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Abstract
We provide a semi-constructive criterion for ellipticity of the differential operator on
the Heisenberg group H

1.
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1 Introduction

The criterion for ellipticity of a differential operator in Euclidean space is well known.
This criterion (the invertibility of the principal symbol of the operators) is perfectly
constructive.

Criteria for ellipticity of differential operators on other Lie groups are much more
involved. In this paper, we provide a criterion for ellipticity on the Heisenberg group
H

1 which is almost as constructive as the one for Euclidean space. It is possible that
a (heavily modified) version of this proof works for an arbitrary stratified Lie group
G. For background material on this topic, see [1–3].

The Heisenberg group H
1 is the subgroup in GL(3,R) defined by

H
1 =

⎧
⎨

⎩

⎛

⎝
1 x t
0 1 y
0 0 1

⎞

⎠ , x, y, t ∈ R.

⎫
⎬

⎭
.

In other words, H1 is R3 equipped with the product

(x1, y1, t1) · (x2, y2, t2) = (x1 + x2, y1 + y2, t1 + t2 + x1y2).
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The differential calculus on H
1 consists of two left-invariant vector fields

X1 = ∂

∂x
, X2 = ∂

∂ y
+ Mx

∂

∂t
.

In what follows, differential operators are defined on the Schwartz space S(H1) =
S(R3). Note that Xw : S(H1) → S(H1) for every word w in the alphabet with
2 letters. Here, Xw is the word w expressed in the alphabet {X1, X2} and viewed
as a differential operator. Hence, S(H1) serves as a natural domain for differential
operators. Let C∞

b (H1) denote the algebra of smooth functions f on H
1, such that

Xw f is bounded for every word w.

Definition 1.1 A differential operator onH1 of order m is the mapping P : S(H1) →
S(H1) of the shape

P =
∑

len(w)≤m

Maw X
w,

where the sum is taken over all words of length at most m and where each Maw is a
multiplication operator with aw ∈ C∞

b (H1).

Clearly, a differential operator P extends to a mapping P : S ′(H1) → S ′(H1). The
Lebesgue measure onR3 is a bivariant Haar measure forH1. Wewrite L2(H

1) for the
L2-space with this measure.

Definition 1.2 A differential operator P of order m on H
1 is elliptic if, for every

f ∈ L2(H
1) with P f ∈ L2(H

1), we have (1 − �)
m
2 f ∈ L2(H

1) and

‖P f ‖L2(H1) + ‖ f ‖L2(H1) ≥ cP‖(1 − �)
m
2 f ‖L2(H1).

Here, � = X2
1 + X2

2 and cP is a strictly positive constant which only depends on P.

Thepaper [5] provides the following criterion (strictly speaking, only the sufficiency
is established in [5]; however, the necessity is easy) for ellipticity of the differential
operator P on a stratified Lie group. We state it here only for the Heisenberg group
H

1. This condition is related to the “maximal sub-ellipticity” of Helffer–Nourrigat [4,
Chapter I, Definition 1.1]. Necessary and sufficient conditions for the hypoellipticity
of left-invariant differential operators on the Heisenberg group were first discovered
by Rockland [6].

Theorem 1.3 Let P be a formally self-adjoint differential operator of order m on H1.

The operator P is elliptic if and only if

‖Pg f ‖L2(H1) ≥ cP‖(−�)
m
2 f ‖L2(H1), f ∈ S(H1), g ∈ H

1.

Here, we are using the notation

Pg =
∑

len(w)=m

aw(g)Xw, g ∈ H
1.
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The latter condition is rather hard to deal with.

Definition 1.4 A differential operator P on H
1 of order m is called formally elliptic

if there exists a constant cP > 0, such that

∣
∣
∣
∣
∣
∣

∑

len(w)=m

aw(g)sw

∣
∣
∣
∣
∣
∣
≥ cP , s ∈ S

1, g ∈ H
1.

Here, s ∈ S
1 means that s = (s0, s1) ∈ R

2 and s20 + s21 = 1. The sum is taken over
words in the alphabet {0, 1} and sw, w = w1 · · ·wm, is shorthand for sw1sw2 · · · swm .

Equivalently, P is formally elliptic if |π(Pg)| ≥ cPπ((−�)
m
2 ) for every 1-dimensio-

nal representation π of H1.

A naive guess is that formal ellipticity is equivalent to ellipticity. This is not really
the case: the operator −X2

1 − X2
2 + i[X1, X2] is formally elliptic, but not elliptic (as

it has a non-trivial kernel). However, the following weaker assertion is still true.
For each w, the bounded function g → aw(g) extends to a continuous function on

the Stone–Čech compactification βH1 of the topological space (H1, τdisc) (here, τdisc
is the discrete topology on H1). Thus, we can also define Pg for every g ∈ βH1.

Theorem 1.5 Let P be a formally self-adjoint differential operator of order m on H1.

The operator P is elliptic if and only if the following conditions hold:

1. P is formally elliptic;
2. if ξ ∈ dom((−�)

m
2 ) and g ∈ βH1 are such that Pgξ = 0, then ξ = 0;

The second condition in Theorem 1.5 is stated in terms of the Stone–Čech compact-
ification, because we do not want to introduce a topology on the set of left-invariant
differential operators. If, instead, such a topology is introduced, then the second con-
dition is the triviality of the kernel of Q for every Q in the closure of the set {Pg}g∈H1 .

2 Proof of themain theorem

In this section, we work in the Hilbert space l2(Z+), with standard orthonormal basis
denoted {ek}k≥0.Denote E j,k for thematrix basis operator defined as E j,ken = e jδk,n .

We work with the following operators:

i p = 1√
2

∑

k≥0

(k + 1)
1
2 (Ek,k+1 − Ek+1,k), q = 1√

2

∑

k≥0

(k + 1)
1
2 (Ek+1,k + Ek,k+1),

U =
∑

k≥0

Ek+1,k, H =
∑

k≥0

(2k + 1)Ek,k .

To be clear, p and q are self-adjoint unbounded operators, and i = √−1. We also
identify l2(Z+) with a subspace in l2(Z). Let V denotes the right shift operator on
l2(Z). For n ∈ Z+, let En = ∑n−1

k=0 Ek,k .
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Theorem 2.1 Let J be a set (discrete topological space) and let (Pj ) j∈J be a bounded
family of homogeneous (of order m) polynomials in 2 non-commuting variables. The
following conditions are equivalent:

1. there exists c > 0, such that

‖Pj (p, q)ξ‖l2(Z+) ≥ c‖H m
2 ξ‖l2(Z+), ξ ∈ dom(H

m
2 ), j ∈ J;

2. there exists c > 0, such that

|Pj (
(z),�(z))| ≥ c, z ∈ C, |z| = 1, j ∈ J,

and, for every j ∈ βJ, Pj (p, q)ξ = 0, ξ ∈ dom(H
m
2 ) implies ξ = 0.

Lemma 2.2 Let P be a homogeneous (of order m) polynomial in 2 non-commuting
variables. The operator

P(p, q)H−m
2 − P(−�(U ),
(U ))

is compact.

Proof We prove the assertion by induction on m. The base of the induction (i.e., the
cases m = 1 and m = 2) is an easy computation.

Suppose the assertion is true form.Let us prove it form+2.Let P be a homogeneous
(of order m + 2) polynomial in 2 non-commuting variables. We write

P(p, q) = p2P1(p, q) + pqP2(p, q) + qpP3(p, q) + q2P4(p, q),

where (Pk)4k=1 are homogeneous (of order m) polynomial in 2 non-commuting vari-
ables. We have

P(p, q)H−m+2
2 = H−1P(p, q)H−m

2 + [P(p, q), H−1]H−m
2

= H−1P(p, q)H−m
2 − H−1[P(p, q), H ]H−m+2

2

= H−1 p2 · P1(p, q)H−m
2 + H−1 pq · P2(p, q)H−m

2 + H−1qp · P3(p, q)H−m
2

+H−1q2 · P4(p, q)H−m
2 − H−1 · [P(p, q), H ]H−m+2

2 .

The operators [P(p, q), H ]H−m+2
2 are bounded. Hence, the last summand is compact.

By the inductive assumption (i.e., for m and for 2), the operator

P(p, q)H−m+2
2 −

(
(�(U ))2 · P1(−�(U ),
(U )) − �(U )
(U )·P2(−�(U ),
(U ))

−
(U )�(U ) · P3(−�(U ),
(U )) + (
(U ))2 · P4(−�(U ),
(U ))
)

is compact. Clearly

P(−�(U ),
(U ))=(�(U ))2 ·P1(−�(U ),
(U ))−�(U )
(U ) · P2(−�(U ),
(U ))

−
(U )�(U ) · P3(−�(U ),
(U )) + (
(U ))2 · P4(−�(U ),
(U )).
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This yields the step of the induction and, hence, completes the proof. �

Lemma 2.3 Let P be a homogeneous (of order m) polynomial in 2 non-commuting
variables. We have

P(−�(U ),
(U ))Unξ = P(−�(V ),
(V ))V nξ, ξ ∈ l2(Z+), n ≥ m.

Lemma 2.4 Let P be a homogeneous (of order m) polynomial in 2 non-commuting
variables. If

‖P(p, q)ξ‖l2(Z+) ≥ ‖H m
2 ξ‖l2(Z+), ξ ∈ dom(H

m
2 ),

then

‖P(−�(V ),
(V ))ξ‖l2(Z) ≥ ‖ξ‖l2(Z), ξ ∈ l2(Z+).

Proof The assumption means

‖P(p, q)H−m
2 ξ‖l2(Z+) ≥ ‖ξ‖l2(Z+), ξ ∈ l2(Z+).

Substituting Unξ instead of ξ, we obtain

‖P(p, q)H−m
2 Unξ‖l2(Z+) ≥ ‖ξ‖l2(Z+), ξ ∈ l2(Z+), n ∈ Z+.

By the triangle inequality

‖ξ‖l2(Z+) ≤ ‖P(−�(U ),
(U ))(Unξ)‖l2(Z+) +
+

∥
∥
∥

(
P(p, q)H−m

2 − P(−�(U ),
(U ))
)
(Unξ)

∥
∥
∥
l2(Z+)

, n ∈ Z+.

By Lemma 2.3

‖P(−�(U ),
(U ))(Unξ)‖l2(Z+)

= ‖P(−�(V ),
(V ))V n(ξ)‖l2(Z) = ‖P(−�(V ),
(V ))(ξ)‖l2(Z), n ≥ m.

Thus

‖ξ‖l2(Z+) ≤ ‖P(−�(V ),
(V ))η‖l2(Z) +
+

∥
∥
∥

(
P(p, q)H−m

2 − P(−�(U ),
(U ))
)
(Unξ)

∥
∥
∥
l2(Z+)

, n ∈ Z+.

By Lemma 2.2

∥
∥
∥

(
P(p, q)H−m

2 − P(−�(U ),
(U ))
)
(Unη)

∥
∥
∥
l2(Z+)

→ 0, n → ∞.

This suffices to complete the proof. �
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Lemma 2.5 Let P be a homogeneous (of order m) polynomial in 2 non-commuting
variables. If

‖P(−�(V ),
(V ))ξ‖l2(Z) ≥ ‖ξ‖l2(Z), ξ ∈ l2(Z+),

then

|P(�(z),
(z))| ≥ 1, z ∈ C, |z| = 1.

Proof Let η ∈ l2(Z). Fix ε > 0 and choose ξ ∈ l2(Z+) and n ∈ Z+, such that

‖η − V−nξ‖l2(Z) < ε.

Set θ = η − V−nξ. We have

‖P(−�(V ),
(V ))η‖l2(Z) ≥ ‖P(−�(V ),
(V ))V−nξ‖l2(Z) − ‖P(−�(V ),
(V ))θ‖l2(Z)

≥ ‖P(−�(V ),
(V ))V−nξ‖l2(Z) − ε‖P(−�(V ),
(V ))‖∞
= ‖P(−�(V ),
(V ))ξ‖l2(Z) − ε‖P(�(V ),
(V ))‖∞.

By the assumption, we have

‖P(−�(V ),
(V ))ξ‖l2(Z) ≥ ‖ξ‖l2(Z).

Thus

‖P(−�(V ),
(V ))η‖l2(Z) ≥ ‖ξ‖l2(Z) − ε‖P(−�(V ),
(V ))‖∞
= ‖V−nξ‖l2(Z) − ε‖P(−�(V ),
(V ))‖∞
≥ ‖η‖l2(Z) − ε − ε‖P(−�(V ),
(V ))‖∞.

Since ε > 0 is arbitrarily small, it follows that:

‖P(−�(V ),
(V ))η‖l2(Z) ≥ ‖η‖l2(Z), η ∈ l2(Z).

Since V is normal and since the spectrum of V is {z ∈ C : |z| = 1}, the assertion
immediately follows. �

Lemma 2.6 Let (Pj ) j∈J be a family of homogeneous (of order m) polynomials in 2
non-commuting variables. Suppose the condition (1.) inTheorem2.1 fails. There exists
a sequence (ηk)k≥0 ⊂ l2(Z+) and a sequence ( jk)k≥0 ⊂ J, such that

1. ‖ηk‖l2(Z+) = 1 for every k ≥ 0.
2. ηk → η weakly in l2(Z+).

3. Pjk (p, q)H−m
2 ηk → 0 in l2(Z+) as k → ∞.



Criterion for ellipticity on Heisenberg group Page 7 of 13 73

Proof Indeed, assume the contrary and choose a sequence ( jk)k≥0 ⊂ J and ξk ∈
dom(H

m
2 ), such that ‖H m

2 ξk‖l2(Z+) = 1 and such that ‖Pjk (p, q)ξk‖l2(Z+) → 0.
Set ηk = H

m
2 ξk, k ≥ 0. The sequence (ηk)k≥0 satisfies the first and third condi-

tions. Since the unit ball in l2(Z+) is weakly compact, it follows that, passing to a
subsequence if needed, we may also satisfy the second condition. �

Lemma 2.7 Let (Pj ) j∈J beabounded family of homogeneous (of orderm) polynomials
in 2 non-commuting variables. We have

sup
j∈J

∥
∥
∥(1 − En)

(
Pj (p, q)H−m

2 − Pj (−�(U ),
(U ))
)∥
∥
∥∞ → 0, n → ∞.

Proof By definition, we have

Pj =
∑

len(w)=m

a j,ww(p, q).

Boundedness of the family means that

sup
j∈J

|a j,w| < ∞, len(w) = m.

By Lemma 2.2, the operator

w(p, q)H−m
2 − w(−�(U ),
(U )), len(w) = m,

is compact. Hence

∥
∥
∥(1 − En)

(
w(p, q)H−m

2 − w(−�(U ),
(U ))
)∥
∥
∥∞ → 0, n → ∞. (1.2)

By triangle inequality

sup
j∈J

∥
∥
∥(1 − En)

(
Pi (p, q)H−m

2 − Pi (−�(U ),
(U ))
)∥
∥
∥∞

≤ sup
j∈J

∑

len(w)=m

|a j,w| ·
∥
∥
∥(1 − En)

(
w(p, q)H−m

2 − w(−�(U ),
(U ))
)∥
∥
∥∞

≤
∑

len(w)=m

sup
j∈J

|a j,w|· max
len(w)=m

∥
∥
∥(1 − En)

(
w(p, q)H−m

2 −w(−�(U ),
(U ))
)∥
∥
∥∞.

Thus, the assertion follows from (1.2). �

Lemma 2.8 Let P be a homogeneous (of order m) polynomial in 2 non-commuting
variables. For every n ≥ m, we have

En · P(−�(U ),
(U )) = En · P(−�(U ),
(U )) · En+m .

[P(p, q)H−m
2 , En] = [P(p, q)H−m

2 , En] · (1 − En−m).
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Lemma 2.9 Let (Pj ) j∈J beabounded family of homogeneous (of orderm) polynomials
in 2 non-commuting variables. For every η ∈ l2(Z+), we have

sup
j∈J

‖(1 − En)Pj (p, q)H−m
2 η‖l2(Z+) → 0, n → ∞.

Proof By definition, we have

Pj =
∑

len(w)=m

a j,ww(p, q).

Boundedness of the family means that

sup
j∈J

|a j,w| < ∞, len(w) = m.

By the triangle inequality

sup
j∈J

‖(1 − En)Pj (p, q)H−m
2 η‖l2(Z+)

≤ sup
j∈J

∑

len(w)=m

|a j,w|‖(1 − En)w(p, q)H−m
2 η‖l2(Z+)

≤
∑

len(w)=m

sup
j∈J

|a j,w| · max
len(w)=m

‖(1 − En)w(p, q)H−m
2 η‖l2(Z+).

Since

‖(1 − En)w(p, q)H−m
2 η‖l2(Z+) → 0, n → ∞,

for everywordwwith len(w) = m and since there are finitelymany (2m, to be precise)
words of length m, it follows that:

max
len(w)=m

‖(1 − En)w(p, q)H−m
2 η‖l2(Z+) → 0, n → ∞.

This completes the proof. �

Lemma 2.10 Let (Pj ) j∈J be a bounded family of homogeneous (of order m) polyno-
mials in 2 non-commuting variables. Suppose that

|Pj (�(z),
(z))| ≥ c, z ∈ C, |z| = 1, j ∈ J.

Suppose also that condition (1.) in Theorem 2.1 fails. Let (ηk)k≥0 and η be as in
Lemma 2.6. We have ηk → η in l2(Z+).
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Proof By definition, we have

Pj =
∑

len(w)=m

a j,ww(p, q).

Boundedness of the family means that

sup
j∈J

|a j,w| < ∞, len(w) = m.

We may assume without loss of generality that

∑

len(w)=m

sup
j∈J

|a j,w| ≤ 1.

It follows from the preceding paragraph that:

sup
j∈J

‖Pj (−�(U ),
(U ))‖∞ ≤ 1. (2.2)

Fix ε > 0 and choose, using Lemmas 2.7 and 2.9, n(ε) ≥ 2m, such that

sup
j∈J

∥
∥
∥(1 − En(ε))

(
Pj (p, q)H−m

2 − Pj (−�(U ),
(U ))
)∥
∥
∥∞ < ε, (3.2)

‖(1 − En(ε)−2m)η‖l2(Z+) < ε, (4.2)

sup
j∈J

‖(1 − En(ε))Pj (p, q)H−m
2 η‖l2(Z+) < ε. (5.2)

Using the third and second conditions in Lemma 2.6, we can choose k(ε), such
that

‖Pjk (p, q)H−m
2 ηk‖l2(Z+) < ε, k ≥ k(ε), (6.2)

‖En(ε)+m(ηk − η)‖l2(Z+) < ε, k ≥ k(ε). (7.2)

It follows from (6.2) that:

‖(1 − En(ε))Pjk (p, q)H−m
2 ηk‖l2(Z+) < ε, k ≥ k(ε).

Using (5.2) and the triangle inequality, we write

‖(1 − En(ε))Pjk (p, q)H−m
2 (ηk − η)‖l2(Z+) < 2ε, k ≥ k(ε).
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Using (3.2), we write

‖(1 − En(ε))Pjk (−�(U ),
(U ))(ηk − η)‖l2(Z+) < 3ε, k ≥ k(ε).

It follows from Lemma 2.8 that:

En(ε) · Pjk (−�(U ),
(U )) = En(ε) · Pjk (−�(U ),
(U )) · En(ε)+m .

Thus

‖En(ε)Pjk (−�(U ),
(U ))(ηk − η)‖l2(Z+)

≤ ‖Pjk (−�(U ),
(U ))‖∞‖En(ε)+m(ηk − η)‖l2(R)

(7.2)
< ε‖Pjk (−�(U ),
(U ))‖∞

(2.2)≤ ε, k ≥ k(ε).

Hence

‖Pjk (−�(U ),
(U ))(ηk − η)‖l2(Z+) < 4ε, k ≥ k(ε).

Again, using (7.2), we obtain

‖Pjk (−�(U ),
(U ))(1 − En(ε))(ηk − η)‖l2(Z+) < 5ε, k ≥ k(ε).

Taking into account that n(ε) ≥ m and using Lemma 2.3, we write

‖Pjk (−�(V ),
(V ))(1 − En(ε))(ηk − η)‖l2(Z) < 5ε, k ≥ k(ε).

By the assumption, we have

‖Pj (−�(V ),
(V ))ξ‖l2(Z) ≥ c‖ξ‖l2(Z), ξ ∈ l2(Z).

Thus

c‖(1 − En(ε))(ηk − η)‖l2(Z) < 5ε, k ≥ k(ε).

It follows now from (7.2):

‖ηk − η‖l2(Z) ≤ (5c−1 + 1)ε, k ≥ k(ε).

Since ε > 0 can be chosen arbitrarily small, the assertion follows. �

Proof of Theorem 2.1 If the condition (1.) holds, then

‖Pj (p, q)ξ‖l2(Z+) ≥ c‖H m
2 ξ‖l2(Z+), ξ ∈ dom(H

m
2 ), j ∈ J.
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Hence, exactly the same estimate holds for j ∈ βJ. In particular, if Pj (p, q)ξ = 0,
ξ ∈ dom(H

m
2 ), j ∈ βJ, then H

m
2 ξ = 0 and, therefore, ξ = 0. Necessity of the

condition (2.) follows now from Lemma 2.5.
Suppose now that the condition (1.) fails and that

|Pj (�(z),
(z))| ≥ c, z ∈ C, |z| = 1, j ∈ J.

Let (ηk)k≥0 and η be as in Lemma 2.6. By Lemma 2.10, we have ηk → η in l2(Z+).

Since ‖ηk‖l2(Z+) = 1 for every k ≥ 0, it follows that ‖η‖l2(Z+) = 1. The third
condition in Lemma 2.6 asserts that Pjk (p, q)H−m

2 ηk → 0 in l2(Z+) as k → ∞.

Since the family {Pj } j∈J is bounded, it follows that Pjk (p, q)H−m
2 η → 0 in l2(Z+)

as k → ∞.

Set ξ = H−m
2 η ∈ dom(H

m
2 ). We have ξ �= 0 and Pjk (p, q)ξ → 0 in l2(Z+) as

k → ∞.Passing to a subsequence if needed,wemay assumewithout loss of generality
that jk → j ∈ βJ. Thus, Pjξ = 0 and, hence, the condition (2.) fails. �


3 Proof of Theorem 1.5

Consider the position and momentum operators q and p on L2(R). Let {ψk}k≥0 be
the Hermite basis in L2(R). Recall that

i pψk = 1√
2
(k

1
2 ψk−1 − (k + 1)

1
2 ψk+1), qψk = 1√

2
(k

1
2 ψk−1 + (k + 1)

1
2 ψk+1)

for every k ∈ Z+. In what follows, we identify ξ ∈ L2(R) with the sequence
{〈ξ, ψk〉}k∈Z+ ∈ l2(Z+). In this way, we identify the Hilbert spaces L2(R) and l2(Z+)

and, hence, we fall exactly into the setting of the preceding section. Consequently,
Theorem 2.1 applies for these q and p.

Proof of Theorem 1.5 By continuity, the ellipticity condition holds for the closure of
S(H1) in the graph norm of (−�)

m
2 . Hence, the condition

‖Pg f ‖L2(H1) ≥ cP‖(−�)
m
2 f ‖L2(H1), f ∈ S(H1), g ∈ H

1

is equivalent to the condition

‖Pg f ‖L2(H1) ≥ cP‖(−�)
m
2 f ‖L2(H1), f ∈ dom((−�)

m
2 ), g ∈ H

1.

We want to apply Theorem 2.1 with J = H
1 × {−1, 1} and with

P(g,±1) =
∑

len(w)=m

aw(g)w(±p, q), g ∈ H
1.
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Recall the Plancherel decomposition

L2(H
1) =

∫ ⊕

R\{0}
L2(R)dν(s),

where ν is a Plancherel measure (in fact, dν(s) = sds, up to a constant but the precise
formula is not very important)

X1 = i
∫ ⊕

R\{0}
sgn(s)|s| 12 pdν(s), X2 = i

∫ ⊕

R\{0}
|s| 12 qdν(s).

Thus

(−�)
m
2 =

∫ ⊕

R\{0}
|s|mH m

2 dν(s),

Pg =
∫ ⊕

R\{0}
|s|m(P(g,1)χ(0,∞)(s) + P(g,−1)χ(−∞,0)(s))dν(s).

We have

dom((−�)
m
2 ) =

{ ∫ ⊕

R\{0}
fsdν(s) :

∫

R\{0}
‖H m

2 fs‖2L2(R)|s|2mdν(s) < ∞
}
.

Hence, the ellipticity condition

‖Pg f ‖L2(H1) ≥ cP‖(−�)
m
2 f ‖L2(H1), f ∈ dom((−�)

m
2 ), g ∈ H

1

can be equivalently rewritten as

∫

R\{0}
|s|2m‖P(g,sgn(s)) fs‖2L2(R)dν(s) ≥ c2P

∫

R\{0}
‖H m

2 fs‖2L2(R)|s|2mdν(s)

whenever the right-hand side is finite.
Fix ξ ∈ dom(H

m
2 ) and set

fs =
{

ξ, s ∈ (0, 1)

0, s /∈ (0, 1)
or alternatively fs =

{
ξ, s ∈ (−1, 0)

0, s /∈ (−1, 0).

The ellipticity condition yields

‖P(g,±1)ξ‖L2(R) ≥ cP‖H m
2 ξ‖L2(R), ξ ∈ dom(H

m
2 ). (8.2)

Conversely, the condition (8.2) clearly yields the ellipticity condition.
By Theorem 2.1, the condition (8.2) is equivalent to formal ellipticity of P (this is

exactly the condition (1.5) in Theorem (1.5) and the condition that P(g,±1)(p, q)ξ = 0,
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ξ ∈ dom((−�)
m
2 ), g ∈ βH1, implies ξ = 0. Again, using the Plancherel decompo-

sition, we see that the latter condition is equivalent to the condition (1.5) in Theorem
1.5.

Hence, the ellipticity condition is equivalent to the condition (8.2) which is, in turn,
equivalent to the conditions (1.5) and (1.5) in Theorem 1.5. �
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