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Abstract
Let A be a unital C∗-algebra with unit 1A and let a ∈ A be a positive and invertible
element. Suppose that S(A) is the set of all states on A and let

Sa(A) =
{

f

f (a)
: f ∈ S(A), f (a) �= 0

}
.

The norm ‖x‖a for every x ∈ A is defined by

‖x‖a = sup
ϕ∈Sa(A)

√
ϕ(x∗ax).

In this paper, we aim to investigate the notion of Birkhoff–James orthogonality with
respect to the norm ‖ · ‖a in A, namely a-Birkhoff–James orthogonality. The char-
acterization of a-Birkhoff–James orthogonality in A by means of the elements of
generalized state spaceSa(A) is provided. As an application, a characterization for the
best approximation to elements ofA in a subspace B with respect to ‖ · ‖a is obtained.
Moreover, a formula for the distance of an element of A to the subspace B = C1A is
given. We also study the strong version of a-Birkhoff–James orthogonality inA. The
classes of C∗-algebras in which these two types orthogonality relationships coincide
are described. In particular, we prove that the condition of the equivalence between
the strong a-Birkhoff–James orthogonality and A-valued inner product orthogonal-
ity in A implies that the center of A is trivial. Finally, we show that if the (strong)
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a-Birkhoff–James orthogonality is right-additive (left-additive) in A, then the center
of A is trivial.

Keywords C∗-algebras · State space of C∗-algebras · Birkhoff–James
orthogonality · a-Birkhoff–James orthogonality · Best approximation · Strong
Birkhoff–James orthogonality
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1 Introduction and preliminaries

LetA be a unitalC∗-algebra with unit 1A.We denote byA′ andZ(A) the topological
dual space and the center of A, respectively. The adjoint of any element x ∈ A is

denoted, as usual, by x∗. Also, Re(x) = 1

2
(x + x∗) is reserved to indicate the real

part of x . An element a of A is called positive (written by a ≥ 0), if a is selfadjoint
whose spectrum σ(a) is contained in [0,∞). It is known that if a ∈ A is positive, then
there exists a unique positive element b ∈ A such that a = b2. Such an element b is

called the positive square root of a and is denoted by a
1
2 . The symbol A+ stands for

the cone of positive elements in A. If in addition a is invertible, then a
1
2 is invertible

too and its inverse is denoted by a− 1
2 . A linear functional f on A is called positive

if f (a) ≥ 0 for every positive element a ∈ A. Given a positive functional f on A,

the following well-known version of the Cauchy–Schwarz inequality holds for every
x, y ∈ A: | f (x∗y)|2 ≤ f (x∗x) f (y∗y).

A state on A is a positive linear functional whose norm is equal to one. It is well-
known that a linear functional on A is positive if and only if f (1A) = ‖ f ‖; see [17,
Corollary 3.3.4]. Let S(A) be the set of all states on A. Then

S(A) = { f ∈ A′ : f (1A) = ‖ f ‖ = 1}.

Birkhoff–James orthogonality of elements in a normed linear space was introduced by
Birkhoff in [11] and developed by James [14] to generalize the concept of orthogonality
in inner product spaces. If x and y are vectors of a normed linear space (X , ‖ · ‖), then
x is said to be Birkhoff–James orthogonal to y, in short x ⊥BJ y, if

‖x + λy‖ ≥ ‖x‖ (∀λ ∈ C).

The concept of the strong Birkhoff–James orthogonality in C∗-algebras as a natural
generalization of Birkhoff–James orthogonality was introduced and studied in [4, 6].
Let x, y ∈ A. Then x is said to be strong Birkhoff–James orthogonal to y, denoted
by x ⊥S−BJ y, if

‖x + yb‖ ≥ ‖x‖ (∀b ∈ A).
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We also recall that two elements x and y of A are orthogonal with respect to the
A-valued inner product 〈x, y〉 := x∗y if 〈x, y〉 = 0. It was shown in [4] the following
relation between the strong and the classical Birkhoff–James orthogonality:

〈x, y〉 = 0 ⇒ x ⊥S−BJ y ⇒ x ⊥BJ y (∀x, y ∈ A).

It is well-known that the Birkhoff–James orthogonality of vectors in normed linear
spaces can be characterized in terms of linear functionals [14]. Over the years, the
problem of finding characterizations of Birkhoff–James orthogonality of matrices and
generally of the elements of C∗-algebras has been considered by many mathemati-
cians. A complete characterization of Birkhoff–James orthogonality of bounded linear
operators defined on Hilbert spaces obtained by Bhatia and S̆emrl [10] (see also, [3,
9, 18]). Some famous and useful Characterizations of the (strong) Birkhoff–James
orthogonality in C∗-algebraA and in a more general setting Hilbert C∗-modules over
A in terms of the elements of state space S(A) have been obtained in [5, 9, 16].
The characterization of the (strong) Birkhoff–James orthogonality for elements of a
C∗-algebra by means of its state space were obtained as follows:

Theorem 1.1 [5, Theorem 2.7] An element x ∈ A is Birkhoff–James orthogonal to
another element y ∈ A, if and only if there is f ∈ S(A) such that f (x∗x) = ‖x‖2
and f (x∗y) = 0.

Theorem 1.2 [4, Theorem2.5]An element x ∈ A is strongBirkhoff–James orthogonal
to another element y ∈ A if and only if there is f ∈ S(A) such that f (x∗x) = ‖x‖2
and f (〈x, y〉 〈y, x〉) = 0 if and only if there is f ∈ S(A) such that f (x∗x) = ‖x‖2
and f (〈x, y〉b) = 0 for all b ∈ A.

The classes of C∗-algebras in which any two of these orthogonality relationships
coincide have been described in [4, 6]. More precisely,

Theorem 1.3 [6, Corollary 4.10] Let A be a nonzero C∗-algebra. Then the following
statements are equivalent:
(1) For all x, y ∈ A, x ⊥S−BJ y if and only if 〈x, y〉 = 0.
(2) For all x, y ∈ A, x ⊥BJ y if and only if x ⊥S−BJ y.
(3) A is isomorphic to C.

Let a be a nonzero positive element ofA. A generalization of state space ofA was
introduced in [1] as follows:

Sa(A) := {ϕ ∈ A′ : ϕ ≥ 0, ϕ(a) = 1} =
{

f

f (a)
: f ∈ S(A), f (a) �= 0

}
.

Observe that if a = 1A, then Sa(A) = S(A). It has been proved in [1] that Sa(A) is
a nonempty convex and w∗-closed subset ofA′. But, unlike S(A), the set Sa(A) may
not be w∗-compact. In fact, according to the following result, Sa(A) is w∗-compact
if and only if a is invertible.
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Proposition 1.4 [1, Proposition 2.3] LetA be a unital C∗-algebra and let a ∈ A be a
positive element. Then the following statement are equivalent:
(1) Sa(A) is w∗-compact.
(2) a is invertible.

For any element x ∈ A, the a-operator semi-norm ‖ · ‖a : A → [0,∞) is defined
by

‖x‖a := sup
{√

ϕ(x∗ax) : ϕ ∈ Sa(A)
}

.

Due to the Proposition 1.4, if a is not invertible, then Sa(A) is not w∗-compact, and
so it may happen that ‖x‖a = ∞ for some x ∈ A; see [1, Example 3.2]. Denote by
Aa := {x ∈ A : ‖x‖a < ∞}. It was shown in [1] that ‖ · ‖a is a submultiplicative
semi-norm on Aa; i.e., ‖xy‖a ≤ ‖x‖a‖y‖a for all x, y ∈ Aa . Also, ‖x‖a = 0 if and
only if ax = 0. In addition, if a is invertible, then ‖ · ‖a is a norm onA. Consequently,
‖ · ‖1A is equal to the C∗-norm ‖ · ‖ of A.

An element x� ∈ A is called an a-adjoint of x ∈ A if ax� = x∗a. The set of all
a-adjointable elements ofA is denoted byAa .Note thatAa = A ifA is commutative.

In [1, Corollary 4.9] it was proved that if x ∈ Aa and x� is an a-adjoint of it, then

‖x‖2a = ‖xx�‖a = ‖x�x‖a = ‖x�‖2a . (1.1)

An element x ∈ A is said to be a-selfadjoint if ax is selfadjoint; i.e., ax = x∗a.

Moreover, any element x ∈ Aa can be written as x = x1 + i x2, where x1 and x2 are
a-selfadjoint. In fact, if x� is an a-adjoint of x, then

x = x + x�

2
+ i

x − x�

2i
. (1.2)

This decomposition is not unique, since there might be many (or none) a-adjoints x�

of x; see e.g., [1, 8]. Note that if we assume that a is invertible, then x has the unique
a-adjoint x� = a−1x∗a, and, therefore, the decomposition (1.2) is unique.

The notions, Sa(A) and ‖·‖a were introduced in [1] to generalize algebraic numer-
ical range and algebraic numerical radius of elements of C∗-algebra A. To study
abundant results related to these concepts the reader is referred to [1, 2, 5].

In this paper, we investigate the notions of Birkhoff–James orthogonality and its
strong version in an unital C∗-algebra A with respect to the norm ‖ · ‖a, whenever
a ∈ A is a positive and invertible element.

In Sect. 2 first, the main properties of a-Birkhoff–James orthogonality are studied
and a variety of examples in simple C∗-algebra Mn(C) are presented to illustrate the
relationship between a-Birkhoff–James orthogonality and Birkhoff–James orthogo-
nality. Next, a complete characterization of a-Birkhoff–James orthogonality in terms
of elements of the generalized state space Sa(A) is presented. As an application,
a characterization for the best approximation to elements of A in a subspace B is
obtained with respect to ‖ · ‖a . Moreover, a generalization of the well-known distance
formula which obtained by Williams in [19] is given.
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Section 3 is devoted to the study of strong a-Birkhoff–James orthogonality in unital
C∗-algebras. The classes of unitalC∗-algebras in which the a-Birkhoff–James orthog-
onality coincides with the strong a-Birkhoff–James orthogonality are described.

In particular, we prove that if x ⊥a
S−BJ y implies 〈x, y〉a := x∗ay = 0, for all

x, y ∈ A, then the center of A is trivial, i.e., the only central elements of A are
multiplies of the identity. Moreover, we prove that the right additivity (left additivity)
of (strong) a-Birkhoff–James orthogonality in A concludes that Z(A) ∼= C1A.

2 a-Birkhoff–James orthogonality in C∗-algebras

LetB(H) be theC∗-algebra of all bounded linear operators on a complexHilbert space
H with inner product 〈·, ·〉. If dimH = n, then we identify B(H) with the simple C∗-
algebra Mn(C) of all n × n complex matrices and denote the identity matrix by In .
Assume that A ∈ B(H) is a positive operator, which induces a positive semi-definite
sesquilinear form 〈·, ·〉A : H×H → C defined by 〈x, y〉A = 〈Ax, y〉. The semi-norm
‖·‖A induced by 〈·, ·〉A is defined by ‖x‖A = √〈Ax, x〉 for every x ∈ H.Furthermore,
the set of all A-bounded operators on H is defined by

B
A

1
2
(H) := {T ∈ B(H) : ∃ c > 0, ‖T x‖A ≤ c‖x‖A, ∀x ∈ H}.

In fact,B
A

1
2
(H) is a unital subalgebra ofB(H)which is equipped with the semi-norm

γA(T ) := sup
‖x‖A=1

√〈AT x, T x〉 (T ∈ B
A

1
2
(H)).

The Birkhoff–James orthogonality with respect to the semi-norm γA(·) (called A-
Birkhoff–James orthogonality) was studied by Zamani in [20]. An operator T ∈
B
A

1
2
(H) is called A-Birkhoff–James orthogonal to the operator S ∈ B

A
1
2
(H), denoted

by T ⊥A
BJ S, if γA(T + λS) ≥ γA(T ) for all λ ∈ C. The following characterization

of A-Birkhoff–James orthogonality which extends the Bhatia and S̆emrl Theorem for
A-bounded operators has been obtained as follow:

Theorem 2.1 [20, Theorem 2.2] Let T , S ∈ B
A

1
2
(H). The following conditions are

equivalent:
(1) T ⊥A

BJ S.

(2) There exists a sequence {hn} of A-unit vectors (‖hn‖A = 1) inH such that

lim
n→∞ ‖Thn‖A = γA(T ) and lim

n→∞〈Thn, Shn〉A = 0. (2.1)

We recall that by the Gelfand–Naimark Theorem, any unital C∗-algebra A can be
considered as a norm closed ∗-subalgebra of B(H) for some Hilbert spaceH . In fact,
there exists an unital faithful ∗-representationπ : A → B(H) such that ‖x‖ = ‖π(x)‖
for all x ∈ A; see e.g., [12, 17]. It was proved that in [1], if π : A → B(H) is a unital
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faithful ∗-representation of A, then

‖x‖a = γπ(a)(π(x)) (2.2)

for any x ∈ A. As a direct consequence of this fact, we have AA = B
A

1
2
(H) for

A = B(H) and all positive operator A ∈ B(H).

Let A be a unital C∗-algebra and let a ∈ A be a nonzero positive element. It was
proved in [1, Theorem 3.9] that Aa ⊂ Aa . Now, if we assume that a is a positive and
invertible element ofA, then for every x ∈ A the equation ax� = x∗a has the unique
solution x� = a−1x∗a, and so every x ∈ A is a-adjointable. Therefore Aa = A.

From now on we assume that A is a unital C∗-algebra and a ∈ A is a positive and
invertible element. Let us introduce the concept of a-Birkhoff–James orthogonality
with respect to the norm ‖ · ‖a in C∗-algebras.

Definition 2.2 Let A be a unital C∗-algebra and a ∈ A be a positive and invertible
element. We say that an element x ∈ A is Birkhoff–James orthogonal with respect to
the norm ‖·‖a (a-Birkhoff–James orthogonal) to an element y ∈ A, in short x ⊥a

B J y,
if

‖x + λy‖a ≥ ‖x‖a (∀λ ∈ C).

First, note that a-Birkhoff–James orthogonality reduces to the Birkhoff–James
orthogonality when a = 1A. Also, it is easy to see that a-Birkhoff–James orthog-
onality is homogenous; i.e., if x ⊥a

B J y, then αx ⊥a
B J β y for all α, β ∈ C. It is trivial

for α = 0 or β = 0. So, suppose that α and β are nonzero complex numbers. For each
λ ∈ C, we have

‖αx + λβ y‖a =
∥∥∥∥α

(
x + β

α
λy

)∥∥∥∥
a

= |α|
∥∥∥∥
(
x + β

α
λy

)∥∥∥∥
a

≥ |α| ‖x‖a = ‖αx‖a .

It follows that αx ⊥a
B J β y.

Also, a-Birkhoff–James orthogonality is non-degenerate. Indeed, let 0 �= x ∈ A
and x ⊥a

B J x . Then ‖x + λx‖a ≥ ‖x‖a for all λ ∈ C. For λ = −1, we get ‖x‖a = 0,
and so ax = 0. Therefore x = 0, since a is invertible.

Moreover, for any two nonzero elements x, y ∈ A, if x is orthogonal to y in the
a-Birkhoff–James sense, then x and y are linearly independent. In fact, if we assume
to the contrary that there exists k ∈ C such that y = kx, then x ⊥a

B J kx . It follows
that x ⊥a

B J x, since a-Birkhoff–James orthogonality is homogenous. Hence ax = 0,
and so x = 0, which is a contradiction.

Let f ∈ S(A). According to [1], the linear functional defined by

ϕ(z) = f
(
a− 1

2 za− 1
2

)
(z ∈ A) (2.3)
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belongs to Sa(A). Now, let x ∈ A and let a ∈ A be positive and invertible such that
ax = xa. Then

‖x‖2a = sup
ϕ∈Sa(A)

ϕ(x∗ax) = sup
f ∈S(A)

f
(
a− 1

2 x∗axa− 1
2

)
= sup

f ∈S(A)

f (x∗x) = ‖x‖2.
(2.4)

Also, note that x� = a−1x∗a is a-adjoint of x, and so it follows from (1.1) that

‖x‖2a = ‖xa−1x∗a‖a = ‖a−1x∗ax‖a = ‖a−1x∗a‖2a .

Hence

‖x‖2a = ‖xx∗‖a = ‖x∗x‖a = ‖x∗‖2a .

Since there is at most one norm on a ∗-algebra making it a C∗-algebra, the following
result is obtained.

Corollary 2.3 IfA is a commutative and unital C∗-algebra and a ∈ A is positive and
invertible, then ‖ · ‖a agrees with the C∗-norm of C∗-algebra A. In this case, the
a-Birkhoff–James orthogonality and the Birkhoff–James orthogonality are equivalent
on A.

It should be noted that ‖·‖a does not satisfy to theC∗-condition in noncommutative
C∗-algebra, even when a is invertible. To make this clear, we present the following
example.

Example 2.4 Let M2(C) be the C∗-algebra of all 2 × 2 complex matrices, and let Tr
be the usual trace functional onM2(C). According to the Example 2.2 of [1], for any
positive matrix h ∈ M2(C), let ϕh be the positive linear functional given by

ϕh(x) := Tr(hx), (x ∈ M2(C)).

It is known that any state on M2(C) is of the form ϕh with Tr(h) = 1. For a positive
matrix a ∈ M2(C), we have

Sa(M2(C)) = {ϕh : h ∈ M2(C)+ and Tr(ha) = 1}.

Now, let a =
[
2 0
0 1

]
. Then with some simple matrix computations, we conclude that

Sa(M2(C)) = {ϕh : h ∈ La},

where

La :=
{
h =

[
h11 h12
h12 h22

]
∈ M2(C)+ : h12 ∈ C, h11, h22 ≥ 0 and 2h11 + h22 = 1

}
.
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Hence for x =
[
0 2
1 0

]
, we get

‖x‖2a = sup
ϕh∈Sa(M2(C))

ϕh(x
∗ax) = sup

h∈La

Tr

([
h11 8h12
h12 8h22

])

= sup
2h11+h22=1,h11,h22≥0

h11 + 8h22 = 8.

But similarly, we have

‖x∗x‖2a = sup
ϕh∈Sa(M2(C))

ϕh((x
∗x)a(x∗x)) = sup

2h11+h22=1,h11,h22≥0
2h11 + 16h22 = 16.

The following provide us with examples reveal that the a-Birkhoff–James orthog-
onality is independent from the Birkhoff–James orthogonality in unital and noncom-
mutative C∗-algebras, even when a is positive and invertible.

Example 2.5 In the context of the same a =
[
2 0
0 1

]
as, and similarly to the method

we applied in the previous example, let x =
[
0 −1
0 1

]
and y =

[
0 1
0 1

]
be matrices in

M2(C). Then

‖x‖2a = sup
ϕh∈Sa(M2(C))

ϕh(x
∗ax) = sup

h∈La

Tr(h(x∗ax))

= sup
h∈La

Tr

([
h11 h12
h12 h22

] [
0 0
0 3

])
= sup

2h11+h22=1,h11,h22≥0
3h22 = 3.

Also, for every λ ∈ C, we have

‖x + λy‖2a = sup
h∈La

ϕh((x + λy)∗a(x + λy))

= sup
2h11+h22=1,h11,h22≥0

(
3(1 + |λ|2) − 2Re(λ)

)
h22

= 3(1 + |λ|2) − 2Re(λ).

However, for λ = 1

3
, we see that ‖x + λy‖2a = 8

3
< 3 = ‖x‖2a, which yields that

x �⊥a
B J y. On the other hand, it can easily be seen that ‖x‖2 = 2 and ‖x + λy‖2 =

2 + 2|λ|2 for all λ ∈ C. Hence ‖x + λy‖2 = 2(1 + |λ|2) ≥ 2 = ‖x‖, for all λ ∈ C.

Thus x ⊥BJ y.

Now, let x =
[
0 1

2
0 −1

]
and y =

[
0 1
0 1

]
.Then x ⊥a

B J y, since 〈x, y〉a = x∗ay = 0.

But, for every λ ∈ C, we have

‖x + λy‖2 =
∣∣∣∣54 + 2|λ|2 − Re(λ)

∣∣∣∣ .
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So for λ = 1

4
, we have ‖x + λy‖2 = 9

8
<

5

4
= ‖x‖2, and therefore x �⊥BJ y.

Assume that A is a unital and commutative C∗-algebra, x, y ∈ A and a ∈ A is
positive and invertible. If x ⊥BJ y, then by Theorem 1.1, there must exist f ∈ S(A)

such that f (x∗x) = ‖x‖2 and f (x∗y) = 0. SinceA is commutative, by Corollary 2.3
we conclude that

ϕ(x∗ax) = f
(
a− 1

2 x∗axa− 1
2

)
= f (x∗x) = ‖x‖2 = ‖x‖2a,

and

ϕ(x∗ay) = f
(
a− 1

2 x∗aya− 1
2

)
= f (x∗y) = 0,

where ϕ ∈ Sa(A) is defined in (2.3). This fact motivates us to obtain a similar charac-
terization for a-Birkhoff–James orthogonality in unital C∗-algebras. More precisely,
we shall present a characterization of a-Birkhoff–James orthogonality in a unital C∗-
algebra A based on the elements of its generalized state space Sa(A). In fact, we use
a simple way to obtain the next fundamental result through the standard Gelfand–
Naimark representation of A as a concrete C∗-subalgebra of B(H) and displayed
formula (2.2). However, for completion of the subject and the convenience of the
reader, we present a short proof for it. Note that this characterization is a generaliza-
tion of the well-known Theorem 1.1 when we take a = 1A, and plays a fundamental
role to achieve our forthcoming main results.

Theorem 2.6 Let A be a unital C∗-algebra, x, y ∈ A and let a be positive and
invertible element of A. Then the following statements are equivalent:
(1) x ⊥a

B J y.
(2) There is ϕ ∈ Sa(A) such that ϕ(x∗ax) = ‖x‖2a and ϕ(y∗ax) = 0 (ϕ(x∗ay) = 0).

Proof (1) ⇒ (2) Let x ⊥a
B J y and let π : A → B(H) be a unital faithful ∗-

representation of A. Since a is invertible, it follows from (2.2) that π(x), π(y) ∈
B

π(a)
1
2
(H), and so π(x) ⊥π(a)

BJ π(y). Hence Theorem 2.1, concludes that there exists

a sequence of π(a)-unit vectors {hn} ∈ H such that

lim
n→∞ ‖π(x)hn‖π(a) = γπ(a)(π(x)), (2.5)

lim
n→∞〈π(x)hn, π(y)hn〉π(a) = 0. (2.6)

The linear functionals ϕn : A → C defined by ϕn(z) = 〈π(z)hn, hn〉 belong to Sa(A)

for all n ∈ N (see [1, Theorem 3.5]). Now, (2.2) and (2.5) imply that

lim
n→∞ ϕn(x

∗ax) = lim
n→∞〈π(x∗ax)hn, hn〉 = lim

n→∞〈π(a)π(x)hn, π(x)hn〉
= lim

n→∞ ‖π(x)(hn)‖2π(a) = γ 2
π(a)(π(x)) = ‖x‖2a .
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In addition, from (2.6), we infer that

lim
n→∞ ϕn(y

∗ax) = lim
n→∞〈π(y∗ax)hn, hn〉 = lim

n→∞〈π(a)π(x)hn, π(y)hn〉
= lim

n→∞〈π(x)hn, π(y)hn〉π(a) = 0.

Thus

lim
n→∞ ϕn(x

∗ax) = ‖x‖2a, lim
n→∞ ϕn(y

∗ax) = 0. (2.7)

In addition, by Proposition 1.4, Sa(A) is w∗-compact. So there is ϕ ∈ Sa(A) such

that ϕn
w∗−→ ϕ. Therefore, (2.7) implies that

ϕ(x∗ax) = ‖x‖2a and ϕ(y∗ax) = 0.

(2) ⇒ (1)Assume that there is ϕ ∈ Sa(A) such that ϕ(x∗ax) = ‖x‖2a and ϕ(y∗ax) =
0. Then for each λ ∈ C, we get

‖x + λy‖2a ≥ ϕ((x + λy)∗a(x + λy))

= ϕ(x∗ax) + 2Re(λϕ(y∗ax)) + |λ|2ϕ(y∗ay)
= ϕ(x∗ax) + |λ|2ϕ(y∗ay) ≥ ϕ(x∗ax) = ‖x‖2a .

Therefore x ⊥a
B J y. ��

As the first direct consequence of Theorem2.6, it is easy to see that for given linearly
independent vectors x, y ∈ A, there exists a unique α ∈ C such that x ⊥a

B J (αx + y).
Indeed, we take α = 0 if x ⊥a

B J y. Now, suppose that x �⊥a
B J y. Since a ∈ A is

invertible, there exists ϕ ∈ Sa(A) such that ϕ(x∗ax) = ‖x‖2a, by Proposition 1.4.

Furthermore, ϕ(x∗ay) �= 0, by Theorem 2.6. Let α = −ϕ(x∗ay)
ϕ(x∗ax)

. Then

ϕ(x∗a(αx + y)) = −ϕ(x∗ay)
ϕ(x∗ax)

ϕ(x∗ax) + ϕ(x∗ay) = 0.

Therefore x ⊥a
B J (αx + y).

Further, the next result gives us some more examples of a-Birkhoff–James orthog-
onality for elements of A to some appropriate elements.

Corollary 2.7 Let A be a unital C∗-algebra and let a ∈ A be positive and invertible.
For each x, y ∈ A, we have

x ⊥a
B J

(
‖x‖2a ya

1
2 − ya− 1

2 〈x, x〉a
)

.
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Proof For the convenience, x∗ax and x∗ay are shown with the symbols 〈x, x〉a and
〈x, y〉a, respectively for all x, y ∈ A. For x = 0 or y = 0, the statement is trivial.
Now, assume that x, y are nonzero elements of A. Since a is invertible, there exists
ϕ ∈ Sa(A) such that ϕ(〈x, x〉a) = ‖x‖2a by Proposition 1.4. The Cauchy–Schwarz
inequality and (1.1) tell us

∣∣ϕ(〈
x, ‖x‖2a y a

1
2 − y a− 1

2 〈x, x〉a
〉
a

)∣∣2
= ∣∣ϕ(‖x‖2a 〈x, y〉a a 1

2 − 〈x, y〉a a− 1
2 〈x, x〉a

)∣∣2
= |ϕ(〈x, y〉a(‖x‖2a a 1

2 − a− 1
2 〈x, x〉a

)|2
≤ ϕ(〈x, y〉a〈y, x〉a) ϕ(‖x‖4a a − 2‖x‖2a 〈x, x〉a + 〈x, x〉a a−1〈x, x〉a)
= ϕ(〈x, y〉a〈y, x〉a)

(‖x‖4a ϕ(a) − 2‖x‖2a ϕ(〈x, x〉a) + ϕ((x�x)∗a(x�x))
)

≤ ϕ(〈x, y〉a〈y, x〉a) (‖x‖4a − 2‖x‖4a + ‖x�x‖2a)
= ϕ(〈x, y〉a〈y, x〉a)(‖x‖4a − 2‖x‖4a + ‖x‖4a) = 0.

It follows that ϕ(〈x, ‖x‖2a y a
1
2 − y a− 1

2 〈x, x〉a〉a) = 0. Consequently, Theorem 2.6
implies that

x ⊥a
B J

(
‖x‖2a ya

1
2 − ya− 1

2 〈x, x〉a
)

. ��
The a-algebraic numerical range of any element x ∈ A is defined by

Va(x) = {ϕ(ax) : ϕ ∈ Sa(A)}.

It has been proved in [1, Theorem 4.7] that Va(x) is a nonempty convex and compact
subset of complex numbers for all x ∈ Aa = A, since a is invertible. An extension
of the William’s Theorem [19, Theorem 1] is obtained in [2, Theorem 2.14].

The following direct result of Theorem 2.6 gives us an alternative proof for this
fact.

Corollary 2.8 Let x ∈ A. Then 0 ∈ Va(x) if and only if ‖x − λ1A‖a ≥ |λ| for all
λ ∈ C.

Proof Since 0 ∈ Va(x), there is ϕ ∈ Sa(A) such that ϕ(1Aax) = ϕ(ax) = 0.
Also, we have ϕ(1∗

Aa1A) = ϕ(a) = 1 = ‖1A‖2a . It follows from Theorem 2.6 that
1A ⊥a

B J x, which implies that ‖x − λ1A‖a ≥ |λ| for all λ ∈ C.

Now, if ‖λ1A − x‖a = ‖x − λ1A‖a ≥ |λ| for all λ ∈ C, then 1A ⊥a
B J x, by the

homogeneity of the Birkhoff–James orthogonality. So there is ϕ ∈ Sa(A) such that
ϕ(ax) = 0. Therefore 0 ∈ Va(x). ��

LetA be a unital C∗-algebra and let x ∈ A. Suppose that B is a subspace ofA. An
element y0 ∈ B is said to be a best approximation to x in B if

‖x − y0‖ = dist(x,B) := inf{‖x − y‖ : y ∈ B}.
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The problem of finding characterizations of orthogonality of an element to subspace
B is closely related to the best approximation problems. A specific question is when
is the zero vector a best approximation to x from B? This is the same as asking when
is x orthogonal to B? Due to the Theorem 1.1, it has been proved in [5, 9] that for any
elements x and y of C∗-algebra A, 0 is a best approximation to x in B = Cy if and
only if there exists f ∈ S(A) such that f (x∗x) = ‖x‖2 and f (x∗y) = 0. Moreover,
a generalized version of this fact has been proved in [13] for any element x and for
any subspace B of A. As an application of Theorem 2.6, we present the following
characterization of the best approximation for an element of A with respect to the
norm ‖ · ‖a . To achieve this goal, we need the following nice result from [2].

Theorem 2.9 [2, Theorem 2.13] Let A be a unital C∗-algebra and let a be a positive
element of A. Let f : aAa → C be a linear functional such that f (a) = 1 and
| f (az)| ≤ ‖z‖a for all z ∈ Aa . Then there exists ϕ ∈ Sa(A) such that ϕ(az) = f (az)
for all z ∈ Aa .

Theorem 2.10 Let A be a unital C∗-algebra, a ∈ A be a positive and invertible
element and let B be a subspace of A. Then y0 ∈ B is a best approximation to an
element x ∈ A with respect to ‖ · ‖a if and only if there exists ϕ ∈ Sa(A) such that

ϕ((x − y0)
∗a(x − y0)) = ‖x − y0‖2a

and

ϕ(x∗ay) = ϕ(y∗
0ay) (∀y ∈ B).

Proof If A is commutative, then the desired result immediately follows from [13,
Theorem 1.1] andCorollary 2.3. Now, suppose thatA is a noncommutativeC∗-algebra
and y0 ∈ B is a best approximation to x with respect to ‖ · ‖a . Since

dis(x − y0,B) = inf
y′∈B

‖x − y0 − y′‖a = inf
y′∈B

‖x − (y0 + y′)‖a = dis(x,B),

without loss of generality, we may assume that y0 = 0.
Now, suppose that x ∈ A and there exists ϕ ∈ Sa(A) such that ϕ(x∗ax) = ‖x‖2a

and ϕ(x∗ay) = 0 for all y ∈ B. By Theorem 2.6 and homogeneity of a-Birkhoff–
James orthogonality, we conclude that ‖x−λy‖a ≥ ‖x‖a for all y ∈ B and all λ ∈ C.

Hence

‖x‖a = inf
y∈B

‖x − y‖a = dis(x,B).

Therefore y0 = 0 is a best approximation to x in B.

Conversely, suppose that y0 = 0 is a best approximation to x in B. Then we have
‖x‖a ≤ ‖x + λy‖a for all y ∈ B and all λ ∈ C. Theorem 2.6 tells us for each y ∈ B
there exists ϕy ∈ Sa(A) such that ϕy(x∗ax) = ‖x‖2a and ϕy(x∗ay) = 0.

LetM = {αx∗ax+βa+x∗ay : α, β ∈ C, y ∈ B}be a subspace ofAgenerated by
x∗ax, a and x∗aB. Since a is invertible, it is known that x has a unique decomposition
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x = x1 + i x2 such that x1 and x2 are a-selfadjoint. In fact, x1 = x + x�

2
and x2 =

x − x�

2i
. Hence

M = {α(x1 + i x2)
∗a(x1 + i x2) + βa + (x1 + i x2)

∗ay : α, β ∈ C, y ∈ B}
= {α(x∗

1a − i x∗
2a)(x1 + i x2) + βa + (x∗

1a − i x∗
2a)y : α, β ∈ C, y ∈ B}

= {α(ax1 − iax2)(x1 + i x2) + βa + (ax1 − iax2)y : α, β ∈ C, y ∈ B}
= {a (α(x1 − i x2)(x1 + i x2) + β1A + (x1 − i x2)y) : α, β ∈ C, y ∈ B}.

Define the mapping ψ : M → C by

ψ(αx∗ax + βa + x∗ay) = α‖x‖2a + β.

Clearly ψ is a linear mapping. To show that ψ is well defined, it is enough to prove
that if αx∗ax + βa + x∗ay = 0, then ψ(αx∗ax + βa + x∗ay) = 0. Note that for
each α, β ∈ C and any y ∈ B, we have ϕy(αx∗ax + βa + x∗ay) = α‖x‖2a + β,

since ϕy(a) = 1, ϕy(x∗ax) = ‖x‖2a and ϕy(x∗ay) = 0. Now, let u(α, β, y) =
α(x1 − i x2)(x1 + i x2) + β1A + (x1 − i x2)y for all α, β ∈ C and all y ∈ B. Then by
the Cauchy-Schwartz inequality, we get

|ψ(αx∗ax + βa + x∗ay)| = | α ‖x‖2a + β | = |ϕy(αx
∗ax + βa + x∗ay)|

= |ϕy(au(α, β, y))| = |ϕy(a
1
2 a

1
2 u(α, β, y))|

≤
√

ϕy(a)

√
ϕy(u(α, β, y)∗a u(α, β, y))

=
√

ϕy(u(α, β, y)∗a u(α, β, y))

≤ ‖u(α, β, y)‖ = ‖α(x1 − i x2)(x1 + i x2) + β1A + (x1 − i x2)y‖a . (2.8)

Ifαx∗ax+βa+x∗ay = 0, then a(α(x1−i x2)(x1+i x2)+β1A+(x1−i x2)y) = 0, and
so ‖α(x1−i x2)(x1+i x2)+β1A+(x1−i x2)y‖a = 0.Thusψ(αx∗ax+βa+x∗ay) =
ψ(0) = 0, by (2.8).

Define N : aA → [0,∞) by N (az) = ‖z‖a for all z ∈ A and note that N is a
norm on aA. Moreover, (2.8) follows that

|ψ(αx∗ax + βa + x∗ay)| ≤ N (a(α(x1 − i x2)(x1 + i x2) + β1A + (x1 − i x2)y))

= N (αx∗ax + βa + x∗ay).

Hence ‖ψ‖ ≤ 1 with respect to the normN , and therefore ψ : (M,N (·)) ⊆ aA →
C is a bounded linear functional. The Hahn–Banach Theorem tells usψ can be extend
to a linear functional f : aA → C such that ‖ f ‖ = ‖ψ‖ ≤ 1, f |(M,N (·)) = ψ and
f (a) = 1. In addition,

| f (az)| ≤ ‖ f ‖N (az) ≤ N (az) = ‖z‖a (∀z ∈ A).
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Taking the above considerations into account, by Theorem 2.9 one can find ϕ ∈ Sa(A)

such that ϕ(az) = f (az) for all z ∈ A. Therefore, there exists ϕ ∈ Sa(A) such that

ϕ(x∗ax) = ϕ((x1 + i x2)
∗a(x1 + i x2)) = ϕ(a(x1 − i x2)(x1 + i x2))

= f (a(x1 − i x2)(x1 + i x2)) = f ((x1 + i x2)
∗a(x1 + i x2))

= f (x∗ax) = ψ(x∗ax) = ‖x‖2a,

and

ϕ(x∗ay) = ϕ((x1 + i x2)
∗ay) = ϕ(a(x1 − i x2)y) = f (a(x1 − i x2)y)

= f ((x1 + i x2)
∗ay) = f (x∗ay) = ψ(x∗ay) = 0 (∀y ∈ B). ��

As a direct consequence of Theorem 2.10, we get the following characterization of
a-Birkhoff–James orthogonality to a subspace in a unital C∗-algebra.

Corollary 2.11 Let B be a subspace of a unital C∗-algebra A and let x be an element
of A. Then x is a-Birkhoff–James orthogonal to B if and only if there is ϕ ∈ Sa(A)

such that ϕ(x∗ax) = ‖x‖2a and ϕ(x∗ay) = 0 for all y ∈ B.

The next result present a generalization of the well-known distance formula which
obtained by Williams in [19].

Corollary 2.12 Let A be a unital C∗-algebra, a ∈ A be a positive and invertible
element and let x ∈ A. Then

dist2(x,C1A) = min
λ∈C ‖x − λ1A‖2a = max{ϕ(x∗ax) − |ϕ(ax)|2 : ϕ ∈ Sa(A)}.

Proof Let α ∈ C be such that ‖x − α1A‖a = dist(x,C1A). For any ϕ ∈ Sa(A) such
that ϕ(ax) = α, we have

ϕ(x∗ax) − |ϕ(ax)|2 = ϕ((x − α1A)∗a(x − α1A)) ≤ ‖x − α1A‖2a = dist2(x,C1A).

Hence

max{ϕ(x∗ax) − |ϕ(ax)|2 : ϕ ∈ Sa(A)} ≤ dist2(x,C1A) = min
λ∈C ‖x − λ1A‖2a .

On the other hand, by Theorem 2.10, there is ϕ ∈ Sa(A) such that

ϕ((x − α1A)∗a(x − α1A)) = ‖x − α1A‖2a and ϕ(ax) = α.

Therefore ϕ(x∗ax) − |ϕ(ax)|2 = dist2(x,C1A), and so

max{ϕ(x∗ax) − |ϕ(ax)|2 : ϕ ∈ Sa(A)} ≥ dist2(x,C1A). ��
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3 Strong a-Birkhoff–James orthogonality in C∗-algebras

Our main goal in this section is to introduce and study the notion of strong Birkhoff–
James orthogonality with respect to the norm ‖ · ‖a in unital C∗-algebras. It should
be noted that what is obtained in this section is an extension and modification of
some results of [4, 6]. We start this section with introducing the concept of strong
a-Birkhoff–James orthogonality.

Definition 3.1 Let A be a unital C∗-algebra and a ∈ A be a positive and invertible
element. An element x ∈ A is said to be strongly a-Birkhoff–James orthogonal to an
element y ∈ A, in short x ⊥a

S−BJ y, if

‖x + yb‖a ≥ ‖x‖a (∀b ∈ A).

Obviously, x ⊥a
S−BJ y implies x ⊥a

B J y for all x, y ∈ A. So for every x, y ∈ A,

we obtain:

〈x, y〉a := x∗ay = 0 ⇒ x ⊥a
S−BJ y ⇒ x ⊥a

B J y. (3.1)

Indeed, if 〈x, y〉a = 0, then for each b ∈ A, we have

‖x + yb‖2a = sup
ϕ∈Sa(A)

ϕ((x + yb)∗a(x + yb))

= sup
ϕ∈Sa(A)

(
ϕ(〈x, x〉a) + 2Reϕ(〈x, y〉ab) + ϕ(〈yb, yb〉a)

)

= sup
ϕ∈Sa(A)

(
ϕ(〈x, x〉a) + ϕ(〈yb, yb〉a)

) ≥ sup
ϕ∈Sa(A)

ϕ(〈x, x〉a) = ‖x‖2a .

Also, note that

x ⊥a
S−BJ y ⇔ x ⊥a

B J yb (∀ b ∈ A). (3.2)

The converses in (3.1) do not hold in general. The following example explains this
fact.

Example 3.2 Let a =
[
2 0
0 1

]
. If x = I2 and y =

[
0 1
1 0

]
, then for every λ ∈ C, we

have

‖x + λy‖2a = sup
h∈La

ϕh((x + λy)∗a(x + λy))

= sup
h∈La

(
(2 + |λ|2)h11 + 2Re((2λ + λ)h12) + (2|λ|2 + 1)h22

)

≥ 1 + |λ|2
2

≥ 1 = ‖x‖2a,
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since h0 =
[ 1

2 0
0 0

]
∈ La .Hence x ⊥a

B J y.But, we may easily check that x �⊥a
S−BJ y.

To this end, note that for b =
[ 1

2 − 1
2− 1

2 − 1
4

]
, we get

‖x + yb‖2a = sup
h∈La

Tr(h(x + yb)∗a(x + yb))

= sup
h∈La

Tr

([
h11 h12
h12 h22

] [ 3
4 0
0 3

8

])

= sup
2h11+h22=1,h11,h22≥0

(
3

4
h11 + 3

8
h22

)
= 3

8
< 1 = ‖x‖2a .

Now, let x = I2 and y =
[
0 0
1 0

]
. If b =

[
b11 b12
b21 b22

]
∈ M2(C) is arbitrary, then

‖x + yb‖2a = sup
h∈La

ϕh((x + yb)∗a(x + yb))

= sup
h∈La

(
(2 + |b11|2)h11 + 2Re(b11(1 + b12)h12) + |1 + b12|2h22

)

≥ 1 + |b11|2
2

≥ 1 = ‖x‖2a .

So x ⊥a
S−BJ y, while clearly, 〈x, y〉a =

[
0 0
1 0

]
�= 0.

Our next result gives us a characterization of stronga-Birkhoff–James orthogonality
based on elements of generalized state space Sa(A) of unital C∗-algebraA. Actually,
this result extend Theorem 2.5 of [4] for the norm ‖ · ‖a on A.

Theorem 3.3 LetA be a unital C∗-algebra, x, y ∈ A and let a ∈ A be a positive and
invertible element. Then the following statements are equivalent:
(1) x ⊥a

S−BJ y;
(2) x ⊥a

B J y〈y, x〉a;
(3) There is ϕ ∈ Sa(A) such that ϕ(x∗ax) = ‖x‖2a and ϕ(〈x, y〉a〈y, x〉a) = 0;
(4) There is ϕ ∈ Sa(A) such that ϕ(x∗ax) = ‖x‖2a and ϕ(〈x, y〉ab) = 0, for all

b ∈ A.

Proof (1) ⇒ (2) If x ⊥a
S−BJ y, then x ⊥a

B J yb for all b ∈ A, by (3.2). Now, let
b = 〈y, x〉a . Then x ⊥a

B J y〈y, x〉a .
(2) ⇒ (3) If x ⊥a

B J y〈y, x〉a, then it follows from Theorem 2.6 that there is ϕ ∈
Sa(A) such that ϕ(x∗ax) = ‖x‖2a and ϕ(〈x, y〉a〈y, x〉a) = ϕ(〈x, y〈y, x〉a〉a) = 0.

(3) ⇒ (4) If there exists ϕ ∈ Sa(A) such that ϕ(x∗ax) = ‖x‖2a and
ϕ(〈x, y〉a〈y, x〉a) = 0, then by the Cauchy–Schwarz inequality, we have

|ϕ((x∗ay)b)|2 ≤ ϕ((x∗ay)(y∗ax)) ϕ(b∗b) = 0, (∀b ∈ A),
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which follows that ϕ(〈x, y〉ab) = 0 for all b ∈ A.

(4) ⇒ (1) It follows directly from Theorem 2.6 and the definition of strong a-
Birkhoff–James orthogonality. ��
Proposition 3.4 Let A be a unital C∗-algebra, x, y ∈ A and let a ∈ A be a positive
and invertible element. If 〈x, y〉a ≥ 0, then

x ⊥a
S−BJ y ⇔ x ⊥a

B J y.

Proof Assume that x ⊥a
B J y. By Theorem 2.6, there exists ϕ ∈ Sa(A) such that

ϕ(〈x, x〉a) = ‖x‖2a and ϕ(〈x, y〉a) = 0. Since 〈x, y〉a ≥ 0, by the Cauchy–Schwarz
inequality, for every b ∈ A, we get

|ϕ(〈x, y〉ab)|2 = |ϕ(〈x, y〉
1
2
a 〈x, y〉

1
2
a b)|2

≤ ϕ(〈x, y〉
1
2
a 〈x, y〉

1
2
a ) ϕ(b∗〈x, y〉

1
2
a 〈x, y〉

1
2
a b)

≤ ϕ(〈x, y〉a) ϕ(b∗〈x, y〉ab) = 0.

Thus ϕ(〈x, y〉ab) = 0 for all b ∈ A. Therefore, Theorem 3.3 shows that x ⊥a
S−BJ y.

��
Theorem 3.5 Let A be a unital C∗-algebra and let a ∈ A be positive and invertible.
If

x ⊥a
S−BJ y ⇔ x ⊥a

B J y (∀x, y ∈ A),

then the C∗-algebra A is commutative.

Proof First, note that Aa = A, since a is invertible. We shall show that for every
x, b ∈ A there is a scalar 0 �= α ∈ C such that

xb ⊥a
S−BJ (xb2 + αxb). (3.3)

If xb = 0, obviously (3.3) holds. Now, let x be an element of A such that xb �= 0.
Then xb �⊥a

B J x . Indeed, if xb ⊥a
B J x, then xb ⊥a

S−BJ x, by the assumption and thus
xb ⊥a

B J xb, by (3.2). It follows that xb = 0, which is not possible.
Moreover, by the definition of ‖ · ‖a and invertibility of a, there is ϕ ∈ Sa(A) such

that ϕ(〈xb, xb〉a) = ‖xb‖2a . Hence by Theorem 2.6, we conclude that ϕ(〈xb, x〉a) �=
0. Now, take α = −‖xb‖a

ϕ(〈xb, x〉a) . Thus

ϕ(〈xb, xb + αx〉a) = ‖xb‖2a − ‖xb‖2a
ϕ(〈xb, x〉a)ϕ(〈xb, x〉a) = 0.

The assumption and the Theorem 2.6 yields that xb ⊥a
S−BJ (xb+αx).Hence xb ⊥a

B J
(xb2 + αxb), by (3.2), and so

xb ⊥a
S−BJ (xb2 + αxb),
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by the hypothesis.
If A is not commutative, there will a nonzero b ∈ A with b2 = 0 (see [12], p. 68).

By (3.3), for x = b∗ there is a scalar α �= 0 such that xb ⊥a
S−BJ αxb. Hence

b∗b = xb = 0, and so b = 0. This contradiction shows that A is commutative. ��
The next two results are direct consequences of Theorem 1.3, Corollary 2.3 and

Theorem 3.5.

Corollary 3.6 Let A be a unital C∗-algebra and let a ∈ A be positive and invertible.
The following statements are equivalent:
(1) For all x, y ∈ A, x ⊥a

B J y if and only if 〈x, y〉a = 0;
(2) For all x, y ∈ A, x ⊥a

B J y if and only if x ⊥a
S−BJ y;

(3) A is isomorphic to C.

Corollary 3.7 Let A be a unital C∗-algebra and let a ∈ A be positive and invertible.
If

x ⊥a
S−BJ y ⇔ 〈x, y〉a = 0 (∀x, y ∈ A),

then Z(A) ∼= C1A.

Let A be a unital C∗-algebra and a ∈ A be positive and invertible. If z ∈ A
is a noninvertible element of A, then zz∗a is not invertible, and so 0 ∈ σ(zz∗a) =
σa(zz∗a) ⊆ Va(zz∗a), by [15, Remark 2.13 andCorollary 3.9]. Hence there exists ϕ ∈
Sa(A) such that ϕ(〈1A, z〉a〈z, 1A〉a) = ϕ(azz∗a) = 0. Also, we have ϕ(1∗

Aa1A) =
ϕ(a) = 1 = ‖1A‖2a . Consequently, Theorem 3.3 implies that

1A ⊥a
S−BJ z, and so 1A ⊥a

B J z. (3.4)

It has been shown in [7] that the left-additivity (right-additivity) of the (strong)
Birkhoff–James orthogonality on a unital C∗-algebra implies that A is isomorphic
to C1A. As a final result of this section, we will prove that if the (strong) a-Birkhoff–
James orthogonality is right-additive on a unital C∗-algebra A, then the center of A
is trivial; i.e., Z(A) ∼= C1A.

Theorem 3.8 Let A be a unital C∗-algebra and let a be a positive and invertible
element ofA. If (strong) a-Birkhoff–James orthogonality is right-additive onA, then
Z(A) ∼= C1A.

Proof First, assume that A is commutative. Then Z(A) = A ∼= C1A, by Corol-
lary 2.3 and [7, Remark 2.8]. Now, suppose thatA is noncommutative and x ∈ A is a
noninvertible element ofA. Then by (3.4), 1A ⊥a

B J x∗x . If we assume that ax = xa,

then (2.4) follows that ‖x∗x‖a = ‖x∗x‖. Hence ‖x∗x‖a1A − x∗x is not invertible,
since

‖x∗x‖a = ‖x∗x‖ ∈ σ(x∗x).
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Thus 1A ⊥a
B J (‖x∗x‖a1A − x∗x). The right-additivity of a-Birkhoff–James orthog-

onality follows that 1A ⊥a
B J ‖x∗x‖a1A. So ‖x∗x‖a = ‖x‖2a = 0, because of the

non-degeneracy of a-Birkhoff–James orthogonality. Hence x = 0. Therefore we
have proved that every nonzero element of C∗-subalgebra Z(A) is invertible, and
so Z(A) ∼= C1A by the Gelfand–Mazur Theorem. A similar argument works for
strong a-Birkhoff–James orthogonality. ��
Remark 3.9 Suppose that a-Birkhoff–James orthogonality is left-additive in unitalC∗-
algebra A and let x ∈ A be positive and noninvertible such that xa = ax . Then
the C∗-subalgebra, B := C∗(1A, a, x), generated by 1A, a and x is commutative.
According to the Corollary 2.3, Birkhoff–James orthogonality is left-additive on B.

Hence x = 0, by [7, Remark 2.8]. It follows that every nonzero element of Z(A) is
invertible, and so Z(A) is trivial. It should be noted that the same proof works for
right-additivity of a-Birkhoff–James orthogonality. However, a different approach is
presented to study right-additivity in the previous Theorem.
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