �=k=0

(

i tan(
θk − θ j

2
)

)−1

Mθk−θ j (Ek ⊗ E∗
j )

=
n
∏

j �=k=0

coth

(

xk − x j + i(θk − θ j )

2

)

.

The Lefschetz class Sign(a) can also be computed as follows. Denote the fiberwise
cohomology of V → B by H∗(V | B), and the ± eigenspaces of fiberwise invo-
lution associated with the signature operator by H∗±(V | B). Since T

n is connected,
all elements act by the identity on this cohomology. Thus, Sign(a) = Sign(I ) =
ch(Hn+(V | B)) − ch(Hn−(V | B)). When n is odd, Hn(V | B)) = 0, so Sign(a) = 0.
When n is even, Hn(V | B) is one dimensional, and

Hn+(V | B) = Hn(V | B) and Hn−(V | B) = 0.

Thus,

Sign(a) = ch(Hn(V | B)) = 1 ∈ H0(B),

since the line bundle Hn(V | B) over B is a trivial one-dimensional bundle. Therefore,
in H∗(B; R),

n
∑

j=0

n
∏

j �=k=0

coth

(

xk − x j + i(θk − θ j )

2

)

= 1 + (−1)n

2
.

Replacing xk by 2zk and θk by 2αk and noting that the dimensions of the CPk j are as
large as we want completes the proof. ��

4 Obstructions to group actions

For the spin Dirac operator along the leaves of a foliation, we can generalize the
Atiyah–Hirzebruch rigidity theorem [4] and prove a higher rigidity theorem which
extends the measured rigidity theorem proven in [41].
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4.1 The higher rigidity theorem

Suppose that T F is an even dimensional spin bundle, with associated leafwise Dirac
operator D. Let ̂A(F) be the ̂A-characteristic class of the vector bundle T F . Using
our higher Lefschetz theorem, we generalize Proposition 3.2 of [41] by taking into
account all the closed holonomy invariant currents [38].

Theorem 4.1 Assume that the tangent bundle T F to the foliation (V , F) is spin and
that there exists a closed holonomy invariant current C such that

〈

[C],
∫

F

̂A(T F)

〉

�= 0.

Then, no compact connected Lie group H can act non-trivially as a group of isometries
of V preserving the leaves of F and their spin structure.

Recall that since H is connected and preserves each leaf, the fixed point submanifold
is transverse to F, [40]. Moreover, in this case, all the elements of H act by holonomy
diffeomorphisms. If C is given by a holonomy invariant transverse measure, we get
the rigidity theorem of [41]. The power of Theorem 4.1 is that it applies to a potentially
large alternative collection of invariant currents [38]. The proof uses the continuity of
the higher Lefschetz map h → LC (h; E, d) and a straightforward generalization of a
classical method based on Liouville’s theorem [4] together with our higher Lefschetz
fixed point formula. A different proof given in the beautiful paper of Lawson and Yau
[50], with better results for effective S

3 actions, should also be extendable to foliations.
The proof of Theorem 4.1 relies on the following proposition. Notice that this

proposition applies in particular to all leafwise actions of compact connected Lie
groups.

Proposition 4.2 Let F be an oriented foliation of the compact manifold V . Assume
that the compact Lie group H acts by holonomy diffeomorphisms on (V , F). Then for
any H-equivariant leafwise elliptic pseudodifferential complex (E, d) over (V , F),
and every closed Haefliger 2k-current C on (V , F), the map h �→ LC (h; E, d) is a
continuous map from H to C.

Assuming Proposition 4.2, the proof of Proposition 3.2 of [41] proves Theorem
4.1, with the following emendations and using the notation of [41].

Replace the second paragraph by:
Let z ∈ C and x ∈ R. The function 1/(1−ze−x ) can be written as R(x, z), which is

a formal power series in x whose coefficients are rational functions in z, having a pole
only at z = 1, and no pole at z = ∞. In particular, the coefficient of x0 is 1/(1 − z),
and it is an easy exercise to prove that the coefficient of xn , for n > 0, is

(−1)n

n! [z[· · · [z[ 1

1 − z
]′]′ · · · ]′],

where ′ indicates differentiation, and it is done n times.
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The first displayed formula should be

A(Nα ∩ L, z) = (−1)(dimR F)/2
̂A(Nα ∩ L)

∏

j

A(V j , z).

The second displayed formula becomes

2nα (zd)1/2
∏

j

(1 + z−m j )d j = trace(z | E+
y ⊕ E−

y )),

where E± are the complex vector bundles associated with the spin structure con-
structed from the irreducible spin representations �±. Then for z a topological
generator of H , A(Nα ∩ L, z) is the differential form given on the right hand side
of the equation in Theorem 2.8 for the spin Dirac complex (E, d), so we have

LC (z; E, d) =
〈

C |Nz ,
chC(i∗[σ(E, d)](z))
chC(λ−1(Nz ⊗ C)(z))

Td(Fz ⊗ C)

〉

=
∑

α

〈

C | Nα ,

∫

Fα

A(Nα ∩ L, z)

〉

.

Now consider the function on the complex plane given by

A(F, z) =
∑

α

〈

C | Nα ,

∫

Fα

A(Nα ∩ L, z)

〉

.

Using Proposition 4.2, the argument in the proof Proposition 3.2 of [41] finishes the
proof.

Remark 4.3 Note that any closed basic differential form yields a closed holonomy
invariant current. So when the foliation is for instance Riemannian, the subring of
H∗(V , C) generated by the Pontryagin classes of the normal bundle (or any basic
bundle) yields interesting vanishing results.

An interesting corollary is an easy proof in the Riemannian case of the following
well-known result for all spin foliations [51]. Notice that the proof given in [51] was
completely different and based on the techniques of sub-Dirac operators.

Corollary 4.4 Assume that F is a Riemannian spin foliation of a compact connected
oriented manifold V , and assume that the ̂A-genus of V is non-trivial, i.e., ̂A(V )[V ] �=
0. Then no compact connected Lie group can act non-trivially on V by leaf-preserving
diffeomorphisms.

Proof Since V is oriented and the leaves are spin, the transverse bundle ν is also
oriented. Since F is Riemannian, using the Levi–Civita connection on the normal
bundle ν (constructed out of the Bott partial connection), the Pontrjagin classes of the
normal bundle ν are represented in H∗(V ; R) by basic closed forms. So, there is a
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basic closed form ω with [ω] = ̂A(ν) in H∗(V ; R). If a compact connected Lie group
acts non-trivially on V and preserves the leaves of the foliation F , then replacing this
group by a twofold cover Lie group, we may assume that the action preserves the spin
structure of the leaves. See Proposition 2.1 of [4]. By Theorem 4.1, we have

0 =
〈

Cω,

∫

F

̂A(T F)

〉

=
〈

Cω,

∫

F

̂A(T F)

〉

=
∫

V

̂A(T F)̂A(ν) = ̂A(V )[V ] �= 0,

a contradiction. ��
Now we prove Proposition 4.2.

Proof Since every element h ∈ H acts as a holonomy diffeomorphism, the multiplier
�E (h) of the algebra C∞

c (G, E), recalled in Sect. 2, is well defined. Recall that the
higher Lefschetz number LC (h; E, d) of hwith respect to the elliptic H -invariant com-
plex (E, d) is given by evaluation at h of the H -equivariant pairing between the cyclic
cocycle τC associated with C and the index class indH (E, d) ∈ K H (C∞

c (G, E)). But
the equivariant pairing of indH (E, d)with the cyclic cocycle τC was defined in [17] as
follows. The class indH (E, d) is represented by some formal difference [̃e]− [̃e′]with
ẽ = (e, λ) and ẽ′ = (e′, λ′) being H -invariant idempotents in ˜C∞

c (G, E) ⊗ End(X)

for some finite dimensional representation X of H . So, here

˜C∞
c (G, E) ⊗ End(X) = (C∞

c (G, E) ⊕ C) ⊗ End(X)

	 (

C∞
c (G, E) ⊗ End(X)

)⊕ End(X).

Now, e, e′ ∈ C∞
c (G, E) ⊗ End(X), while λ, λ′ ∈ End(X), satisfy that ẽ and ẽ′

are H -invariant and the class [̃e] − [̃e′] belongs to the kernel K H (C∞
c (G, E)) =

Ker
(

K H ( ˜C∞
c (G, E)) → R(H)

)

.

The pairing between indH (E, d) and τC , followed by evaluation at h, is then given
by the following formula [17]

LC (h; E, d) = (τC� tr)(�E⊗X (h) ◦ e, e, . . . , e) − (τC� tr)(�E⊗X (h) ◦ e′, e′, . . . , e′),

where the cyclic cocycle τC is defined in [15, 16] as follows using Connes’ X -
trick. Consider the graded differential algebra (M2(C∞

c (G, E ⊗ �•ν∗), ∗, δ) with
differential

δ : M2(C
∞
c (G, E ⊗ �•ν∗)) −→ M2(C

∞
c (G, E ⊗ �•+1ν∗)),

which is constructed out of the transverse connection and the partial curvature θ , and
satisfies δ2 = 0. Now, the cyclic cocycle τC is given as usual by a foliated variation
of Connes’ formula:

τC ( f0, . . . , f2k) =
〈

C,

∫

F
tr
(

[(�E (h) ◦ f0) ∗ δ f1 ∗ · · · ∗ δ f2k]|V
)

〉

.
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Since e is smooth with compact support, it is clear that

(�E (h) ◦ e) ∗ δe ∗ · · · ∗ δe

is a uniformly bounded smoothing operator along the leaves of G, with coefficents
in differential forms on V . Moreover, it is also transversely smooth in the sense of
[18][Definition 3.1]. Therefore, all (transverse) derivatives of (�E (h)◦e)∗δe∗· · ·∗δe
yield uniformly bounded smoothing operators. This shows that the map which assigns
to h the differential form on V given by

[(�E (h) ◦ f0) ∗ δ f1 ∗ · · · ∗ δ f2k]|V
is continuous for the smooth (Fréchet) topology of the algebra of differential forms on

V . Now, the closed holonomy invariant current C induces a continuous map C ◦
∫

F
for this Fréchet topology [38], so the proof is now complete. ��

4.2 Some rigidity examples

We now give examples where Theorem 4.1 can be applied to conclude that there is
no action, which are not already covered by the results of [41]. A non-trivial example
would be a foliation F on V , with the ̂A genus of V being zero, (so that is not an
obstruction to an action), and the ̂A genus of each leaf is zero (so is not an obstruction
to a leafwise action), but there is a closed Haefliger currentC of positive degree so that
〈

C,

∫

F

̂A(T F)

〉

�= 0, and similarly for Corollary 4.4 in the general non-Riemannian

case considered in [51].
Interesting examples already showupwith foliations givenby compact fiber bundles

F → V → N where the foliation is the tangent bundle along the fibers T F . They

satisfy ̂A(V )[V ] = 0, ̂A(F)[F] = 0, equivalently
∫

F

̂A(T F) = 0 in H0(V /F) =

H0(N ; R), but
∫

F

̂A(T F) �= 0 in H∗(N ; R). By Poincare duality, there is an element

[ω] ∈ H∗(N ; R) so that

〈

Cω,

∫

F

̂A(T F)

〉

�= 0.

4.2.1 Example 1

Recall Example 7.10 of [14], which is an adaption of Example 1 of [39].

Example 4.5 Let G = SL2R × · · · × SL2R (q copies) and K = SO2 × · · · × SO2 (q
copies). G acts naturally on R

2q
� {0} and is well known to contain subgroups � with

N = �\G/K compact (in fact, a product of q surfaces of higher genus). Set

V = �\G ×K ((R2q
� {0})/Z) 	 �\G ×K (S2q−1 × S

1),

where n ∈ Z acts on R
2q

� {0} by n · z = enz.
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V has two transverse foliations, F which is given by the fibers S
2q−1 × S

1 of the
fibration V → N , and a transverse foliation coming from the foliation τ of Example
1 of [39]. τ is defined on the vector bundle �\G ×K R

2q , and the zero section is a leaf
of it. In addition, the action of Z preserves τ , fixing the zero section, so it descends to
a foliation on V , also denoted τ .

We work with F , noting that T F is orientable and spin since R
2q − {0} has these

structures and the actions of K and Z preserve them. The following proposition is
proven in the Appendix of [14].

Proposition 4.6
∫

F

̂A(T F) is a nowhere zero 2q form on N. In particular, there is a

non-zero constant cq so that
∫

N

∫

F

̂A(T F) = cq vol(N ).

Note that the ̂A genus of each leaf ̂A(S2q−1 × S
1)[(S2q−1 × S

1] = 0, as we wish.
However,

̂A(V )[V ] =
∫

N

∫

F

̂A(T F)̂A(T N ) =
∫

N

∫

F

̂A(T F) �= 0,

since N is a product of surfaces, so ̂A(T N ) = 1. To overcome this, we take the cross
product with S

1and its zero dimensional foliation F0, that is, set

V1 = V × S
1, N1 = N × S

1, F1 = F × F0 and C = d volS1 .

Then this satisfies all our requirements, in particular, the ̂A genus of each leaf of F1
is zero,

̂A(V1)[V1] = 0, and ̂A(T F1) = ̂A(T F), so
〈

C,

∫

F1

̂A(T F1)

〉

=
∫

S1
d volS1

∫

N

∫

F

̂A(T F) �= 0.

Finally, note that while each leaf does admit actions, their agglomeration does not.

Remark 4.7 For further examples, note that the calculations in the examples in [39] can
be used to provide examples associated to the groups G = SL2n1R × · · · × SL2nr R,
and K = SO2n1 × · · · × SO2nr , and G = SL2n1R × · · · × SL2nr R × R and K =
SO2n1 × · · · × SO2nr × Z.

Remark 4.8 Note that S
1 can be replaced by any compact orientable manifold X with

dimension not congruent to 4 mod n, with d volS1 replaced by d volX .

4.2.2 Example 2

We get a second example of this type by using the results of Atiyah in [2]. In [26],
it was shown that the signature class is multiplicative for a fiber bundle with fiber Y
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and base space X , which are compact oriented manifolds, provided the fundamental
group of X acts trivially on the cohomology of Y . Atiyah constructed examples that
show this restriction on the action of π1(X) is necessary.

In particular, Atiyah constructed a closed oriented 4-manifold Z which has fibers
over a higher genus surface X with fibers a higher genus surface Y . Denote by T F the
tangent bundle to the fibers, which is a spin foliation, denoted F . It has the property
that its first Chern class d = c1(T F) satisfies d2 �= 0 in H4(Z , R). In addition, the
total Pontrjagin class of Z is p(Z) = 1 + d2. Note also that there are spin structures
on Z as well as on X and on the fibers Y over X .

For dimensional reasons, ̂A(Y )[Y ] = ̂A(X)[X ] = 0. However, since p(Z) =
1 + d2, ̂A(Z)[Z ] �= 0, just as above. To handle this, we again take a product with S

1

with its point foliation F0. That is, we consider

Z1 = Z × S
1, X1 = X × S

1, F1 = F × F0 and C = d volS1 .

This satisfies all our requirements, in particular, the ̂A genus of each leaf of F1 is zero,
̂A(Z1)[Z1] = 0, and ̂A(T F1) = ̂A(T F), so

〈

C,

∫

F1

̂A(T F1)

〉

=
∫

S1
d volS1

∫

N

∫

F

̂A(T F) �= 0.

4.2.3 Example 3

We now give examples using homogeneous spaces. Recall that the complex projective
space CPq is orientable for all q, and is spin if and only if q is odd. In addition,

H∗(CPq ; Z) = Z [α]/(αq+1 = 0), where α ∈ H2(CPq; Z).

It is classical that the total Pontrjagin class of CPq is

p(CPq) = (1 + α2)q+1, so ̂A(TCPq) =
( α/2

sinh(α/2)

)q+1
,

and ̂A(CPq) =
∫

CPq

̂A(TCPq), the ̂A-genus of CPq , is the coefficient of αq in this

series. Thus, to get ̂A(CPq), we need to compute

1

2π i

∮

1

zq+1

( z/2

sinh(z/2)

)q+1
dz = 1

2π i

∮

1

2q+1

1

(sinh(z/2))q+1 dz

= 2−q
∮

(2π i)−1du

uq+1
√
1 + u2

,

using u = sinh(z/2). The integral gives the coefficient cq of uq in the Taylor series
of 1/

√
1 + u2, which equals q + 2 times the coefficient of uq+2 in the Taylor series
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of
√
1 + u2. To see this note that the derivative of

√
1 + u is 1/(2

√
1 + u), and then

substitute u2 for u. It is then obvious that cq is non-zero if and only if q is even.
So we have ̂A(CPq) = ̂A(Uq+1/(U1 × Uq) �= 0 if and only if q is even. Thus we

set F = CPq+1, which is spin with ̂A genus zero. Next, consider the universal CPq+1
bundle,

F = CPq+1 → EU2q+1/(U1 ×U2q) → BU2q+1.

It satisfies
∫

F

̂A(T F) has at least one non-zero term in dimension greater than zero.

So there is a compact manifold N and a principal bundle F = U2q+1 → V → N

so that
∫

F

̂A(T F) has at least one non-zero term in dimension greater than zero. By

Poincare duality, there is an element [ω] ∈ H∗(N ; R) so that

〈

Cω,

∫

F

̂A(T F)

〉

�= 0.

If the ̂A genus of V is not zero, we may take the product with S
1 as above to kill it.

4.2.4 Example 4

Similar examples can be constructed following Chapter V, Section 15 of [21]. In
particular, denote by Spq the space of unitary quaternionic q × q matrices, and set
KPq−1 = Spq/(Sp1 × Spq−1). Recall that H∗(KPq−1; Z) = Z [α]/αq = 0, where
α ∈ H4(KPq−1; Z). Thus, w1(KPq−1) = w2(KPq−1) = 0, so KPq−1 is orientable
and spin. From [22], p. 519, we have that the total Pontrjagin class of KPq−1 is

p(KPq−1) = (1 + 4α)−1(1 + α)2q , so

̂A(TKPq−1) = sinh(
√

α)√
α

(

√
α/2

sinh(
√

α/2)

)2q
,

and ̂A(KPq−1), the ̂A-genus of KPq−1, is the coefficient of αq−1 of this series. If we
set z = √

α, then we need to compute

1

2π i

∮

1

z2q−1

sinh(z)

z

( z/2

sinh(z/2)

)2q
dz

= 1

2π i

∮

1

22q
sinh(z)

(sinh(z/2))2q
dz

= 1

2π i

∮

1

22q
2 sinh(z/2) cosh(z/2))

(sinh(z/2))2q
dz = 1

2π i

∮

1

22q−2

du

u2q−1 dz = 0,

since q > 1. Thus, the

̂A(KPq−1) = ̂A(Spq/(Sp1 × Spq−1) = 0.

We leave it to the reader to continue as above using the results of [21].
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4.3 Other rigidity results

As noted in [41], the results of [23], originally conjectured byWitten, extend to foliated
manifolds in much the same way that the result of [4] for the ̂A genus was extended
here. In particular, the analog of the Bott–Taubes theorem is as follows.

Denote by Sk(F) and �k(F) the symmetric and exterior powers of T F ⊗ C, and
set

Sa(F) =
∞
∑

k=0

ak Sk(F) and �a(F) =
∞
∑

k=0

ak�k(F).

Denote by �+ and �− the spin representations of Spin(2p). Then the signature
operator dS = |∂ ⊗ �1 where |∂ is the Dirac operator on a spin manifold of dimension
2p and �1 = �+ + �−. An elliptic operator D which is preserved by an S

1 action
on a manifold is said to be universally rigid if the induced action of S

1 on ind(D) =
ker(D) − coker(D) is the identity map.

Theorem 4.9 Let F be a 2p-dimensional spin foliation of V with the leafwise Dirac
operator |∂ , which satisfies the hypothesis of Theorem 2.7, with H = S

1. Let Rn and
R′
n be defined by the sequences

Rq =
∞
∑

n=0

qn Rn =
∞
⊗

n=1

�qn (F)

∞
⊗

m=1

Sqm (F) and

R′
q =

∞
∑

n=0

qn/2R′
n =

∞
⊗

n=1/2,3/2,...

�qn (F)

∞
⊗

m=1

Sqm (F).

Then the leafwise operators = |∂ ⊗ R′
n and dS ⊗ Rn acting on sections of the bundles

denoted E ′ and E, respectively, are universally rigid. In particular, for all h ∈ S
1, see

Theorem 5.3 [17],

LC (h; E ′, |∂ ⊗ R′
n) = LC (I; E ′, |∂ ⊗ R′

n)

= 〈

C, ch(σ (E ′, |∂ ⊗ R′
n))Td(T F ⊗ C)

〉 = 〈

C, ̂A(T F) ch(R′
n)
〉

,

and similarly

LC (h; E, dS ⊗ Rn) = 〈C, L(T F) ch(Rn)〉 .

5 Spectral triples and integrality

In this section, we explain the construction of transverse spectral triples as proposed
by Connes [30], and their index theory as developed by Connes andMoscovici in [32],
with the consequences for the higher Lefschetz formulae for foliations.
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5.1 Transverse spectral triples

We shall assume for simplicity that F is a Riemannian foliation, and so can employ the
more precise results obtained by Kordyukov in [46, 47]. For other interesting explicit
results on Lefschetz formulae for foliations, see [48]. We may and will assume that
the metric on V is bundle like, so its restriction to the transverse bundle ν = T V /T F
is holonomy invariant.

We shall be using some elements of the basic cohomologyH∗
bas(V , F). In particular,

let ̂E be a basic Hermitian bundle on V , which means that there exists a connection
∇̂E on ̂E which is locally projectable, so its curvature�

̂E is basic. Examples of such a
bundle are provided by bundleswhich are functorially constructed out of the transverse
bundle ν = T V /T F . Then all the characteristic classes of ̂E can be represented by
closed basic forms, i.e., the Chern classes c j (̂E) in the complex case and the Pontrjagin
classes p j (̂E) in the real oriented case, all live in Hev

bas(V , F). In fact, H∗
bas(V , F)

contains the ring generated by the Pontrjagin classes p j (ν) of ν and the Chern classes
c j (̂E) of all basic Hermitian bundles. We will be particularly interested in the Chern

character ch(̂E) = [tr(exp(�̂E/2π i))] of the basic hermitian bundle ̂E , as well as
in the ̂A class ̂A(ν), of the transverse bundle ν. Recall that the latter is given as
follows. Denote by Rν the curvature of the Levi–Civita connection ∇ν on ν, which is
constructed using the Bott connection and is locally the pullback of the Levi–Civita
connection on a transversal. Then ̂A(ν) is the basic cohomology class represented by

the closed basic form det
(

Rν/4π
sinh(Rν/4π)

)1/2
, i.e.,

̂A(Rν) :=
[

det

(

Rν/4π

sinh(Rν/4π)

)1/2
]

.

We now recall the notion of a finite dimensional spectral triple, and the transverse
spectral triples associated with Riemannian foliations as described and studied in [46].
A (finite dimensional) spectral triple is composed of an (involutive) algebra A which
is represented in a separable Hilbert space H, so π : A → L(H) is an involutive
morphism of algebras, and of a (“first order” unbounded) self-adjoint operator D
which interacts properly with the representation. More precisely, it is assumed that:

• D : dom(D)⊂H → H is a (densely defined) self-adjoint operator on H.
• For anya ∈ A, the operatorπ(a)preservesdom(D) and the commutator [D, π(a)]
extends to a bounded operator on H.

• (Finite dimensionality) There exists α ∈ [1,+∞) such that for any a ∈ A, the
operator π(a)(D2 + I )−α/2 belongs to the Dixmier ideal Lα,∞(H).

The least real number α satisfying the third item, denoted d, is called the dimension
of the spectral triple. So for any complex number z such that �(z) > d, the operator
π(a)(D2 + I )−z/2 is a trace class operator. In fact, there is a more accurate notion of
dimension spectrum for spectral triples which was introduced in [32]. More precisely,
we assume furthermore that there exists a discrete subset � of the complex plane, the
dimension spectrum, whose projection to the reals is also discrete, and such that for
any a in the algebra generated by A and its commutators with D, the holomorphic
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function z �→ Tr
(

π(a)(D2 + I )−z/2
)

on {�(z) > d} extends to a meromorphic
function on the complex plane whose poles are all in �. The dimension spectrum �

is a simple dimension spectrum when all its elements are at most simple poles. This
reflects roughly the usual notion for closed smooth manifolds with many connected
components of different dimensions. In that case, � ⊂ {n ∈ N, n ≤ d} where d is
the maximal dimension of the connected components, and it is a simple dimension
spectrum. When the Hilbert spaceH is moreover endowed with a Z2-grading, say an
involution γ , which commutes with the representation π and anticommutes with D,
such a spectral triple is called an even spectral triple. See again [31] for more details
on spectral triples and their associated Fredholm modules and index pairings.

The main example of a spectral triple we consider here is the transverse spectral
triple associated with the Riemannian foliation (V , F) in [46]. More precisely, take
for A the smooth convolution algebra A = C∞

c (G) associated with the holonomy
groupoid G. The convolution product is given by

(k1k2)(γ ) :=
∫

Gr(γ )

k1(α)k2(α
−1γ ) dηr(γ )(α), k1, k2 ∈ A and γ ∈ G,

where dη = dηx is the G-invariant Haar system on s : G → V , which is defined as
the pullback under the covering map s of the Lebesgue class measure on the leaves
of F associated with the fixed metric [27]. The involution is as usual defined as
k∗(γ ) := k(γ −1) for k ∈ A and γ ∈ G.

If E is any G-equivariant (always assumed basic here) hermitian bundle over V
(with basic connection ∇E ), then the Hilbert space L2(V , E) is endowed with the
involutive average representation πE given by

πE (k)(ξ)(x) :=
∫

Gx
k(γ )hγ (ξ(s(γ ))) dηx (γ ), for k ∈ A, ξ ∈ H and x ∈ V .

Here, hγ : Es(γ ) → Er(γ ) is the holonomy action on E , corresponding to the element
γ ∈ G.

Then according to [46], any first order transversally elliptic self-adjoint
(pseudo)differential operator acting on the smooth sections of E , whose square has
a scalar principal symbol allows us to define a spectral triple. A typical example is a
transverse Dirac-type operator, for instance the transverse signature operator when the
Riemannian foliation is transversely oriented. More precisely, using the fixed metric
on V , we consider the orthogonal supplementary bundle of T F as a realization of
the transverse bundle ν. This allows us to define a transverse de Rham differential
dν and also its adjoint (over V ) which is d∗

ν , so that the operator D = dν + d∗
ν is a

transversally elliptic operator whose square has a scalar principal symbol given by the
metric. Together with theZ2-grading of�∗

C
ν∗ associated with the metric and the fixed

transverse orientation, one obtains an even spectral triple. This example was expanded
in [46].

We shall assume for simplicity that the even transverse bundle ν has a holonomy
invariant spin structure. This is not necessary, but it will simplify some computations
of the fixed point formulae below. Then the above transverse signature operator can
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be recast as a twisted transverse Dirac operator. More generally, we may then consider
all the twisted transverse Dirac operators obtained using basic bundles. Fix again the
basic hermitian bundle ̂E with its basic connection ∇̂E and denote by S = S+ ⊕ S−
the spin superbundle associated with the normal bundle ν. The Hilbert space is then the
space of L2-sections of the basic bundle E = S⊗̂E over V , that isH = L2(V ,S⊗̂E)

with its Z2-grading inherited from the Z2-grading of S. The involutive representation
πS⊗̂E of A is then given by the same formula as above and will rather be denoted
by π

̂E once the spin structure has been fixed. Next, consider, as for the signature

operator, the self-adjoint transverse spin-Dirac operator D = |∂̂E with coefficients in
̂E , see [49] and also [19] for the foliation case. Note that the bundle S inherits from
∇ν a spin connection ∇S which respects the Z2-grading. The Z2-graded connection
on S ⊗ ̂E which is the tensor product connection of ∇S with the basic connection ∇̂E

on ̂E , will be denoted ∇. Choose a local orthonormal basis f1, . . . , fq of ν∗ with dual
orthonormal basis e1, . . . , eq of ν. For u ∈ C∞(V ,S ⊗ ̂E), set

|∂̂E0 (u) =
∑

1≤i≤q

fi · ∇ei u,

where fi · is the operator c( fi )⊗id
̂E , that is, Cliffordmultiplication by fi . In general, |∂̂E0

is not self-adjoint. The mean curvature vector field of F is μ = ∑p
j=1 pν(∇T V

X j
X j ),

where X1, . . . , X p is a local orthonormal framing of T F , ∇T V is the Levi–Civita
connection on V , and pν : T V → ν is the projection. When we think of μ as a
covector (the isomorphism ν 	 ν∗ being given by the inner product), then we denote
Clifford multiplication by it acting on S ⊗ ̂E by μ· = c(μ) ⊗ id

̂E , and it is given by

μ· =
p
∑

j=1

q
∑

i=1

〈[ei , X j ], X j 〉 fi ·

The transverse Dirac operator |∂̂E associated to F is now the self-adjoint operator

|∂̂E = |∂̂E0 − 1

2
μ·

It is easy to check that |∂̂E anticommutes with the Z2-grading. See [36, 46]. The
following is proven in [46].

Theorem 5.1 [46]The triple (A,H, |∂̂E ) is an even spectral triplewith dimension equal
to q = codim(F) and with simple dimension spectrum contained in {m ∈ N,m ≤ q}.

5.2 The equivariant Connes bicomplex

We shall represent the equivariant Connes–Chern character of our spectral triple by
the corresponding Connes–Moscovici residue cocycle which lies in the H -equivariant
cyclic bicomplex (bH , BH ). If H is any compact group which acts continuously on a
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locally convex (unital) algebra A, with h1 = 1 for any h ∈ A, then the equivariant
Hochschild complex (C∗(A, H), bH ) (as well as its equivariant cyclic subcomplex)
was used in [17] to prove the higher Lefschetz formula. Recall that these equivariant
complexes were previously introduced in [45], and they naturally showed up in [9] and
in [12] as the exact translation of the equivariant index pairing to the setting of cyclic
cohomology, using an equivariant Calderon formula. They were efficiently exploited
to prove higher fixed-point formuale, for simple foliations in [10], for suspended folia-
tions in [11], and in the general case in the companion paper [17]. These complexes and
their homologies are also particular cases of themore general constructions introduced
and studied in [1] and [53] in the context of quantum group actions.

Recall that the space of cochainsCn(A, H) is composed of the continuous functions
f : A⊗n+1 → C(H) such that

f (ha0, . . . , han)(hgh−1) = f (a0, . . . , an)(g), ∀g, h ∈ H ,∀a j ∈ A.

We denote by f (a0, . . . , an|h) the scalar f (a0, . . . , an)(h) for f ∈ Cn(A, H). The
equivariant Hochschild differential bH : Cn(A, H) → Cn+1(A, H) is then defined
for f ∈ Cn(A, H) by

(bH f )(a0, . . . , an+1|h)

:= (b′ f )(a0, . . . , an+1|h) + (−1)n+1 f (h−1(an+1)a0, a1, . . . , an|h).

Here, the operator b′ is the standard one given by

(b′ f )(a0, . . . , an+1|h) :=
n
∑

j=0

(−1) j f (a0, . . . , a ja j+1, . . . , an+1|h).

The relations b′2 = 0 and (bH )2 = 0 are then satisfied.
To define the equivariant cyclic complex aswell as the equivariant cyclic bicomplex,

we need to introduce an equivariant version of the Connes operator B. As in [17],
denote by λH : Cn(A, H) → Cn(A, H) the equivariant cyclic permutation given by

λH (a0, . . . , an|h) := (h−1(an), a0, . . . , an−1|h).

Exactly as in the non-equivariant case [29], one easily shows that (λH )n+1 =
idCn(A,H). Hence, the equivariant cyclic antisymmétrization operator AH :
Cn(A, H) → Cn(A, H) can be defined by the usual formula

AH =
n
∑

j=0

(−1)nj (λH ) j .

Recall from [17] the relation bH ◦AH = AH ◦b′. Now the equivariant Connes operator,
denoted here BH , will be the operator BH := AH ◦ B0 : Cn(A, H) → Cn−1(A, H),
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where

(B0 f )(a
0, . . . , an−1|h) = f (1, a0, . . . , an−1|h) − (−1)n f (a0, . . . , an−1, 1|h).

Lemma 5.2 The following relations hold on C∗(A, H):

1. B0 ◦ bH + b′ ◦ B0 = id+(−1)n+1λH on n-cochains.
2. bH ◦ BH + BH ◦ bH = 0.

Proof The first item is a straightforward computation. If we compose this relation on
the left with the operator AH , then we get on n-cochains

BH ◦ bH + AH ◦ b′ ◦ B0 = AH + (−1)n+1AH ◦ λH .

But AH ◦b′ = bH ◦ AH and hence AH ◦b′ ◦ B0 = bH ◦ BH . Moreover, on Cn(A, H),
we have

AH ◦ λH = (−1)n AH therefore (−1)n+1AH ◦ λH = −AH .

So, we finally get the second relation BH ◦ bH + bH ◦ BH = 0 on C∗(A, H). ��
As in the non-equivariant case, the equivariant cyclic cohomology of the alge-

bra A, as defined in [17] using the equivariant cyclic subcomplex of the equivariant
Hochschild complex, can be recovered from the second filtration of the bicomplex
(bH , BH ). See [31] for more precise details.

5.3 The equivariant residue cocycle

Next, we take into account the leafwise action of the group H which is again supposed
to act by holonomy diffeomorphisms. Our algebra A = C∞

c (G) is not unital, and the
unit appearing in the above formula for B0 can be an added H -trivial unit. We denote
again by γ the grading involution of H and by U (h) the unitary of the Hilbert space
H which is associated with an element h ∈ H . The following is a straightforward
generalization to the equivariant case of the Connes–Moscovici local index theorem
[32]. See also [19, 20].

Theorem 5.3 For a0 ∈ A and h ∈ H, set

φ0(a0|h) = Resz=0

[

z−1 Tr
(

γU (h)a0(id+(|∂̂E )2)−z
)]

.

In addition, for k > 0, k even, and for a j ∈ A, set

φk(a0, . . . , ak |h)

:= ( k2 − 1)!
k! Resz=0

[

Tr
(

γ U (h) a0[|∂̂E , a1] . . . [|∂̂E , ak] (id+(|∂̂E )2)−k/2−z
)]

.
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Then for any even k ≥ 0, φk ∈ Ck(A, H) (with φk = 0 for k > codim(F)), and
bHφk + BHφk+2 = 0. Hence, φ = (φk)k is a finitely supported equivariant cyclic
cocycle over the H-algebra A.

The representation π
̂E is of course implicit in the formulae for φk .

Proof We first point out that each φk belongs to Ck(A, H). Indeed, the unitary U (h)

commutes with the Dirac operator |∂̂E and the representation of C∞
c (G) in the Hilbert

space H is H -equivariant; therefore,

φ0(ha0|hgh−1) = Resz=0

[

z−1 Tr
(

γU (hgh−1)(ha0)(id+(|∂̂E )2)−z
)]

= Resz=0

[

z−1 Tr
(

γU (h)U (g)a0U (h−1)(id+(|∂̂E )2)−z
)]

= Resz=0

[

z−1 Tr
(

U (h)γU (g)a0(id+(|∂̂E )2)−zU (h−1)
)]

= Resz=0

[

z−1 Tr
(

γU (g)a0(id+(|∂̂E )2)−z)
)]

= φ0(a0|g).

In the same way and using again the H -invariance of |∂̂E and the H -equivariance of
the representation, we get

Tr
(

γ U (hgh−1) (ha0)[|∂̂E , (ha1)] . . . [|∂̂E , (hak)] (id+(|∂̂E )2)−k/2−z
)

= Tr
(

γ U (h)U (g) (a0U (h−1)[|∂̂E ,U (h)a1U (h−1))]
· · · [|∂̂E ,U (h)akU (h−1))] (id+(|∂̂E )2)−k/2−z

)

= Tr
(

U (h)γ U (g) (a0U (h−1)U (h)[|∂̂E , a1]U (h−1))

· · ·U (h)[|∂̂E , ak]U (h−1)) (id+(|∂̂E )2)−k/2−z
)

= Tr
(

U (h)γ U (g)a0[|∂̂E , a1] · · · [|∂̂E , ak] (id+(|∂̂E )2)−k/2−zU (h−1))
)

= Tr
(

γ U (g)a0[|∂̂E , a1] · · · [|∂̂E , ak] (id+(|∂̂E )2)−k/2−z
)

.

Hence, we also have the equivariance property for k > 0

φk(ha0, . . . , hak |hgh−1) = φk(a0, . . . , ak |g).

Since the spectral triple has dimension equal to codim(F), we know that for k >

codim(F), the operator (id+(|∂̂E )2)−k/2 is trace class and hence the corresponding
residue vanishes. This shows that φk = 0 whenever k > q.

Since the group H acts by holonomy diffeomorphisms, the multiplier ψ(h) of
the algebra C∞

c (G), as considered in [17], is well defined. More precisely, using the
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smooth section ϕh , the multiplier ψ(h) is defined as

ψ(h)(ξ)(γ ) := ξ((h−1γ ) ◦ ϕh−1
(s(γ ))), for ξ ∈ C∞

c (G), γ ∈ G.

Moreover, we have for any a ∈ C∞
c (G)

π
̂E (ψ(h)a) = U (h) ◦ π

̂E (a).

See [17]. Therefore, denoting by φCM
k the Connes–Moscovici cocycle defined by

φCM
k (a0, . . . , ak) = φk(a0, . . . , ak |1H ),

we deduce that for any even k ≥ 0, the following relation holds:

φk(a0, . . . , ak |h) = φCM
k (ψ(h)a0, a1, . . . , ak).

Note that since the spectral triple has simple spectrum dimension, all the higher
residues and commutators with the square of the operator |∂̂E cancel out, and we
are reduced to the value φk(a0, . . . , ak |1H ) for the Connes–Moscovici cocycle.

Computing bHφk, we get

(bHφk)(a0, . . . , ak+1|h) = (bφCM
k )(ψ(h)a0, a1, . . . , ak+1).

In the same way, we have for any a ∈ C∞
c (G),U (h)[|∂̂E , a] = [|∂̂E , ψ(h)a] and hence

B0φk+2(a0, . . . , ak+1|h) = B0φ
CM
k+2(ψ(h)a0, a1, . . . , ak+1).

Thus, we have

λH (B0φk+2)(a0, . . . , ak+1|h) = (B0φk+2)(h
−1ak+1, a0, . . . , ak |h)

= B0φ
CM
k+2(ψ(h)(h−1ak+1), a0, a1, . . . , ak)

= B0φ
CM
k+2(ak+1ψ(h), a0, a1, . . . , ak)

= φCM
k+2(1, ak+1ψ(h), a0, . . . , ak).

Using again the H -equivariance of the representation and the H -invariance of the
operator |∂̂E , we easily see that

φCM
k+2(1, ak+1ψ(h), a0, . . . , ak) = λ(B0φ

CM
k+2)(ψ(h)a0, a1, . . . , ak+1).

Therefore,

BHφk+2(a0, . . . , ak+2|h) = BφCM
k+2(ψ(h)a0, . . . , ak+1),
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and we thus deduce

(bHφk + BHφk+2)(a0, . . . , ak+1|h)

= (bφCM
k + BφCM

k+2)(ψ(h)a0, a1, . . . , ak+1) = 0.

The last equality is due to the cocycle relation satisfied in the non-equivariant setting
by the Connes–Moscovici cochain, see again [32]. ��
Remark 5.4 The main property of the cochains φCM

k used in this proof of Theorem
5.3 is that they are equivariant, due to the stronger relations:

φCM
k (a0, . . . , a j−1, a jψ(h), a j+1, . . . , ak)

= φCM
k (a0, . . . , a j−1, a j , ψ(h)a j+1, . . . , ak) for 0 ≤ j ≤ k − 1,

plus the relation φCM
k (a0, . . . , ak−1, akψ(h)) = φCM

k (ψ(h)a0, a1, . . . , ak).

Theorem 5.3 shows that the (bH , BH )-cocycle (φk) defines a class [φ] in the (entire)
equivariant cyclic cohomology of the algebra C∞

c (G). Therefore, it can be paired with
the equivariant K -theory to yield a central function on H .

Theorem 5.5 Assume that h topologically generates a compact Lie group denonted
H. If e is an H-invariant idempotent in C∞

c (G) ⊗ End(X) for some finite dimension
H-representation ρ : H → End(X), then the following combination of residues of
zeta functions of our operators:

codim(F)/2
∑

n=0

(−1)n(2n)!
n! (φ2n�Tr)((ψ(h) ⊗ ρ(h))(e − 1/2), e, . . . , e)

depends only on the equivariant K -theory class of e, and moreover it belongs to
R(H)(h) = {χ(h), χ ∈ R(H)}.
Remark 5.6 If for instance h has finite order κ , then R(H)(h) = Z[e2iπ/κ ], so for a
holonomy diffeomorphism which is an involution we always get an integer.

Proof Assume first that the operator |∂̂E is invertible and denote by τ the equivariant
cyclic cocycle of even degree q ′, for some q ′ > q, which represents the Connes–Chern
character of the even Fredholm module (H, F), where F = sign(|∂̂E ), a self-adjoint
symmetry. So, by its very definition, the equivariant pairing of the class of τ with the
equivariant K -theory class represented by e is an equivariant index pairing, i.e.,

〈[e], [τ ]〉(h) = IndH
(

e(F ⊗ idX )e : e(H+ ⊗ X) → e(H− ⊗ X)
)

(h),

where e(F ⊗ idX )e : e(H+ ⊗ X) → e(H− ⊗ X) is a Fredholm H -invariant operator
and its equivariant index is the virtual [Ker]−[Coker] representation and hence belongs
to R(H). Moreover, we have the following explicit formula for τ :

τ(a0, . . . , aq ′ |h) = C(q ′)Tr
(

γU (h)a0[F, a1] · · · [F, aq ′ ]) .
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An important observation is then that τ also satisfies the stronger equivariance property
described in Remark 5.4, and we have

τ(a0, . . . , aq ′ |h) = τ(ψ(h)a0, . . . , aq ′ |1) =: τCM (ψ(h)a0, . . . , aq ′),

so that setting τCM (a0, . . . , aq ′) := τ(a0, a1, . . . , aq ′ |1) we get exactly the corre-
sponding cyclic cocyclewhich represents the non-equivariantConnes–Chern character
of the even Fredholm module (H, F) as described in [32].

One of the main results proven in [32] is that τCM −φCM is a (b+ B)-coboundary,
i.e., there exists an odd transgression cochain θCM = (θCM

2 j+1) j such that τ
CM−φCM =

(b+ B)θCM . A careful inspection of the cochains θCM
2 j+1 again shows that they satisfy

as well the strong equivariance property of Remark 5.4. Hence, we obtain exactly as
in the proof of Theorem 5.3 the relations

bθCM
2 j−1(ψ(h)a0, a1, . . . , a2 j ) = bH θ2 j−1(a0, . . . , a2 j |h)

and

BθCM
2 j+1(ψ(h)a0, a1, . . . , a2 j ) = BH θ2 j+1(a0, . . . , a2 j |h),

where θ2 j±1(a0, . . . , a2 j±1|h) := θCM
2 j±1(ψ(h)a0, . . . , a2 j±1). A consequence is that

we have equality in the equivariant cyclic cohomology (described by the (bH , BH )-
bicomplex) of the class of φ and that of τ . Therefore, we finally obtain

〈[e], [φ]〉 ∈ R(H) and hence 〈[e], [φ]〉(h) ∈ R(H)(h).

Now, the formula for the pairing 〈[e], [φ]〉(h) is exactly given by [31, 32],

〈[e], [φ]〉(h) =
codim(F)/2
∑

n=0

(−1)n(2n)!
n! (φ2n�Tr)((ψ(h) ⊗ ρ(h))(e − 1/2), e, . . . , e).

Since the operator |∂̂E is not invertible in general (note also that the algebra C∞
c (G) is

rarely unital), we deform H -equivariantly the spectral triple as follows. Define ̂H :=
H ⊕ H with the new grading γ̂ :=

(

γ 0
0 −γ

)

, and new operator̂|∂̂E :=
(

|∂̂E Id

Id −|∂̂E
)

.

The action of H is simply extended to ̂H as the diagonal action, so U (h) is replaced

by ̂U (h) which is given by

[

U (h) 0
0 U (h)

]

. Now with the new representation π̂ : k �→
(

π
̂E (k) 0
0 0

)

, it is easy to check that we get again an even H -equivariant spectral

triple (A, ̂H,̂|∂̂E ) with invertible operator. Moreover, a straightforward H -equivariant
homotopy argument shows that the class, in the (entire) H -equivariant (bH , BH ) cyclic

bicomplex, of the residue cocycle ̂φ associated with (A, ̂H,̂|∂̂E ), say obtained as φ is
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but replacing the representation π
̂E by π̂ and the operator |∂̂E bŷ|∂̂E , is unchanged if

we consider the path of operatorŝ|∂̂Eε for ε ∈ [0, 1]:

̂|∂̂Eε :=
(

|∂̂E ε I d

ε I d −|∂̂E
)

.

Now for ε = 0 we have

Tr
(

γ̂ ̂ψ(h)π̂(a0)[̂|∂̂E0 , π̂(a1)] · · · [̂|∂̂E0 , π̂(aq ′)](I + (̂|∂̂E0 )2)−q ′/2−z
)

= Tr

(

γ�(h)a0[|∂̂E , a1] · · · [|∂̂E , aq
′ ](I + |∂̂E 2

)−q ′/2−z
)

.

As a consequence, we see that the pairing of the class of φ with equivariant K -theory
coincides with that of the class of the equivariant cocycle ̂φ. If we now consider as

above the even H -equivariant Fredolm module (̂H, ̂F) where ̂F = sign(̂|∂̂E ) is the

self-adjoint symmetry which is the sign of the invertble operator̂|∂̂E , then for any even
q ′ > q, we get again an equivariant cyclic Hochschild cocycle by setting just as above

τ(a0, . . . , aq ′ |h) := C(q ′)Tr
(

γ̂ ̂U (h)π̂(a0)[̂F, π̂(a1)] · · · [̂F, π̂(aq ′)]) ,

where C(q ′) is some appropriate normalisation constant [30]. The proof is now
complete. ��
Remark 5.7 Another method to overcome the non-invertibility of the operator |∂̂E is
to first reduce to the unital case and then apply some standard perturbations, see for
instance [37, Remark 2.2]. A more systematic study of non unital Fredholm modules
is also carried out in [24], where the authors include semi-finite spectral triples over
non-unital algebras as well.

Remark 5.8 In the case of non-Riemannian foliations, in [32] Connes and Moscovici
gave a general reduction process to the case of triangular structures by using theConnes
fibration. The resulting foliations were also called almost Riemannian foliations in
[19]. The spectral triple obtained in this more general case produces a highly involved
formula for the cyclic cocycle φ = (φk)k , see again [32]. However, the previous
integrality theorem is still valid since again the pairing of the class of φ with an
equivariant K -theory class coincides with that of an equivariant Fredholm module
and hence with an equivariant index pairing.

Corollary 5.9 The pairing, with K H (C∞
c (G)), of the equivariant residue class

[φ] associated with the spectral triple (A,H, |∂̂E ) extends to a pairing with
K H (C∗(V , F)), and takes values in the representation ring R(H) ⊂ C(H). So,
for any topological generator h of H and any x ∈ K H (C∗(V , F)), we have

〈[φ], x〉 ∈ R(H), and hence 〈[φ], x〉(h) ∈ R(H)(h).
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Proof A general method of domains of derivations of commutators with the operator
[30] allows one to define an H subalgebra B of C∗(V , F) such that:

• B contains A = C∞
c (G);

• B is closed under the holomorphic functional calculus;
• the Connes–Moscovici residue cochains φCM

k all extend to B and define a (b +
B)-closed cocycle on B, given by the same formulae.

Therefore, the cochains φCM
k all satisfy again the strong equivariance property of

Remark 5.4 and allow us to define the equivariant (bH + BH )-cocycle φ on B as
above. The proof of Theorem 5.5 now shows that for any H -invariant idempotent e in
B⊗End(X) rather than inA⊗End(X), the pairing of φ with the class of e in K H (B)

belongs again to R(H) since it is given by an H -equivariant Fredholm index pairing.
Since B is closed under the holomorphic functional calculus and is an H -subalgebra,
we know that the inclusion of B induces an isomorphism K H (B) 	 K H (C∗(V , F))

and every idempotent p ∈ C∗(V , F)⊗End(X) can be approximated by an idempotent
e ∈ B ⊗ End(X) which defines the same class in K H (C∗(V , F)). On the other hand,
recall that the Connes C∗-algebra C∗(V , F) is a stable H -algebra [8, 42], and hence
its (equivariant) K -theory can be represented by idempotents in C∗(V , F) ⊗ End(X)

for finite dimensional representations of H in X . This shows that the pairing of [φ]
with K H (B) is completely determined by the pairings with H -invariant idempotents
in B ⊗ End(X). The proof is thus complete. ��

5.4 Integrality in higher Lefschetz formulae

Before applying these results to the Lefschetz fixed point formula, we mention the
following important theorem proven in [19], see also [20]. Recall the HKR chain map
constructed in [15, 16] between the de Rham complex of holonomy invariant Haefliger
currents and the cyclic complex of the algebra C∞

c (G). It induces:

χ : Hev/odd(V /F) −→ Hev/odd
λ (C∞

c (G)).

We are now in a position to combine the previous results with the K -theory Lef-
schetz theorem of [7]. Recall that H is topologically generated by h and that it acts by
isometries of (V , g) which are holonomy diffeomorphisms, and moreover the fixed
point submanifold V h = V H is assumed to be transverse to the foliation F , so it
inherits a foliation Fh . Again when H is connected, all these conditions are auto-
matically satisfied when H preserves the leaves. All the previous data can then be
restricted to the H -trivial foliation (V h, Fh), and we have an H -equivariant spectral

triple (Ah,Hh, |∂̂Eh
) constructed in exactly the same way, or by restricting (A,H, |∂̂E ).

More precisely,

• Ah denotes the involutive convolution algebra associated with the holonomy
groupoid of the foliation (V h, Fh).

• ̂Eh = ̂E |V h andHh is the Hilbert space of L2 sections over V h of the basic bundle
Sh ⊗ ̂Eh with Sh being the spin bundle of the transverse bundle to the foliation
Fh or the restriction of the ambiant spin bundle S to V h .
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• The operator |∂̂Eh
is the transverse Dirac operator on (V h, Fh) with coefficients in

̂Eh . Its principal symbol is the restriction of the principal symbol of ̂E to T V h .

The classical integrality theorems involving rational characteristic classes and
proven using the Atiyah–Segal–Singer Lefschetz fixed point formulae [3, 5, 6, 43]
can in principle be extended to smooth foliations of closed manifolds. The following
theorem is only a first important step towards proving such integrality results, for two
reasons. The first is that it is stated for Riemannian foliations where we could go fur-
ther and deduce the integrality of the resulting rational combination of characteristic
classes, in the spirit of the classical formulae. The second reason is that while this result
can be stated for more general foliations using the Connes–Moscovici construction
[32], it is at present rather hard to deduce the integrality of the corresponding charac-
teristic numbers. These will certainly involve more exotic characteristic numbers and
will be dealt with elsewhere.

Theorem 5.10 Denote by φCM
Vh ,Fh the even Connes–Moscovici residue cocycle in the

(b, B)-bicomplex associated with the fixed point foliation (V h, Fh) [32]. Denote by
IndCS

V h ,Fh : K (T Fh) → K (C∗(V h, Fh)) the Connes–Skandalis topological longitu-

dinal index morphism for the foliation (V h, Fh) [33]. Then for any leafwise elliptic
H-invariant pseudodifferential complex (E, d) over the ambiant foliation (V , F), we
have

〈

(IndCS
V h ,Fh ⊗C)

(

i∗[σ(E, d)](h)

λ−1(Nh ⊗ C)(h)

)

, [φCM
Vh ,Fh ] ⊗ idC

〉

∈ R(H)(h).

Some explanations are needed here. Note that the class i∗[σ(E,d)]
λ−1(Nh⊗C)

belongs to the

localized R(H)h-module K H (T Fh)h 	 K (T Fh) ⊗ R(H)h since H acts trivially on
T Fh , hence evaluating at h we get an element of K (T Fh) ⊗ C, and so

(IndCS
V h ,Fh ⊗C)

(

i∗[σ(E, d)](h)

λ−1(Nh ⊗ C)(h)

)

∈ K (C∗(V h, Fh)) ⊗ C.

Proof By the K -theory Lefschetz fixed point theorem [7], the Lefschetz class
L(h; E, d) of h with respect to (E, d) coincides with the image of the class

(IndCS
V h ,Fh ⊗ idR(H)h )

(

i∗[σ(E, d)]
λ−1(Nh ⊗ C)

)

under M ⊗ idR(H)h : K (C∗(V h, Fh)) ⊗ R(H)h → K (C∗(V , F)) ⊗ R(H)h 	
K H (C∗(V , F))h . Here, M denotes the Morita extension morphism associated with
the transverse submanifold V h to the foliation (V , F), see [7]. The important feature
of the Connes–Moscovici residue cocycle in this case of a Riemannian foliation, is
that it “commutes with Morita extension”. More precisely, we have

〈M(y), [φCM ]〉 = 〈y, [φCM
Vh ,Fh ]〉, ∀y ∈ K (C∗(V h, Fh)).
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This can be proven directly from the explicit formula for the cochains φk and for
the map M, by adapting the proof given in [17] for holonomy invariant currents.
Therefore, we deduce from the K -theory Lefschetz theorem that

〈

(IndCS
V h ,Fh ⊗R(H)h)

(

i∗[σ(E, d)]
λ−1(Nh ⊗ C)

)

, [φCM
Vh ,Fh ] ⊗ R(H)h

〉

= 〈L(h; E, d), [φCM ] ⊗ R(H)h〉.

But

〈L(h; E, d), [φCM ] ⊗ R(H)h〉 = 〈IndH ([σ(E, d)]), [φCM ] ⊗ R(H)〉.

So

〈L(h; E, d), [φCM ] ⊗ R(H)h〉(h)

= 〈IndH ([σ(E, d)]), [φCM ] ⊗ R(H)〉(h) ∈ R(H)(h).

Hence we end up with

〈

(IndCS
V h ,Fh ⊗C)

(

i∗[σ(E, d)](h)

λ−1(Nh ⊗ C)(h)

)

, [φCM
Vh ,Fh ] ⊗ idC

〉

=
〈

(IndCS
V h ,Fh ⊗R(H)h)

(

i∗[σ(E, d)]
λ−1(Nh ⊗ C)

)

, [φCM
Vh ,Fh ] ⊗ R(H)h

〉

(h) ∈ R(H)(h).

��
In this proof, we used the explicit formula for the Connes–Moscovici residue

cocycle in this simpler case of Riemannian foliations to easily deduce the natural
commutation with the Morita extension mapM. Applying the results of [19, 20], that
is the techniques of the Getzler rescaling argument on foliations as developped there,
this commutation property can also be deduced from theMorita compatibility property
proven in [17] for cyclic cocycles associated with closed holonomy invariant currents.
More precisely, denote by [C] the Haefliger homology class associated with the basic
cohomology class ̂A(ν) ch(̂E) andby [C |V h ] its restriction to (V h, Fh)or theHaefliger
class in Hev(V h/Fh) associated with the basic cohomology class ̂A(νh) ch(̂E | V h ).
Then the Connes–Moscovici cyclic cohomology class [φCM

Vh ,Fh ] belongs to the range

under the HKR map H∗(V h/Fh) → H∗
λ (Ah) for the foliation (V h, Fh). Indeed, it

is exactly the image of the Haefliger homology class associated with the basic coho-
mology class ̂A(νh) ch(̂E | V h ). Thus, we have the following topological description
of the Connes–Moscovici residue cocycle which was proven in [19, 20].

Theorem 5.11 [19, 20] For the Riemannian foliation (V , F), the class [φCM ] ∈
HCev(C∞

c (G)) of the Connes–Moscovici residue cocycle associated with the spectral

triple (A,H, |∂̂E ) belongs to the range of theHKRmapχ : H∗(V /F) → H∗
λ (C∞

c (G)).
It coincides with the image under χ of the Haefliger homology class associated with
the basic cohomology class ̂A(ν) ch(̂E).
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The proof relies on a long and tedious rescaling argument à la Getzler for trans-
versely elliptic operators, see [19, 20]. As a corollary, we get the following expected
topological integrality result which opens up the way to more involved results when
using the Connes–Moscovici residue cocycle for triangular structures and hence for
general non-Riemannian foliations. Recall that H is topologically generated by h and
that the fixed point submanifold V h = V H is transverse to the foliation.

Corollary 5.12 The characteristic number

∫

V h

chC(i∗[σ(E, d)](h))

chC(λ−1(Nh ⊗ C)(h))
Td(T Fh ⊗ C)̂A(νh) ch(̂E | V h ) belongs to R(H)(h).

Proof By the higher Lefschetz formula of [17], we have

∫

V h

chC(i∗[σ(E, d)](h))

chC(λ−1(Nh ⊗ C)(h))
Td(T Fh ⊗ C)̂A(νh) ch(̂E | V h )

=
〈

[

τCα

]

, IndH (E, d)
〉

(h),

with α being the basic class ̂A(Rν) ch(�̂E ),Cα its corresponding Haefliger homology
class, and

[

τCα

]

the associated H -equivariant cyclic cohomology class over C∞
c (G)

as defined in [17]. By Theorem 5.11, the cyclic cohomology class of τCα coincides

with the equivariant Connes–Chern character of (A,H, |∂̂E ). By Proposition 5.9, the
pairing of the equivariant Connes–Chern character of (A,H, |∂̂E ) with the equivariant
K -theory takes values in R(H). Hence, we deduce

〈

[

τCα

]

, IndH (E, d)
〉

∈ R(H),

and so the conclusion. ��
As explained above, Theorem 5.10 is expected to still hold for non-Riemannian

foliations but using the more involved expression of the residue cocycle given in [32].
However, the characteristic expression of Corollary 5.12 is specific to Riemannian
foliations. As also explained above, one expects similar integrality of characteris-
tic numbers for non-Riemannian foliations, but involving more exotic characteristic
classes associatedwith actions of the Connes–Moscovici Hopf algebra of vector fields.

We end this section by giving the heuristic explanation of the integrality result
obatined in Corollary 5.12 in the case where V h is a strict transversal to F , say
with dimension equal to codim(F). The characteristic number of Corollary 5.12 then
reduces to

∫

V h

chC(i∗[σ(E, d)](h))

chC(λ−1(T F | V h ⊗ C)(h))
̂A(T V h) ch(̂E | V h ),

since, in this case, Nh = T F | V h , νh = T V h , Td(TFh ⊗ C) = 1 and ̂A(νh) =
̂A(T V h). TheH -invariant leafwise elliptic complex (E, d) togetherwith the transverse
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Dirac operator |∂̂E allow one to define an H -invariant sharp product elliptic complex
(E, d)�|∂̂EV over the ambiantmanifold V , which can be achieved for instance at the level
of symbols. Thanks to theAtiyah–Segal Lefschetz formula [6], the above characteristic
number is then equal to the Atiyah–Segal Lefschetz number of h with respect to
(E, d)�|∂̂EV , and hence belongs to R(H)(h).
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