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Abstract
We introduce and study some new uniform structures for Hilbert C∗-modules over a
C∗-algebra A. In particular, we prove that in some cases they have the same totally
bounded sets. To define one of them,we introduce a new class ofA-functionals: locally
adjointable functionals, which have interesting properties in this context and seem to
be of independent interest. A relation between these uniform structures and the theory
of A-compact operators is established.
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Introduction

In the theory of Hilbert C∗-modules, there are problems in which the necessity to
construct uniform structures arises naturally. More precisely, this is the case for the
theory ofA-compact operators, whereA is a C∗-algebra as everywhere in the article.
In the case of Hilbert spaces, i.e. in the caseA = C, the geometric description of such
operators is well known: the operator is compact if and only if the image of the unit
ball is totally bounded in norm. In general, this is not true for Hilbert C∗-modules:
even if we take any infinite-dimensional unital C∗-algebra as a module over itself
and the identity operator, it is A-compact (it has A-rank one), but the unit ball is not
totally bounded due to infinite dimension. Therefore, to describe the A-compactness
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property in geometric terms, it is necessary to construct a new geometric structure on
theHilbertC∗-module, for example, a uniform structure, i.e. a systemof pseudometrics
or seminorms. This problem was considered to be unsolvable in reasonable generality
for a long time. Only partial advances were obtained in [12, 14]. Nevertheless in [24] a
uniform structurewas discovered that gave a solution in the case of any algebra and any
countably generated module as the range module of the operator under consideration.
Namely, if F : M → N is an adjointable operator and N is countably generated
then F is A-compact if and only if the image of the unit ball is totally bounded with
respect to each defining seminorm for the uniform structure. In [25] the result was
strengthened: the necessity of the condition was established for arbitrary modules,
the sufficiency was established for modules with some analogue of the projectivity
property (it turns out that this property is equivalent to the existence of a standard
frame). However, by using this uniform structure the problem cannot be completely
solved. In particular, in [7], a counterexample was constructed: a specific C∗-algebra,
considered as a module over itself, for which the identity operator is not A-compact,
but the unit ball is totally bounded with respect to the introduced uniform structure (in
[8], this work was continued with a close relation to the theory of frames). This close
connection with the theory of frames has its origin in the fact that Bessel sequences
in the module context are involved in the construction of the above seminorms.

The attempts to solve the above problem in full generality lead to the problem
of search for more general uniform structures analogous to that considered in above
papers. The idea is to take in the definition of a Bessel sequence elements not from
the module itself, but from some larger module. In particular, it is possible to replace
elements of the module by A-linear functionals.

In the present paper, we introduce some new uniform structures constructed in this
way and establish that in some cases they have the same totally bounded sets as the
old uniform structure [24].

We also define a new class ofA-functionals, slightly more general than the class of
adjointable functionals—locally adjointable functionals. By their properties, they are
similar to left multipliers, but in some cases, they can be described simply in terms of
multipliers.

In Sect. 1, we first recall some facts about C∗-algebras and Hilbert C∗-modules
which we need. Then introduce new uniform structures which generalize the old one
in a natural way. Also we obtain some useful properties (Lemmas 1.12, 1.23, 1.24). In
particular, we prove, that boundedness with respect to any of these uniform structures
implies boundedness in norm (that is not true typically for uniform structures, for
example, for weak topology).

In Sect. 2, we deal with the uniform structure which is constructed via multipliers,
and prove that any set is totally bounded with respect to it if and only if it is totally
bounded with respect to the old one. This result holds for arbitrary module N .

In Sect. 3, we work with the uniform structure which is constructed using a more
general class of functionals, the locally adjointable functionals, and prove a similar
result but only for standard and countably generated modules. It turns out that the
results on the structure of functionals on the standard module, obtained in [2], as well
as the Kasparov stabilization theorem, which allows us to reduce the problem to the
case of the standard module, play a significant role here.
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1 Preliminaries and formulation of results

We start with several statements about states on C∗-algebras.

Lemma 1.1 [19, Theorem3.3.2]For any state ϕ onAand any a ∈ Aone has |ϕ(a)|2 ≤
ϕ(a∗a).

Lemma 1.2 [24, Lemma 1.2]For any a ∈ A there is a state ϕ such that ‖a‖ ≤ 2|ϕ(a)|.
Lemma 1.3 [9, Lemma 2.1] Let ϕ be an arbitrary state on C∗-algebra A, {eλ}—
an approximate identity in A. Then ϕ(x − eλx) → 0 uniformly on bounded sets.
Moreover, for any n ∈ N there exists a positive gn ∈ A, ‖gn‖ ≤ 1, such that
|ϕ(x) − ϕ(gn x)| ≤ ‖x‖

n for any x ∈ A.

One can find basics of the HilbertC∗-modules theory and their morphisms in books
[13, 17] and the survey paper [16] (for other directions of the theory see [4, 6, 22, 23]).

Definition 1.4 A (right) pre-Hilbert C∗-module over a C∗-algebra A is an A-module
equipped with an A-inner product 〈., .〉 : M × M → A being a sesquilinear form
on the underlying linear space and restricted to satisfy:

1. 〈x, x〉 ≥ 0 for any x ∈ M;
2. 〈x, x〉 = 0 if and only if x = 0;
3. 〈y, x〉 = 〈x, y〉∗ for any x, y ∈ M;
4. 〈x, y · a〉 = 〈x, y〉a for any x, y ∈ M, a ∈ A.

We will say that a module is countably generated if there exists a countable subset
with dense linear span with coefficients from A.

A pre-Hilbert C∗-module over A is a Hilbert C∗-module if it is complete w.r.t. its
norm ‖x‖ = ‖〈x, x〉‖1/2.

The Hilbert sum of Hilbert C∗-modules (defined in evident sense) is denoted by⊕.

The following analogue of the Cauchy-Schwartz inequality (see [21] or [17,
Proposition 1.2.4]) for any x, y ∈ M holds:

〈x, y〉〈y, x〉 ≤ ‖y‖2〈x, x〉. (1.1)

Definition 1.5 The standard Hilbert C∗-module �2(A) is a Hilbert sum of countably
many copies of A considered as a module over itself, with the inner product 〈a, b〉 =∑

i (ai )
∗bi , where b = (b1, b2, . . .).

If A is unital, then �2(A) is countably generated.

Using of the following famous property of countably generated modules is
significant for our purposes (see [11] or [17, Theorem 1.4.2])

Theorem 1.6 (Kasparov stabilization theorem) Any countably generated Hilbert C∗-
module M over C∗-algebra A can be represented as an orthogonal direct summand
of the standard module, i.e. there exists an isomorphism M ⊕ �2(A) ∼= �2(A).

Now recall the main concepts and results of [24].
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Definition 1.7 Let N be a Hilbert C∗-module over A. A countable system X = {xi }
of its elements is called admissible for a submodule N0 ⊆ N (or N 0-admissible) if
for each x ∈ N 0 partial sums of the series

∑
i 〈x, xi 〉〈xi , x〉 are bounded by 〈x, x〉 and

the series is convergent. Also, we require ‖xi‖ ≤ 1 for any i .

Example 1.8 For the standard module �2(A) over a unital algebra A one can take for
X the natural base {ei }. In the case of �2(A) over a general algebraA, one can take xi

having only the i-th component nontrivial and of norm≤ 1.The other important exam-
ple is X with only finitely many non-zero elements and an appropriate normalization
(this works for any module).

Denote by � a countable collection {ϕ1, ϕ2, . . .} of states on A. For each pair
(X ,�) with an N 0-admissible X , consider the following seminorms

νX ,�(x)2 := sup
k

∞∑

i=k

|ϕk (〈x, xi 〉) |2, x ∈ N 0, (1.2)

and corresponding pseudo-metrics

dX ,�(x, y)2 := sup
k

∞∑

i=k

|ϕk (〈x − y, xi 〉) |2, x, y ∈ N 0.

In [24], it is proved that these pseudo-metrics define a uniform structure and the
following definition is introduced.

Definition 1.9 A set Y ⊆ N 0 ⊆ N is totally bounded with respect to this uniform
structure, if for any (X ,�), where X ⊆ N is N 0-admissible, and any ε > 0 there
exists a finite collection y1, . . . , yn of elements of Y such that the sets

{
y ∈ Y | dX ,�(yi , y) < ε

}

form a cover of Y . This finite collection is an ε-net in Y for dX ,�.

If so, we will say briefly that Y is (N ,N 0)-totally bounded.

The main result of [24] is the following theorem.

Theorem 1.10 Suppose that F : M → N is an adjointable operator and N is
countably generated. Then, F is A-compact if and only if F(B) is (N ,N )-totally
bounded, where B is the unit ball of M.

In the present paper, we consider a natural generalization of that uniform structure.

Definition 1.11 LetN be a Hilbert C∗-module overA. A countable system F = { fi }
of elements of the dual moduleN ′ (i.e.A-linear mapsN → A) is called ∗-admissible
for a submodule N0 ⊆ N (or ∗-N 0-admissible) if

(1) for each x ∈ N 0 partial sums of the series
∑

i ( fi (x))∗ fi (x) are bounded by 〈x, x〉;
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(2) this series is norm convergent;
(3) ‖ fi‖ ≤ 1 for any i .

Lemma 1.12 If N 0 = N , then condition (3) follows from conditions (1) and (2).

Proof For any i ∈ N, we have ( fi (x))∗ fi (x) ≤ ∑
i ( fi (x))∗ fi (x) ≤ 〈x, x〉 for any

x ∈ N . Hence, ‖( fi (x))∗ fi (x)‖ ≤ ‖〈x, x〉‖, i.e. ‖ fi (x)‖2 ≤ ‖x‖2 and ‖ fi (x)‖ ≤
‖x‖, so ‖ fi‖ = sup‖x‖≤1 ‖ fi (x)‖ ≤ ‖x‖ = 1.

Remark 1.13 If N 0 �= N , this is not true in general even for N 0-admissible case.
Indeed, for any (non-trivial) modules Z1 and Z2 take N = Z1 ⊕ Z2, N 0 = Z1 ⊕
{0} ⊂ Z1 ⊕ Z2 and X = {x1, 0, . . .}, where x1 = (0, w), ‖w‖ > 1. Then for any
x = (z, 0) ∈ N 0, we have that 〈x, x1〉 = 0 so X is N 0-admissible, but ‖x1‖ > 1.

It turns out that this question is closely related to the following problem attracted
attention recently. Suppose that N0 ⊂ N is a Hilbert C∗-submodule such that its
orthogonal complement is trivial: (N0)

⊥
N = {0}. Is it true that the norm of x ∈ N is

equal to its norm as anA-functional onN0, i.e. sup{|〈x, y〉| : y ∈ N0, ‖y‖ ≤ 1}? The
answer is generally “no” (see [10, 15]), but in some cases, for example for A being a
commutative von Neumann algebra, the answer is “yes” [15].

Denote by � a countable collection {ϕ1, ϕ2, . . .} of states on A. For each pair
(F,�) with a ∗-N 0-admissible F, consider the following seminorms

νF,�(x)2 := sup
k

∞∑

i=k

|ϕk ( fi (x)) |2, x ∈ N 0,

and corresponding pseudo-metrics

dF,�(x, y)2 := sup
k

∞∑

i=k

|ϕk ( fi (x − y)) |2, x, y ∈ N 0. (1.3)

Let us observe that this is indeed a generalization of the seminorms νX ,� defined by
(1.2) sinceN is included inN ′ by formula x̂(z) = 〈x, z〉 and since 〈x, z〉 = 〈z, x〉∗ and
ϕ(a∗) = ϕ(a) for any a ∈ A and any state ϕ on A, so |ϕ(〈x, xi 〉)| = |ϕ(〈xi , x〉∗)| =
|ϕ(〈xi , x〉)| = |ϕ(̂xi (x))|, where x̂i ∈ N (note that in [18] the inclusion N → N ′ is
described by another order in theA-inner product but this difference in not significant).

Note that x̂a(z) = 〈xa, z〉 = a∗〈x, z〉. This corresponds to the structure of a right
A-module on N ′, namely, f a(z) = a∗ f (z).

To prove that this is a seminorm, let us start with a remark that this is a finite
non-negative number. Indeed, by Lemma 1.1

s∑

i=k

|ϕk ( fi (x − y)) |2 ≤ ϕk

(
s∑

i=k

( fi (x − y))∗ fi (x − y)

)

≤
∥
∥
∥
∥
∥

s∑

i=k

( fi (x − y))∗ fi (x − y)

∥
∥
∥
∥
∥

≤ ‖〈x − y, x − y〉‖ = ‖x − y‖2.
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Since in (1.3) we have a series of non-negative numbers, this estimation implies its
convergence and the estimation

dF,�(x, y) ≤ ‖x − y‖.

As it was noted in [24, Proposition 2.8], for x �= y there exists (X ,�) such that
dX ,�(x, y) > 1

2‖x − y‖ so this uniform structure is Hausdorff.
Let us verify the triangle inequality:

νF,�(z + x) ≤ νF,�(z) + νF,�(x). (1.4)

Take an arbitrary ε > 0 and choose k and m such that

νF,�(z + x) <

√
√
√
√

m∑

i=k

|ϕk( fi (z + x))|2 + ε. (1.5)

We have
√
√
√
√

m∑

i=k

|ϕk( fi (z + x))|2 ≤
√
√
√
√

m∑

i=k

(|ϕk( fi (z))| + |ϕk( fi (x)|)2. (1.6)

By the triangle inequality for the standard norm in Cm−k+1, we have

√
√
√
√

m∑

i=k

(|ϕk( fi (z))| + |ϕk( fi (x)|)2 ≤
√
√
√
√

m∑

i=k

|ϕk( fi (z))|2 +
√
√
√
√

m∑

i=k

|ϕk( fi (x))|2

≤ νF,�(z) + νF,�(x).

Since ε in (1.5) is arbitrary, togetherwith (1.6) the last estimationgives (1.4). Therefore,
we have verified that dF,� satisfy the conditions for seminorms and now can define a
uniform structure on the unit ball of N 0.

We will introduce several variants of uniform structure. For this purpose, we will
consider several classes of functionals.

One of them is the case of only adjointable functionals, which have special descrip-
tion given by multipliers. For any C∗-algebra A one can define the C∗-algebra of
multipliers M(A) (see [20, §3.12] for details). Then, for any Hilbert A-module N ,
a Hilbert M(A)-module M(N ) (which is called the multiplier module of N ) can be
defined in a natural way. This is the set of all adjointable morphisms m from A to N
with the inner product 〈m1, m2〉 = m∗

1m2 ∈ M(A) containingN as an ideal submod-
ule associated with A, i.e. N = M(N )A (see [3, Sect. 1] and [1, Sect. 3] for more
details; in [3] it is denoted by Nd and it is proved that, for a full module N , it has
some natural universal property [3, Theorem 1.2]). The adjoint of m is an adjointable
A-functional m∗ : N → A, i.e. the correspondence m �→ m∗, together with the
property m∗∗ = m, gives us a proof of the following statement.
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Theorem 1.14 There is a natural identification of the multiplier module M(N ) with
the module N ∗ of all adjointable A-linear functionals from N to A.

If f ∈ N ′ is represented by some element of multiplier module we will denote it
also as f ∈ M(N ) if it does not cause a confusion.

We will call a functional f : N → A locally adjointable, if for any adjointable
A-linear operator g : A → N , the composition f ◦ g : A → A is an adjointable
functional. Of course, any adjointable functional is locally adjointable.

Definition 1.15 A set Y ⊆ N 0 ⊆ N is (N ,N 0)∗-totally bounded if for any (F,�),

where F ⊆ N ′ is ∗-N 0-admissible, and any ε > 0 there exists a finite collection
y1, . . . , yn of elements of Y such that the sets

{
y ∈ Y | dF,�(yi , y) < ε

}

form a cover of Y . This finite collection is an ε-net in Y for dF,�. Uniform structure
form by pseudometrics dF,� we will call (N ,N 0)∗-uniform structure.

If in this definition we take for F only adjointable functionals or locally adjointable,
then we will say that Y is (N ,N 0)∗ad-totally bounded or (N ,N 0)∗lad-totally bounded
respectively, and corresponding uniform structures we will call (N ,N 0)∗ad-uniform
structure or (N ,N 0)∗lad-uniform structure respectively.

In adjointable case, it is equivalent (due to Theorem 1.14) to take for F only
multipliers, so we can call Y in this case (N ,N 0)∗out-totally bounded, and the uniform
structure coincideswith (N ,N 0)∗out-uniformstructure (in these terms itwas previously
introduced in [7]).

Lemma 1.16 Suppose, a set Y ⊆ N = N1 ⊕ N2 is (N ,N 0)∗-totally bounded.
Then p1Y and p2Y are (N1,N 0

1 )∗- and (N2,N 0
2 )∗-totally bounded, respectively,

where p1 : N1 ⊕ N2 → N1, p2 : N1 ⊕ N2 → N2 are the orthogonal projections,
N 0

1 = p1N 0 and N 0
2 = p2N 0.

Conversely, if p1Y and p2Y are respectively (N1,N 0
1 )∗- and (N2,N 0

2 )∗-totally
bounded for some submodules N 0

1 and N 0
2 , respectively, then Y is (N ,N 0

1 ⊕N 0
2 )∗-

totally bounded.
This is similarly true for (N ,N 0)∗ad and (N ,N 0)∗lad-totally boundedness.

Proof Denote by J j = p∗
j the corresponding inclusions J j : N j ↪→ N1 ⊕ N2,

j = 1, 2.
Also we introduce the map p′

j : N ′
j → (N1 ⊕ N2)

′ defined by the formula
p′

j ( f )(x) = f (p j (x)), and the map J ′
j : (N j ⊕ N2)

′ → N ′
j , J ′

j ( f )(x) = f (J j (x)).

Suppose, Y is (N ,N 0)∗-totally bounded and F = { fi } is a ∗-admissible system
for a submodule N 0

1 ⊆ N1. Then p′
1F = {p′

1( fi )} is admissible for N 0 because

(p′
1( fi )(x))∗ p′

1( fi )(x) = ( fi (p1(x)))∗ fi (p1(x)).

Let y1, . . . , ys be an ε-net in Y for dp′
1F,�. Then p1y1, . . . , p1ys is an ε-net in p1Y

for dF,�. Indeed, consider an arbitrary z ∈ p1Y . Then z = p1y for some y ∈ Y . Find
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yk such that dp′
1F,�(y, yk) < ε. Then

d2
F,�(z, p1yk) = sup

k

∞∑

i=k

|ϕk ( fi (z − p1yk)) |2

= sup
k

∞∑

i=k

|ϕk ( fi (p1(y − yk))) |2

= sup
k

∞∑

i=k

|ϕk
(
(J ′

1 fi )(y − yk)
) |2 = d2

p′
1F,�

(y, yk) < ε2.

Similarly for j = 2.
Conversely, suppose that p j Y are (N j ,N 0

j )
∗-totally bounded, j = 1, 2. Let F =

{ fi } be an admissible system in N ′ for N 0
1 ⊕ N 0

2 and ε > 0 is arbitrary. Then
Fj := {J ′

j ( fi )} is an admissible system in N ′
j for N 0

j . Indeed, this follows from

(J ′
j ( fi )(x))∗ J ′

j ( fi )(x) = ( fi (J j (x)))∗ fi (J j (x)).

For u, v ∈ p j Y , we have

dF,�(J j u, J jv) = dFj ,�(u, v). (1.7)

Indeed, we obtain the convergence and can estimate the sum using (as above) the
equality

s∑

i=1

( fi (J j (u − v)))∗ fi (J j (u − v)) =
s∑

i=1

((J ′
j fi )(u − v))∗(J ′

j fi )(u − v)

and, quite similarly, (1.7) follows from the equality

fi (J j u − J jv) = (J ′
j fi )(u − v), j = 1, 2.

Suppose that z1, . . . , zm is an ε/4-net in p1Y for dF1,� andw1, . . . , wr is an ε/4-net
in p2Y for dF2,�.Consider {zk +ws}, k = 1, . . . , m, s = 1, . . . , r .Then {J1zk +J2ws}
is an ε/2-net in p1Y ⊕ p2Y for dF,�. Indeed, for any J1 p1y1 + J2 p2y2, y1, y2 ∈ Y ,

one can find zk and ws such that

dF1,�(p1y1, zk) < ε/4, dF2,�(p2y2, ws) < ε/4.

Then by (1.4) and (1.7)

dF,�(J1 p1y1 + J2 p2y2, J1zk + J2ws)

≤ dF,�(J1 p1y1, J1zk) + dF,�(J2 p2y2, J2ws)

= dF1,�(p1y1, zk) + dF2,�(p2y2, ws) < ε/2.
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Now find a subset {ul} ⊂ {zk + ws} formed by all elements of {zk + ws} such that
there exists an element u∗ ∈ Y ⊆ p1Y ⊕ p2Y with dF,�(u∗, zk + ws) < ε/2. Denote
these u∗ by u∗

l , l = 1, . . . , L. Therefore,

(1) for any y ∈ Y , there exists l ∈ 1, . . . , L such that dF,�(y, ul) < ε/2;
(2) for each l ∈ 1, . . . , L, we have dF,�(u∗

l , ul) < ε/2.

By the triangle inequality, {u∗
l } is a finite ε-net in Y for dF,� and we are done.

Remark 1.17 From [24, Lemma 2.15], it follows thatN 0
1 ⊕N 0

2 is countably generated
if and only if N 0

1 and N 0
2 are countably generated.

Evidently we have the following statements.

Proposition 1.18 A functional f : A → A is locally adjointable if and only if it is
adjointable.

Proposition 1.19 If L M(A) = M(A), hence RM(A) = M(A), then any functional is
locally adjointable (the details on L M and RM, left and right multipliers respectively,
one can find, for example, in [20, §3.12]).

This is fulfilled, in particular, for commutative and unital algebras.
Now, we are able to formulate our main result.

Theorem 1.20 (Main Theorem) Let Y be a subset of N 0 ⊂ N . Then Y is (N ,N 0)∗lad-
totally bounded if and only if it is (N ,N 0)-totally bounded in the following cases:
(1) N = A;
(2) N = �2(A);
(3) N is countably generated.

Corollary 1.21 Suppose that L M(A) = M(A) and Y is a subset of N 0 ⊂ N . Then Y
is (N ,N 0)∗-totally bounded if and only if it is (N ,N 0)-totally bounded and if and
only if it is (N ,N 0)∗ad-totally bounded in the following cases:
(1) N = A;
(2) N = �2(A);
(3) N is countably generated.

From Theorems 1.10 and 1.20, we immediately obtain

Theorem 1.22 Suppose, F : M → N is an adjointable operator and N is countably
generated. Then F is A-compact if and only if F(B) is (N ,N )∗lad-totally bounded,

where B is the unit ball of M.

A similar statement based on Corollary 1.21 can be obtained as well.
For outer systems, we will be able to prove an analogue of Theorem 1.20 (see

Theorem 2.2 below) without the countability restriction. This is not surprising because
N ∗ is rather close to N (and coincides with it, e.g. for a unital A).

The following fact is very useful.
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Lemma 1.23 Suppose that F = { fi } is a ∗-N 0-admissible system and {gi }i∈N is an
arbitrary sequence of elements of A such that ‖gi‖ ≤ 1 for any i . Then, {( fi gi )}
is also a ∗-N 0-admissible system. Also, if F is outer N 0-admissible system (i.e. all
fi ∈ M(N )), then {( fi gi )} is N 0-admissible (i.e. fi gi ∈ N ).

Proof Indeed,

(( fi gi )(x))∗( fi gi )(x) = ((gi )
∗ fi (x))∗((gi )

∗ fi (x)) = ( fi (x))∗gi g
∗
i fi (x)

≤ ‖gi‖2( fi (x))∗ fi (x) ≤ ( fi (x))∗ fi (x).

This implies properties (1) and (2) of Definition 1.11. The property (3) is evident.

Lemma 1.24 Suppose Y ⊂ N 0 ⊂ N is bounded w.r.t. any seminorm of (N ,N 0)-
uniform structure. Then, Y is bounded in norm.

Proof Suppose that Y is not norm-bounded. Then, there exists a sequence {zk}k∈N ⊂
N 0 such that ‖zk‖ ≥ 3k . Define xk = zk

‖zk‖2k . The collection X = {xk} is N 0-

admissible, even N -admissible, by the following inequality:
∑

k〈x, xk〉〈xk, x〉 ≤
∑

k
1
4k 〈x, x〉 ≤ 〈x, x〉 for any x ∈ N . For any k ∈ N take a state ϕk such that

ϕk(〈zk, zk〉) ≥ 1
2‖〈zk, zk〉‖ = 1

2‖zk‖2. Then

νX ,�(zk) ≥ |ϕk(〈zk, xk〉)| = 1

‖zk‖2k
|ϕk(〈zk, zk〉)| ≥ 1

‖zk‖2k+1 ‖zk‖2 ≥ 3k

2k+1 ,

i.e. Y is not bounded w.r.t. the seminorm νX ,�. A contradiction.

Corollary 1.25 Suppose Y ⊂ N 0 ⊂ N is bounded w.r.t. any seminorm of (N ,N 0)∗lad,
(N ,N 0)∗ad or (N ,N 0)∗-uniform structure. Then Y is bounded in norm.

Corollary 1.26 Suppose Y ⊂ N 0 ⊂ N is totally bounded w.r.t. any seminorm of
(N ,N 0), (N ,N 0)∗lad, (N ,N 0)∗ad or (N ,N 0)∗-uniform structure. Then Y is bounded
in norm.

2 The case of multipliers

Lemma 2.1 For any A-module N , any f ∈ N ′, any state ϕ on A and any n ∈ N

there exists a positive gn ∈ A, ‖gn‖ ≤ 1, such that

|ϕ( f (x)) − ϕ(( f gn)(x))| = |ϕ( f (x)) − ϕ(gn f (x))| ≤ ‖ f (x)‖
n

≤ ‖ f ‖ · ‖x‖
n

for any x ∈ N .

Proof From Lemma 1.3, we have that for any n ∈ N there exists a positive gn ∈ A,

‖gn‖ ≤ 1, such that |ϕ(y) − ϕ(gn y)| ≤ ‖y‖
n for any y ∈ A. By taking y = f (x)

we have |ϕ( f (x)) − ϕ(gn f (x))| ≤ ‖ f (x)‖
n ≤ ‖ f ‖·‖x‖

n for any x ∈ N , then note that
( f b)(·) = b∗ f (·) for arbitrary b ∈ A.
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Now, for any ε > 0 and any x such that ‖x‖ ≤ d, there exists n(i) ∈ N such that

|ϕ( f (x)) − ϕ(( f gn(i))(x))| ≤ ε

2i
.

If f ∈ M(N ) (for example it is always so if f is locally adjointable and N = A
as a module over itself), then f gn(i) ∈ N and f gn(i)(x) = 〈 f gn(i), x〉 = gn(i)〈 f , x〉.

Moreover, for every finite family of states {ϕ j }L
j=1, we can find n(i) such that

|ϕ j ( f (x)) − ϕ j (( f gn(i))(x))| ≤ ε

2i

for all j = 1, . . . , L.

Theorem 2.2 Let Y be a subset of N 0 ⊂ N . Then, Y is (N ,N 0)out-totally bounded
if and only if it is (N ,N 0)-totally bounded.

Proof For any outer N 0-admissible system F = { fi } of multipliers of N and any
countable collection � = {ϕ j } of states on A it is sufficient to find, for arbitrary
ε > 0, a N 0-admissible system X = {xi } in N such that for any x ∈ N 0 with
‖x‖ ≤ diam(Y ) =: d < ∞ we have

dF,�(x, 0) ≤ dX ,�(x, 0) + ε.

Indeed, this means that an ε-net on Y for dX ,� is a 2ε-net for dF,�. We may consider

ε < 1, hence ε4 < ε2. (2.1)

By Lemma 1.3, for each i = 1, 2, . . . we can find gn(i) ≥ 0 such that, for all x ∈ Y ,

we have

|ϕk(〈 fi , x〉) − ϕk(gn(i)〈 fi , x〉)| ≤ ε2

2i · 4max{1, d} , k = 1, . . . , i, (2.2)

i.e. xi = fi gn(i) ∈ N . The system {xi } is N 0-admissible due to Lemma 1.23. For
arbitrary x ∈ Y and arbitrary k, i ∈ N, k ≤ i, we have

|ϕk(〈 fi , x〉)| ≤ |ϕk(〈 fi , x〉) − ϕk(〈xi , x〉)| + |ϕk(〈xi , x〉)|.

Hence, by (2.2) and (2.1)

|ϕk(〈 fi , x〉)|2 ≤ |ϕk(〈 fi , x〉) − ϕk(〈xi , x〉)|2
+2|ϕk(〈 fi , x〉) − ϕk(〈xi , x〉)||ϕk(〈xi , x〉)| + |ϕk(〈xi , x〉)|2

≤ ε2

2i · 4 + 2
ε2

2i · 4d
d + |ϕk(〈xi , x〉)|2 ≤ ε2

2i
+ |ϕk(〈xi , x〉)|2.
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Then,

∞∑

i=k

|ϕk(〈 fi , x〉)|2 ≤ ε2 +
∞∑

i=k

|ϕk(〈xi , x〉)|2.

Thus, using
√

s + t ≤
√

s + 2
√

st + t = √
s + √

t, for s, t ≥ 0, we obtain

√
√
√
√

∞∑

i=k

|ϕk(〈 fi , x〉)|2 ≤ ε +
√
√
√
√

∞∑

i=k

|ϕk(〈xi , x〉)|2.

Taking at first the supremum on the right hand side and then on the left hand side, we
obtain

sup
k

√
√
√
√

∞∑

i=k

|ϕk(〈 fi , x〉)|2 ≤ ε + sup
k

√
√
√
√

∞∑

i=k

|ϕk(〈xi , x〉)|2,

i.e. dF,�(x, 0) ≤ dX ,�(x, 0) + ε as desired.

3 Proof of themain theorem

3.1 Proof of themain theorem forN = A

By Proposition 1.18, in this case locally adjointable A-functionals are exactly
adjointable ones, that are multipliers by Theorem 1.14 (in fact in this case the
identification is trivial). Hence, the statement follows Theorem 2.2.

3.2 Proof of themain theorem forN = �2(A)

To reduce this case to the case ofN = A, recall the description of arbitrary functional
f : �2(A) → A from [2, Theorem 2.3].
In that paper, the inner product is defined to be anti-linear on second variable, and

embedding �2(A) → �2(A)′ is defined by the formula x �→ x̂(·) = 〈·, x〉, so it is
extended for left multipliers x by the formula x̂(y) = ∑∞

s=1 ys x∗
s as an isometric

isomorphism �2strong(L M(A)) → �2(A)′. Hence x needs to satisfy the condition

supN

∥
∥
∥
∑N

s=1 xs x∗
s

∥
∥
∥ < ∞.

In our case we define the inner product to be anti-linear on first variable and define
embedding �2(A) → �2(A)′ by the formula x �→ x̂(·) = 〈x, ·〉, hence after extension
the embedding in our case x needs to be a sequence of right multipliers acting by the

formula x̂(y) = ∑∞
s=1 x∗

s ys and it must satisfy the condition supN

∥
∥
∥
∑N

s=1 x∗
s xs

∥
∥
∥ <

∞.

Therefore, any functional f : �2(A) → A can be described as a sequence fs ∈
RM(A), s = 1, 2, . . . , such that the partial sums of the series

∑
s f ∗

s fs are uniformly
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bounded. If f is locally adjointable, then fs ∈ M(A), s = 1, 2, . . . , because the
inclusion of A into �2(A) (as the sth summand) is adjointable.

Since the partial sums of the series
∑

s f ∗
s fs are uniformly bounded, the series∑

s ϕ( f ∗
s fs) is convergent, where ϕ is an arbitrary state on A. Here we consider any

state as a state on M(A) due to [5, 2.3.24].
By Lemma 1.24, there exists d < ∞ such that ‖x‖ ≤ d for any x ∈ Y .

Therefore, for a ∗-N 0-admissible system F = { fi }, fi = ( fi,1, fi,2, . . .) we first
choose a finite part of each functional ( fi,1, fi,2, . . . , fi,r(i), 0, . . .) such that

∞∑

s=r(i)+1

ϕk( f ∗
i,s fi,s) <

ε2

2i · 4d2 for all k = 1, . . . , i .

Note that for any k, i, p, q ∈ N, k ≤ i, r(i) ≤ p ≤ q, the function (a, b) �→
ϕk(

∑q
s=p a∗

s bs) is a complex inner product on �2strong(M(A)), so by the Cauchy-
Schwartz inequality, we have

∣
∣
∣
∣
∣
ϕk

( q∑

s=p

f ∗
i,s xs

)∣
∣
∣
∣
∣

2

≤ ϕk

( q∑

s=p

f ∗
i,s fi,s

)

ϕk

( q∑

s=p

x∗
s xs

)

≤ ϕk

⎛

⎝
∞∑

s=r(i)+1

f ∗
i,s fi,s

⎞

⎠ ‖x‖2 ≤ ε2d2

2i · 4d2 = ε2

2i · 4 .

Second, we approximate each multiplier fi,s, s = 1, . . . , r(i), by choosing gn(i)

for fi,s gn(i) as in the previous section (by Lemma 1.3):

|ϕk( f ∗
i,s x) − ϕk(gn(i) f ∗

i,s x)| ≤ ε

2i · 4r(i)
, for all k = 1, . . . , i .

Hence, by using the inequality for scalars |a + b|2 ≤ 2|a|2 + 2|b|2 we have for all
k ≤ i

|ϕk( fi (x))|2 =
∣
∣
∣
∣
∣
ϕk

( ∞∑

s=1

f ∗
i,s xs

)∣
∣
∣
∣
∣

2

≤ 2

∣
∣
∣
∣
∣
∣
ϕk

⎛

⎝
r(i)∑

s=1

f ∗
i,s xs

⎞

⎠

∣
∣
∣
∣
∣
∣

2

+ 2

∣
∣
∣
∣
∣
∣
ϕk

⎛

⎝
∞∑

s=r(i)+1

f ∗
i,s xs

⎞

⎠

∣
∣
∣
∣
∣
∣

2

≤ 4

∣
∣
∣
∣
∣
∣
ϕk

⎛

⎝
r(i)∑

s=1

gn(i) f ∗
i,s xs

⎞

⎠

∣
∣
∣
∣
∣
∣

2

+ 4

∣
∣
∣
∣
∣
∣
ϕk

⎛

⎝
r(i)∑

s=1

f ∗
i,s xs

⎞

⎠ − ϕk

⎛

⎝
r(i)∑

s=1

gn(i) f ∗
i,s xs

⎞

⎠

∣
∣
∣
∣
∣
∣

2

+ ε2

2i · 2 ≤
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≤ 4

∣
∣
∣
∣
∣
∣
ϕk

⎛

⎝
r(i)∑

s=1

gn(i) f ∗
i,s xs

⎞

⎠

∣
∣
∣
∣
∣
∣

2

+ 4
ε2

4i · 16 + ε2

2i · 2 .

Thus,

∞∑

i=k

|ϕk( fi (x))|2 ≤
∞∑

i=k

4

∣
∣
∣
∣
∣
∣
ϕk

⎛

⎝
r(i)∑

s=1

gn(i) f ∗
i,s xs

⎞

⎠

∣
∣
∣
∣
∣
∣

2

+ ε2.

Hence, using again
√

s + t ≤
√

s + 2
√

st + t = √
s + √

t, for s, t ≥ 0, we obtain

√
√
√
√

∞∑

i=k

|ϕk( fi (x))|2 ≤ 2

√
√
√
√
√

∞∑

i=k

∣
∣
∣
∣
∣
∣
ϕk

⎛

⎝
r(i)∑

s=1

gn(i) f ∗
i,s xs

⎞

⎠

∣
∣
∣
∣
∣
∣

2

+ ε.

Taking at first the supremum on the right hand side and then on the left hand side, we
obtain

sup
k

√
√
√
√

∞∑

i=k

|ϕk( fi (x))|2 ≤ 2 sup
k

√
√
√
√
√

∞∑

i=k

∣
∣
∣
∣
∣
∣
ϕk

⎛

⎝
r(i)∑

s=1

gn(i) f ∗
i,s xs

⎞

⎠

∣
∣
∣
∣
∣
∣

2

+ ε,

i.e. if we denote X = {xi }, xi = ( fi,1gn(i), fi,2gn(i), . . . , fi,r(i)gn(i), 0, . . .) ∈ �2(A),

sup
k

√
√
√
√

∞∑

i=k

|ϕk( fi (x))|2 ≤ 2 sup
k

√
√
√
√

∞∑

i=k

|ϕk(〈xi , x〉)|2 + ε.

Thus,

dF,�(x, 0) ≤ 2dX ,�(x, 0) + ε,

for any x ∈ Y , i.e. an ε-net on Y for dX ,� is a 3ε-net for dF,�. It is easy to see that X
is (N ,N 0)-admissible.

3.3 Proof of themain theorem in the general case

The general case of a countably generated module N can be reduced to the above
considered case of N = �2(A) using the Kasparov stabilization theorem by con-
sidering the module as a direct summand of the standard one and using the fact
that uniform structures respect direct summand decomposition. More specifically,
denote by S the map S : N → N ⊕ �2(A) ∼= �2(A) given by the Kasparov theo-
rem. Suppose that Y is (N ,N 0)-totally bounded. Then, by Lemma 1.16, it follows
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that S(Y ) is (�2(A), S(N 0))-totally bounded. Therefore, by previous section S(Y ) is
(�2(A), S(N 0))∗lad-totally bounded, hence, again by Lemma 1.16 we have that Y is
(N ,N 0)∗lad-totally bounded. The converse statement is obvious.
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