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Abstract
The principal purpose of this note is to prove a logarithmic refinement of the power
weightedHardy–Rellich inequality on n-dimensional balls, valid for the largest variety
of underlying parameters and for all dimensions n ∈ N, n ≥ 2.
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1 Introduction

In the recent paper [9], we reconsidered the following sharp inequality, first derived
by Caldiroli and Musina [4, Theorem 3.1],
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∫
Rn

|x |γ |(� f )(x)|2 dnx ≥ Cn,γ

∫
Rn

|x |γ−4| f (x)|2 dnx,
γ ∈ R, f ∈ C∞

0 (Rn\{0}), n ∈ N, n ≥ 2, (1.1)

where

Cn,γ = min
j∈N0

{(
(n − 2)2

4
− (γ − 2)2

4
+ j( j + n − 2)

)2}
. (1.2)

In addition, we also derived the sharp inequality (sometimes called the Hardy–Rellich
inequality),

∫
Rn

|x |γ |(� f )(x)|2 dnx ≥ An,γ

∫
Rn

|x |γ−2|(∇ f )(x)|2 dnx,
γ ∈ R, f ∈ C∞

0 (Rn\{0}), n ∈ N, n ≥ 2, (1.3)

where
An,γ = min j∈N0{αn,γ,λ j }, (1.4)

with

αn,γ,λ0 = αn,γ,0 = 4−1(n − γ )2,

αn,γ,λ j = [
4−1(n + γ − 4)(n − γ ) + λ j

]2/[
4−1(n + γ − 4)2 + λ j

]
, j ∈ N.

(1.5)

In the unweighted case γ = 0, this simplifies to the known fact,

An,0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n2/4, n ≥ 5,

3, n = 4,

25/36, n = 3,

0, n = 2.

(1.6)

In the special case where Cn,γ in (1.1), or An,γ in (1.3), vanishes, the resulting
inequality is rendered trivial (e.g., there is no nontrivial inequality of the type (1.3) in
the case n = 2, γ = 0) and hence one wonders about the possibility of logarithmically
refining these inequalities to prevent them from becoming insignificant.

In this connection, we recall that logarithmic refinements of (1.1) were already
known. Indeed, as discussed in [4], whenever, 4−1

[
(γ − 2)2 − (n − 2)2

]
equals one

of the eigenvalues of −�Sn−1 (i.e., one of the numbers j( j + n − 2), j ∈ N0), then
Cn,γ vanishes, rendering inequality (1.1) trivial. In this context we recall the following
result from [8, Theorem 1.3]:

∫
Bn(0;R)

|x |γ |(−� f )(x)|2 dnx ≥ Cn,γ

∫
Bn(0;R)

|x |γ−4| f (x)|2 dnx

+ {[
(n − γ )2 + (n + γ − 4)2

]/
16

}
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×
∫
Bn(0;R)

|x |γ−4
( N∑

k=1

k∏
p=1

[lnp(η/|x |)]−2
)

| f (x)|2 dnx,

R ∈ (0,∞), γ ∈ R, N ∈ N, η ∈ [eN R,∞), f ∈ C∞
0 (Bn(0; R)\{0}), (1.7)

which yields an appropriate logarithmic refinement even if Cn,γ vanishes. Here,
Bn(0; R) denotes the open ball in R

n , n ∈ N, n ≥ 2, centered at the origin 0 of
radius R ∈ (0,∞), the iterated logarithms lnk( · ), k ∈ N, are given by

ln1( · ) = ln( · ), lnk+1( · ) = ln
(
lnk( · )), k ∈ N, (1.8)

and the iterated exponentials e j , j ∈ N0, are introduced via

e0 = 0, e j+1 = ee j , j ∈ N0. (1.9)

Given the logarithmic refinement (1.7) of (1.1), it is natural to ask if a correspond-
ing analogous logarithmic refinement of (1.3) exists that prevents it from becoming
insignificant if An,γ vanishes. Answering this question in the affirmative is the prin-
cipal purpose of this note. In particular, we will prove the following inequality in
Theorem 2.3:

∫
Bn(0;R)

|x |γ |(−� f )(x)|2 dnx ≥ An,γ

∫
Bn(0;R)

|x |γ−2|(∇ f )(x)|2 dnx

+ 4−1
∫
Bn(0;R)

|x |γ−2
( N∑

k=1

k∏
p=1

[lnp(η/|x |)]−2
)

|(∇ f )(x)|2 dnx

+ 4−1
∫
Bn(0;R)

|x |γ−4
( N∑

k=1

k∏
p=1

[lnp(η/|x |)]−2
)

|(∇Sn−1 f )(x)|2 dnx,

R ∈ (0,∞), γ ∈ R, N , n ∈ N, n ≥ 2, η ∈ [eN R,∞), f ∈ C∞
0 (Bn(0; R)\{0}).

(1.10)

Once again, this inequality remains meaningful even if An,γ vanishes.
Given the enormity of the literature on (power weighted) Rellich and Hardy–

Rellich-type inequalities, we will not repeat the extensive list (still necessarily
incomplete) of references cited in [9], and so refer the reader to the latter. However,
more specifically, we mention that Caldiroli and Musina [4] proved in 2012 that the
constantCn,γ in (1.1) is optimal. (For various restricted ranges of γ see alsoAdimurthi,
Grossi, and Santra [1], Ghoussoub and Moradifam [10], [11, Sects. 6.3, 6.5, Ch. 7],
and Tertikas and Zographopoulos [13].) The special unweighted case γ = 0 was set-
tled for n ≥ 5 by Herbst [12] in 1977 and subsequently by Yafaev [14] in 1999 for
n ≥ 3, n �= 4 (both authors consider much more general fractional inequalities).

Under various restrictions on γ , Tertikas and Zographopoulos [13] obtained in 2007
optimality of An,γ for n ≥ 5 andRn replaced by appropriate open bounded domains�

with 0 ∈ �. This is revisited inGhoussoub andMoradifam [10], [11, Part 2]. Similarly,
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Tertikas and Zographopoulos [13] obtained optimality of An,0 for n ≥ 5; Beckner [3]
(see also [2]), and subsequently, Ghoussoub and Moradifam [10], [11, Sects. 6.3, 6.5,
Ch. 7] and Cazacu [5], obtained optimality of An,0 for n ≥ 3.

As a notational comment, we remark that we abbreviate N0 = N∪ {0}, and denote
by Sn−1 the unit sphere in Rn , n ∈ N, n ≥ 2.

2 A logarithmically modified Hardy–Rellich-type inequality

We begin by recalling the following simplified version of [7, Theorem 3.1 (i i i)].

Lemma 2.1 Let R ∈ (0,∞), α ∈ R, N ∈ N, η ∈ [eN R,∞), and f ∈ C∞
0 ((0, R)).

Then

∫ R

0
rα| f ′(r)|2 dr ≥ 4−1(1 − α)2

∫ R

0
rα−2| f (r)|2 dr

+ 4−1
∫ R

0
rα−2

( N∑
k=1

k∏
p=1

[lnp(η/r)]−2
)

| f (r)|2 dr , (2.1)

where the iterated logarithms lnk( · ), k ∈ N, are given by

ln1( · ) = ln( · ), lnk+1( · ) = ln
(
lnk( · )), k ∈ N, (2.2)

and the iterated exponentials e j , j ∈ N0, are introduced via

e0 = 0, e j+1 = ee j , j ∈ N0. (2.3)

Proof As the current investigation came about while studying factorizations in [9], we
provide a factorization proof of this lemma in the spirit of [9] (see also [6] for related
higher dimensional unweighted factorizations with log refinements).

Given R ∈ (0,∞), α ∈ R, N ∈ N, η ∈ [eN R,∞), one defines the differential
expression

TN ,α = rα/2 d

dr
+ α − 1

2
r (α−2)/2 + 1

2
r (α−2)/2

N∑
k=1

k∏
p=1

[lnp(η/r)]−1, r ∈ (0, R).

(2.4)
Then, after applying appropriate integration by parts and combining similar terms,
one confirms that for f ∈ C∞

0 ((0, R)),

0 ≤
∫ R

0
|(TN ,α f )(r)|2 dr

=
∫ R

0
rα| f ′(r)|2 dr − 4−1(1 − α)2

∫ R

0
rα−2| f (r)|2 dr
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− 4−1
∫ R

0
rα−2

( N∑
k=1

k∏
p=1

[lnp(η/r)]−2
)

| f (r)|2 dr , (2.5)

proving (2.1). 
�

Before deriving our next result, we recall some standard notation and facts. LetSn−1

denote the (n − 1)-dimensional unit sphere in R
n, n ∈ N, n ≥ 2, with dn−1ω :=

dn−1ω(θ) the usual volume measure on Sn−1. We denote by −�Sn−1 the nonnegative,
self-adjoint Laplace–Beltrami operator in L2(Sn−1; dn−1ω). Let

λ j = j( j + n − 2), j ∈ N0, (2.6)

be the eigenvalues of−�Sn−1 , that is, σ(−�Sn−1) = { j( j+n−2)} j∈N0 , ofmultiplicity

m(λ j ) = (2 j + n − 2)( j + n − 2)−1
(
j + n − 2

n − 2

)
, j ∈ N0, (2.7)

with corresponding eigenfunctions ϕ j,�, j ∈ N0, � ∈ {1, . . . ,m(λ j )}. We may (and
will) assume that {ϕ j,�} j∈N0, �∈{1,...,m(λ j )} is an orthonormal basis of L2(Sn−1; dn−1ω),
and let

Ff , j,�(r) = (ϕ j,�, f (r , · ))L2(Sn−1;dn−1ω) =
∫
Sn−1

ϕ j,�(θ) f (r , θ) dn−1ω(θ),

f ∈ C∞
0 (Rn\{0}), r > 0, j ∈ N0, � ∈ {1, . . . ,m(λ j )}. (2.8)

Finally, let Bn(0; R) denote the open ball in R
n , n ∈ N, n ≥ 2, centered at the origin

0 of radius R ∈ (0,∞).
We are now in the position to prove the following lemma which will be combined

with Lemma 2.1 to prove our main result.

Lemma 2.2 Let R ∈ (0,∞), f ∈ C∞
0 (Bn(0; R)\{0}), and g ∈ C((0, R)) satisfy

g(r) > 0 for all r ∈ (0, R). Then

∫
Bn(0;R)

g(|x |)|(∇ f )(x)|2 dnx

=
∞∑
j=0

m(λ j )∑
�=1

∫ R

0
g(r)

[|F ′
f , j,�(r)|2rn−1 + λ j |Ff , j,�(r)|2rn−3] dr . (2.9)

Proof We begin by recalling that

|(∇ f )(x)|2 = |(∂ f /∂r)(r , θ)|2 + r−2|(∇Sn−1 f (r , · ))(θ)|2, (2.10)
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where ∇Sn−1 denotes the gradient operator on S
n−1. Thus applying (2.10) and [8,

Lemma 2.1] yields

∫
Bn(0;R)

g(|x |)|(∇ f )(x)|2 dnx =
∫ R

0
g(r)

∫
Sn−1

|(∇ f )(r , θ)|2 dn−1ω(θ) rn−1dr

=
∫ R

0
g(r)

∫
Sn−1

[|(∂ f /∂r)(r , θ)|2

+ r−2|(∇Sn−1 f (r , · ))(θ)|2] dn−1ω(θ) rn−1dr

=
∫ R

0
g(r)

{∫
Sn−1

∣∣∣∣
∞∑
j=0

m(λ j )∑
�=1

F ′
f , j,�(r)ϕ j,�(θ)

∣∣∣∣
2

dn−1ω(θ)

+ r−2
∫
Sn−1

(−�Sn−1 f )(r , θ) f (r , θ) dn−1ω(θ)

}
rn−1dr

=
∫ R

0
g(r)

{ ∞∑
j=0

m(λ j )∑
�=1

|F ′
f , j,�(r)|2

+ r−2
∫
Sn−1

[ ∞∑
j=0

m(λ j )∑
�=1

λ j F f , j,�(r)ϕ j,�(θ)

]

×
[ ∞∑

j=0

m(λ j )∑
�=1

Ff , j,�(r)ϕ j,�(θ)

]
dn−1ω(θ)

}
rn−1dr

=
∞∑
j=0

m(λ j )∑
�=1

∫ R

0
g(r)

[|F ′
f , j,�(r)|2 + λ j r

−2|Ff , j,�(r)|2
]
rn−1dr , (2.11)

proving (2.9) 
�
Explicitly, (2.11) yields

∫ R

0
g(r)

∫
Sn−1

|(∂ f /∂r)(r , θ)|2 dn−1ω(θ) rn−1dr

=
∞∑
j=0

m(λ j )∑
�=1

∫ R

0
g(r)|F ′

f , j,�(r)|2 rn−1dr , (2.12)

∫ R

0
g(r)

∫
Sn−1

r−2|(∇Sn−1 f (r , · ))(θ)|2 dn−1ω(θ) rn−1dr

=
∞∑
j=0

m(λ j )∑
�=1

λ j

∫ R

0
g(r)r−2|Ff , j,�(r)|2 rn−1dr . (2.13)

The previous results now allow us to prove the main result in this note in the form
of the following Hardy–Rellich-type inequality with logarithmic refinements.
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Theorem 2.3 Let R ∈ (0,∞), γ ∈ R, N , n ∈ N, with n ≥ 2, η ∈ [eN R,∞), and
f ∈ C∞

0 (Bn(0; R)\{0}). Then
∫
Bn(0;R)

|x |γ |(−� f )(x)|2 dnx ≥ An,γ

∫
Bn(0;R)

|x |γ−2|(∇ f )(x)|2 dnx

+ 4−1
∫
Bn(0;R)

|x |γ−2
( N∑

k=1

k∏
p=1

[lnp(η/|x |)]−2
)

|(∇ f )(x)|2 dnx

+ 4−1
∫
Bn(0;R)

|x |γ−4
( N∑

k=1

k∏
p=1

[lnp(η/|x |)]−2
)

|(∇Sn−1 f )(x)|2 dnx, (2.14)

where
An,γ = min j∈N0{αn,γ,λ j }, (2.15)

with

αn,γ,λ0 = αn,γ,0 = 4−1(n − γ )2,

αn,γ,λ j = [
4−1(n + γ − 4)(n − γ ) + λ j

]2/[
4−1(n + γ − 4)2 + λ j

]
, j ∈ N.

(2.16)

Excluding the cases (α) n = 2, γ = 2 and (β) n = 3, γ = 1, the constant An,γ on
the right-hand side of inequality (2.14) is optimal.

Proof By [9, Eq. (A.25)] and [8, Lemmas 2.3 and B.3 (i)], one has

∫
Bn(0;R)

|x |γ |(−� f )(x)|2 dnx

=
∞∑
j=0

m(λ j )∑
�=1

∫ R

0
rγ+n−1

∣∣ − r1−n[d/dr
(
rn−1F ′

f , j,�(r)
)] + λ j r

−2Ff , j,�(r)
∣∣2 dr

=
∞∑
j=0

m(λ j )∑
�=1

{ ∫ R

0
rγ+n−1

∣∣F ′′
f , j,�(r)

∣∣2 dr

+ [2λ j + (n − 1)(1 − γ )]
∫ R

0
rγ+n−3

∣∣F ′
f , j,�(r)

∣∣2 dr

+ λ j [λ j + (γ + n − 4)(2 − γ )]
∫ R

0
rγ+n−5|Ff , j,�(r)|2 dr

}
. (2.17)

Furthermore, note that (2.15) implies

λ j An,γ ≤ [
4−1(n + γ − 4)(n − γ ) + λ j

]2 − 4−1(n + γ − 4)2An,γ , j ∈ N0, (2.18)
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or equivalently,

λ j An,γ ≤ 4−1(n + γ − 4)2
[
4−1(n − γ )2 + 2λ j − An,γ

]
+ λ j [λ j + (n + γ − 4)(2 − γ )], j ∈ N0. (2.19)

Applying Lemma 2.1 and (2.19) to (2.17) yields

∫
Bn(0;R)

|x |γ |(−� f )(x)|2 dnx

≥
∞∑
j=0

m(λ j )∑
�=1

{
4−1(2 − n − γ )2

∫ R

0
rγ+n−3

∣∣F ′
f , j,�(r)

∣∣2 dr

+ 4−1
∫ R

0
rγ+n−3

∣∣F ′
f , j,�(r)

∣∣2
( N∑

k=1

k∏
p=1

[lnp(η/r)]−2
)
dr

+ [2λ j + (n − 1)(1 − γ )]
∫ R

0
rγ+n−3

∣∣F ′
f , j,�(r)

∣∣2 dr

+ λ j [λ j + (γ + n − 4)(2 − γ )]
∫ R

0
rγ+n−5|Ff , j,�(r)|2 dr

}

=
∞∑
j=0

m(λ j )∑
�=1

{[
4−1(n − γ )2 + 2λ j

] ∫ R

0
rγ+n−3

∣∣F ′
f , j,�(r)

∣∣2 dr

+ 4−1
∫ R

0
rγ+n−3

∣∣F ′
f , j,�(r)

∣∣2
( N∑

k=1

k∏
p=1

[lnp(η/r)]−2
)
dr

+ λ j [λ j + (γ + n − 4)(2 − γ )]
∫ R

0
rγ+n−5|Ff , j,�(r)|2 dr

}

=
∞∑
j=0

m(λ j )∑
�=1

{
An,γ

∫ R

0
rγ+n−3

∣∣F ′
f , j,�(r)

∣∣2 dr

+ 4−1
∫ R

0
rγ+n−3

∣∣F ′
f , j,�(r)

∣∣2
( N∑

k=1

k∏
p=1

[lnp(η/r)]−2
)
dr

+ [
4−1(n − γ )2 + 2λ j − An,γ

] ∫ R

0
rγ+n−3

∣∣F ′
f , j,�(r)

∣∣2 dr

+ λ j [λ j + (γ + n − 4)(2 − γ )]
∫ R

0
rγ+n−5|Ff , j,�(r)|2 dr

}

≥
∞∑
j=0

m(λ j )∑
�=1

{
An,γ

∫ R

0
rγ+n−3

∣∣F ′
f , j,�(r)

∣∣2 dr
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+ 4−1
∫ R

0
rγ+n−3

∣∣F ′
f , j,�(r)

∣∣2
( N∑

k=1

k∏
p=1

[lnp(η/r)]−2
)
dr

+ {
4−1(γ + n − 4)2

[
4−1(n − γ )2 + 2λ j − An,γ

]

+ λ j [λ j + (γ + n − 4)(2 − γ )]}
∫ R

0
rγ+n−5|Ff , j,�(r)|2 dr

+ 4−1[4−1(n − γ )2 + 2λ j − An,γ

]

×
∫ R

0
rγ+n−5

∣∣Ff , j,�(r)
∣∣2

( N∑
k=1

k∏
p=1

[lnp(η/r)]−2
)
dr

}

≥
∞∑
j=0

m(λ j )∑
�=1

{
An,γ

∫ R

0

[
rγ+n−3

∣∣F ′
f , j,�(r)

∣∣2 + λ j r
γ+n−5|Ff , j,�(r)|2

]
dr

+ 4−1
∫ R

0
rγ−2

( N∑
k=1

k∏
p=1

[lnp(η/r)]−2
)

× [∣∣F ′
f , j,�(r)

∣∣2rn−1 + λ j |Ff , j,�(r)|2rn−3] dr
}

+
∞∑
j=0

m(λ j )∑
�=1

4−1λ j

∫ R

0
rγ+n−5

∣∣Ff , j,�(r)
∣∣2

( N∑
k=1

k∏
p=1

[lnp(η/r)]−2
)
dr , (2.20)

where we used the fact that 4−1(n − γ )2 ≥ An,γ (following from letting j = 0 in
(2.15)) in the last inequality. Finally, applying Lemma 2.2 to the last inequality in
(2.20) with

g(r) = rγ−2 and g(r) = rγ−2
( N∑

k=1

k∏
p=1

[lnp(η/r)]−2
)

, r ∈ (0, R), (2.21)

one obtains, employing (2.12) and (2.13),

∫
Bn(0;R)

|x |γ |(−� f )(x)|2 dnx ≥ An,γ

∫
Bn(0;R)

|x |γ−2|(∇ f )(x)|2 dnx

+ 4−1
∫
Bn(0;R)

|x |γ−2
( N∑

k=1

k∏
p=1

[lnp(η/|x |)]−2
)

|(∇ f )(x)|2 dnx

+ 4−1
∫
Bn(0;R)

|x |γ−4
( N∑

k=1

k∏
p=1

[lnp(η/|x |)]−2
)

|(∇Sn−1 f )(x)|2 dnx . (2.22)

To prove optimality of An,γ (excluding the cases (α) n = 2, γ = 2 and (β)

n = 3, γ = 1), one can modify the proof of optimality found in [9, Theorem A.7],
and we now recall the major steps of the latter. That proof begins by choosing a
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sequence { fm}m∈N ⊂ C∞
0 ((0,∞)) such that fm is real-valued and fm �≡ 0 for all

m ∈ N, and

lim
m→∞

(∫ ∞

0
rγ+n−1| f ′′

m(r)|2 dr
) (∫ ∞

0
rγ+n−5| fm(r)|2 dr

)−1

= (2 − γ − n)2(4 − γ − n)2

16
. (2.23)

Next, depending on the values of γ and n, one chooses an eigenfunction, ϕ, of−�Sn−1

and defines gm ∈ C∞
0 (Rn\{0}), m ∈ N, by

gm(x) = gm(r , θ) = fm(r)ϕ(θ), x ∈ R
n\{0}. (2.24)

One can then show that
∫
Rn |x |γ |(−�gm)(x)|2 dnx∫
Rn |x |γ−2|(∇gm)(x)|2 dnx −→

m→∞ An,γ , (2.25)

completing the proof of optimality in [9, Theorem A.7]. To modify this proof for
the current purpose of proving optimality of An,γ in (2.14), one needs to choose a
new sequence in C∞

0 ((0, R)) rather than C∞
0 ((0,∞)) to begin with. To this end, we

choose { fm}m∈N ⊂ C∞
0 ((0,∞)) as above and let fm ∈ C∞

0 ((0, ρm)) (e.g., ρm ≥
[sup(supp( fm))]+ 1) for all m ∈ N. We then define, for all m ∈ N, f̂m ∈ C∞

0 ((0, R))

by
f̂m(y) = fm(ρm y/R), 0 < y < R. (2.26)

One then readily verifies that

lim
m→∞

(∫ ∞

0
rγ+n−1| f̂ ′′

m (r)|2 dr
) (∫ ∞

0
rγ+n−5| f̂m(r)|2 dr

)−1

= (2 − γ − n)2(4 − γ − n)2

16
. (2.27)

Thus, replacing { fm}m∈N ⊂ C∞
0 ((0,∞)) by { f̂m}m∈N ∈ C∞

0 ((0, R)) in the proof of
[9, Theorem A.7] shows optimality of An,γ in (2.14), once again, excluding the cases
(α) n = 2, γ = 2 and (β) n = 3, γ = 1. 
�
Remark 2.4 (i) The proof of Theorem 2.3 is similar to proofs found in [11, Chs. 6,

7], but due to our application of [7, Theorem 3.1 (iii)] in Lemma 2.1, the range
of parameters has now been greatly extended in Theorem 2.3, in particular, the
two-dimensional case n = 2 in inequality (2.14) appears to have no precedent.

(ii) In [9, Theorems A.5 and A.7], the authors proved Theorem 2.3 without the log
refinement terms (i.e., without the last two terms on the right side of (2.14)) and
for a larger function space C∞

0 (Rn\{0}). But even with this larger function space
and without the log refinement terms, due to the method of proof, the authors were
unable to show optimality of An,γ in the two excluded cases in Theorem 2.3, that
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is, for (α) n = 2 and γ = 2, and (β) n = 3 and γ = 1. Therefore, the optimality
of An,γ for those two cases remains open.

(iii) We note that the inequality (2.14) was formulated for the smallest natural function
space f ∈ C∞

0 (Bn(0; R)\{0}). Thus, at least in principle, the optimal con-
stants could have increased in the process when compared to the function spaces
f ∈ C∞

0 (Bn(0; R)) typically employed in [1, 3, 5, 10], [11, Part 2], [13], etc.
Interestingly enough, Theorem 2.3 demonstrates this possible increase in optimal
constants is not happening with An,γ . In this context we note that [11, Ch. 6] derive
optimality of An,γ for f ∈ C∞

0 (Bn(0; R)).
(iv) Of course, by restriction, the principal inequalities in this paper (such as (2.14)–

(2.16)) extend to the case where f ∈ C∞
0 (Bn(0; R)\{0}), n ∈ N, n ≥ 2, is

replaced by f ∈ C∞
0 (�\{0}), where � ⊆ Bn(0; R) is open and bounded with

0 ∈ �, without changing the constants in these inequalities. �
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