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Abstract
We study the Bloch and the little Bloch spaces of harmonic functions on the real
hyperbolic ball. We show that the Bergman projections from L∞(B) to B, and from
C0(B) toB0 are onto.Weverify that the dual spaceof thehyperbolic harmonicBergman
spaceB1

α isB and its predual isB0. Finally, we obtain atomic decompositions of Bloch
functions as series of Bergman reproducing kernels.

Keywords Real hyperbolic ball · Hyperbolic harmonic function · Bloch space ·
Bergman projection · Atomic decomposition
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1 Introduction

The Bloch space of holomorphic functions on the unit disk or the complex unit ball
have been extensively studied (see [24, Chapter 3]). Some well-known properties are
the following: The Bergman projection maps L∞ boundedly onto the Bloch space;
the dual of the weighted Bergman space B1

α (α > −1) is the Bloch space, and its
predual is the little Bloch space; Bloch functions admit atomic decomposition, that
is, they can be represented as series of Bergman reproducing kernels. It is also well
known that analogous results hold for the Bloch space of harmonic functions on the
real unit ball (see [4, 10, 12, 21]). The purpose of this paper is to consider the Bloch
space of invariant harmonic functions on the real hyperbolic ball and verify that the
above properties also hold in this setting.
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For n ≥ 2 and x, y ∈ R
n , let 〈x, y〉 = x1y1 + · · · + xn yn be the Euclidean inner

product, and |x | = √〈x, x〉 the corresponding norm. Let B = Bn = {x ∈ R
n : |x | <

1} be the unit ball, and S = ∂B the unit sphere.
The hyperbolic ball is B equipped with the hyperbolic metric

ds2 = 4

(1 − |x |2)2
n∑

i=1

dx2i .

For a C2 function f , the hyperbolic (invariant) Laplacian �h is defined by

�h f (a) = �( f ◦ ϕa)(0) (a ∈ B),

where � = ∂2/∂x21 + · · · + ∂2/∂x2n is the Euclidean Laplacian and ϕa is the invo-
lutory Möbius transformation given in (2.2) that exchanges a and 0. Up to a factor
1/4, �h is the Laplace–Beltrami operator associated with the hyperbolic metric. A
straightforward calculation shows

�h f (a) = (1 − |a|2)2� f (a) + 2(n − 2)(1 − |a|2)〈a,∇ f (a)〉,

where ∇ = (
∂/∂x1, . . . , ∂/∂xn

)
is the Euclidean gradient. We refer the reader to [18,

Chapter 3] for details.
AC2 function f : B → C is called hyperbolic (invariant) harmonic orH-harmonic

on B if �h f (x) = 0 for all x ∈ B. We denote by H(B) the space of all H-harmonic
functions equipped with the topology of uniform convergence on compact subsets.

Let ν be the Lebesgue measure onB normalized, so that ν(B) = 1, and for α > −1,
let dνα(x) = (1 − |x |2)αdν(x). For 0 < p < ∞, denote the Lebesgue classes with
respect to dνα by L

p
α(B). TheH-harmonicweightedBergman spaceB p

α is the subspace
L p

α(B) ∩ H(B). When p = 2, B2
α is a reproducing kernel Hilbert space, and for each

x ∈ B, there exists Rα(x, ·) ∈ B2
α , such that

f (x) =
∫

B

f (y)Rα(x, y) dνα(y) ( f ∈ B2
α). (1.1)

The reproducing kernel Rα is real-valued and the conjugation above can be deleted.
Rα(x, y) = Rα(y, x), and so, Rα is H-harmonic as a function of each variable. We
refer the reader to [17] and [18, Chapter 10] for details.

For α > −1, the Bergman projection operator Pα is defined by

Pαφ(x) =
∫

B

Rα(x, y)φ(y) dνα(y),

for φ ∈ L1
α . In [22], estimates for the reproducing kernels have been obtained, and it is

shown thatwhen 1 ≤ p < ∞, Pγ : L p
α → B p

α is bounded if and onlyα+1 < p(γ +1).
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The purpose of this paper is to consider the p = ∞, i.e., the Bloch space, case. For
a C1 function f , the hyperbolic gradient ∇h is defined by

∇h f (a) = −∇( f ◦ ϕa)(0) = (1 − |a|2)∇ f (a).

The H-harmonic Bloch space B consists of all f ∈ H(B), such that

pB( f ) = sup
x∈B

|∇h f (x)| = sup
x∈B

(1 − |x |2)|∇ f (x)| < ∞. (1.2)

pB is a seminormand‖ f ‖B = | f (0)|+pB( f ) is a normonB. The littleBloch spaceB0
is the subspace consisting of functions f satisfying lim|x |→1−(1− |x |2)|∇ f (x)| = 0.

The properties we state below for theH-harmonic Bloch space B are similar to the
holomorphic or the harmonic case. However, we would like to point out that there are
differences between these and theH-harmonic case. For example, it is well known that
polynomials are dense in the holomorphic little Bloch space, and similarly, harmonic
polynomials are dense in the harmonic little Bloch space. However, this is not true
in the H-harmonic case. In fact, when the dimension n is odd, there are not any non-
constant H-harmonic polynomials. Besides, some basic properties of harmonic (or
holomorphic) functions do not hold for H-harmonic functions. For example, if f is
harmonic, then the partial derivative ∂ f /∂xi and the dilation fr (x) = f (r x) are also
harmonic. However, neither of these are true for H-harmonic functions. Therefore,
even if the final results are similar, many proofs in the harmonic (or holomorphic) case
do not directly carry over to the H-harmonic case.

Our first result is about projections onto B and B0. Let L∞(B) be the Lebesgue
space of essentially bounded functions, C(B) be the space of functions continuous on
B, and C0(B) be its subspace consisting of functions vanishing on ∂B.

Theorem 1.1 For every α > −1, Pα maps L∞(B) boundedly onto B. It also maps
C(B) and C0(B) boundedly onto B0.

It has already been verified in [22, Theorem 1.5] that Pα : L∞(B) → B is bounded
and the main aspect of the above theorem is the surjectivity. To achieve this, we first
characterize B and B0 in terms of certain fractional differential operators that are
defined in Sect. 3. These operators are compatible withH-harmonic functions and the
reproducing kernels, and to understand the properties of B, they are more suited than
∇h or ∇ used in (1.2).

We next consider the duality problem. For 1 < p < ∞, the dual of the hyperbolic

Bergman space B p
α can be identified with B p′

α , where p′ = p/(p− 1) is the conjugate
exponent of p ([22, Corollary 1.4]). We complete the missing p = 1 case.

Theorem 1.2 For α > −1, the dual of B1
α can be identified with B under the pairing

〈 f , g〉α = lim
r→1−

∫

rB
f (x)g(x) dνα(x). (1.3)

More precisely, to each 	 ∈ (B1
α)∗, there corresponds a unique g ∈ B with ‖g‖B

equivalent to ‖	‖, such that 	( f ) = 〈 f , g〉α .
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Similarly, for every α > −1, the dual of B0 can be identified with B1
α under the

pairing (1.3).

For an unbounded g ∈ B and f ∈ B1
α , the integral

∫
B
f (x)g(x)dνα(x) may not

converge absolutely; however, the limit in (1.3) always exists. In the case of the holo-
morphic Bloch space on the unit ball of Cn , g(z) = log 1/(1 − z1) is an unbounded
Bloch function. We give an example of an unboundedH-harmonic Bloch function in
Lemma 6.2.

As our final result, we prove atomic decomposition of H-harmonic Bloch func-
tions. Atomic decomposition of harmonic Bergman and Bloch functions has been
first obtained in [4] (see also [3]). In the H-harmonic case, atomic decomposition of
Hardy spaces is considered in [9], and Bergman spaces in [23].

The pseudo-hyperbolic metric ρ(a, b) for a, b ∈ B is given by ρ(a, b) = |ϕa(b)|.
For 0 < r < 1, let Er (a) = { x ∈ B : ρ(x, a) < r } be the pseudo-hyperbolic
ball with center a and radius r . A sequence {am} of points of B is called r -
separated if ρ(am, ak) ≥ r for m �= k. An r -separated sequence is called an
r -lattice if

⋃∞
m=1 Er (am) = B. Let �∞ be the space of bounded sequences with

norm ‖{λm}‖�∞ = supm≥1|λm |, and c0 be the subspace consisting of sequences that
converge to 0.

Theorem 1.3 Let α > −1. There is an r0 < 1/2 depending only on n and α, such
that if {am} is an r-lattice with r < r0, then for every f ∈ B (resp. B0), there exists
{λm} ∈ �∞ (resp. c0), such that

f (x) =
∞∑

m=1

λm
Rα(x, am)

‖Rα(·, am)‖B (x ∈ B), (1.4)

where the series converges absolutely and uniformly on compact subsets of B and the
norm ‖{λm}‖�∞ is equivalent to the norm ‖ f ‖B.

By Lemma 7.1, the norm ‖Rα(·, am)‖B is equivalent to (1− |am |2)−(α+n) and the
theorem remains true if one uses the representation

f (x) =
∞∑

m=1

λm(1 − |am |2)α+n Rα(x, am) (x ∈ B) (1.5)

instead of (1.4).

2 Preliminaries

We denote positive constants whose exact values are inessential by the letter C . For
two positive expressions X and Y , we write X � Y to mean X ≤ CY . If both X ≤ CY
and Y ≤ CX , we write X ∼ Y .

For x, y ∈ B, we define

[x, y] :=
√
1 − 2〈x, y〉 + |x |2|y|2.
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Clearly, [x, y] is symmetric; [x, 0] = 1, and if y �= 0, then [x, y] = ∣∣|y|x − y/|y|∣∣.
Therefore

[x, y] ≥ 1 − |x ||y| (x, y ∈ B). (2.1)

Denote byM(B) the group of Möbius transformations that preserve B. For a ∈ B,
the canonical Möbius transformation that exchanges a and 0 is given by

ϕa(x) = a|x − a|2 + (1 − |a|2)(a − x)

[x, a]2 (x ∈ B). (2.2)

It is an involution and for all x ∈ B the following identity holds:

1 − |ϕa(x)|2 = (1 − |a|2)(1 − |x |2)
[x, a]2 . (2.3)

The determinant of the Jacobian matrix of ϕa satisfies ([18, Theorem 3.3.1])

|det Jϕa(x)| = (1 − |ϕa(x)|2)n
(1 − |x |2)n . (2.4)

The equality

[a, ϕa(x)] = 1 − |a|2
[x, a] (2.5)

follows from (2.3) and is a special case of [15, Theorem 1.1].
For a, b ∈ B, the pseudo-hyperbolic metric ρ(a, b) = |ϕa(b)| satisfies the equality

ρ(a, b) = |a − b|
[a, b] . (2.6)

The pseudo-hyperbolic ball Er (a) is also a Euclidean ball with ([18, Theorem 2.2.2])

center = (1 − r2)a

1 − |a|2r2 and radius = (1 − |a|2)r
1 − |a|2r2 . (2.7)

For a proof of the following lemma, see [2, Lemma 2.1 and 2.2].

Lemma 2.1 (i) For all a, b ∈ B

1 − ρ(a, b)

1 + ρ(a, b)
≤ 1 − |a|

1 − |b| ≤ 1 + ρ(a, b)

1 − ρ(a, b)
.

(ii) For all a, b, x ∈ B

1 − ρ(a, b)

1 + ρ(a, b)
≤ [x, a]

[x, b] ≤ 1 + ρ(a, b)

1 − ρ(a, b)
.
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The hyperbolic metric on B is given by

β(a, b) = log
1 + ρ(a, b)

1 − ρ(a, b)
(a, b ∈ B).

Both metrics ρ and β are Möbius invariant.
Let σ be the normalized surfacemeasure onS. For f ∈ L1(B), the polar coordinates

formula is

∫

B

f dν(x) = n
∫ 1

0
rn−1

∫

S

f (rζ ) dσ(ζ )dr .

Proof of the following two estimates can be found in [13, Proposition 2.2].

Lemma 2.2 Let s > −1 and t ∈ R. For all x ∈ B

∫

S

dσ(ζ )

|x − ζ |n−1+t
∼

∫

B

(1 − |y|2)s
[x, y]n+s+t

dν(y) ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

(1 − |x |2)t , if t > 0;
1 + log

1

1 − |x |2 , if t = 0;
1, if t < 0,

where the implied constants depend only on n, s, t .

3 Reproducing kernels and fractional differential operators

In this section, we review the properties of the reproducing kernels and define a family
of differential operators Dt

s .
Denote by Hm(Rn) the space of all homogeneous (Euclidean) harmonic polyno-

mials of degree m on R
n . It is finite dimensional with dim Hm ∼ mn−2 (m ≥ 1).

By homogeneity, qm ∈ Hm(Rn) is determined by its restriction to S. This restriction
is called a spherical harmonic and the space of spherical harmonics of degree m is
denoted by Hm(S). Spherical harmonics of different degrees are orthogonal in L2(S)

∫

S

qm(ζ )qk(ζ ) dσ(ζ ) = 0 (m �= k, qm ∈ Hm(S), qk ∈ Hk(S)). (3.1)

For every η ∈ S, there exists Zm(η, ·) ∈ Hm(S), called the zonal harmonic of degree
m with pole η, such that for all qm ∈ Hm(S)

qm(η) =
∫

S

qm(ζ )Zm(η, ζ ) dσ(ζ ). (3.2)

Zm(·, ·) is real-valued, symmetric, and homogeneous of degree m in each variable.
On the diagonal, Zm(ζ, ζ ) = dim Hm , and in general, |Zm(η, ζ )| ≤ Zm(ζ, ζ ). Thus

|Zm(η, ζ )| � mn−2 (m ≥ 1). (3.3)
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For details, we refer the reader to [1, Chapter 5].
For qm ∈ Hm(Rn), the solution of the H-harmonic Dirichlet problem on B with

boundary data qm |S is given by ([18, Theorem 6.1.1])

g(x) = Sm(|x |)qm(x) (x ∈ B). (3.4)

That is, g is H-harmonic on B, continuous on B and equals qm on S. Here, the factor
Sm(r) (0 ≤ r ≤ 1) is given by

Sm(r) = F(m, 1 − 1
2n;m + 1

2n; r2)
F(m, 1 − 1

2n;m + 1
2n; 1) , (3.5)

where

F(a, b; c; z) =
∞∑

k=0

(a)k(b)k
(c)kk! zk (3.6)

is the Gauss hypergeometric function. Sm depends also on the dimension n, but we do
not write this for shortness.When the dimension n is even the hypergeometric series in
(3.5) terminates and Sm is a polynomial, but this is not true in odd dimensions. Sm(r)
is a decreasing function of r , and is normalized so that Sm(1) = 1. When m ≥ 1, the
estimate

1 ≤ Sm(r) ≤ Cmn/2−1 (0 ≤ r ≤ 1) (3.7)

holds, where C = C(n) is a constant depending only on n (see [17, Proposition I.6],
[20, Lemma 2.6] or [22, Lemma 2.13]). When m = 0, S0(r) = 1.

EveryH-harmonic function onB can bewritten as a series of terms of the form (3.4).
More precisely, for every f ∈ H(B), there exists a unique sequence of polynomials
qm ∈ Hm(Rn), such that

f (x) =
∞∑

m=0

Sm(|x |)qm(x) (x ∈ B),

where the series converges absolutely and uniformly on compact subsets ofB (see [8],
[11], [14], [18, Theorem 6.3.1]).

The hyperbolic (invariant) Poisson kernel and its series expansion are given by [18,
Theorem 6.2.2]

Ph(x, ζ ) = (1 − |x |2)n−1

|x − ζ |2(n−1)
=

∞∑

m=0

Sm(|x |)Zm(x, ζ ) (x ∈ B, ζ ∈ S). (3.8)

For f ∈ L1(S), the Poisson integral of f is Ph[ f ](x) = ∫
S
Ph(x, ζ ) f (ζ ) dσ(ζ ).
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For the Bergman kernels Rα(x, y), a closed formula is not known; however, the
following series expansion holds: ([17, Corollary III.5], [19, Theorem 5.3])

Rα(x, y) =
∞∑

m=0

cm(α)Sm(|x |)Sm(|y|)Zm(x, y) (α > −1, x, y ∈ B), (3.9)

where the coefficients cm(α) are determined by

1

cm(α)
= n

∫ 1

0
r2m+n−1S2m(r)(1 − r2)α dr . (3.10)

An explicit expression for the above integral is not known either.However, the estimate

cm(α) ∼ mα+1 (m → ∞) (3.11)

holds (see ([17, Theorem III.6]) fromwhich it follows that the series in (3.9) converges
absolutely and uniformly on K × B for every compact K ⊂ B.

It is clear from (3.10) that cm(α) > 0. Using these coefficients, we define a family
of fractional differential operators.

Definition 3.1 Let s, t be real numbers satisfying s > −1 and s+t > −1. If f ∈ H(B)

has the series expansion f (x) = ∑∞
m=0 Sm(|x |)qm(x), then define

Dt
s f (x) =

∞∑

m=0

cm(s + t)

cm(s)
Sm(|x |)qm(x). (3.12)

The operator Dt
s multiplies the mth term of the series expansion of f with the

coefficient cm(s + t)/cm(s) ∼ mt by (3.11). Note that the main parameter t can take
any real value as long as s is large enough. Similar types of operators are frequently
used in the theory of holomorphic and harmonic Bergman spaces and act as differential
operators of order t (integral if t < 0). Our use of Dt

s follows [6] and [5]. For H-
harmonic functions, slightly different operatorswithmultipliers�(m+s)/�(m+s+t)
are used in [16] and Hardy–Littlewood inequalities are obtained.

Lemma 3.2 For f ∈ H(B), the series in (3.12) converges absolutely and uniformly
on compact subsets of B, and so Dt

s f is in H(B). In addition, Dt
s : H(B) → H(B)

is continuous when H(B) is equipped with the topology of uniform convergence on
compact subsets.

This lemma can be verified in the same way as [6, Theorems 3.1 and 3.2]. An
additional factor Sm(r) appears, but it can easily be handled with the estimate (3.7).
The operator Dt

s is invertible with

D−t
s+t D

t
s = Dt

s D
−t
s+t = Id. (3.13)
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The role of s is minor and one reason for its inclusion is to simplify the action of Dt
s

on the reproducing kernel Rs

Dt
sRs(x, y) = Rs+t (x, y). (3.14)

If f ∈ H(B) is integrable, then Dt
s f can be written as an integral.

Lemma 3.3 Let s > −1, s + t > −1 and f ∈ L1
s (B).

(i) Dt
s Ps f (x) = Dt

s

∫
B
Rs(x, y) f (y)dνs(y) = ∫

B
Rs+t (x, y) f (y)dνs(y).

(ii) If f is also inH(B), then Dt
s f (x) = ∫

B
Rs+t (x, y) f (y)dνs(y).

Proof (i) For fixed x ∈ B, the series in (3.9) converges uniformly for y ∈ B. Thus

∫

B

Rs(x, y) f (y) dνs(y) =
∞∑

m=0

cm(s)Sm(|x |)
∫

B

Zm(x, y)Sm(|y|) f (y) dνs(y)

=:
∞∑

m=0

cm(s)Sm(|x |)qm(x). (3.15)

The function qm is in Hm(Rn) and the series in (3.15) converges absolutely and uni-
formly on compact subsets of B by (3.7), (3.11), and the inequality |Zm(x, y)| �
|x |mmn−2. Thus, the series in (3.15) is the (unique) series expansion of the left-hand
side and by (3.12), Dt

s

∫
B
Rs(x, y) f (y)dνs(y) = ∑∞

m=0 cm(s+ t)Sm(|x |)qm(x). This
series equals

∫
B
Rs+t (x, y) f (y)dνs(y) by the same reasoning.

(ii) If f ∈ L1
s ∩ H(B), then Ps f = f , because the reproducing property in (1.1)

holds also for f ∈ B1
α ([22, Lemma 7.1]).

Upper estimates of the reproducing kernels Rα have been obtained in [22, Theo-
rem 1.2]. Here, ∇x means that the gradient is taken with respect to the variable x .

Lemma 3.4 Let α > −1. There exists a constant C = C(n, α) > 0, such that for all
x, y ∈ B

(a) |Rα(x, y)| ≤ C

[x, y]α+n
;

(b) |∇xRα(x, y)| ≤ C

[x, y]α+n+1 .

The following projection theorem is proved in [22, Theorem 1.1].

Lemma 3.5 Let 1 ≤ p < ∞ and α, γ > −1. The operator Pγ : L p
α → B p

α is bounded
if and only if α + 1 < p(γ + 1). If this holds, Pγ f = f for f ∈ L p

α ∩ H(B).

4 Elementary properties of the Bloch space

We first mention a few basic properties of B and B0. The verifications are omitted as
they are straightforward and are similar to the holomorphic or the Euclidean harmonic
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case. The space B is a Banach space and B0 is a closed subspace of B. The seminorm
pB is Möbius invariant, i.e., pB( f ◦ ψ) = pB( f ) for all ψ ∈ M(B). For f ∈ B and
x ∈ B

| f (x) − f (0)| ≤
∣∣∣
∫ 1

0
〈∇ f (t x), x〉 dt

∣∣∣ ≤ 1

2
pB( f )β(x, 0),

by the fundamental theorem of calculus. Replacing f by f ◦ ϕy and x by ϕy(x), with
the Möbius invariance of pB and β, shows

| f (x) − f (y)| ≤ 1

2
pB( f )β(x, y) ( f ∈ B, x, y ∈ B). (4.1)

Since β(x, 0) ≤ 1 + log 1/(1 − |x |), we have the following pointwise bound:

| f (x)| ≤ ‖ f ‖B
(
1 + log

1

1 − |x |
)

( f ∈ B, x ∈ B). (4.2)

There are various results in [7] and [9] which show thatH-harmonic functions can
have different behaviors depending on whether the dimension n is odd or even. We
show one more difference. Let qm ∈ Hm(S). If the dimension n is even, Sm(|x |) is
a polynomial and the Poisson integral Ph[qm](x) = Sm(|x |)qm(x) is an H-harmonic
polynomial. This is not true when the dimension n is odd. In fact, in this case, a
non-constant polynomial cannot be H-harmonic on B.

Lemma 4.1 In odd dimensions, there are no non-constant polynomials in H(B).

Proof Suppose there exists a polynomial p = ∑M
m=0 pm of degree M ≥ 1, where pm

is homogeneous of degreem, such that p ∈ H(B). By [1, Theorem 5.7], the restriction
of pm to the unit sphere S can be written as a sum of spherical harmonics of degree
at most m. Therefore, there exist qm ∈ Hm(S), m = 0, 1, . . . , M , such that for ζ ∈ S,
p(ζ ) = ∑M

m=0 qm(ζ ). Since p isH-harmonic on B, we have p = Ph[p|S] and

p(rζ ) =
M∑

m=0

Sm(r)rmqm(ζ ) (ζ ∈ S, 0 ≤ r ≤ 1). (4.3)

Because p is non-constant, there exist 1 ≤ k ≤ M and η ∈ S, such that qk(η) �= 0.
For 0 ≤ r ≤ 1, we compute the integral I (r) = ∫

S
p(rζ )Zk(η, ζ )dσ(ζ ) in two ways.

First

I (r) =
∫

S

M∑

m=0

pm(rζ )Zk(η, ζ )dσ(ζ ) =
M∑

m=k

rm
∫

S

pm(ζ )Zk(η, ζ )dσ(ζ )

=:
M∑

m=k

amr
m,

(4.4)
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where in the second equality, we use the fact that
∫
S
pm(ζ )Zk(η, ζ )dσ(ζ ) = 0 for

0 ≤ m ≤ k − 1, which follows from [1, Theorem 5.7] and (3.1). Next, if we use (4.3)
with (3.1) and (3.2)

I (r) =
M∑

m=0

Sm(r)rm
∫

S

qm(ζ )Zk(η, ζ )dσ(ζ ) = rk Sk(r)qk(η). (4.5)

Equating (4.4) and (4.5), we see that Sk(r)qk(η) = ∑M
m=k amr

m−k , and since qk(η) �=
0, this implies that Sk(r) is a polynomial of r . This is a contradiction, because when
the dimension n is odd, Sk is not a polynomial for k ≥ 1, since its hypergeometric
series do not terminate.

Lemma 4.2 If qm ∈ Hm(Rn), then Ph[qm |S](x) = Sm(|x |)qm(x) is in B0.

Proof When n = 2, the result is clear since Sm ≡ 1. For n ≥ 3, we need two
elementary facts about hypergeometric series. First

d

dz
F(a, b; c; z) = ab

c
F(a + 1, b + 1; c + 1; z), (4.6)

and second, if �{c − a − b} > 0, then F(a, b; c; z) converges uniformly and so is
bounded on the closed disk {z : |z| ≤ 1}. Now, by (4.6)

∂

∂xi
Sm(|x |)qm(x) = 2xi

m(1 − 1
2n)

m + 1
2n

F(m + 1, 2 − 1
2n;m + 1

2n + 1; |x |2)
F(m, 1 − 1

2n;m + 1
2n; 1) qm(x)

+ Sm(|x |) ∂

∂xi
qm(x).

The hypergeometric function in the first term is bounded, since�{c−a−b} = n−2 >

0. Since the second term is also bounded, the result follows.

Lemma 4.3 For every polynomial p and α > −1, the projection Pα p is in B0.

Proof We can assume that p is homogeneous. By [1, Theorem 5.7] again, p can be
written in the form p = qm + |x |2qm−2 + · · · + |x |2kqm−2k , where k = [m/2] and
q j ∈ Hj (R

n). Thus, it suffices to show that Pα(|x |kq j ) ∈ B0 for all k ≥ 0 and
q j ∈ Hj (R

n). Integrating in polar coordinates with y = |y|ζ = rζ , and then using
the uniform convergence of the series in (3.9) along with (3.1) and (3.2), we see that
Pα

(|x |kq j
)
(x) = ∫

B
Rα(x, y)|y|kq j (y)dνα(y) equals

∞∑

m=0

cm(α)Sm(|x |)
∫ 1

0
nrn−1Sm(r)rk+m+ j (1 − r2)α

∫

S

Zm(x, ζ )q j (ζ )dσ(ζ )dr

= c j (α)S j (|x |)q j (x)
∫ 1

0
nrn−1S j (r)r

k+2 j (1 − r2)αdr

= CSj (|x |)q j (x),
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which belongs to B0 by Lemma 4.2.

Remark 4.4 The above proof shows also that for every polynomial p and α > −1,
Pα p ∈ span

{
Sm(|x |)qm(x) | qm ∈ Hm(Rn),m = 0, 1, 2 . . .

}
.

5 Projections onto the Bloch and the little Bloch space

In this section, we prove Theorem 1.1.

Lemma 5.1 For every α > −1, Pα : L∞(B) → B is bounded. In addition, if f ∈
C(B), then Pα f ∈ B0.

Proof The estimate in Lemma 3.4(b) together with Lemma 2.2 immediately implies
that Pα maps L∞(B) boundedly into B ([22, Theorem 1.5]). Since B0 is closed in B,
by the Stone–Weierstrass theorem and Lemma 4.3, Pα maps C(B) into B0.

To verify the surjectivity part of Theorem 1.1, we first characterize B and B0 in
terms of the differential operators Dt

s . We begin with two estimates. One is similar to
Lemma 2.2, and the other to [23, Lemma 4.3], but they include an extra term β(x, y),
the hyperbolic distance between x and y.

Lemma 5.2 Let s > −1 and t > 0.

(i) There exists a constant C = C(n, s, t) > 0, such that for all x ∈ B

∫

B

β(x, y) (1 − |y|2)s
[x, y]n+s+t

dν(y) ≤ C

(1 − |x |2)t .

(ii) Given ε > 0, there exists 0 < rε < 1, such that for all r with rε < r < 1 and all
x ∈ B

∫

B\Er (x)

β(x, y) (1 − |y|2)s
[x, y]n+s+t

dν(y) <
ε

(1 − |x |2)t .

Proof The proof is similar to the proof of [23, Lemma 4.3], requiring only a minor
modification. For 0 ≤ r < 1, let

Ir (x) := (1 − |x |2)t
∫

B\Er (x)

β(x, y) (1 − |y|2)s
[x, y]n+s+t

dν(y),

where for r = 0, B\E0(x) = B. In the integral make the change of variable y =
ϕx (z). Note that ϕ−1

x (B\Er (x)) = B\rB. Employing (2.3)-(2.5), and the fact that
β(x, ϕx (z)) = β(0, z) by the Möbius-invariance of β, we obtain

Ir (x) =
∫

B\rB
β(0, z) (1 − |z|2)s

[x, z]n+s−t
dν(z).
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Using β(0, z) ≤ 1 + log 1/(1 − |z|) and integrating in polar coordinates yields

Ir (x) ≤
∫ 1

r
nτ n−1

(
1 + log

1

1 − τ

)
(1 − τ 2)s

∫

S

dσ(ζ )

|τ x − ζ |n+s−t
dτ.

Estimating the inner integral with Lemma 2.2 in three cases and using the inequality
1 − τ 2|x |2 ≥ 1 − τ 2, we see that

∫

S

dσ(ζ )

|τ x − ζ |n+s−t
≤ Cg(τ ) := C

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

(1 − τ 2)1+s−t
, if 1 + s − t > 0;

1 + log
1

1 − τ 2
, if 1 + s − t = 0;

1, if 1 + s − t < 0,

where C depends only on n, s, t . Thus

Ir (x) ≤ C
∫ 1

r
nτ n−1

(
1 + log

1

1 − τ

)
(1 − τ 2)sg(τ ) dτ.

Because s > −1 and t > 0, in all the three cases, the above integral is finite when
r = 0. This proves both parts of the lemma.

We prove one more estimate. For future use, in the lemma below, we consider the
integral over rB for 0 < r ≤ 1, not just B.

Lemma 5.3 Let s > −1 and t > 0. There exists a constant C = C(n, s, t) > 0, such
that for all 0 < r ≤ 1 and all f ∈ B

(1 − |x |2)t
∣∣∣
∫

rB
Rs+t (x, y) f (y)dνs(y)

∣∣∣ ≤ C‖ f ‖B.

Proof We write

∫

rB
Rs+t (x, y) f (y)dνs(y) =

∫

rB
Rs+t (x, y) f (x)dνs(y)

+
∫

rB
Rs+t (x, y)

(
f (y) − f (x)

)
dνs(y) =: h1,r (x) + h2,r (x).

Integrating in polar coordinates shows

h1,r (x) = f (x)
∫ r

0
nτ n−1(1 − τ 2)s

∫

S

Rs+t (x, τζ ) dσ(ζ ) dτ.

By the mean-value property forH-harmonic functions [18, Corollary 4.1.3], the inner
integral isRs+t (x, 0)which equals c0(s+t) for all x ∈ B by (3.9), because Zm(x, 0) =
0 for m ≥ 1, Z0 ≡ 1 and S0 ≡ 1. Therefore, using also (4.2), we obtain
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∣∣h1,r (x)
∣∣ ≤ c0(s + t)| f (x)|

∫ 1

0
nτ n−1(1 − τ 2)s dτ = C | f (x)|

≤ C‖ f ‖B
(
1 + log

1

1 − |x |
)
,

(5.1)

with C depending only on n, s, t . This implies (1 − |x |2)t |h1,r (x)| � ‖ f |B.
Next, by (4.1) and Lemma 3.4(a)

|h2,r (x)| � pB( f )
∫

rB

β(x, y) dνs(y)

[x, y]n+s+t
≤ ‖ f ‖B

∫

B

β(x, y) dνs(y)

[x, y]n+s+t
� ‖ f ‖B

(1 − |x |2)t ,

where in the last inequality, we use Lemma 5.2(i). This proves the lemma.

Proposition 5.4 Let s > −1, t > 0 and f ∈ H(B). Then, f ∈ B (resp. B0) if and only
if (1 − |x |2)t Dt

s f (x) ∈ L∞(B) (resp. C0(B)). Moreover

‖ f ‖B ∼ ‖(1 − |x |2)t Dt
s f (x)‖L∞ ,

where the implicit constants depend only on n, s, t , and are independent of f .

This proposition shows that in the definition (1.2) of the Bloch space, one can
replace (1− |x |2)|∇ f (x)| with (1− |x |2)t |Dt

s f (x)| for any t > 0. It is more suitable
to work with Dt

s f , since it is H-harmonic. It also shows that for every s > −1 and
t > 0, ‖(1 − |x |2)t Dt

s f (x)‖L∞ is a norm on B equivalent to ‖ f ‖B. In the rest of the
paper, we mostly employ these norms.

Proof Suppose f ∈ B. Then, f ∈ L1
s ∩H(B) by (4.2), and by Lemma 3.3(ii) we have

Dt
s f (x) = ∫

B
Rs+t (x, y) f (y)dνs(y). That ‖(1−|x |2)t Dt

s f (x)‖L∞ � ‖ f ‖B follows
now from Lemma 5.3.

To see the other direction, suppose (1 − |x |2)t Dt
s f (x) ∈ L∞(B). We claim that

Ps
[
(1 − |x |2)t Dt

s f (x)
] = f . This is true since Dt

s f ∈ L1
s+t (B) ∩ H(B) and by

Lemma 3.3(ii) and (3.13)

Ps
[
(1 − |x |2)t Dt

s f (x)
]
(x) =

∫

B

Rs(x, y)D
t
s f (y)dνs+t (y)

= D−t
s+t (D

t
s f )(x) = f (x).

(5.2)

Thus, by Lemma 5.1, f ∈ B and ‖ f ‖B ≤ ‖Ps‖ ‖(1 − |x |2)t Dt
s f (x)‖L∞ .

We now consider the B0 case. Let f ∈ B0. For ε > 0, pick r > rε where rε is
as given in Lemma 5.2 (ii). Similar to the proof of Lemma 5.3, we write Dt

s f (x) =∫
B
Rs+t (x, y) f (y)dνs(y) in the form

Dt
s f (x) =

∫

B

Rs+t (x, y) f (x)dνs(y) +
∫

B\Er (x)
Rs+t (x, y)

(
f (y) − f (x)

)
dνs(y)

+
∫

Er (x)
Rs+t (x, y)

(
f (y) − f (x)

)
dνs(y) =: h1(x) + h2(x) + h3(x).
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We have (1 − |x |2)t h1(x) ∈ C0(B) by (5.1). Next, applying (4.1), Lemma 3.4a and
then Lemma 5.2(ii) show that for some constant C = C(n, s, t)

|h2(x)| ≤ CpB( f )
∫

B\Er (x)

β(x, y) (1 − |y|2)s
[x, y]n+s+t

dν(y) < CpB( f )
ε

(1 − |x |2)t .

Thus, (1 − |x |2)t |h2(x)| � ε.
To estimate h3, let y ∈ Er (x). By the mean-value theorem of advanced calculus

| f (y) − f (x)| ≤ |y − x | sup
z∈Er (x)

|∇ f (z)|

and by (2.6), |y − x | = ρ(x, y)[x, y] < r [x, y] � r(1 − |x |2), since by part (ii) of
Lemma 2.1, [x, y] ∼ [x, x] = 1 − |x |2. Therefore

| f (y) − f (x)| � (1 − |x |2) sup
z∈Er (x)

|∇ f (z)| � sup
z∈Er (x)

(1 − |z|2)|∇ f (z)|,

where the last inequality follows from Lemma 2.1(i). Hence, by Lemma 2.2

(1 − |x |2)t |h3(x)| � sup
z∈Er (x)

(1 − |z|2)|∇ f (z)| (1 − |x |2)t
∫

B

dνs(y)

[x, y]n+s+t

� sup
z∈Er (x)

(1 − |z|2)|∇ f (z)|.

By (2.7), for z ∈ Er (x), we have |z| ≥
∣∣|x | − r

∣∣
1 − r |x | and the right-hand side tends to 1 as

|x | → 1−. Since f ∈ B0, this shows that lim|x |→1−(1−|x |2)t |h3(x)| = 0. Combining
these, we conclude that (1 − |x |2)t Dt

s f (x) ∈ C0(B).
Conversely, if (1 − |x |2)t Dt

s f (x) ∈ C0(B), then f ∈ B0 by Lemma 5.1 and (5.2).

For emphasis, we write Eq. (5.2) as a separate lemma.

Lemma 5.5 For all s > −1, t > 0 and f ∈ B, Ps[(1 − |x |2)t Dt
s f (x)] = f .

Proof of the onto part of Theorem 1.1 is now immediate.

Proof of Theorem 1.1 Pick some t > 0. If f ∈ B (resp. B0), then the function φ(x) =
(1 − |x |2)t Dt

α f (x) is in L∞(B) (resp. C0(B)) and Pαφ = f .

The next corollary follows from Theorem 1.1 and Remark 4.4. It is theH-harmonic
counterpart of the fact that (Euclidean) harmonic polynomials are dense in the har-
monic little Bloch space.

Corollary 5.6 span
{
Sm(|x |)qm(x) | qm ∈ Hm(Rn),m = 0, 1, . . .

}
is dense in B0.
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6 Duality

We first write the pairing in (1.3) as an absolutely convergent integral.

Lemma 6.1 Let α > −1, f ∈ B1
α and g ∈ B. For every t > 0

〈 f , g〉α = lim
r→1−

∫

rB
f (x)g(x) dνα(x) =

∫

B

f (x)(1 − |x |2)t Dt
αg(x) dνα(x).

Proof By [22, Lemma 7.1], the reproducing property in (1.1) holds also in B1
α . Using

this and the fact that f ∈ B1
α ⊂ B1

α+t , we see that

lim
r→1−

∫

rB
f (x)g(x) dνα(x) = lim

r→1−

∫

rB

∫

B

Rα+t (x, y) f (y) dνα+t (y)g(x) dνα(x),

which, after changing the order of the integrals (possible since for |x | ≤ r , the functions
Rα+t (x, y) and g(x) are bounded), equals

lim
r→1−

∫

B

f (y)(1 − |y|2)t
∫

rB
Rα+t (x, y)g(x) dνα(x) dνα(y).

The term (1−|y|2)t ∣∣∫rBRα+t (x, y)g(x)dνα(x)
∣∣ is bounded by a constant independent

of r and y by Lemma 5.3 and the fact thatRα+t is symmetric. Thus, by the dominated
convergence theorem, we can push the limit into the integral and obtain

lim
r→1−

∫

rB
f (x)g(x)dνα(x) =

∫

B

f (y)(1 − |y|2)t
∫

B

Rα+t (x, y)g(x)dνα(x)dνα(y).

This gives the desired result, since the inner integral is Dt
αg(y) by Lemma 3.3(ii).

Proof of Theorem 1.2 For g ∈ B, define 	g : B1
α → C by 	g( f ) = 〈 f , g〉α . Pick

some t > 0. By Lemma 6.1 and Proposition 5.4

|〈 f , g〉α| ≤ ‖ f ‖B1
α
‖(1 − |x |2)t Dt

αg‖L∞ � ‖ f ‖B1
α
‖g‖B, (6.1)

and so, 	g ∈ (B1
α)∗ and ‖	g‖ � ‖g‖B.

Conversely, let 	 ∈ (B1
α)∗. Pick γ > α. Then, by Lemma 3.5, 	◦ Pγ ∈ (L1

α(B))∗,
and by the Riesz representation theorem, there exists ψ ∈ L∞(B) with ‖ψ‖L∞ =
‖	 ◦ Pγ ‖, such that for all φ ∈ L1

α(B)

(	 ◦ Pγ )φ =
∫

B

φ(y)ψ(y) dνα(y).
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Let f ∈ B1
α ⊂ L1

α(B). Then, Pγ f = f , and so, 	( f ) = (	 ◦ Pγ ) f is given by

	( f ) =
∫

B

Pγ f (y)ψ(y)dνα(y) =
∫

B

∫

B

Rγ (y, x) f (x)dνγ (x)ψ(y)dνα(y)

=
∫

B

f (x)
∫

B

Rγ (y, x)ψ(y)dνα(y)dνγ (x), (6.2)

where we can change the order of the integrals because ψ ∈ L∞(B) and by
Lemma 3.4(a) and Lemma 2.2,

∫
B
|Rγ (y, x)| dνα(y) � (1 − |x |2)−(γ−α). Set

g(x) := Pαψ(x) =
∫

B

Rα(x, y)ψ(y) dνα(y) (x ∈ B).

By Theorem 1.1, g is in B and ‖g‖B � ‖ψ‖L∞ = ‖	 ◦ Pγ ‖ � ‖	‖. Further, by
Lemma 3.3(i)

Dγ−α
α g(x) = Dγ−α

α

∫

B

Rα(x, y)ψ(y) dνα(y) =
∫

B

Rγ (x, y)ψ(y) dνα(y).

Hence, by (6.2) and the symmetry ofRγ

	( f ) =
∫

B

f (x)(1 − |x |2)γ−αDγ−α
α g(x) dνα(x),

which equals 〈 f , g〉α = 	g( f ) by Lemma 6.1. Thus, 	 = 	g .
To see the uniqueness of g, note that for x0 ∈ B, Rα(x0, ·) is bounded on B, and

so, belongs to B1
α . In addition, if g ∈ B, then Rα(x0, ·)g is in L1

α(B) by (4.2). Thus

	g(Rα(x0, ·)) = 〈Rα(x0, ·), g〉α = lim
r→1−

∫

rB
Rα(x0, x)g(x)dνα(x)

=
∫

B

Rα(x0, x)g(x)dνα(x) = g(x0),
(6.3)

by the reproducing property. Hence, if g1 �= g2, then 	g1 �= 	g2 . We conclude that to
each 	 ∈ (B1

α)∗, there corresponds a unique g ∈ B with ‖g‖B ∼ ‖	‖ and 	 = 	g .
We next show thatB∗

0 can be identified withB1
α for any α > −1. For f ∈ B1

α , define
	 f : B0 → C by	 f (g) = 〈 f , g〉α . By (6.1),	 f ∈ B∗

0 and ‖	 f ‖ � ‖ f ‖B1
α
. Suppose

now that 	 ∈ B∗
0 . By Theorem 1.1, 	◦ Pα ∈ C0(B)∗, and by the Riesz representation

theorem, there exists a complex Borel measure μ on B with |μ|(B) = ‖	 ◦ Pα‖, such
that for all φ ∈ C0(B)

(	 ◦ Pα)φ =
∫

B

φ(y) dμ(y).
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Pick some t > 0. For g ∈ B0, let φ(x) = (1 − |x |2)t Dt
αg(x). Then, φ ∈ C0(B) with

‖φ‖L∞ ∼ ‖g‖B and Pαφ = g by Proposition 5.4 and Lemma 5.5. Thus

	(g) = (	 ◦ Pα)φ =
∫

B

φ(y) dμ(y) =
∫

B

(1 − |y|2)t Dt
αg(y) dμ(y).

Clearly, Dt
αg ∈ L1

α+t . Therefore, D
t
αg = Pα+t (Dt

αg) by the reproducing property.
Inserting this into the above equation and using the symmetry ofRα+t show

	(g) =
∫

B

(1 − |y|2)t
∫

B

Rα+t (y, x)D
t
αg(x) dνα+t (x) dμ(y)

=
∫

B

∫

B

Rα+t (x, y)(1 − |y|2)t dμ(y)(1 − |x |2)t Dt
αg(x) dνα(x),

(6.4)

where we can change the order of the integrals, since (1 − |x |2)t Dt
αg(x) is bounded,

and by Lemma 3.4(a) and Lemma 2.2,
∫
B
|Rα+t (y, x)| dνα(x) � (1 − |y|2)−t . Set

f (x) :=
∫

B

Rα+t (x, y)(1 − |y|2)t dμ(y) (x ∈ B).

Then, f ∈ H(B) and by Fubini’s theorem and the estimate in the previous line

‖ f ‖L1
α

≤
∫

B

(1 − |y|2)t
∫

B

|Rα+t (x, y)| dνα(x) d|μ|(y) � |μ|(B).

Thus, f ∈ B1
α with ‖ f ‖B1

α
� |μ|(B) = ‖	 ◦ Pα‖ � ‖	‖, and it follows from (6.4)

and Lemma 6.1 that 	 = 	 f . Uniqueness of f can be verified in the same way as
done in the previous part.

We finish this section by verifying that there exists an unbounded H-harmonic
Bloch function.

Lemma 6.2 There exists an unbounded function in B.
Proof Let e1 = (1, 0, . . . , 0) ∈ S and φ(x) = (1−|x |2)n−1

Ph(x, e1), where Ph is the
hyperbolic Poisson kernel in (3.8). Then, φ ∈ L∞(B) and the Bergman projection

f (x) := P0φ(x) =
∫

B

R0(x, y)Ph(y, e1)(1 − |y|2)n−1 dν(y)

is in B by Theorem 1.1. To see that f is unbounded, we find its series expansion.
Note that by the integral representation of Dt

s in Lemma 3.3(ii) (with s = n − 1 and

t = −(n−1)), we have f (x) = D−(n−1)
n−1 Ph(x, e1). Therefore, by the series expansion

of Ph in (3.8)

f (x) = D−(n−1)
n−1 Ph(x, e1) =

∞∑

m=0

cm(0)

cm(n − 1)
Sm(|x |)Zm(x, e1).
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Observe that when x = re1, 0 < r < 1, all the terms in the above series are positive.
We have Zm(re1, e1) = rm Zm(e1, e1) ∼ rmmn−2 (m ≥ 1), Sm(r) ≥ 1 by (3.7), and
cm(0)/cm(n − 1) ∼ m−(n−1) by (3.11). Thus

f (re1) � 1 +
∞∑

m=1

rm

m
,

and the right-hand side tends to ∞ as r → 1−.

7 Atomic decomposition

Throughout the section, we employ Proposition 5.4 and use any one of the equivalent
norms ‖(1 − |x |2)t Dt

α f (x)‖L∞ (α > −1, t > 0) for the Bloch space.

Lemma 7.1 For every α > −1 and a ∈ B, the kernel Rα(·, a) is in B0. In addition,
there exists C = C(n, α) > 0, such that for all a ∈ B

1

C (1 − |a|2)α+n
≤ ‖Rα(·, a)‖B ≤ C

(1 − |a|2)α+n
. (7.1)

Proof Pick t > 0. We have Dt
αRα(x, a) = Rα+t (x, a) by (3.14), and for fixed a ∈ B,

Rα+t (x, a) is bounded by Lemma 3.4(a) and the inequality [x, a] ≥ 1− |a| by (2.1).
Thus, (1 − |x |2)t Dt

αRα(x, a) is in C0(B), and Rα(x, a) ∈ B0 by Proposition 5.4.
Further

(1 − |x |2)t ∣∣Rα+t (x, a)
∣∣ � (1 − |x |2)t

[x, a]α+t+n
� 1

(1 − |a|2)α+n
,

again by [x, a] ≥ 1 − |x | and [x, a] ≥ 1 − |a|, which gives the second inequality
in (7.1). The first inequality follows from [22, Lemma 6.1] which shows that when
x = a, Rα+t (a, a) ∼ 1/(1 − |a|2)α+t+n .

Lemma 7.2 Suppose α > −1 and {am} is r-separated for some 0 < r < 1. Then, the
operator T = T{am },α : �∞ → B mapping λ = {λm} to

Tλ(x) =
∞∑

m=1

λm
Rα(x, am)

‖Rα(·, am)‖B (x ∈ B), (7.2)

is bounded. The above series converges absolutely and uniformly on compact subsets
of B. In addition, if λ ∈ c0, then Tλ ∈ B0.

Proof We first verify that
∑∞

m=1(1 − |am |2)α+n < ∞. To see this, note that the balls
Er/2(am) are disjoint, and for fixed r , ν(Er/2(am)) ∼ (1− |am |2)n by (2.7). Also, for
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y ∈ Er/2(am), we have (1 − |y|2) ∼ (1 − |am |2) by Lemma 2.1(i). Thus

∞∑

m=1

(1 − |am |2)α+n ∼
∞∑

m=1

∫

Er/2(am)

(1 − |y|2)α dν(y) ≤
∫

B

(1 − |y|2)α dν(y)

which is finite. To see that the series converges absolutely and uniformly on compact
subsets of B, suppose |x | ≤ R < 1. Then |Rα(x, am)| ≤ C for all m by Lemma 3.4
and (2.1). Using also Lemma 7.1, we deduce

∞∑

m=1

|λm | |Rα(x, am)|
‖Rα(·, am)‖B � ‖λ‖�∞

∞∑

m=1

(1 − |am |2)α+n < ∞.

Next, pick t > 0 and apply Dt
α to Tλ. By the continuity in Lemma 3.2, we can

push Dt
α past the summation in (7.2). Applying (3.14), Lemma 3.4(a) and Lemma 7.1

then show

∣∣Dt
α(Tλ)(x)

∣∣ � ‖λ‖�∞
∞∑

m=1

(1 − |am |2)α+n

[x, am]α+t+n
.

As is done above, (1 − |am |2)α+n ∼ να(Er/2(am)), and [x, y] ∼ [x, am] for y ∈
Er/2(am) by Lemma 2.1. Therefore, using also Lemma 2.2, we obtain

∣∣Dt
α(Tλ)(x)

∣∣ � ‖λ‖�∞
∞∑

m=1

∫

Er/2(am )

dνα(y)

[x, y]α+t+n
≤ ‖λ‖�∞

∫

B

dνα(y)

[x, y]α+t+n

� ‖λ‖�∞

(1 − |x |2)t ,

Hence, Tλ ∈ B and ‖Tλ‖B � ‖λ‖�∞ .
Finally, suppose λ ∈ c0. For ε > 0, let M be such that supm≥M |λm | < ε. Then

Tλ(x) =
M−1∑

m=1

λm
Rα(x, am)

‖Rα(·, am)‖B +
∞∑

m=M

λm
Rα(x, am)

‖Rα(·, am)‖B =: h1(x) + h2(x).

By Lemma 7.1, h1 is in B0; and ‖h2‖B � supm≥M |λm | by the previous paragraph.
Thus, lim sup|x |→1−(1 − |x |2)t |Dt

α(Tλ)(x)| � ε and Tλ is in B0.

Following [4], we associate with an r -lattice {am} the following partition {Em} of
B. Let E1 = Er (a1)\⋃∞

m=2 Er/2(am) and for m = 2, 3, . . . , inductively define

Em = Er (am)\
(m−1⋃

k=1

Ek

⋃ ∞⋃

k=m+1

Er/2(ak)

)
.
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The following properties hold: (i) Er/2(am) ⊂ Em ⊂ Er (am), (ii) the sets Em are
disjoint, and (iii)

⋃∞
m=1 Em = B.

Lemma 7.3 Suppose α > −1, t > 0, and {am} is an r-lattice. If {Em} is the associated
sequence defined above, then the operator U = U{am },α,t : B → �∞ defined by

U f =
{
Dt

α f (am) ‖Rα(·, am)‖B να+t (Em)
}∞
m=1

is bounded. In addition, if f ∈ B0, then U f ∈ c0.

Proof Because Er/2(am) ⊂ Em ⊂ Er (am) and r is fixed, by Lemma 2.1 and (2.7),
να+t (Em) ∼ (1 − |am |2)α+t+n . Combining this with Lemma 7.1 shows

|Dt
α f (am)| ‖Rα(·, am)‖B να+t (Em) ∼ (1 − |am |2)t |Dt

α f (am)|.

Thus, ‖U f ‖�∞ � ‖ f ‖B. If f ∈ B0, then (1 − |x |2)t Dt
α f (x) ∈ C0(B), and so, U f is

in c0, since limm→∞|am | = 1.

Proof of Theorem 1.3 Pick some t > 0 and define the operators U : B → �∞ and
T : �∞ → B as above. We show that there exists a constant C = C(n, α, t), such
that ‖I − TU‖B→B ≤ Cr , where I is the identity operator. This implies that ‖I −
TU‖B→B < 1 when r is sufficiently small, TU is invertible and hence, T is onto. In
the little Bloch case replacing B with B0 and �∞ with c0, we obtain T : c0 → B0 is
onto.

Let f ∈ B. In the calculations below, we suppress constants that depend only on
n, α, t , and make sure that they do not depend on r or f . Note that

TU f (x) =
∞∑

m=1

Dt
α f (am)Rα(x, am) να+t (Em)

and the series converges absolutely and uniformly on compact subsets of B. By con-
tinuity, we can push Dt

α past the summation, and using (3.14), we can obtain

Dt
α(TU f )(x) =

∞∑

m=1

Dt
α f (am)Rα+t (x, am) να+t (Em)

=
∞∑

m=1

∫

Em

Dt
α f (am)Rα+t (x, am) να+t (y).

Further, since Dt
α f ∈ L1

α+t (B), by the reproducing property

Dt
α f (x) =

∫

B

Rα+t (x, y)D
t
α f (y)dνα+t (y)

=
∞∑

m=1

∫

Em

Rα+t (x, y)D
t
α f (y)dνα+t (y).
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Thus

Dt
α(I − TU ) f (x) =

∞∑

m=1

∫

Em

(Rα+t (x, y) − Rα+t (x, am)
)
Dt

α f (y) dνα+t (y)

+
∞∑

m=1

∫

Em

(
Dt

α f (y) − Dt
α f (am)

)Rα+t (x, am) dνα+t (y)

=: h1(x) + h2(x).

We first estimate h1. Pick y ∈ Em . Since Em ⊂ Er (am), a convex set, by the
mean-value inequality

∣∣Rα+t (x, y) − Rα+t (x, am)
∣∣ ≤ |y − am | sup

z∈Er (am)

|∇zRα+t (x, z)|.

By (2.6), |y − am | = ρ(y, am)[y, am] and since ρ(y, am) < r < 1/2, we have
[y, am] ∼ [y, y] = 1 − |y|2 by Lemma 2.1(ii), with the suppressed constants not
depending on r . Thus, |y−am | � r(1−|y|2). Similarly, for all x ∈ B and z ∈ Er (am),
we have [x, z] ∼ [x, am] ∼ [x, y] by Lemma 2.1(ii). Hence, by Lemma 3.4(b)

∣∣∇zRα+t (x, z)
∣∣ � 1

[x, z]α+t+n+1 ∼ 1

[x, y]α+t+n+1 .

We conclude that for all x ∈ B and y ∈ Em

∣∣Rα+t (x, y) − Rα+t (x, am)
∣∣ � r

1 − |y|2
[x, y]α+t+n+1 � r

[x, y]α+t+n
, (7.3)

where in the last inequality, we use [x, y] ≥ 1 − |y| by (2.1). Thus

|h1(x)| � r
∞∑

m=1

∫

Em

(1 − |y|2)α+t |Dt
α f (y)|

[x, y]α+t+n
dν(y) � r‖ f ‖B

∫

B

dνα(y)

[x, y]α+t+n

� r‖ f ‖B 1

(1 − |x |2)t ,

where the last inequality follows from Lemma 2.2.
We next estimate h2. Pick y ∈ Em . By the reproducing property

Dt
α f (y) − Dt

α f (am) =
∫

B

(Rα+t (y, z) − Rα+t (am, z)
)
Dt

α f (z) dνα+t (z).

Therefore, by (7.3) with the symmetry of Rα+t , and Lemma 2.2

|Dt
α f (y) − Dt

α f (am)| � r
∫

B

(1 − |z|2)α+t |Dt
α f (z)|

[y, z]α+t+n
dν(z) � r‖ f ‖B 1

(1 − |y|2)t .
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Hence, using also Lemma 3.4, the fact that [x, am] ∼ [x, y] for all x ∈ B and y ∈ Em ,
and finally Lemma 2.2, we deduce

|h2(x)| � r‖ f ‖B
∞∑

m=1

∫

Em

(1 − |y|2)α
[x, am]α+t+n

dν(y) ∼ r‖ f ‖B
∞∑

m=1

∫

Em

dνα(y)

[x, y]α+t+n

= r‖ f ‖B
∫

B

dνα(y)

[x, y]α+t+n
� r‖ f ‖B 1

(1 − |x |2)t .

Thus, ‖(1 − |x |2)t Dt
α(I − TU ) f (x)‖L∞ ≤ Cr‖ f ‖B. The proof is completed.

To see that the representation (1.5) can be used alternatively to (1.4), the only change
needed is to replace ‖Rα(·, am)‖B with (1− |am |2)−(α+n) in the definitions of T and
U . The proofs of the Lemmas 7.2 and 7.3 become simpler; and TU and the proof of
Theorem 1.3 remain the same.
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