
Ann. Funct. Anal. (2024) 15:19
https://doi.org/10.1007/s43034-024-00320-5

Tusi
Mathematical
Research
Group

ORIG INAL PAPER

Regularity results for classes of Hilbert C*-modules with
respect to special boundedmodular functionals

Michael Frank1

Received: 30 August 2023 / Accepted: 11 January 2024 / Published online: 17 February 2024
© The Author(s) 2024

Abstract
Considering the deeper reasons of the appearance of a remarkable counterexample
by Kaad and Skeide (J Operat Theory 89(2):343–348, 2023) we consider situations
in which two Hilbert C*-modules M ⊂ N with M⊥ = {0} over a fixed C*-algebra
A of coefficients cannot be separated by a non-trivial bounded A-linear functional
r0 : N → A vanishing on M . In other words, the uniqueness of extensions of the
zero functional from M to N is focussed. We show this uniqueness of extension for
any such pairs of Hilbert C*-modules over W*-algebras, over monotone complete
C*-algebras and over compact C*-algebras. Moreover, uniqueness of extension takes
place also for any one-sided maximal modular ideal of any C*-algebra. Such a non-
zero separating bounded A-linear functional r0 exist for a given pair of full Hilbert
C*-modules M ⊆ N over a given C*-algebra A iff there exists a bounded A-linear
non-adjointable operator T0 : N → N , such that the kernel of T0 is not biorthogonally
closed w.r.t. N and contains M . This is a new perspective on properties of bounded
modular operators that might appear in Hilbert C*-module theory. By the way, we
find a correct proof of Lemma 2.4 of Frank (Int J Math 13:1–19, 2002) in the case of
monotone complete and compact C*-algebras, but find it not valid in certain particular
cases.
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1 Introduction

The theory of Hilbert C*-modules exists for about 70 resp. 50 years since the famous
works by I. Kaplansky, resp. by W. L. Paschke and by M. A. Rieffel. Nevertheless, a
new problem has been discovered which forces to review parts of the theory. Some
years ago Shalit and Solel investigated Hilbert subproduct systems of Hilbert product
systems, cf. [41, 42]. One core question has been whether there might exist special
bounded modular functionals on pairs of Hilbert C*-modules into the C*-algebra of
their coefficients: Let M ⊂ N be two Hilbert A-modules over a given C*-algebra
A, such that the orthogonal complement of M w.r.t. N equals {0}. Does there exist a
non-trivial modular extension r0 of the zero map from M to A to N? This question is
the analogue of the categorical separation problem for similar pairs of linear spaces
of quite different kinds by (sorts of) bounded linear functionals. We refer to Kaad and
Skeide [24] and to Manuilov [33] for initial investigations.

Considering Hilbert spaces and their Hilbert subspaces as a class of examples, there
seems to be not any such problem. To indicate one more complicated background of
the problem consider maximal one-sided (say, right) norm-closed ideals D of unital
C*-algebras A. Both A and D ⊂ A can be considered as (right) Hilbert A-modules
inducing the necessary algebraic structures from the C*-structures of A in the usual
way. Intuitively, for C*-algebras A without finite part, aD = 0 for some a ∈ A should
force a = 0, so the zero functional on D would have only the zero modular functional
on A as its continuation, or alternatively in the opposite case, D is even a direct
orthogonal summand of A as for matrix algebras or for atomic carrier projections from
an occasionally existing finite part of A. However, a proof even for modular maximal
right ideals D of A will need a deep dive into C*-theory as will be shown in the last
section. Note, that the example of A = C([0, 1]) and D = C0((0, 1]) of all continuous
functions on the unit interval and of the subset of functions vanishing at zero would
yield the Banach algebra of all bounded continuous functions D′ = Cb((0, 1]) ⊃ A
on the half-open unit interval (0, 1] as the dual Banach A-module D′ of D. Therefore,
the problem of the extension of the zero functional on D reaches beyond the hosting
selfdual Hilbert A-module A in this case. Moreover, D coincides with its bidual
Banach A-module D′′ in this case, another special situation. However, turning to
arbitrary norm-closed ideals of C*-algebras one has to struggle with the deficiencies
of noncommutative topology.

Example 1.1 Let X = [0, 1] be the unit interval of real numbers equipped with the
usualmetric topology arising from the absolute value of the difference of two numbers.
Consider the set J of all bounded Borel functions f on X , such that the set {x ∈ X :
f (x) 	= 0} is meager. The set J is a two-sided norm-closed ideal in the monotone
σ -complete C*-algebra of all bounded Borel functions on X with its supremum norm.
The C*-algebra A = D(X) constructed as the quotient algebra of the latter by J is
known as the Dixmier algebra on X . It is a monotone complete C*-algebra (hence,
AW*) and, as a commutativeAW*-algebra, also injective, in fact the injective envelope
I (C(X)) of the C*-algebra C(X), cf. [9, 17, 20, 40].

Consider the Hilbert A-module M = l2(A) of all sequences of elements ai ∈ A,
such that the series

∑
i |ai |2 converges in norm. Thismodule M is countably generated
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over A by its the orthonormal basis {ei = (0, . . . , 0, 1(i)
A , 0, . . .)}. The A-dual Banach

A-module l2(A)′ of the Hilbert A-module l2(A) can be identified with the set of
sequences of elements ai ∈ A, such that the sequence of partial sums {∑k

i=1 |ai |2}k is
bounded by a sequence-specific constant from above. The norm of each sequence is
derived from the respective least upper bound. Note, that these series are well-defined
since A is monotone complete, the respective sequence of partial sums {∑k

i=1 |ai |2}k

is norm-bounded, positive and monotone increasing in A, what makes the supremum
exist as a positive element of A. Therefore, one can define an A-valued inner product
on l2(A)′ setting 〈{ai }i , {ai }i 〉 := ∑

i |ai |2, applying the polarization formula to count
the values 〈x, y〉 = 1

4

∑3
k=0 i

k〈x + ik y, x + ik y〉 for x, y ∈ l2(A)′. The Banach A-
module N = l2(A)′ turns into a self-dual Hilbert A-module with an isometrically
embedded copy of M = l2(A). Note, that for any element f = (a1, . . . , ai , . . .) of
l2(A)′ one has f (ei ) = ai for any index i . Also, the orthogonal complement of l2(A)

in l2(A)′ is {0}. Consequently, every bounded A-linear functional f0 on l2(A) that
vanishes on l2(A) ⊂ l2(A)′ should be represented by the zero sequence in l2(A)′ and,
therefore, has an A-valued inner product value 0A, i.e., f0 has to be the zero functional.

This shows that the arguments given byManuilov in Lemma 11 and Corollary 12 of
[33] need a thorough revision. The example can be repeated for any compact Hausdorff
space X and the injective envelope I (C(X)), cf. [17], as well for anyHilbert A-module
M and its A-dual Banach A-module N = M ′ over monotone complete C*-algebras
A, cf. [22].

The question of non-trivial modular extensions of the zero functional on the named
class of pairs of Hilbert C*-modules is closely related to the problem, whether there
are Hilbert C*-modules and bounded C*-linear operators between them, the kernels
of which are not biorthogonally complemented, or not. The latter question was inves-
tigated by Kaad and Skeide in [24] in 2021 giving a class of examples with this new
phenomenon. Also,Manuilov considered this circle of problems in [33]. Therefore, we
cannot hope simply to extend our understanding of the Hilbert space situation and of
the maximal norm-closed ideal type examples to, for example, all Hilbert C*-modules
over monotone complete C*-algebras. We need a separate investigation which is done
for Hilbert C*-modules over W*-algebras, over monotone complete C*-algebras and
over compact C*-algebras in the present paper. By the way, we find a correct proof
of [15, Lemma 2.4] in the monotone complete and compact C*-case, but disproved
it for certain C*-algebras, cf. [24]. Generally speaking, for these classes of Hilbert
C*-modules the discussed situation is pretty much similar to that one of the class of
Hilbert spaces. In the present paper we do not cite any fact from [15] to avoid any
influence from the unproven [15, Lemma 2.4] on the present explanations.

2 Some basic definitions and facts

Our basic references for facts on Hilbert C*-modules are [3, 6, 11, 12, 28, 29, 32,
35, 36, 44] and others. To start with, we give some basic definitions and arguments
to introduce to the circle of problems treated. The basic structures are Hilbert C*-
modules, i.e., (non-unital, in general) C*-algebras A and (right, Banach) A-modules
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M , such that there exist an A-valued inner product 〈., .〉 : M × M → A compatible
with both the complex structures on A and on M , such that

1. 〈z, xa + y〉 = 〈z, x〉a + 〈z, y〉 for any a ∈ A, x, y, z ∈ M,

2. 〈x, y〉 = 〈y, x〉∗ for any x, y ∈ M,

3. 〈x, x〉 ≥ 0 for any x ∈ M,

4. 〈x, x〉 = 0 iff x = 0 in M .

That is, 〈., .〉 is a conjugate A-bilinear mapping. We treat only modules that are com-
plete with respect to the derived norm ‖x‖ := ‖〈x, x〉‖1/2A for x ∈ M . But, this is
not precisely enough. We have to consider Hilbert C*-modules always as pairs of a
module and of its C*-valued inner product, cf. [14] and Lemma 3.1 below.

Standard examples are Hilbert spaces over C or norm-closed right ideals of C*-
algebras A. Often the free projective modules An of all n-tuples of elements of A or
the standard countably generated A-module l2(A) of all sequences of elements of A
for which the respective inner product series converge in norm are considered, cf. the
Swan–Serre and Kasparov theorems. Generally speaking, full Hilbert C*-modules M
over some C*-algebra A are at the same time (left) Banach modules over their C*-
algebra K A(M) of “compact” module operators over them. Moreover, this relation
is symmetric since there exists a K A(M)-valued inner product on M inducing the
same norm, and KK A(M)(M) equals to A. This leads to (strong) Morita equivalence
of C*-algebras.

However, Hilbert C*-modules in particular examples can be much more different
in usually supposed “good” properties. Common knowledge is the sometimes miss-
ing self-duality of Hilbert C*-modules and the possible non-adjointability of some
bounded module operators. Less known is the possible existence of two (or more)
C*-valued inner products on certain Hilbert C*-modules inducing equivalent norms
on them, but which are not unitarily equivalent or similar via a bounded adjointable (or
even modular) invertible operator, what may turn the properties of a bounded module
operator to be “compact” or to be adjointable into a relative property. Thinking further,
modularly generating sets of elements are also affected in their possible property to be
a standard modular frame by this effect (cf. [16, Cor. 6.6]), but there exist quite regu-
larly Hilbert C*-modules that do not admit even this weak form of a “nice” generating
set, not talking about kinds of orthonormal bases, cf. [2, 29]. So, the point is to identify
classes of “good” Hilbert C*-modules. Candidates are the class of Hilbert C*-modules
over compact C*-algebras, i.e., C*-algebras that admit a faithful ∗-representation in
some C*-algebra of (all) compact operators on a Hilbert space. Another good choice
are the classes of Hilbert C*-modules over von Neumann (i.e., W*-)algebras or over
monotone complete C*-algebras. We are going to obtain further facts for these classes
adding more evidence.

The following fact is non-obvious, but very useful for insights: Let N be a Hilbert
C*-module over a C*-algebra A. Denote by 〈N , N 〉 the norm-closed A-linear hull
of all A-valued inner product values of elements of N in A. Moreover, the sets N
and AN coincide and any element n ∈ N can be represented as n = ax for certain
elements a ∈ A, x ∈ N by the Cohen–Hewitt factorization theorem. This fact has
been mentioned by several authors in the context of Banach C*-modules and in more
general contexts, cf. e.g. [38, Thm. 4.1] or [23, Thm. 32.22], also [4, Thm. II.5.3.7].
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This is one reason why Hilbert A-modules N can be considered as Hilbert M(A)-
modules over the multiplier algebras M(A) of A, similarly as Banach A-modules
over the (right) multiplier algebra RM(A) of A. Recalling Morita equivalence and
the symmetry of both the module actions, N is also a Hilbert End∗

A(N )-module over
the C*-algebra of all bounded adjointable operators End∗

A(N ) = M(K A(N )), as well
as a Banach EndA(N )-module over the Banach algebra EndA(M) = LM(K A(N )),

cf. [18, 26, 30].
Note, that we consider A-dual Banach A-modules N ′ of Hilbert A-modules N as

right A-modules, too, defining ra for (right A-linear elements) r ∈ N ′ and a ∈ A
by (ra)(x) := a∗ · r(x) for any x ∈ N , cf. [35, p. 450]. Whenever A-valued inner
products can be extended from N to N ′ this simplifies the isometric embedding of N
into N ′ treating elements of both these modules in the same way in formulae.

3 Extension of C∗-linear functionals: themonotone complete C*-case

In this section we investigate the question whether the zero bounded C*-linear maps
of Hilbert C*-submodules over monotone complete C*-algebras A to their C*-algebra
of coefficients could be continued by a non-zero bounded C*-linear functional on the
hosting Hilbert C*-module over the same monotone complete C*-algebra in case the
orthogonal complement of the submodule is trivial. We treat the cases of W*-algebras
and of monotone complete C*-algebras as C*-algebras simultaneously despite of
the different spheres of application and partially different techniques. This approach
should help readers without deeper knowledge on non-W*, monotone complete C*-
algebras to understand the arguments.

We need some intrinsic characterization of selfduality of Hilbert C*-modules over
monotone complete C*-algebras. In [12] some kind of order type convergence in
such Hilbert C*-modules has been introduced based on order convergence in mono-
tone complete C*-algebras (cf. [25], [21, Section 1]). Note, that order convergence
in monotone complete C*-algebras (denoted by LIM in the sequel) is not supported
by any locally convex Hausdorff topology that preserves all algebraic C*-algebra
structures, generally speaking (cf. [10], [12, Remark on p. 67]). But, for W*-algebras
the w*-topology supports order convergence. Let A be a monotone complete C*-
algebra, M be a Hilbert A-module and I be a net for indexing. A norm-bounded set
{xα : α ∈ I } of elements of M is fundamental in the sense of τ o

2 -convergence iff the
limits LIM{y, xα − xβ〉 : α ∈ I } exist for every β ∈ I , any y ∈ M, and the limits
LIM{LIM{〈y, xα − xβ〉 : α ∈ I } : β ∈ I } exist for any y ∈ M, too, and equal to zero.
Such a set has the τ o

2 -limit x ∈ M iff the limits LIM{y, xα − x〉 : α ∈ I } exist for any
y ∈ M and equal to zero. This τ o

2 -convergence respects the module structures and pre-
serves norm-bounded balls, cf. [12, Def. 2.3, Lemma 2.4]. Considering the W*-case
a Hilbert W*-module M is self-dual iff its unit ball is complete with respect to the
topology generated by the set { f (〈x, .〉) : f ∈ A∗, x ∈ M}. This set generates the w*-
topology on the A-dual Hilbert A-module M ′ of M, cf. [35, Prop. 3.8, Remark 3.9],
[11, Def. 3.1, Thm. 3.2].
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Lemma 3.1 Let A be a C*-algebra and M ⊆ N be two full Hilbert A-modules.
Suppose that M ⊆ N has the orthogonal complement M⊥

N = {0} with respect to N .

Then:
1. Two different elements n1, n2 ∈ N restricted to M ⊆ N realize pairwise distinct

bounded A-linear functionals 〈n1, .〉, 〈n2, .〉 on M .

2. In case of the existence of a non-zero bounded A-linear functional r0 : N → A,
such that r0 vanishes on M, the entire module {r0a : a ∈ A} as well as its norm-
closure in N ′ represents the zero functional on M . So r0 cannot be represented by
an element of N via the A-valued inner product on N by supposition.

3. Let r0 as in (ii). The Hilbert A-module N admits (at least) two A-valued inner
products inducing equivalent norms, whose reductions to M coincide. The more,
these two A-valued inner products are not equivalent, i.e. 〈T (.), .〉(1) 	≡ 〈., .〉(2)
for any positive w.r.t. 〈., .〉(1), bounded bijective A-linear operator T on N .

4. Given the situation at (iii), the notions of bounded module operators on N to
be “compact” or to be adjointable w.r.t. one of these two named A-valued inner
products depend on the choice of the A-valued inner product on N with identical
reductions to M .

Proof To see the assertion (i) select n1, n2 ∈ N and consider the difference n1 − n2.

Suppose, both n1 and n2 induce the same bounded A-linear map from M to A taking
〈ni , .〉 and reducing it to M ⊆ N . Then n1 − n2 = 0 by supposition, i.e., n1 = n2 in
N follows.

In case there exists an element a ∈ A, such that r0a ∈ N and r0a 	= 0 we would
have a non-zero element of N giving a zero A-valued functional on M via 〈r0a, .〉, a
contradiction to the supposition.

Now, set 〈., .〉(2) := 〈., .〉(1) + r∗
0 (.)r0(.). Obviously, it is an A-valued inner product

on N whose reduction to M gives the initial A-valued inner product back. By general
operator inequalities [35, Prop. 2.6], we have

〈n, n〉(1) ≤ 〈n, n〉(2) ≤ (1 + ‖r0‖2)〈n, n〉(1).

This shows the equivalence of the induced norms on N . Now, suppose 〈T (.), .〉(1) ≡
〈., .〉(2) for some positive w.r.t. 〈., .〉(1), bounded bijective A-linear operator T on
N . (This is equivalent to the existence of some adjointable w.r.t. 〈., .〉(1), bounded
bijective operator S on N with 〈S(.), S(.)〉(1) ≡ 〈., .〉(2).) We obtain the functional
equality 〈(T − idN )(n), .〉(1) = r∗

0 (n)r0(.) for any n ∈ N . Therefore, the bounded
A-linear functional r∗

0 (n)r0(.) ∈ N ′ is represented by a non-zero element of N for any
fixed n ∈ N . This contradicts assertion (ii) since there are non-zero functionals in this
set {r∗

0 (n)r0(.); n ∈ N } by supposition.
The last assertion follows from [14, Thm. 3.7, Prop. 5.3]. ��

Lemma 3.2 Let A be a monotone complete C*-algebra and M ⊆ N be two Hilbert
A-modules. Suppose that M ⊆ N has the orthogonal complement M⊥

N = {0} with
respect to N . Then:
1. The C*-algebras 〈M, M〉 and 〈N , N 〉 in A have the same central carrier projection

p ∈ A, i.e., both their annihilators with respect to A equal to (1 − p)A with
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p ∈ Z(A). Obviously, both 〈M, M〉 and 〈N , N 〉 are two-sided norm-closed ideals
of the monotone complete C*-algebra p A, as well as 〈M, M〉 is a two-sided ideal
of 〈N , N 〉 ⊆ p A.

2. The multiplier C*-algebras of their centers equal to pZ(A), so the unitizations of
〈M, M〉 and of 〈N , N 〉 inside p A share the identity element p of pZ(A) ⊆ p A
as their respective identities.

3. The multiplier C*-algebras of both 〈M, M〉 and 〈N , N 〉 equal to p A, so the centers
of their multiplier C*-algebras both equal to pZ(A), too. (In general, Z(M(A))

can be larger than M(Z(A)).) So the two C*-algebras 〈M, M〉 and 〈N , N 〉 share
the identity element p ∈ pZ(A) of their unitizations even in this sense.

4. The centers of the C*-algebras End∗
A(M) and End∗

A(N ) of all (bounded)

adjointable A-linear operators on M and on N , respectively, are isometrically
∗-isomorphic to pZ(A) ⊆ p A.

Proof By [40, Prop. 8.2.2] every subset S of anAW*-algebra A admits a right and a left
annihilator set of the form pr A and Apl where pl , pr ∈ A are orthogonal projections.
If S is a two-sided (norm-closed) ideal of A, then pl = pr is a central projection in
A. Whenever the central supports (1− pM ) and (1− pN ) of 〈M, M〉 and of 〈N , N 〉,
respectively, would be different, the subset (pM − pN )A would act non-trivially on
N and trivially on M . So, the subset (pM − pN )N would be orthogonal to M ⊆ N ,

but it has to consist of the zero element only by supposition. This is only possible,
if pM = pN . The set 〈M, M〉 is obviously a subset and a C*-subalgebra of the C*-
algebra 〈N , N 〉 ⊆ p A, so it is a two-sided ideal in 〈N , N 〉 because it is a two-sided
ideal of p A.

To derive the next two statements we make use of [37, Theorem]: Let B be a
C*-subalgebra of an AW*-algebra A with zero annihilator of B in A. Then the set
of two-sided multipliers of B in A is isometrically ∗-isomorphic to the set of dou-
ble centralizers of B (i.e., the set M(B) of multipliers of B in its enveloping von
Neumann algebra B ′′ ≡ B∗∗) via an isomorphism that extends the identity map
on B. Assertion (ii) follows if we consider the commutative (monotone complete)
AW*-algebra pZ(A), where Z(〈M, M〉) ⊆ Z(〈N , N 〉) ⊆ pZ(A). Commutativity
and zero annihilators give M(Z(〈M, M〉)) = M(Z(〈N , N 〉)) = pZ(A) by the cited
theorem. To obtain assertion (iii) we replace the centers by the entire respective C*-
algebras. So,M(〈M, M〉) = M(〈N , N 〉) = p A by the ideal properties, and therefore,
Z(M(〈M, M〉)) = Z(M(〈N , N 〉)) = pZ(A).

By results by Green [18, Lemma 16] and by Kasparov [26, Th. 1] we can iden-
tify the set of all bounded adjointable (module) maps on a given Hilbert C*-module
isometrically ∗-isomorphically with the multiplier algebra of the C*-algebra of all
“compact” module operators on it. Obviously, the set {x · idM : x ∈ Z(M(A))} is con-
tained in the center of End∗

A(M). Considering M as an 〈M, M〉-K A(M) equivalence
bimodule (cf. [6, Section 1]) we can interchange the roles of 〈M, M〉 and of K A(M)

as primary and secondary C*-algebras of coefficients of a respectively (double-)full
Hilbert C*-bimodule. Hence, the center of End∗

A(M) is canonically contained in the
center of p A by (ii) and (iii) above. So, they have to coincide with the center of p A,

pZ(A). The argument for N is similar. The centers of End∗
A(M) and of End∗

A(N ) turn
out to be isometrically *-isomorphic to pZ(A), and to each other. ��
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The following theorem has parallels in the result [33, Thm. 13] by Manuilov which
was stated for the commutative W*-case:

Theorem 3.3 Let A be a monotone complete C*-algebra and M ⊆ N be two Hilbert
A-modules. Suppose that M ⊆ N has the orthogonal complement M⊥

N = {0} with
respect to N . Then the selfdual Hilbert A-module M ′ admits an isometric embedding
as a Hilbert A-submodule of the selfdual Hilbert A-module N ′, which extends the given
isometric embedding of M in N in the same way as M is isometrically embedded in
M ′. The embedded copy of M ′ in N ′ is an orthogonal direct summand.

Proof Weneed a type of order convergent nets in M to give an intrinsic characterization
of selfduality for Hilbert C*-modules over monotone C*-algebras. By [30, Lemma
3.7], for Hilbert C*-modules M over monotone complete C*-algebras A the A-valued
inner product on M can be continued to an A-valued inner product on the dual Banach
A-module M ′, such that M is isometrically embedded in M ′ by the map x ∈ M →
〈x, .〉 ∈ M ′ preserving the inner product values, r(x) = 〈r , x〉 for any x ∈ M ⊆ M ′,
r ∈ M ′, and 〈r , r〉 = sup{r(x)∗r(x) : x ∈ M, ‖x‖ ≤ 1}. By [12, Thm. 4.1] a Hilbert
A-module over a monotone complete C*-algebra A is self-dual iff the unit ball of M
is complete with respect to τ o

2 -convergence.
Denote by M† the τ o

2 -completed canonical copy of M in M ′, which is also isomet-
rically embedded in M ′ by construction. It has to be self-dual, and so either M† = M ′
or (M†)⊥ 	= {0} in M ′ since self-dual Hilbert C*-submodules are always direct sum-
mands. The latter would force M⊥ 	= {0} in M ′, a contradiction to the definition of
M ′. In particular, M ′ does not contain any non-trivial elements perpendicular to the
submodule M .

Consider the isometric embedding of M into N , which can be seen as an isometric
embedding of M into the self-dual Hilbert A-module N ′ via the canonical isometric
embedding of N into its A-dual N ′. By definition isometric module embeddings
preserve the module structure and the norm of each element. By [5, 27] surjective
module isometries ofHilbertC*-modules preserve theC*-inner product values, cf. [13,
Thm. 5] and [43, Thm. 1.1]. Since N ′ is a self-dual Hilbert A-module the biorthogonal
complement M⊥⊥ of M embedded in N ′ is also a self-dual Hilbert A-submodule and
direct orthogonal summand of N ′. The more, M⊥

M⊥⊥ = {0} by construction.
So for the isometric embedding of M into N ′ we can repeat the process of τ o

2 -
completion canonically restricting to elements of its biorthogonal completion M⊥⊥
with respect to N ′, without knowing the nature of its orthogonal completion M⊥
with respect to N ′. For the τ o

2 -completion of M in M⊥⊥ ⊆ N ′ we obtain an isometric
embedding of M† into N ′. It has to be self-dual by [12, Thm. 4.1] and it has to coincide
with M⊥⊥

N ′ , and so either M† = N ′ or (M†)⊥ 	= {0} in N ′ since self-dual Hilbert C*-
submodules are always direct summands. Also, M† is isometrically isomorphic to M ′
as a Hilbert A-module. We denote the orthogonal, positive projection of N ′ onto the
isometrically embedded copy of M ′ by P.

Consider the elements y ∈ N as A-linear functionals 〈y, .〉N on the Hilbert A-
submodule M . Two such elements y1, y2 induce the same bounded A-linear map
〈y1, .〉 ≡ 〈y2, .〉 on M if and only if their difference is the zero element of N since
M⊥

N = {0} by supposition. So, the elements of N can be identified with elements of
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M ′ = M† ⊆ N ′ injectively. Moreover, any element of N\M acts in another way on
M as any element of M . ��

In the following, we shall show that P = idN ′ .

Lemma 3.4 Let A be a monotone complete C*-algebra and M ⊆ N be two Hilbert
A-modules. Suppose that M ⊆ N has the orthogonal complement M⊥

N = {0} with
respect to N . Then any orthogonal, positive projection P : N ′ → N ′ with P 	= idN

and M ′ ⊆ P(N ′) is not an element of the multiplier C*-algebra End∗
A(N ) of the

C*-algebra of “compact” module operators K A(N ) of the isometrically embedded in
N ′ copy of N , i.e., any such P 	= idN with M ′ ⊆ P(N ′) is not a bounded adjointable
(module) operator on N .

Proof Again, by results by Green [18, Lemma 16] and by Kasparov [26, Th. 1] we
can identify the set of all bounded adjointable (module) maps on a given Hilbert C*-
module isometrically with the multiplier algebra of the C*-algebra of all “compact”
module operators on it. So, if P would be a non-one two-sided multiplier of the C*-
algebra K A(N ) then P would belong toM(K A(N )) = End∗

A(N ). That is, P(N ) = M
would have a non-trivial orthogonal complement (idN − P)(N ) in N , a contradiction
to the supposition. ��

Proposition 3.5 Let A be a monotone complete C*-algebra and M ⊆ N be two Hilbert
A-modules. Suppose that M ⊆ N has the orthogonal complement M⊥

N = {0} with
respect to N . The four operator norms ‖T ‖M , ‖T ‖N , ‖T ‖M ′ and ‖T ‖N ′ coincide
for any “compact” operator T ∈ K A(M) realized on resp. M, N , M ′ and N ′. As
a consequence, the given isometric modular embedding M ⊆ N gives rise to an
isometric ∗-representation of K A(M) in K A(N ) on the level of “compact” modular
operators on M and on N , respectively.

Proof One knows M is a Hilbert A-submodule of N , of M ′ and of N ′, resp., via
canonical isometric modular embeddings. Only M ′ and N ′ are a priori self-dual. So,
any elementary “compact” operator θx,y(·) = y〈x, .〉 with x, y ∈ M can be uniquely
continued to a “compact” operator on its self-dual hosting Hilbert A-module with the
same operator norm on the self-dual hosting Hilbert A-module, cf. [35, Prop. 3.6] for
the W*-case and [12, Cor. 6.3] for the monotone complete C*-case. Of course, this
continuation can be considered as θx,y again, with x, y of the isometrically embedded
copy of M, otherwise the operator norm would increase. So we have the operator
norm equalities ‖θx,y‖M = ‖θx,y‖M ′ , ‖θx,y‖M = ‖θx,y‖N ′ . For analogous reasons,
‖θx,y‖N = ‖θx,y‖N ′ for the particular case of the canonical isometric modular embed-
ding of N into N ′. Consequently, ‖θx,y‖M = ‖θx,y‖N for any x, y ∈ M and for the
given isometric modular embedding M ⊂ N fulfilling the supposition.

Since the elementary “compact” operators in K A(M) can be isometrically identi-
fied with elementary “compact” operators in K A(N ) which admit the two generating
elements from M ⊂ N we can continue this isometric identification to finite sums
T := ∑

i λiθxi ,yi with elements {xi , yi } ∈ M ⊂ N and complex numbers {λi }. Indeed,
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for the chain of isometric modular embeddings M ⊂ N ⊂ N ′ = M ′ we have

sup
z∈N ,‖z‖≤1

‖T (z)‖N = sup
z∈N ′,‖z‖≤1

‖T (z)‖N ′

= sup
z∈M ′,‖z‖≤1

‖T (z)‖M ′

= sup
z∈M,‖z‖≤1

‖T (z)‖M .

Further, we obtain any “compact” element T ∈ K A(M) and of K A(N ) as the norm-
limit of sequences of suchfinite sums,which can be step by step isometrically identified
with resp. “compact” operators on M and on N . Because of the analogous algebraic
structures in K A(M) and in K A(N ) and because of the demonstrated isometric iden-
tifications, we get an isometric ∗-representation of K A(M) in K A(N ). ��
Proposition 3.6 Let A be a monotone complete C*-algebra and M ⊆ N be two Hilbert
A-modules. Suppose that M ⊆ N has the orthogonal complement M⊥

N = {0} with
respect to N . Then End∗

A(N ) does not contain any non-zero element T such that T is
perpendicular to K A(M) ⊆ K A(N ).

Proof Suppose, θx,y T = 0 on N for any x, y ∈ M, i.e., y〈x, T (z)〉 = 0 for any
z ∈ N , any x, y ∈ M . Since y ∈ M is arbitrary and Lemma 3.2,(i) holds this is
equivalent to the condition 〈x, T (z)〉 = 0 for any x ∈ M, any z ∈ N . By supposition
this means T (z) = 0 for any z ∈ N . Therefore, T = 0. If one investigates the opposite
multiplication order T θx,y = 0 we can apply the involution on End∗

A(N ) and reduce
the problem to the one treated. ��
Proposition 3.7 Let A be a monotone complete C*-algebra and M ⊆ N be two Hilbert
A-modules. Suppose that M ⊆ N has the orthogonal complement M⊥

N = {0} with
respect to N . Then the identity operator on M extends to the identity operator on
N . This is its unique extension as a bounded modular adjointable operator which
preserves the norm.

Proof Consider the isometric modular embeddings M ⊂ N as given, N ⊆ N ′ and
M ⊆ M ′ by [35, Thm. 3.2] and M ′ ⊆ N ′ as described in Theorem 3.3. Since every
bounded module operator on the smaller Hilbert A-module of each of the last three
pairings admits a unique extension to a bounded module operator on the larger Hilbert
A-module preserving its norm by [35, Cor. 3.7], we can extend the identity operator
on M to a unique bounded module operator on N which is an orthogonal positive
projection Q on N . Obviously, ‖Q‖ = ‖idN ‖ = 1, so by the uniqueness of the
extensions Q = P ∈ End∗

A(N ′) with P from the end of the proof of Theorem 3.3.
However, P /∈ End∗

A(N ) by Lemma 3.4 in case it is not the identity of End∗
A(N ).

Therefore, Q = P = idN is the only possible alternative according to Theorem 3.3,
Proposition 3.6. In other words, End∗

A(M) and End∗
A(N ) share their identity operators

in this canonical setting. Moreover, by [35, Thm. 3.2] and [35, Cor. 3.7] we have
idM = idM ′ and idN = idN ′ for the respective identity operators for the canonical
isometric modular embeddings. Therefore, idM ′ = idN ′ and P = idN .
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By [37, Thm.] and Lemma 3.4 any non-degenerated isometric ∗-representation
of K A(N ) is at the same time a non-degenerated isometric ∗-representation of
K A(M), and hence, an isometric ∗-representation of their respective multiplier alge-
bras End∗

A(M) and End∗
A(N ) which share their identity elements. So, this picture is

highly stable. The derived facts of representation theory support the conclusion. ��
We arrive at a central result, a particular case of which was published by Manuilov

as [33, Thm. 9] for commutative W*-algebras and as [33, Thm. 10] for type I von
Neumann algebras..

Theorem 3.8 Let A be a monotone complete C*-algebra and M ⊆ N be two Hilbert
A-modules. Suppose that M ⊆ N has the orthogonal complement M⊥

N = {0} with
respect to N . Then the selfdual Hilbert A-module M ′ admits an isometric embedding
as a Hilbert A-submodule of the selfdual Hilbert A-module N ′, such that M ′ coincides
with N ′ preserving the given isometric inclusions. In particular, there does not exist
any bounded A-linear functional r0 : N → A, such that r0 vanishes on M, but which
is not the zero functional on N .

Proof By Theorem 3.3 the isometric embedding of M into N can be continued to an
isometric embedding of M ′ into N ′ as a direct orthogonal summand. Since M⊥ = {0}
Lemma 3.4 and Proposition 3.7 imply the isometric modular isomorphism M ′ = N ′.
By the definition of M ′ the (bounded A-linear) zero functional on M with values in
A has only the zero functional from N to A as its continuation. ��

The following fact is not true for any C*-algebra A and any Hilbert A-module N ,

what makes it remarkable.

Corollary 3.9 Let A be a monotone complete C*-algebra and M ⊆ N be two Hilbert
A-modules. Suppose that M ⊆ N has the orthogonal complement M⊥

N = {0} with
respect to N . Then the A-dual Banach A-modules of N and of M isometrically coincide
as Banach A-modules. In particular, for a given Hilbert A-module N this holds for
any (smaller-equal) Hilbert A-submodule M with M⊥

N = {0}.
As a central result we got that any isometric embedding of a Hilbert A-module M

into another Hilbert A-module N with M⊥ = {0} continues to an isometric coinci-
dence of the A-dual Banach A-modules M ′ and N ′. Therefore, the following corollary
excludes the existence of examples in the described context like those given by Kaad
and Skeide in [24].

Corollary 3.10 Let A be a monotone complete C*-algebra and M ⊆ N be two Hilbert
A-modules. Suppose that M ⊆ N has the orthogonal complement M⊥

N = {0} with
respect to N . The for any element n ∈ N\M the equality ‖n‖N = ‖n‖M ′ holds for
these two norms of it.

Remark 3.11 Let A be a monotone complete C*-algebra and M ⊆ N be two Hilbert
A-modules. Suppose that M ⊆ N has the orthogonal complement M⊥

N = {0} with
respect to N . Then by the unique extension theorem by Paschke [35, Cor. 3.7] any
bounded (adjointable) operator on M or on N , respectively, has a unique equal-
norm extension to a bounded adjointable operator on the A-dual Hilbert A-modules
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N ′ = M ′. However, in general the C*-algebras of “compact” modular operators
K A(N ) and K A(M) are not a pair of a C*-algebra and one of its norm-closed two-
sided ideals if considered as C*-subalgebras of EndA(N ′) = EndA(M ′). Moreover,
bounded (adjointable) module operators on M extended to the monotone complete
C*-algebra EndA(N ′) = EndA(M ′) and, afterwards, reduced to bounded module
operators with domain N might not preserve N . Consequently, if for pairs I ⊆ J of a
two-sided norm-closed ideal I in a C*-algebra J we canonically haveM(J ) ⊆ M(I )
(cf. local multiplier algebra definition for C*-algebras, [1, Prop. 1.2.20, Def. 2.3.1,
Prop. 2.3.4]),we donot knowanything definite on the interrelation of themultiplierC*-
algebras End∗

A(M) and End∗
A(N ) except that they share K A(M)⊕ Z(M(K A(M))idN

by Lemma 3.2. However, in case N is selfdual we have an isometric ∗-representation
of End∗

A(M) in EndA(N ′) as an order-dense C*-subalgebra with the same identity
operator and center.

4 Special boundedmodular functionals and kernels of bounded
modular operators

For bounded adjointable operators T : M → N between Hilbert A-modules M,

N over a C*-algebra A there are some simple facts characterizing basic situations.
Obviously, T is A-linear, the kernel ker(T ) and the set T ∗(N ) are orthogonal to each
other in M and norm-closed.

Lemma 4.1 Let M, N be two Hilbert A-modules over a C*-algebra A, and let T :
M → N be a bounded adjointable operator. Then:
1. The kernel ker(T ) of T is biorthogonally complemented.
2. There does not exist any non-zero element of M orthogonal to both the setsKer(T )

and T ∗(N )⊥⊥.

3. The direct orthogonal sum of Ker(T ) and (T ∗(N ))⊥⊥ might not be equal to M .

Proof To show (i), suppose there exists an element x ∈ ker(T )⊥⊥, such that T (x) 	= 0.
Then x is orthogonal to T ∗(N )⊥, i.e., 0 = 〈x, T ∗(y)〉 = 〈T (x), y〉 for any y ∈ N .

Therefore, T (x) = 0, a contradiction. To derive (ii), the argument is the same: Any
element x ∈ M orthogonal to T ∗(N ) belongs to ker(T )⊥⊥, so there is no element of
M orthogonal to both ker(T ) = ker(T )⊥⊥ and (T ∗(N ))⊥⊥, as well as to their direct
orthogonal sum in M .

To show the possible non-coincidence of M and of the direct orthogonal sum of
Ker(T ) and T ∗(N )⊥⊥ for a certain bounded adjointable operator between Hilbert C*-
modules consider A = C([0, 1]) as a Hilbert A-module over itself, and the element
f0 ∈ A, such that f0 equals to zero on [0, 1

2 ] and f0 is strongly positive on ( 12 , 1]. Then
the multiplication operator T of A by f0 has the property Ker(T )⊕(T ∗(N ))⊥⊥ 	= M .

��
Proposition 4.2 Let N be a Hilbert A-module over a C*-algebra A. Suppose, there
exists a bounded module operator T0 : N → N the kernel of which is not biorthog-
onally complemented. Then the biorthogonal complement of the kernel of T0 with
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respect to N admits a non-zero bounded A-linear functional r0 : Ker(T0)⊥⊥ → A,
such that r0 is the zero functional onKer(T0). The map r0 can be extended to a bounded
A-linear functional on N .

Proof In the situation given Ker(T0)⊥⊥ contains an element x0 	= 0 that does not
belong to Ker(T0) and for which T0(x0) 	= 0. Consequently, the bounded A-linear
functional r0(.) := 〈T0(x0), T0(.)〉 : N → A maps Ker(T0) to zero, but is unequal to
zero on Ker(T0)⊥⊥ since 〈T0(x0), T0(x0)〉 > 0 by assumption. Obviously, the defined
map r0 can be applied to any element of N . ��

Proposition 4.3 Let M ⊂ N be a pair of Hilbert A-modules over a C*-algebra A,
such that M⊥ = {0} and N is full. Suppose, there exists a non-trivial bounded module
functional r0 : N → A the kernel of which contains M . Then N admits a bounded non-
adjointable module operator T0 : N → N, such that its kernel is not biorthogonally
complemented and contains M .

Proof Note, that any C*-algebra A can be considered as a Hilbert A-module over
itself, so any bounded A-linear functional r : M → A can be considered as a bounded
A-linear module map. Thus, any pair of non-self-dual Hilbert A-modules M, N with
M ⊂ N , M⊥ = {0} and an existing non-zero bounded A-linear functional r0 :
N → A vanishing on M gives rise to Ker(r0) 	= Ker(r0)⊥⊥ inside N . Consider
the set of operators {T0,x,a : T0,x,a(·) = x(a · r0(·)) with x ∈ N , a ∈ A}. The set
{a ·r0(z) : z ∈ N , a ∈ A} forms a two-sided ideal in A by the right A-linearity of r0, by
the right A-module property of N , by the free choice of a ∈ A and by the supposition
〈N , N 〉 = A. In case 〈x, x〉 would be orthogonal to the set {a · r0(z) : z ∈ N , a ∈ A}
for any x ∈ N the two-sided ideal {a · r0(z) : z ∈ N , a ∈ A} would have to consist
only of the zero element of A = 〈N , N 〉, a contradiction to the non-triviality of r0.
Therefore, the set {T0,x,a : T0,x,a(·) = x(a · r0(·)) with x ∈ N , a ∈ A} contains
at least one non-zero bounded non-adjointable module operator T0 on N with a not
biorthogonally complemented kernel containing Ker(r0) ⊇ M . ��

Therefore, for a given C*-algebra A and a given full Hilbert A-module N the prob-
lemof the existence of bounded A-linear functionals r0 possessing a not biorthogonally
closed kernel that admits a trivial orthogonal complement is tightly connected to the
problem of the existence of bounded A-linear operators T0 on N possessing a not
biorthogonally closed kernel that admits a trivial orthogonal complement.

Theorem 4.4 (Cf. [15, Lemma 2.4]) The kernel of any bounded A-linear operator
between two Hilbert A-modules over a monotone complete C*-algebra A is biorthog-
onally complemented.

The proof is a combination of Theorem 3.8 and Proposition 4.2. In total, we finally
found a correct proof of [15, Lemma 2.4] for monotone complete C*-algebras and for
compact C*-algebras. The statement [15, Lemma 2.4] is false in the general C*-case
by [24].
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5 Extension of C∗-linear functionals: the compact C*-case

Among the C*-algebras A for which the category of Hilbert C*-modules over them
admits most of the positive properties one needs for easy applications, is the class of
compact C*-algebras, i.e., those that admit a faithful ∗-representation in some C*-
algebra of compact operators on a suitable Hilbert space. A similar result from a
slightly different point of view has been obtained by Manuilov, cf. [33, Thm. 10].

Theorem 5.1 Let A be a compact C*-algebra and M ⊆ N be two Hilbert A-modules.
Suppose that M ⊆ N has the orthogonal complement M⊥

N = {0} with respect to N .

Then the bounded A-linear zero functional of M to A admits a unique extension to a
bounded A-linear functional of N to A, such that it vanishes on M—the zero functional,
because M = N . The more, the kernel of every bounded A-linear operator mapping
it to another Hilbert A-module is biorthogonally complemented in it.

Proof For a compact C*-algebra A and any Hilbert A-module over it we have two nice
properties: (i) There exists an orthogonal basis of it, i.e., a generating set {xα : α ∈ I }
in it such that 〈xα, xβ〉 = 0 for any α 	= β in I and 〈xα, xα〉 = pα with pα an
non-zero atomic projection in A (cf. [3, Thm. 2, Thm. 4]); (ii) the Hilbert A-module
is an orthogonal direct summand whenever it is isometrically embedded into another
Hilbert A-module as a Hilbert A-submodule (cf. [19, 31]). Therefore, M is a direct
orthogonal summand of N with trivial orthogonal complement, i.e., M and N coincide.
This forces the isometric coincidence of their A-dual Banach A-modules.

The kernel of any bounded A-linear operator on the Hilbert A-module under con-
sideration is a Hilbert A-submodule of it, and hence, an orthogonal direct summand
of it (cf. [31]). In particular, it coincides with its biorthogonal complement. ��

6 The situations for one-sidedmaximal modular ideals of general
C*-algebras and for other norm-closed ideals

Let us return to the class of examples of right norm-closed maximal ideals D of
C*-algebras A. We would like to consider the class of modular right maximal ideals
D ⊂ A, i.e., of such ideals for which there exists an element u D ∈ A, such that (a −
u Da) ∈ D for any a ∈ A. They are automatically norm-closed, cf. [34, Thm. 1.3.1].
For C*-algebras even more is known: every maximal right ideal of a C*-algebra is
norm-closed [7, Cor. 3.6], every maximal right ideal of a Fréchet algebra is modular
[8, Thm. 2.2.42, Prop. 4.10.23], and in the commutative C*-case the codimension is
1 ([7, Thm. 2.4(i)], Gel’fand–Mazur theorem).

Theorem 6.1 Let A be a C*-algebra and D be a right modular maximal ideal in
A. Consider them as Hilbert A-modules in the usual way transferring the algebraic
properties of A to modular and A-valued inner product structures on both A and
D ⊂ A. Then the zero functional on the Hilbert A-submodule D has only the zero
modular functional on its biorthogonal complement D⊥⊥ in the hosting Hilbert A-
module A as its continuation.
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Remark 6.2 In case the C*-algebra A contains a finite-dimensional (matrix) block and
the left annihilator projection p ∈ A∗∗ of D is an atomic projection in this finite-
dimensional block of A ⊆ A∗∗, then D⊥⊥ = (1− p)A ⊂ A (but of A∗∗). Otherwise,
the left annihilator projection of D in A∗∗ is not an element of A, and D⊥⊥ = A.

Proof By [34, Thm. 5.3.5] there exists a bijection between the set of pure states ρ on
A and the set of all modular maximal right ideals Nρ of A, where Nρ = {a ∈ A :
ρ(aa∗) = 0}. The inverse mapping is induced by a factorization of A by a modular
maximal right ideal D resulting in a one-dimensional ∗-representation of A with a
cyclic vector that induces the pure state. Considering the universal ∗-representation
πu of A on a Hilbert space Hu as defined in [39, 3.7.6], these one-dimensional ∗-
representations of A are direct summands ofπu .Therefore, the bicommutant ofπu(A),

a von Neumann algebra, contains atomic projections pρ in its type I part that project
onto these related one-dimensional ∗-representation spaces and realize any pure state
ρ on A that way. The more, the enveloping von Neumann algebra πu(A)′′ of A is
isomorphic, as a Banach space, to the second dual Banach space A∗∗ of A, cf. [39,
Thm. 3.7.8]. That is, we have a one-to-one relation between the set of all modu-
lar maximal right ideals Nρ of A and atomic projections pρ of A∗∗ = πu(A)′′ as
πu(Nρ)⊥⊥ = (1 − pρ)A∗∗ in the sense of taking the left annihilator of πu(Nρ) and
then the right annihilator.

So the initial problem of the assertion above translates into the question of the nature
of the intersection of πu(A)pρ with A∗∗ pρ. Since pρ A∗∗ pρ = C, either pρ ∈ πu(A),

i.e., in the (existing in this case) matrix part of A, and pρπu(D) as a Hilbert A-
submodule of pρπu(A) is a direct orthogonal summand of pρπu(A), or πu(A)pρ ∩
A∗∗ pρ = {0}. In the first case pρπu(D) is self-dual, so it contains already all modular
continuations of the zero functional to its biorthogonal complement in pρπu(A). In
the second case we end up with the zero element as the unique continuation. So the
result follows. ��
Proposition 6.3 Let A be a commutative C*-algebra and I ⊆ J be two essential
norm-closed ideals of A. Then:
1. The left and the right annihilator sets of I w.r.t. J and of I or J w.r.t. A consist

only of the zero element.
2. The multiplier algebra of J is isometrically ∗-algebraically represented in the

multiplier algebra of I , i.e., M(J ) ⊆ M(I ).
3. Suppose, I and J are considered as (right) Hilbert A-modules. Then any bounded

A-linear functional from J to A which is supposed to be the zero functional on I
equals to zero on J .

Proof Start with the basic situation of two essential norm-closed ideals I ⊆ J of A.

Since norm-closed ideals of a commutative C*-algebra are C*-algebras themselves,
any one-sided annihilator of I or J forces its adjoint to be an one-sided annihilator of
I or J from the other side, simply by commutativity of A. The property of I and of
J to be essential norm-closed ideals of A yields one-sided annihilators of them w.r.t.
J and/or to A to be the set {0A}. By commutativity of A any one-sided multiplier of
I or J is in fact a two-sided multiplier.
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Moreover, one hasM(J ) ⊆ M(I ) in the sense of an injective∗-algebraical inclusion
of C*-algebras, cf. [1, Prop. 1.2.20, Def. 2.3.1, Prop. 2.3.4]. Any bounded A-linear
functional r : J → A can be described as the multiplication by a fixed element
nr ∈ M(J ) since the A-dual Banach A-module of J can be represented as M(J ) in
that way. Therefore, nr can be seen as a multiplier of I , too. So, any bounded A-linear
functional r on J vanishing on I leads to an annihilator of I w.r.t. J . And this can be
only the zero element of A by supposition. ��

We cannot transfer the proof to the non-commutative situation straightforwardly,
since the A-dual Banach A-module I ′ of I has to be identified with the right multiplier
algebra RM(I ) of I which might be larger than M(I ) and, therefore, might be not
invariant w.r.t. involution, i.e., might be not a ∗-algebra.

The search for counterexamples of special C*-functionals in the class of monotone
complete C*-algebras A, setting N = A, and right norm-closed ideals D in A, setting
M = D, is not successful. Basically, the left annihilator of D is always of the form Ap
with p ∈ A, a fact from AW*-algebra theory (cf. [40, Prop. 8.2.2]). And additionally,
D is order-dense in (1 − p)A. Moreover, (1 − p)A and A are right self-dual Hilbert
A-modules. So we can formulate a corollary.

Corollary 6.4 Let A be a monotone complete C*-algebra and D be a right, norm-
closed ideal of A which is order dense in A. Then there does not exist any non-zero
bounded A-linear functional r0 : A → A, such that r0(D) = {0}.

Set N = A and M = D, recall D⊥ = {0} and apply Theorem 3.8. We get the
desired result. Going further we consider a pair of two ideals in a monotone complete
C*-algebra.

Corollary 6.5 Let A be a monotone complete C*-algebra, let I and J be two right
norm-closed ideals of A, such that I ⊂ J ⊆ A, both with the orthogonal complement
p A, p = p2 ≥ 0 in A. Switching to a consideration of I and J as Hilbert A-
submodules of A, the orthogonal complement of I with respect to J is equal to {0}.
Then the right ideals I ⊂ J have the same left carrier projection (1 − p) ∈ A, and
as Hilbert A-submodules of A they fulfil I ′ = J ′ = (1 − p)A. In particular, I and
J are order dense in (1 − p)A, or equivalently in the picture of Hilbert A-modules,
τ o
2 -dense. So, there does not exist any bounded A-linear functional r0 : J → A such

that r0 vanishes on I , but which is not the zero functional on J .

Proof Consider the two ideals as (right) Hilbert A-modules M = I and N = J in A.

The right annihilator of I and of J w.r.t. A equals to zero since they are right ideals of
A and right A-modules. Suppose, the left annihilator of I w.r.t. A is p A and of J w.r.t.
A is q A. Since I ⊂ J we have p ≥ q. Switch to the picture of a Hilbert A-modules
M ⊂ N . In case p > q the subset (p − q)N is non-zero and orthogonal to M, a
contradiction to the supposition. So p = q. By Theorem 3.8 M ′ = N ′ = (1 − p)A
as Hilbert A-modules, and the uniqueness of the continuation of the zero functional
from I to J follows. ��

Summing up, we found results for the zero functional continuation problem for
pairs of a Hilbert C*-submodule with trivial orthogonal complement in another Hilbert
C*-module, with quite different roots. So the research about this problem has to be
continued.
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