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Abstract
The main objective of this article is to consider a biharmonic problem with Navier
boundary conditions. Among others, some criteria for the existence, multiplicity and
nonexistence of positive solutions are established by employed fixed point theorems
in a cone. In addition, we not only consider the sublinear case, but also we will study
the case of appropriate combinations of superlinearity and sublinearity.
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1 Introduction andmain results

Biharmonic elliptic equations with various boundary conditions come from the study
of traveling waves in suspension bridges [5] and static deflection of a bending beam
[16], and have attracted the interest of many researchers. Some classical methods
have been widely used to study biharmonic elliptic equations: the Pohozaev identi-
ties and decay estimates, see Guo-Liu [12] and Guo-Wei [13]; comparison principles,
see Cosner-Schaefer [6] and Mareno [22]; degree argument, see Tarantello [28]; per-
turbation theory, see Wang-Shen [29]; bifurcation theory, see Lazer-McKenna [19];
the method of upper and lower solutions, see Ferrero-Warnault [10] and Pao [25];
computational methods for numerical solutions, see Pao [26] and Pao-Lu [27]; phase
space analysis, see Chang-Chen [4], Díaz-Lazzo-Schmidt [9]; fixed point theorems,
see Kusano-Naito-Swanso [18]; variational method, see Micheletti-Pistoia [23, 24],
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Xu-Zhang [31], Zhang [33], Zhou-Wu [36] and Ye-Tang [32]; Morse index, see Li-
Zhang [35], Davila-Dupaigne-Wang-Wei [7], Khenissy [17] and Wei-Ye [30], and the
moving-plane method, see Lin [20] and Guo-Huang-Zhou [14].

We recall some recent results of Abid-Baraket [1], Guo-Wei-Zhou [15], Arioli-
Gazzola-Grunau-Mitidieri [3] and Liu-Wang [21]. In [1], Abid-Baraket applied the
maximum principle to analyze the existence of singular solution to the following
biharmonic elliptic problem

{
�2u = u p in �,

u = �u = 0 on ∂�.
(1.1)

Recently, Guo-Wei-Zhou [15] employed the entire radial solutions of a equation
with supercritical exponent and the Kelvin’s transformation to obtain positive singular
radial entire solutions of the biharmonic equation with subcritical exponent. Then,
they constructed solutions with a prescribed singular set for problem (1.1) by using
the expansions of such singular radial solutions at the singular point 0.

In [3], Arioli-Gazzola-Grunau-Mitidieri studied the boundary value problem

{
�2u = λeu in �,

u = ∂u
∂n = 0 on ∂�,

(1.2)

where λ ≥ 0 is a parameter, � is the unit ball in R
n (n ≥ 5) and ∂u

∂n denotes the
differentiation with respect to the exterior unit normal. They proved the existence of
singular solutions for problem (1.2) by means of computer assistance when 5 ≤ n ≤
16.

In [21], Liu-Wang employed a variant version of Mountain Pass Theorem to study
the existence and nonexistence of positive solution to the biharmonic problem

{
�2u = f (x, u) in �,

u = �u = 0 on ∂�,

where � is a smooth bounded domain in R
n (n > 4), and f satisfies

(C1) f (x, t) ∈ C(�̄ × R); f (x, 0) = 0, ∀x ∈ �̄; f (x, t) ≥ 0, ∀t ≥ 0, x ∈
�̄ and f (x, t) ≡ 0, ∀t ≤ 0, x ∈ �̄;

(C2) lim
t→0

f (x,t)
t = p(x), lim

t→+∞
f (x,t)
t = l (0 < l ≤ +∞) uniformly in a.e. x ∈ �

where |p(x)|∞ < �1, �1 is the first eigenvalue of (�2, H2(�) ∩ H1
0 (�));

(C3) for a.e. x ∈ �, lim
t→0

f (x,t)
t is nondecreasing with respect to t > 0.

However, to our best knowledge, in the literature, there are almost no papers using
the fixed point theory in cons for completely continuous operators to study the exis-
tence, nonexistence and multiplicity of positive solutions for analogous biharmonic
elliptic problems. More precisely, the study is still open for the Navier boundary value
problem

{
�2u = λ f (x, u) in �,

u = �u = 0 on ∂�,
(1.3)
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where λ 
= 0 is a parameter, � is a smooth bounded domain in R
n (n ≥ 2), and the

nonlinearity f satisfies:
(f1) f ∈ C(�̄ × [0,+∞), [0,+∞)).
If λ = 1 and f (x, u) = u p, then problem (1.3) reduces to the problem studied by

Abid-Baraket [1] and Guo-Wei-Zhou [15].
Let

f 0 := lim
u→0+

f (x, u)

u
uniformly for x ∈ �̄;

f ∞ := lim
u→+∞

f (x, u)

u
uniformly for x ∈ �̄;

f∞ := lim
u→+∞

f (x, u) uniformly for x ∈ �̄.

The main results of this paper are the following theorems.

Theorem 1.1 Under condition (f1), if f 0 = 0, f ∞ = 0 and f∞ ∈ (0,+∞], then, for
any given τ > 0, there exists ξ > 0 so that, for λ > ξ , problem (1.3) admits at least
two positive solutions u(1)

λ (x), u(2)
λ (x) and max

x∈�̄
u(1)

λ (x) > τ .

Remark 1.2 One of the contributions of Theorem 1.1 is to use a simpler method, i.e.
index theory of fixed points on cones to prove the multiplicity of positive solutions for
biharmonic problems.

Remark 1.3 The approach used in Theorem 1.1 is completely different from those
used in Abid-Baraket [1], Guo-Wei-Zhou [15], Arioli-Gazzola-Grunau-Mitidieri [3],
Liu-Wang [21] and other related papers. In particular, comparing with Liu-Wang [21],
the main difficulties of Theorem 1.1 lie in three main directions:

(1) λ > 0 is considered;
(2) multiple positive solutions are obtained;
(3) in the proof process, we do not need the monotonicity condition (C3).

Theorem 1.4 Under condition (f1), (i) if 0 < f 0 < +∞, then there are l0 > 0 and
λ0 > 0 such that, for every 0 < r < l0, problem (1.3) admits a positive solution ur
satisfying ‖ur‖C = r associated with

λ = λr ∈ (0, λ0]. (1.4)

(i i) if f 0 = +∞, then there are l∗ > 0 and λ∗ > 0 such that, for any 0 < r∗ < l∗,
problem (1.3) admits a positive solution ur∗ satisfying ‖ur∗‖C = r∗ for any

λ = λr∗ ∈ (0, λ∗].

(i i i) if f 0 < +∞ and f ∞ < +∞, then there exists λ > 0 such that problem (1.3)
admits no positive solutions for λ ∈ (λ,∞).

Corollary 1.5 Under condition (f1), if f 0 = 0 and f ∞ = 0, then problem (1.3) admits
no positive solution for sufficiently large λ.
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Next, in Theorems 1.6–1.9 and Theorem 1.11, we will employ some techniques
different from that used in Theorem 1.1 to prove some existence and multiplicity
results. Conclusions to be demonstrated in Theorems 1.6–1.9 and Theorem 1.11 are
true for any positive parameter λ. We hence may suppose that λ = 1 in problem (1.3)
for simplicity.

We introduce the following notations.

f γ = lim sup
u→γ

max
x∈�̄

f (x, u)

uα
, fγ = lim inf

u→γ
min
x∈�̄

f (x, u)

uβ
,

where γ denotes 0+ or +∞, α, β ∈ (0,+∞).
We consider the following three cases for α, β ∈ (0,+∞) :

α = 1; 0 < α, β < 1 and α > 1.

Case α = 1 is treated in Theorems 1.6–1.7.

Theorem 1.6 Under condition (f1), if f 0 = 0 or f ∞ = 0, and there exist η > 0 and
l > 0 so that u ≥ η and x ∈ �̄ implies

f (x, u) ≥ l, (1.5)

then problem (1.3) possesses at least one positive solution.

Theorem 1.7 Under condition (f1), if f 0 = 0 and f ∞ = 0, and there exist η > 0 and
l > 0 such that u ≥ η and x ∈ �̄ implies (1.5) holds, then problem (1.3) possesses at
least two positive solutions u∗ and u∗∗ with

0 < ‖u∗‖C < η < ‖u∗∗‖C ,

where ‖ · ‖C denotes the norm of real Banach space C(�̄).

Theorems 1.8–1.9 deal with the case 0 < α < 1 and 0 < β < 1.

Theorem 1.8 Under condition (f1), if

f0 = ∞ and f ∞ = 0,

then problem (1.3) possesses at least one positive solution.

Theorem 1.9 Under condition (f1), if f ∞ = 0 and there exist η > 0 and l > 0 such
that u ≥ η and x ∈ �̄ implies (1.5) holds, then problem (1.3) possesses at least one
positive solution.

Remark 1.10 Themethod applied in the proof of Theorems 1.6–1.7 is invalid when we
employ it to demonstrate Theorems 1.8–1.9 for the case 0 < α < 1 and 0 < β < 1.
Therefore we need to introduce a different technique to verify Theorems 1.8–1.9.
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Next we study the case α > 1 in Theorem 1.11.

Theorem 1.11 Under condition (f1), if f 0 = 0 and there exist η > 0 and l > 0 such
that u ≥ η and x ∈ �̄ implies (1.5) holds, then problem (1.3) possesses at least one
positive solution.

Remark 1.12 The fixed point index theorem on cones is valid in the proof of Theo-
rem 1.11, but the approach used in the proof of Theorems 1.6–1.9 is invalid.

The rest of the paper is organized as follows. In Sect. 2, we first apply an idea from
Guo-Huang-Zhou [14] to transfer problem (1.3) into a second-order elliptic system.
Then,weobtain theGreen’s function of problem (1.3) bymeans of theGreen’s function
of the corresponding second-order elliptic boundary value problem. Consequently we
get the expression of the solution for problem (1.3). In Sect. 3, we apply index theory of
fixed points for completely continuous operators to study the existence, nonexistence
and multiplicity of positive solutions to problem (1.3). Sections4–6 are, respectively,
devoted to the study of existence andmultiplicity of positive solutions to problem (1.3)
under the case λ = 1.

2 Second-order elliptic system

In this section, we first apply an idea from Guo-Huang-Zhou [14] to transfer problem
(1.3) into a second order elliptic system. Then, we obtain the Green’s function of
problem (1.3) by means of the Green’s function of the corresponding second order
elliptic boundary value problem. Consequently, we get the expression of the solution
for problem (1.3).

Let −�u = ω. Then, we can transfer the biharmonic problem (1.3) into the fol-
lowing second order elliptic system

⎧⎨
⎩

−�u = ω in �,

−�ω = λ f (x, u) in �,

u = 0 = ω on ∂�.

(2.1)

It follows from (2.1) that

u(x) =
∫

�̄

G∗(x, y)ω(y)dy, (2.2)

ω(x) = λ

∫
�̄

G∗(x, y) f (y, u(y))dy, (2.3)

where G∗(x, y) is the Green’s function of −� on �, which verifies

0 ≤ G∗(x, y) ≤ C |x − y|2−n,

where n ≥ 3, the constant C depends only on �.
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Moreover, for x, y ∈ �, x 
= y, one finds that

0 ≤ G∗(x, y) ≤ 1

4π |x − y| , n = 3,

0 ≤ G∗(x, y) ≤ 1

2π
ln

d

|x − y| , n = 2,

where d denotes the diameter of �.
Since, for x, y ∈ �̄ ⊂ R

n (n ≥ 2), G∗(x, y) is nonnegative, continuous (when
x 
= y) and symmetric, there must be two points x0 and y0 with x0 
= y0, which are
interior points of �, such that

G∗(x0, y0) = G∗(y0, x0) > 0.

Thus, there are τ1, τ2, τ3 > 0 and two disjoint small closed balls B1, B2, B3 ∈ � such
that

⎧⎨
⎩
G∗(x, y) ≥ τ1, ∀(x, y) ∈ (B1 × B2) ∪ (B2 × B1),

G∗(y, z) ≥ τ2, ∀(y, z) ∈ (B2 × B3) ∪ (B3 × B2),

G∗(x, z) ≥ τ3, ∀(x, z) ∈ (B1 × B3) ∪ (B3 × B1),

(2.4)

where

B1 = {x ∈ � : |x − x0| ≤ δ},
B2 = {x ∈ � : |x − y0| ≤ δ},
B3 = {x ∈ � : |x − z0| ≤ δ}.

It is easy to see that

mesB1 = mesB2 = mesB3.

On the other hand, from (2.2) and (2.3), we have

u(x) = − ∫
�̄
G∗(x, y)ω(y)dy

= λ
∫
�̄
G∗(x, y)

∫
�̄
G∗(y, z) f (z, u(z))dzdy

= λ
∫
�̄

∫
�̄
G∗(x, y)G∗(y, z) f (z, u(z))dzdy

= λ
∫
�̄
G(x, z) f (z, u(z))dz,

(2.5)

where

G(x, z) =
∫

�̄

G∗(x, y)G∗(y, z)dy. (2.6)

Thus, we give the expression of Green’s function for problem (1.3). Obviously,
G(x, z) = G(z, x) and G(x, z) ≥ 0 for x, z ∈ �̄.
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3 Proof of Theorems 1.1 and 1.4

In this section, we first consider the multiplicity of positive solutions for problem (1.3)
by using the fixed point index in a cone, which is used in Zhang [34].

Lemma 3.1 ([8]) Let E be a real Banach space and K be a cone in E. For r > 0,
define Kr = {x ∈ K : ‖x‖ < r}. Assume that T : K̄r → K is completely continuous
such that T x 
= x for x ∈ ∂Kr = {x ∈ K : ‖x‖ = r}.

(i) If ‖T x‖ ≥ ‖x‖ for x ∈ ∂Kr , then i(T , Kr , K ) = 0.
(i i) If ‖T x‖ ≤ ‖x‖ for x ∈ ∂Kr , then i(T , Kr , K ) = 1.

Let E = C(�̄) be the real Banach space with supremum norm ‖ · ‖C , and define a
cone K in E as

K = {u : u ∈ E, u(x) ≥ 0, x ∈ �̄}. (3.1)

For � > 0, we also define

D� = {u : u ∈ E, ‖u‖C < �},

and

∂K� = K ∩ ∂D� = {u ∈ K : ‖u‖C = �}.

For u ∈ K , we define Tλ : K → E to be

Tλu(x) = λ

∫
�̄

G(x, y) f (y, u(y))dy, (3.2)

where G(x, y) is defined in (2.6).
When (f1) hold, it is well known that Tλ : K → E is completely continuous.

Proof of Theorem 1.1. For any given τ > 0, it follows from f∞ ∈ (0,+∞] that there
exist η > 0 and l > τ such that

f (x, u) ≥ η, ∀x ∈ �̄, u ≥ l. (3.3)

Letting ξ = (τ1τ2η(mesB2)(mesB3))
−1l, then for 0 < λ < ξ , one can prove that

T̂λ : K → K is completely continuous.
Considering f 0 = 0, there exists 0 < r < l such that

f (x, u) ≤ ε1u, ∀x ∈ �̄, 0 ≤ u ≤ r , (3.4)

where ε1 > 0 satisfies

λε1‖φ1‖C‖φ2‖C < 1, (3.5)
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and for i ∈ {1, 2}, φi ∈ C2(�̄) gratify

{−�φi = 1 in �,

φi = 0 on ∂�.
(3.6)

So, for u ∈ K ∩ ∂Dr , we have from (2.5), (2.6), (3.2), (3.4) and (3.5) that

‖Tλu‖C = max
x∈�̄

λ
∫
�̄
G(x, y) f (y, u(y))dy

= max
x∈�̄

λ
∫
�̄

∫
�̄
G∗(x, z)G∗(z, y) f (y, u(y))dzdy

= max
x∈�̄

λ
∫
�̄
G∗(x, z)dz

∫
�̄
G∗(z, y) f (y, u(y))dy

≤ λε1‖u‖C
∫
�̄
G∗(x, z)dz

∫
�̄
G∗(z, y)dy

≤ λε1‖u‖C‖φ1‖C‖φ2‖C
< ‖u‖C .

It hence follows from (i i) of Lemma 3.1 that

i(Tλ, Kr , K ) = 1. (3.7)

Now turning to f ∞ = 0, there exists σ > 0 so that

f (x, u) ≤ ε2u, ∀x ∈ �̄, u > σ,

where ε2 > 0 satisfies

2λε2‖φ1‖C‖φ2‖C ≤ 1. (3.8)

We hence have

0 ≤ f (x, u) ≤ ε2u + Mσ , ∀x ∈ �̄, u ≥ 0, (3.9)

where

Mσ = max
x∈�̄, 0≤u≤σ

f (x, u) + 1 > 0.

Let

R > max

{
l, 2λMσ ‖φ1‖C‖φ2‖C

}
. (3.10)
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Thus, for u ∈ K ∩ ∂DR , we derive from (2.5), (2.6), (3.2), (3.8), (3.9) and (3.10)
that

‖Tλu‖C = max
x∈�̄

λ
∫
�̄
G(x, y) f (y, u(y))dy

= max
x∈�̄

λ
∫
�̄

∫
�̄
G∗(x, z)G∗(z, y) f (y, u(y))dzdy

= max
x∈�̄

λ
∫
�̄
G∗(x, z)dz

∫
�̄
G∗(z, y) f (y, u(y))dy

≤ λ(ε2‖u‖C + Mσ )
∫
�̄
G∗(x, z)dz

∫
�̄
G∗(z, y)dy

≤ λ(ε2‖u‖C + Mσ )‖φ1‖C‖φ2‖C
<

‖u‖C
2 + R

2 = ‖u‖C .

It hence follows from (i i) of Lemma 3.1 that

i(Tλ, KR, K ) = 1. (3.11)

On the other hand, for u ∈ K̄ R
l = {u ∈ K : ‖u‖C ≤ R, min

x∈B3
u(x) ≥ l}, (2.5), (2.6),

(3.2), (3.8), (3.9) and (3.10) yield that

‖Tλu‖C < R.

Furthermore, for u ∈ K̄ R
l , from (2.4) (2.5), (2.6), (3.2), and (3.3), we obtain that

min
x∈B1

(Tλu)(x) = λ min
x∈B1

∫
�̄
G(x, y) f (y, u(y))dy

≥ λ min
x∈B1

∫
B2

∫
B3

G∗(x, z)G∗(z, y) f (y, u(y))dzdy

≥ λτ1τ2η(mesB2)(mesB3)

> ξτ1τ2η(mesB2)(mesB3)

= l.

Letting u0 ≡ l+R
2 and H(t, u) = (1− t)Tλu + tu0, then H : [0, 1] × K̄ R

l → K is
completely continuous, and from the analysis above,we obtain for (t, u) ∈ [0, 1]×K̄ R

l

H(t, u) ∈ K R
l . (3.12)

Therefore, for t ∈ [0, 1], u ∈ ∂K R
l , we have H(t, u) 
= u. Hence, by the normality

property and the homotopy invariance property of the fixed point index, we obtain

i(Tλ, K
R
l , K ) = i(u0, K

R
l , K ) = 1. (3.13)

Consequently, by the solution property of the fixed point index, Tλ admits a fixed
point u(1)

λ with u(1)
λ ∈ K R

l , and

max
x∈�̄

u(1)
λ (x) ≥ min

x∈B3
u(1)

λ (x) > l > τ.
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On the other hand, it follows from (3.7), (3.11) and (3.13) togetherwith the additivity
of the fixed point index that

i(Tλ, KR\(K̄r ∪ K̄ R
l ), K )

= i(Tλ, KR, K ) − i(Tλ, K R
l , K ) − i(Tλ, Kr , K )

= 1 − 1 − 1 = −1.
(3.14)

According to the solution property of the fixed point index, Tλ so possesses a fixed
point u(2)

λ with u(2)
λ ∈ KR\(K̄r ∪ K̄ R

l ). It is easy to see that u(1)
λ 
= u(2)

λ . This finishes
the proof of Theorem 1.1. ��

Next, we will prove the existence and nonexistence of positive solution to problem
(1.3). To this goal, we need to state one well-known result of the fixed point index on
cones for completely continuous operators, which is the base of our approaches.

Lemma 3.2 (Corollary 2.3.1, Guo and Lakshmikantham [11]) Let K be a cone in a
real Banach space E and let � be a bounded open set of E. Assume that the operator
A : K ∩ �̄ → K is completely continuous. If there exists a u0 > 0 such that

u − Au 
= tu0, ∀u ∈ K ∩ ∂�, t ≥ 0,

then

i(A, K ∩ �, K ) = 0.

Proof of Theorem 1.4. It is well known that problem (1.3) is equivalent to the following
nonlinear integral equation

u(x) = λ

∫
�̄

G(x, y) f (y, u(y))dy, (3.15)

where G(x, y) is defined in (2.6).
Consider the operator

T̂ u(x) =
∫

�̄

G(x, y) f (y, u(y))dy. (3.16)

Since G(x, y) and f (x, u) are nonnegative, it is easy to see that T̂ : K → K is
completely continuous.

Part (i). It follows from 0 < f 0 < +∞ that there exist 0 < l1 < l2 and μ > 0
such that

l1u < f (x, u) < l2u (∀x ∈ �̄, 0 ≤ u ≤ μ). (3.17)

Let λ0 = (l1τ1τ2mesB2mesB3)
−1 and l0 = μ. We now demonstrate that λ0 and l0

are the numbers to be required.
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On one hand, for u ∈ K ∩ ∂Dr , we have

0 ≤ u(x) ≤ r < l0 = μ, x ∈ �̄.

On the other hand, we may suppose that

u − λ0T̂ u 
= 0 (∀u ∈ K ∩ ∂Dr ). (3.18)

If not, then there is ur ∈ K ∩ ∂Dr such that λ0T̂ ur = ur and so (1.4) already holds
for λr = λ0.

Define ψ(x) ≡ 1 for x ∈ �̄. Then, ψ ∈ K gratifying ‖ψ‖C ≡ 1. We now
demonstrate that

u − λ0T̂ u 
= ζψ (∀u ∈ K ∩ ∂Dr , ζ ≥ 0). (3.19)

Assume that there are u1 ∈ K ∩∂Dr and ζ1 ≥ 0 such that u1−λ0T̂ u1 = ζ1ψ , then
(3.18) indicates that ζ1 > 0, and u1 = ζ1ψ + λ0T̂ u1 ≥ ζ1ψ . Let ζ ∗ = sup{ζ |u1 ≥
ζψ}. Then ζ1 ≤ ζ ∗ < +∞ and u1 ≥ ζ ∗ψ . Therefore,

ζ ∗ = ζ ∗‖ψ‖C ≤ ‖u1‖C = r . (3.20)

Consequently, for any x ∈ B1, we derive from (2.4), (2.5), (2.6), (3.16), and (3.17),
that

u1(x) = λ0
∫
�̄
G(x, y) f (y, u1(y))dy + ζ1ψ(x)

= λ0
∫
�̄

∫
�̄
G∗(x, z)G∗z, y f (y, u1(y))dzdy + ζ1ψ(x)

≥ λ0
∫
�̄

∫
�̄
G∗(x, z)G∗z, yl1u1(y)dzdy + ζ1ψ(x)

≥ λ0
∫
�̄

∫
�̄
G∗(x, z)G∗z, yl1ζ ∗ψ(z)dzdy + ζ1ψ(x)

≥ λ0l1ζ ∗ ∫
B2

G∗(x, z)dz
∫
B3

G∗z, ydy + ζ1ψ(x)
≥ λ0l1ζ ∗τ1τ2mesB2mesB3 + ζ1ψ(x)
= ζ ∗ + ζ1ψ(x)
= (ζ ∗ + ζ1)ψ(x),

which indicates that u1(x) ≥ (ζ ∗+ζ1)ψ(x) for x ∈ B1. This contradicts the definition
of ζ ∗. Thus, (3.19) holds and hence it yields from Lemma 3.2 that

i(λ0T̂ , K ∩ Dr , K ) = 0. (3.21)

It is widely known that

i(θ, K ∩ Dr , K ) = 1, (3.22)

where θ denotes the zero operator.
Therefore, it derives from (3.21) and (3.22) and the homotopy invariance that there

are ur ∈ K ∩ ∂Dr and 0 < νr < 1 so that νrλ0T̂ ur = ur , which indicates that

0 < λr = λ0νr < λ0.
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This gives the proof of (1.4).
Part (i i). If f 0 = +∞, then there are l3 > 0 and μ∗ > 0 so that

f (x, u) > l3u, ∀x ∈ �̄, 0 ≤ u ≤ μ∗.

Next, we verify that l∗ = μ∗ and λ∗ = (l3τ1τ2mesB2mesB3)
−1 are required. Thus,

for u ∈ K ∩ ∂Dr∗ , we derive that

0 ≤ u(x) ≤ r∗ < l∗ = μ∗, x ∈ �̄.

Similar to the proof of (i), replacing (3.18), one can suppose that

u − λ∗T̂ u 
= 0 (∀u ∈ K ∩ ∂Dr∗),

and replacing (3.19) we can demonstrate that

u − λ∗T̂ u 
= ζψ (∀u ∈ K ∩ ∂Dr∗ , ζ ≥ 0).

It follows from Lemma 3.2 that i(λ∗T̂ , K ∩ Dr∗ , K ) = 0. Seeing that i(θ, K ∩
Dr , K ) = 1, one can easily demonstrate that there are ur∗ ∈ K∩∂Dr∗ and 0 < νr∗ < 1
so that νr∗λ∗T̂ ur∗ = ur∗ . So, Theorem 1.4 (ii) holds for λr∗ = λ∗νr∗ < λ∗.

Part (i i i). If f 0 < ∞ and f ∞ < ∞, then there are positive numbers η1 > 0, η2 >

0, h1 > 0 and h2 > 0 so that h1 < h2 and for x ∈ �̄, 0 < u ≤ h1, we derive that

f (x, u) ≤ η1u, (3.23)

and for x ∈ �̄, u ≥ h2, we derive that

f (x, u) ≤ η2u. (3.24)

Set

η∗ = max

{
η1, η2, max

{
f (x, u)

u
: x ∈ �̄, h1 ≤ u ≤ h2

}}
> 0.

Then, we derive that

f (x, u) ≤ η∗u, x ∈ �̄, u ∈ [0,∞). (3.25)

Assume that v ∈ K is a positive solution to problem (1.3). We will demonstrate
that this leads to a contradiction for λ < λ = (η∗‖φ1‖C‖φ2‖C )−1.
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In fact, for λ < λ, we derive from (2.5), (2.6), (3.2), and (3.25) that

‖Tλv‖C = max
x∈�̄

λ
∫
�̄
G(x, y) f (y, v(y))dy

= max
x∈�̄

λ
∫
�̄

∫
�̄
G∗(x, z)G∗(z, y) f (y, v(y))dzdy

= max
x∈�̄

λ
∫
�̄
G∗(x, z)dz

∫
�̄
G∗(z, y) f (y, v(y))dy

≤ λη∗‖v‖C
∫
�̄
G∗(x, z)dz

∫
�̄
G∗(z, y)dy

≤ λη∗‖v‖C‖φ1‖C‖φ2‖C
< λη∗‖v‖C‖φ1‖C‖φ2‖C
= ‖v‖C ,

which indicates that

‖v‖C = ‖Tλv‖C < ‖v‖C .

This is a contradiction. ��
Proof of Corollary 1.5. The proof of Corollary 1.1 is a direct consequence of the proof
for Theorem 1.4 (iii). Under the conditions of Corollary 1.5, we can obtain the intervals
of λ so that problem (1.3) admits no positive solutions. ��
Remark 3.3 If we consider the following Navier boundary value problem

{
λ�2u = f (x, u) in �,

u = �u = 0 on ∂�,
(3.26)

where λ 
= 0 is a parameter,� is a bounded domain inR
n (n ≥ 2), and the nonlinearity

f satisfies (f1), then we have the following conclusions.

Theorem 3.4 Under condition (f1) holds, if 0 < f 0 < +∞, then there exists l0 > 0
such that, for every 0 < r < l0, problem (3.26) admits a positive solution ur satisfying
‖ur‖C = r associated with

λ = λr ∈ [λ0, λ̄0],

where λ0 and λ̄0 are two positive finite numbers.

Proof The proof is similar to that of Theorem 1.4 (i). We hence omit it here. ��

4 Proof of Theorem 1.6 and Theorem 1.7

In this section, we will prove Theorem 1.6 and Theorem 1.7. To achieve this goal, we
first state a well-known result of the fixed point, which is the base of our approaches.

Lemma 4.1 (Theorem 2.3.3, Guo and Lakshmikantham [11]) Let �1 and �2 be two
bounded open sets in a real Banach space E such that θ ∈ �1 and �̄1 ⊂ �2. Let P
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be a cone in E and let operator A : P ∩ (�̄2\�1) → P be completely continuous.
Suppose that one of the following two conditions

(a) Ax � x,∀ x ∈ P ∩ ∂�1 and Ax � x,∀ x ∈ P ∩ ∂�2
and

(b) Ax � x,∀ x ∈ P ∩ ∂�1 and Ax � x,∀ x ∈ P ∩ ∂�2
is satisfied. Then, A has at least one fixed point in P ∩ (�2\�̄1).

Remark 4.2 It is clear to see that the fixed point of A in Lemmas 4.1 can not reach the
boundary of �1 and �2.

Proof of Theorem 1.6. It is well known that problem (1.3) is equivalent to the following
nonlinear integral equation

u(x) =
∫

�̄

G(x, y) f (y, u(y))dy (4.1)

when λ = 1, where G(x, y) is defined in (2.6).
Consider the operator

T1u(x) =
∫

�̄

G(x, y) f (y, (u(y))dy, (4.2)

It is generally known that T1 maps K into K is a completely continuous operator.
Case (1), f 0 = 0.
Considering f 0 = 0, there exists r > 0 such that

f (x, u) ≤ εr , ∀x ∈ �̄, 0 ≤ u ≤ r , (4.3)

where ε > 0 satisfy ε‖φ1‖C‖φ2‖C < 1, and φi are defined in (3.6) for i ∈ {1, 2}.
We can prove that

Au � u, u ∈ K , ‖u‖C = r . (4.4)

In fact, if there exists u1 ∈ K ∩ ∂Dr such that T1u1 ≥ u1, then from (2.5), (2.6),
(3.6), (4.2) and (4.3) we have

0 ≤ u1(x) ≤ T1u1(x)
= ∫

�̄
G(x, y) f (y, u1(y))dy

= ∫
�̄

∫
�̄
G∗(x, z)G∗(z, y) f (y, u1(y))dzdy

= ∫
�̄
G∗(x, z)dz

∫
�̄
G∗(z, y) f (y, u1(y))dy

≤ εr
∫
�̄
G∗(x, z)dz

∫
�̄
G∗(z, y)dy

≤ εr‖φ1‖C‖φ2‖C
< r = ‖u1‖C .

This leads to ‖u1‖C < ‖u1‖C , which is a contraction. It so follows that (4.4) holds.
Case (2), f ∞ = 0.
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Considering f ∞ = 0, there exists R̄ > r > 0 such that

f (x, u) ≤ ε̄u, ∀x ∈ �̄, u ≥ R̄,

where ε̄ > 0 satisfies 1
2 ε̄‖φ1‖C‖φ2‖C < 1.

We hence have

0 ≤ f (x, u) ≤ ε̄u + M, ∀x ∈ �̄, u ≥ 0, (4.5)

where

M = max
x∈�̄, 0≤u≤R̄

f (x, u) + 1 > 0.

Let

R > max

{
R̄, 2M‖φ1‖C‖φ2‖C

}
. (4.6)

Then, one can prove that

T1u � u, u ∈ K , ‖u‖C = R. (4.7)

In fact, if there exists u2 ∈ K with ‖u2‖C = R so that T1u2 ≥ u2, then it follows
from (2.5), (2.6), (3.6), (4.5) and (4.6) that

0 ≤ u2(x) ≤ T1u2(x)
= ∫

�̄
G(x, y) f (y, u2(y))dy

= ∫
�̄

∫
�̄
G∗(x, z)G∗(z, y) f (y, u2(y))dzdy

= ∫
�̄
G∗(x, z)dz

∫
�̄
G∗(z, y) f (y, u2(y))dy

≤ ε(ε̄‖u2‖C + M)
∫
�̄
G∗(x, z)dz

∫
�̄
G∗(z, y)dy

≤ (ε̄‖u2‖C + M)‖φ1‖C‖φ2‖C
<

‖u2‖C
2 + R

2 = ‖u2‖C ,

which leads to ‖u2‖C < ‖u2‖C . This is a contraction. It so follows that (4.7) holds.
Next, we demonstrate that

T1u � u, u ∈ K , ‖u‖C = η, (4.8)

where R̄ < η < R.
In reality, if there is u0 ∈ K with ‖u0‖C = η so that T1u0 ≤ u0.
It so follows from (1.5), when a η is fixed, there is a l > 0 so that

f (x, u1) ≥ l >
η

τ1τ2mesB2mesB3
, ∀x ∈ �̄, u ≥ η. (4.9)
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We notice that u ≥ η implies that ‖u‖C ≥ η. Therefore, for u ∈ ∂Kη, we derive
from (2.4), (2.5), (2.6), (3.2) and (4.9) that

x ∈ B1 �⇒ u0(x) ≥ T1u0(x)
= ∫

�̄
G(x, y) f (y, u0(y))dy

≥ ∫
B2

∫
B3

G∗(x, z)G∗(z, y) f (y, u0(y))dzdy
≥ τ1τ2l(mesB2)(mesB3)

> η.

This is a contraction. It so follows that (4.8) holds.
Applying Lemma 4.1 to (4.4) and (4.8) or (4.7) and (4.8) yields that operator T1

possesses one fixed point u with u ∈ Kr ,η or u ∈ Kη,R . It hence follows that problem
(1.3) admits at least one positive solutions u with r < ‖u‖C < η or η < ‖u‖C < R.
This gives the proof of Theorem 1.6. ��
Proof of Theorem 1.7. Take 0 < η1 < η < η2. When f 0 = 0, similar to the proof of
(4.4), one can demonstrate that

T1u � u, u ∈ K , ‖u‖C = η1. (4.10)

When f ∞ = 0, similar to the proof of (4.7), we derive that

T1u � u, u ∈ K , ‖u‖C = η2. (4.11)

Under condition (1.5), similar to the proof of (4.8), one can prove that

T1u � u, u ∈ K , ‖u‖C = η. (4.12)

Therefore, from (4.10), (4.11) and (4.12), Lemma 4.1 yields that T1 possesses two
fixed point u∗, u∗∗ gratifying that u∗ ∈ Kη1,η, u

∗∗ ∈ Kη,η2 . It so follows that problem
(1.3) possesses at least two positive solutions u∗, u∗∗ gratifying that

0 < ‖u∗‖C < η < ‖u∗∗‖C .

This completes the proof of Theorem 1.7. ��

5 Proof of Theorems 1.8 and 1.9

In this section, we will employ the following fixed point theorems on cones to prove
Theorem 1.8 and Theorem 1.9 for the case 0 < α < 1 and 0 < β < 1.

Lemma 5.1 (See [2], Theorem12.3)Let P be a cone in a real Banach space E. Assume
�1,�2 are bounded open sets in E with θ ∈ �1, �̄1 ⊂ �2. If

A : P ∩ (�̄2\�1) → P

is completely continuous such that either
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(a) there exists a u0 > 0 such that u − Au 
= tu0,∀u ∈ P ∩ ∂�2, t ≥ 0; Au 
=
μu,∀u ∈ P ∩ ∂�1, μ ≥ 1, or

(b) there exists a u0 > 0 such that u − Au 
= tu0,∀u ∈ P ∩ ∂�1, t ≥ 0; Au 
=
μu,∀u ∈ P ∩ ∂�2, μ ≥ 1.
Then A has at least one fixed point in P ∩ (�2\�̄1).

Remark 5.2 Obviously, the fixed point of A in Lemmas 5.1 can not reach the boundary
of �1 and �2.

Proof of Theorem 1.8. We assume that there is r1 > 0 so that

u − T1u 
= θ, ∀u ∈ K , 0 < ‖u‖C ≤ r1. (5.1)

If not, then there is ur1 ∈ K ∩ ∂Dr1 so that

T1ur1 = ur1 .

Considering f0 = ∞, there is σ > 0 and r2 > 0 so that

f (x, u) ≥ σuβ (∀x ∈ �̄, 0 ≤ u ≤ r2). (5.2)

Let ψ(x) ≡ 1 for x ∈ �̄. Then ψ ∈ K with ‖ψ‖C ≡ 1. Next, we demonstrate that

u − T1u 
= ζψ (∀u ∈ K ∩ ∂Dr , ζ ≥ 0), (5.3)

where

0 < r < min{r1, r2, (τσmesBδ)
1

1−β }.
In reality, if there are u1 ∈ K ∩ ∂Dr and ζ1 ≥ 0 such that u1 − T1u1 = ζ1ψ , then

(5.1) indicates that ζ1 > 0. But, u1 = ζ1ψ + T1u1 ≥ ζ1ψ . Set

ζ ∗ = sup{ζ |u1 ≥ ζψ}.
Thus, we have ζ1 < ζ ∗ < +∞ and u1 ≥ ζ ∗ψ . So,

ζ ∗ = ζ ∗‖ψ‖C ≤ ‖u1‖C = r ≤ (τ1τ2σmesB2mesB3)
1

1−β . (5.4)

Therefore, for any x ∈ B1, we follow from (2.4), (2.5), (2.6), (3.2), (5.2) and (5.4)
that

u1(x) = ∫
�̄
G(x, y) f (y, u1(y))dy + ζ1ψ(x)

≥ ∫
�̄
G(x, y)σuβ

1 (y)dy + ζ1ψ(x)
≥ ∫

�̄
G(x, y)σ (ζ ∗ψ(y))βdy + ζ1ψ(x)

≥ σ(ζ ∗)β
∫
B2

G∗(x, z)dz
∫
B3

G∗(z, y)dy + ζ1ψ(x)
≥ σ(ζ ∗)βτ1τ2mesB2mesB3 + ζ1ψ(x)
≥ ζ ∗ + ζ1ψ(x)
= (ζ ∗ + ζ1)ψ(x).
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This contradicts the definition of ζ ∗. So (5.3) holds.
Next, turning to f ∞ = 0, then there are l > 0 and r2 > 0 so that

f (x, u) ≤ luα(x), ∀u ≥ r2.

Let

L = max
x∈�̄,0≤u≤r2

f (x, u).

Then we derive that

f (x, u) ≤ l‖u‖α
C + L, ∀x ∈ �̄, u ∈ [0,+∞). (5.5)

Take R be large enough (R > r ) such that

L‖φ1‖C‖φ2‖C
R

+ l‖φ1‖C‖φ2‖C
R1−α

< 1. (5.6)

Now, we are going to prove that

∀u ∈ K ∩ ∂DR, μ ≥ 1 ⇒ T1u 
= μu. (5.7)

In fact, if there are u2 ∈ K ∩ ∂DR and μ0 ≥ 1 such that T1u2 = μ0u2, then it
follows from (2.5), (2.6), (3.2), (3.6) and (5.5) that

μ0u2(x) = ∫
�̄
G(x, y) f (y, u2(y))dy

= ∫
�̄

∫
�̄
G∗(x, z)G∗z, y f (y, u2(y))dzdy

≤ ∫
�̄

∫
�̄
G∗(x, z)G∗(z, y)(L + luα(z))dzdy

≤ (L + l‖u‖α)
∫
�̄

∫
�̄
G∗(x, z)G∗(z, y)dzdy

≤ (L + l‖u‖α)‖φ1‖C‖φ2‖C .

(5.8)

Thus it follows from (5.8) that

μ0R = μ0‖u2‖C
≤ (L + l‖u‖α)‖φ1‖C‖φ2‖C
≤ (L + l Rα)‖φ1‖C‖φ2‖C .

It hence derives from (5.6) that

μ0 ≤ L‖φ1‖C‖φ2‖C
R

+ l‖φ1‖C‖φ2‖C
R1−α

< 1.

This contradicts μ0 ≥ 1, which indicates that (5.7) holds.
Therefore, according to (b) of Lemma5.1, it yields from (5.3) and (5.7) that operator

T1 possesses a fixed point u in K ∩ (DR\D̄r ) with r < ‖u‖C < R. This follows that
problem (1.3) has at least one positive solution u with r < ‖u‖C < R, and so the
proof of Theorem 1.8 is completed. ��
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Proof of Theorem 1.9. Take 0 < η < η1. When f ∞ = 0, similar to the proof of (5.7),
we can prove that

∀u ∈ K ∩ ∂Dη1, μ ≥ 1 ⇒ T1u 
= μu. (5.9)

Let ψ(x) ≡ 1 for x ∈ �̄. Then, ψ ∈ K with ‖ψ‖C ≡ 1. Next, we can prove that

u − T1u 
= ζψ (∀u ∈ K ∩ ∂Dη, ζ ≥ 0). (5.10)

In reality, if there are u2 ∈ K ∩ ∂Dη and ζ2 ≥ 0 such that u2 − T1u2 = ζ2ψ , then
(5.10) indicates that ζ2 > 0. But, u2 = ζ2ψ + T1u2 ≥ ζ2ψ . Set

ζ ∗∗ = sup{ζ ∗|u2 ≥ ζ ∗ψ}.

Then we derive ζ2 < ζ ∗∗ < +∞ and u2 ≥ ζ ∗∗ψ . We so have

ζ ∗∗ = ζ ∗∗‖ψ‖C ≤ ‖u2‖C = η ≤ (τ1τ2σmesB2mesB3)
1

1−β . (5.11)

On the other hand, it follows from (1.5), when a η is fixed, there exists a l > 0 such
that

f (x, u2) ≥ l >
η

τ1τ2mesB2mesB3
, ∀x ∈ �̄, u ≥ η. (5.12)

Thus, for any x ∈ B1 and u ∈ ∂Kη, we follow from (2.4), (2.5), (2.6), (3.2), (5.11)
and (5.12) that

u2(x) = ∫
�̄
G(x, y) f (y, u2(y))dy + ζ2ψ(x)

= ∫
�̄

∫
�̄
G∗(x, z)G∗(z, y) f (y, u2(y))dzdy + ζ2ψ(x)

≥ l
∫
B2

∫
B3

G∗(x, zy)G∗(z, y)dzdy + ζ2ψ(x)
≥ lτ1τ2mesB2mesB3 + ζ2ψ(x)
> η + ζ2ψ(x)
≥ ζ ∗∗ + ζ2ψ(x)
= (ζ ∗∗ + ζ2)ψ(x).

This contradicts the definition of ζ ∗∗. Therefore (5.10) holds. This completes the proof
of Theorem 1.9. ��

6 Proof of Theorem 1.11

In this section, we intend to apply the following fixed point theorem on cones to
demonstrate Theorem 1.11 for the case α > 1.

Lemma 6.1 (Theorem 2.3.4, Guo-Lakshmikantham [11]) Let P be a cone in a real
Banach space E. Assume�1, �2 are bounded open sets in E with θ ∈ �1, �̄1 ⊂ �2.
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If

A : P ∩ (�̄2\�1) → P

is completely continuous such that either

(a) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�1 and ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�2, or
(b) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�1 and ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�2,

then A has at least one fixed point in P ∩ (�̄2\�1).

Remark 6.2 Comparing with Lemma 4.1 and Lemma 5.1, the fixed point of A in
Lemmas 6.1 can reach the boundary of �1 and �2.

Proof of Theorem 1.11. Since f 0 = 0, then there is 0 < r < 1 such that

f (x, u) ≤ ε1‖u‖α
C , ∀x ∈ �̄, 0 ≤ u ≤ r , (6.1)

where ε1 > 0 gratifies

ε1‖φ1‖C‖φ1‖C ≤ 1,

and φi are defined in (3.6) for i ∈ {1, 2}.
Thus, for x ∈ �̄, u ∈ K ∩ ∂Dr1, it hence follows from (3.2), (3.6), (6.1), α > 1

and 0 < r = ‖u‖C < 1 that

‖T1u‖C = max
x∈�̄

∫
�̄
G(x, y) f (y, u(y))dy

= max
x∈�̄

∫
�̄

∫
�̄
G∗(x, z)G∗(z, y) f (y, u(y))dzdy

≤ ε1‖u‖α
C max

x∈�̄

∫
�̄
G∗(x, z)dz

∫
�̄
G∗(z, y)dy

≤ ε1‖u‖α
C‖φ1‖C‖φ2‖C

≤ ‖u‖α
C

< ‖u‖C .

This indicates that

‖T1u‖C < ‖u‖C , ∀u ∈ K ∩ ∂Dr . (6.2)

Take η > 1. Next, we demonstrate that

‖T1u‖C > ‖u‖C , ∀u ∈ K ∩ ∂Dη. (6.3)

If (1.5) holds, when a η is fixed, then there is a l > 0 so that

f (x, u) ≥ l >
η

τ1τ2mes B1mes B2mes B3(mes �̄)−1
, ∀x ∈ �̄, u ≥ η. (6.4)
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Therefore, for u ∈ K ∩ ∂Dη, we get from (2.4), (2.5), (2.6), (3.2) and (6.4) that

(mes �̄)‖T1u‖C ≥ ∫
�̄
(T1u)(x)dx

= ∫
�̄
dx

∫
�̄
G(x, y) f (y, u(y))dy

= ∫
�̄
dx

∫
�̄

∫
�̄
G∗(x, z)G∗z, y f (y, u(y))dzdy

≥ l
∫
B1

dx
∫
B2

∫
B3

G∗(x, z)G∗z, ydzdy
≥ lτ1τ2mes B1mes B2mes B3,

which indicates that

‖T1u‖C ≥ lτ1τ2mes B1mes B2mes B3 (mes�̄)−1 > η = ‖u‖C .

This indicates that (6.3) is true.
Therefore, according to (a) of Lemma 6.1, (6.2) and (6.3) yields that operator T1

possesses a fixed point u in K ∩ (D̄η\Dr ) with r ≤ ‖u‖C ≤ η. This derives that
problem (1.3) admits at least one positive solution u with r ≤ ‖x‖C ≤ η. ��
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