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Abstract
In this work, we study the existence of a capacity solution for a nonlocal thermistor
problem inMusielak–Orlicz–Sobolev spaces.We get the existence of capacity solution
using the approximate techniques and we prove the existence of a weak solution by
introducing a sequence of approximate problems converging in a certain sense to a
capacity solution. As a consequence, we obtain the existence of a capacity solution of
the original problem in Musielak–Orlicz–Sobolev Lebesgue spaces.
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1 Introduction

In recent decades, Sobolev spaces and Musielak–Orlicz spaces have become of great
interest in the study of different problems [10]. In the context of Musielak–Orlicz
spaces, the first work was done by Orlicz in 1930, followed by the work of Nakano
in 1950 [24], in which the author presented a general study of these spaces. On the
other hand, Czechoslovak and Polich investigated the modular function spaces. When
the Leray Lions operator satisfies the nonpolynomial growth condition, the study of
variational problems becomes more interesting in the applications to electro-rheology.
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Ruzicka and Rajagopal proposed a mathematical model of electro-rheological fluids
(see [27, 28] for more details).

We consider the following problem modeling the temperature produced by a mate-
rial crossed by an electric current flow:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂s
− �u = λ

f (u)

(
∫

�
f (u)dx)2

, in QS,

u(x, 0) = u0, in �,

u = 0, on ∂�×]0, S[,
(1.1)

where f (u) is the electrical resistance of the conductor and
f (u)

(
∫

�
f (u)dx)2

represents

the nonlocal term of (1.1). Whereas QS is defined as follows QS := � × [0, S]
where � is an open-bounded subset of RN , N ≥ 1, S is a positive constant, and
]0, S[ denotes the time horizon. The first equation in problem (1.1) describes the
diffusion of temperature in the presence of a nonlocal term as a consequence of Joule
effect in the second member. λ is a constant without dimension and can be identified
by the square of the applied potential difference at the ends of the conductor. The
function u represents the temperature generated by the electric current flowing through
the material [9, 22]. There are various motivations behind the analysis of the heat
and current flow in thermistors. One is the obvious question of design: how do the
characteristics, such as the switch-off time in response to a current surge, depend
on the physical parameters. Another is an issue of quality control: some thermistors
can crack, because rapid thermal expansion caused by large temperature gradients
stresses the material too much. In 1833, Micheal Faraday (1791–1867) discovered
the thermistor and remarked that the augmentation of temperature implies a decrease
of the Silver Sulfides resistance. The thermistor is defined as a temperature sensing
device.

The thermistor problem has been excessively used by many authors (Antontsev
and Chipot [4], [13] ). They proved the existence of solution for thermistor problem
in the context of vector-valued Sobolev spaces or in the standard Sobolev spaces.
Hence, it is interesting to develop and analyze thermistor problem in the context of
Musielak–Orlicz–Sobolev spaces.

Our aim is to prove the existence of a capacity solution in the sense of Definition
4.2 to system (1.1) which is the transformation of a coupled system consisting of an
elliptic equation describing the quasistatic evolution of the electric potential and a
nonlinear parabolic equation, which describes the temperature [22]. The literature on
problems (1.1) and coupled system recall above is vast (see [1, 7, 14–16, 20, 25, 29]).

The rest of this paper is organized as follows: in Sect. 2,we state somebasic concepts
and a few known results that are useful for the results that will be established in this
paper. In Sect. 3, we give the compactness results and the assumptions on data. In
Sect. 4, we introduce the concept of capacity solutions. In Sect. 5, we develop the state
of the main result of this paper. Finally, we give a conclusion and some perspectives.
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2 Preliminaries

In this section, we introduce some definitions, proprieties, and basic notions of this
work needed in the next sections.

Definition 2.1 (See [10]) Let ψ : �×R −→ R, then ψ is Musielak–Orlicz functions
if it satisfies two following conditions:

1. ψ(., s) is a measurable function for all s in R.
2. For each x in �, we have ψ(x, .) is a N-function; also, it is convex in R and

increasing in R+, such that

lim
s−→0

ψ(x, s)

s
= 0, lim

s−→∞
ψ(x, s)

s
= ∞,

ψ(x, s) > 0, for all s > 0,

ψ(x, s) = 0, for s = 0.

Definition 2.2 (See [23]) Let φ and ψ be two Musielak–Orlicz functions defined in
� × R with values in R, then ψ dominates φ globally (φ << ψ) if ∃r > 0 and
∃s0 ≥ 0, such that

φ(x, s) ≤ ψ(x, rs) for each x ∈ � and for all s ≥ s0,

we also say ψ dominates φ globally if s0 = 0 and beside infinity if s0 > 0.

We define the space

Fψ(�) := {
u : � −→ R mesurable: �ψ,�(u) < ∞}

,

where �ψ,�(u) = ∫

�
ψ(x, u(x))dx .

Let Lψ(�) theMusielak–Orlicz space generated by Fψ(�), such that this last space
is the Musielak–Orlicz class and it is the smallest vector space of the following space:

Lψ(�) := {u : � −→ R mesurable: �ψ,�(u/λ) < ∞ for each λ > 0}.

We define the complementary function of the Musielak function ψ(x, r) in the sense
of Young with respect to variable t as follows:

ψ(x, t) = sup
r≥0

{tr − ψ(x, r)}.

Then, Young Fenchel inequality is defined by

| r t |≤ ψ(x, t) + ψ(x, r) for all r , t ∈ R and x ∈ �.

We endow the space Lψ(�) by Luxemburg norm

‖ g ‖ψ,�= inf

{

λ > 0/
∫

�

ψ

(

x,
g(x)

λ

)

dx < 1

}

,
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or by Orlicz norm

‖ g ‖(ψ),�= sup

{∫

�

g(x)h(x)dx : g ∈ Eψ(�), �ψ,�(h) < 1

}

.

Moreover, the following inequality holds:

∫

�

ψ(x, u(x))dx ≤‖ u ‖(ψ),�, where ‖ u ‖(ψ),�≤ 1. (2.1)

Using the above inequality, we get

∫

�

ψ(x, u(x)/ ‖ u ‖(ψ),�)dx ≤ 1, for all u ∈ Lψ(�)\{0}. (2.2)

Also, we have the equivalent between Luxemburg norm and Orlicz norm

‖ u ‖ψ,�≤‖ u ‖ψ,(�)≤ 2 ‖ u ‖ψ,�. (2.3)

For the proof, we refer to [23]. We also have the Hölder’s inequality holds

∫

�

g(x)h(x)dx ≤‖ g ‖ψ,�‖ h ‖ψ,(�) for all g ∈ Lψ(�) and h ∈ Lψ(�); (2.4)

if � has a finite measure, the inequality (2.4) implies the following continuous inclu-
sion: Lψ(�) ⊂ L1(�) which is strict in general.

We denote by Eψ(�) the set of the closure of bounded measurable functions with
compact support in the closure of � denoted by� with respect to the norm of Lψ(�).

Throughout this paper, we will use the standard reference for Musielak–Orlicz–
Sobolev spaces [23]; see also [3]. Now, we introduce some definition and lemmas
useful hereafter.

Definition 2.3 Let (un)n∈N ⊂ Lψ(�), we say (un)n∈N converges to u ∈ Lψ(�) if
there exists l > 0, such that

lim
n−→∞ �ψ,�

(
un − u

l

)

= 0.

For all p ∈ N, we defined a Musielak–Orlicz–Sobolev spaces as follows:

W p Lψ(�) := {u ∈ Lψ(�)/Dαu ∈ Lψ(�) for all α, | α |≤ p},

where α = (α1, α2, α3, ..., αm−1, αm) ∈ Z
m , | α |= α1 +α2 +α3 +· · ·+αm−1 +αm

and

Dα = ∂
α1
1 .∂

α2
2 ...∂αn

n with ∂ j = ∂

∂x j
.
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Dα is the distributional derivative of multi-index α.
For each Musielak–Orlicz–Sobolev space W p Lψ(�), we define the modular as

follows:

�
(p)
ψ,�(u) :=

∑

|α|≤p

�ψ,�(Dαu),

which is convex in W p Lψ(�). We can equipped Musielak–Orlicz–Sobolev space
with

‖ u ‖(p)
ψ,�= inf{λ > 0/�(p)

ψ,�(u/λ) ≤ 1} or with ‖ u ‖p,ψ,�=
∑

|α|≤p

‖ Dαu ‖ψ,�.

The above two norms are equivalent on W p Lψ(�). The pair (W p Lψ(�), ‖ u ‖(p)
ψ,�)

is a Banach space [23], if ∃z0 > 0, such that

ess inf
x∈�

ψ(x, 1) > z0. (2.5)

Then, (W p Lψ(�), ‖ u ‖p,ψ,�) is a Banach space.
Hereafter, we suppose that the condition (2.5) is satisfied. The space W p Lψ(�) can

be identified to a σ(�|α|≤p Lψ(�),�|α|≤p Eψ(�))-closed subspace of�|α|≤p Lψ(�).

Let W p
0 Lψ(�) = D(�)

σ(�|α|≤p Lψ(�),�|α|≤p Eψ(�))
and W p Eψ(�) the spaces of func-

tions u, where u and its distribution derivatives up to order m lie in Eψ(�). Moreover,
W p

0 Eψ(�) is the norm closure of D(�) in W p Lψ(�).

Lemma 2.4 (Poincaré’s inequality see [2]) Let � a subset of RN a bounded Lipchitz-
continuous set, then there exists a constant C = C(�) > 0, such that

‖ u ‖ψ,�≤ C ‖ ∇u ‖ψ,�, for all u ∈ W p
0 Lψ(�). (2.6)

Remark 2.5 Let u ∈ W p
0 Lψ(�) where ψ is a Musielak–Orlicz function, we suppose

that there exists a positive constant C , such that

∫

�

ψ(x,∇u)dx ≤ C,

then

∫

�

ψ

(

x,
∇u

C

)

dx ≤ 1.

Using the convexity of ψ(x, .) and if C ≥ 1, we get

C ∈
{

λ > 0/
∫

�

ψ

(

x,
∇u

λ

)

dx < 1

}

, and hence, ‖ ∇u ‖ψ,�≤ C,



12 Page 6 of 33 I. DAHI and M. R. Sidi Ammi

if not, i.e., C < 1, we obtain
∫

�
ψ(x,∇u)dx ≤ C < 1, then ‖ ∇u ‖ψ,�≤ 1.

In view of the fact that u ∈ W p
0 Lψ(�), we apply Lemma 2.4, we get that there

exists a positive constant C = C(�), such that

‖ u ‖ψ,�≤ C ‖ ∇u ‖ψ,� for all u ∈ W p
0 Lψ(�).

On the other hand, we have ‖ u ‖1,ψ,�=‖ u ‖ψ,� + ‖ ∇u ‖ψ,�, and hence

‖ u ‖1,ψ,�≤ (C + 1) ‖ ∇u ‖ψ,�≤ (C + 1)max(C, 1).

Then

‖ u ‖1,ψ,�≤ (C + 1)max(C, 1).

In the next of this paper, we suppose thatψ and φ are two generalized N-function, such
that ψ << φ. We also assume that the following conditions hold for complementary
functions ψ and φ

lim|s|−→∞ ess inf
x∈�

ψ(x, s)

| s | = ∞, (2.7)

lim|s|−→∞ ess inf
x∈�

φ(x, s)

| s | = ∞. (2.8)

Remark 2.6 (See [18], Remark 2.1) We suppose (2.7) and (2.8) hold, then

sup
s∈B(x,K )

ess sup
x∈�

ψ(x, s) < +∞, for all 0 < K < +∞, (2.9)

sup
s∈B(x,K )

ess sup
x∈�

φ(x, s) < +∞, for all 0 < K < +∞. (2.10)

Definition 2.7 Let (un)n∈N ⊂ W p Lψ(�),wesay that (un)n∈N converges tou ∈ W p L psi(�)

for the modular convergence in W p Lψ(�) if and only if

lim
n−→∞ �

(p)
ψ,�

(
un − u

l

)

= 0, for some l > 0.

Also, we can define these spaces of distributions as follows:

W −p Lψ̄ (�) :=
⎧
⎨

⎩
g ∈ D′(�) : g =

∑

|α|≤p

(−1)|α| Dαgα for each gα ∈ Lψ̄ (�)

⎫
⎬

⎭
,

W −p Eψ̄ (�) :=
⎧
⎨

⎩
g ∈ D′(�) : g =

∑

|α|≤p

(−1)|α| Dαgα for each gα ∈ Eψ̄ (�)

⎫
⎬

⎭
.
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Lemma 2.8 Let (un)n∈N ⊂ Lψ(�), If φ << ψ and (un)n∈N converges to u ∈ Lψ(�),
in the sense of modular convergent, then (un)n∈N converges to u strongly in
Eφ(�). In particular, the following continuous injection hold: Lψ(�) ⊂ Eφ(�) and
Lφ(�) ⊂ Eψ(�).

Proof By hypothesis, for � > 0 and ε > 0, we have

lim
n−→∞

∫

�

ψ

(

x,
un − u

�

)

dx = 0.

Then, there exists h0 ∈ L1(�), such that

ψ

(

x,
un − u

�

)

≤ h0 and un −→ u, a.e in �,

for a subsequence of (un)n∈N which is still denoted (un)n∈N for convenience. Know-
ing that φ << ψ , then by applying Definition 2.2, there exists k > 0, such that

lims−→∞ supx∈�

φ(x, ks)

ψ(x, s)
= 0. As a consequence, there exists s0 ≥ 0, such that

φ(x, ks)

ψ(x, s)
≤ 1, for each x ∈ � and for all s ≥ s0.

Let set k = �

ε
and s = t

�
where t = un − u, and hence

φ

(

x,
un − u

ε

)

≤ ψ

(

x,
un − u

�

)

for each x ∈ � and for all t ≥ �s0.

Using the characteristic function χ�, we get

φ

(

x,
un − u

ε

)

≤ φ

(

x,
un − u

ε

)

χ[0,�s0] + φ

(

x,
un − u

ε

)

χ]�s0,∞[.

Then

φ

(

x,
un − u

ε

)

≤ sup
s∈[0,�s0]

ess sup
x∈�

φ(x, s) + φ

(

x,
un − u

ε

)

χ]�s0,∞[,

φ

(

x,
un − u

ε

)

≤ sup
s∈[0,�s0]

ess sup
x∈�

φ(x, s) + ψ

(

x,
un − u

�

)

.

From Remark 2.1 in [18], we get sups∈[0,�s0] ess supx∈� φ(x, s) < +∞.

Then, there exists h1 > 0, such that

h0 + sup
s∈[0,�s0]

ess sup
x∈�

φ(x, s) ≤ h1.
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Thanks to Lebesgue’s dominated convergence theorem, we have

φ

(

x,
un − u

ε

)

−→ 0 as n −→ ∞ in L1(�);

for n near infinity, we obtain

‖ un − u ‖φ,�≤ ε, then un −→ u in Lφ(�).

The continuous embedding Lψ(�) ⊂ Eφ(�) is trivial, because the convergence in
Lψ(�) implies the modular convergence. On the other side, we have φ << ψ is
equivalent to ψ << φ; as a consequence, the following embedding Lφ(�) ⊂ Eψ(�)

is continuous. �
Lemma 2.9 (See [12]) Let ( fn)n∈N and (gn)n∈N be two convergent sequences in
Lψ(�) and Lψ(�), respectively, and denote by f ∈ Lψ(�) and g ∈ Lψ(�) their
corresponding limits in the sense of modular convergence, then

lim
n−→∞

∫

�

gn f dx =
∫

�

g f dx,

lim
n−→∞

∫

�

gn fndx =
∫

�

g f dx .

Lemma 2.10 (See [6]) Let � be a bounded, Lipchitz-continuous subset of RN , ψ a
Musielak–Orlicz function and ψ its complementary. Then

• D(�) is dense in Lψ(�) with respect to the modular convergence.
• D(�) is dense in W 1

0 Lψ(�) and D(�) is dense in W 1Lψ(�).

The previous densities are with respect to the modular convergence. Moreover, all the
previous densities hold true if the following conditions are satisfied:

(1) There exists a constant λ > 0, such that ∀x, y ∈ �, | x − y |≤ 1

2
implies

φ(x, �)

φ(y, �)
≤ �

− λ

log(| x − y |) for all � ≥ 1. (2.11)

(2) There exists a constant β > 0, such that

ψ(x, 1) ≤ β, a.e in �. (2.12)

Remark 2.11 Define the measurable function q : � −→]1,∞[ and suppose that there
exists a positive constant C , such that for all x, y ∈ � with | x − y |< 1

2
, we have

|q(y) − q(x)| ≤ C

| log |y − x || .
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Then, the following Musielak–Orlicz functions:

(1) ψ(x, �) = �q(x),
(2) ψ(x, �) = �q(x) log(1 + �),
(3) ψ(x, �) = � log(1 + �)(log(e − 1 + �))q(x),

satisfy the inequality (2.11).

Now, let us introduce inhomogeneousMusielak–Orlicz–Sobolev spaces. Let� ⊂ R
N

be an open-bounded set andψ aMusielak–Orlicz function defined in QS := �×]0.S[
with S > 0. We denote by Dα

x the distributional derivative on QS of order α ∈ Z
N ,

where α is a multi-index with respect to the variable x . We define the inhomogeneous
Musielak–Orlicz–Sobolev spaces as follows:

W p,x Lψ(QS) := {g ∈ Lψ(QS)/Dα
x g ∈ Lψ(QS) for all α, | α |≤ p},

W p,x Eψ(QS) := {g ∈ Eψ(QS)/Dα
x g ∈ Eψ(QS) for all α, | α |≤ p};

we equip the spaces W p,x Lψ(QS) and W p,x Eψ(QS) with the norm

‖ g ‖=
∑

|α|≤p

‖ Dαg ‖ψ,QS .

For p = 1, the pairs (W p,x Lψ(QS), ‖ . ‖) and (W p,x Eψ(QS), ‖ . ‖) are Banach
spaces [17]. The two last spaces are considered as subspaces of the product space

∏

|α|≤m

Lψ(QS) =
∏

Lψ.

We consider the weakly star topology σ(�|α|≤p Lψ(QS),�|α|≤p Eψ(QS)) and
σ(�|α|≤p Lψ(QS),�|α|≤p Lψ(QS)). If u ∈ W p,x Lψ(QS), then the following map-
ping:

u :]0.S[ −→ W 1Lψ(QS).

s −→ u(s)

is well defined. Moreover, if u ∈ W 1,x Eψ(QS), this function is a W 1Eψ(�)-valued
function and is stronglymeasurable.We cannot assure themeasurability of the function
u(s) on ]0.S[. However, the function s −→‖ u(s) ‖ψ,� belongs to the space L1(]0.S[).
We define the space W 1,x

0 Eψ(QS) as follows:

W 1,x
0 Eψ(QS) = D(QS)

‖.‖W1,x Eψ (QS ) .

If� is a Lipschitz-continuous domain, we can show as in [6] that each element u in the
closure of D(QS) with respect of weak-∗ topology associated (σ (

∏
Lψ,

∏
Eψ)) is

a limit in W 1,x Lψ(QS), of subsequence (un)n∈N ⊂ D(QS). We emphasize that the
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modular convergence, i.e., there exists a positive constant �, such that for all | α |≤ 1,
we have

lim
n−→∞

∫

QS

ψ

(

x,
Dα

x un − Dα
x u

�

)

dxds = 0,

implies that the sequence (un)n∈N converges to u in W 1,x Lψ(QS) for the weak-∗
topology σ(

∏
Lψ,

∏
Lψ). Consequently, we obtain

D(QS)
σ(
∏

Lψ ,
∏

Lψ) = D(QS)
σ(
∏

Lψ ,
∏

Eψ)
.

This space is denoted by W 1,x
0 Eψ(QS). Moreover, we have

W 1,x
0 Eψ(QS) = W 1,x

0 Lψ(QS) ∩
∏

Eψ.

In W 1,x
0 Lψ(QS), the following Poincaré’s inequality holds:

∑

|α|≤1

∥
∥Dα

x u
∥
∥

ψ,QS
≤ C

∑

|α|=1

∥
∥Dα

x u
∥
∥

ψ,QS
. (2.13)

We denote by W −1,x Lψ(QS) the topologic dual of W 1,x
0 Eψ(QS) characterized by

W −1,x Lψ(QS) =
⎧
⎨

⎩
g =

∑

|α|≤1

Dα
x gα : gα ∈ Lψ(QS) for all α

⎫
⎬

⎭
,

which can be equipped by the usual quotient norm

‖ g ‖= inf
∑

|α|≤1

∥
∥Dα

x gα

∥
∥

ψ,QS
for all gα ∈ Lψ(QS) where g =

∑

|α|≤1

Dα
x gα.

Furthermore, we denote W −1,x Eψ(QS) the subspace of W −1,x Lψ(QS) consisting of

linear forms which are (σ (
∏

Lψ,
∏

Eψ))-continuous. It can be shown that

W −1,x Eψ(QS) :=
⎧
⎨

⎩
g =

∑

|α|≤1

Dα
x gα : gα ∈ Eψ(QS) for all α

⎫
⎬

⎭
.

In the sequel, we need the following lemma.

Lemma 2.12 We assume that φ is a Musielak function verifying the condition (2.8)
and we suppose that s2 ≤ ψ(x, s) for all x ∈ � and s ∈ R. Then, the following
embedding:

Lφ(�) ↪→ L2(�) ↪→ Lφ(�),
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are continuous. In particular, W 1
0 Lφ(�) ↪→ H1

0 (�) and H−1(�) ↪→ W −1Lφ(�).

Moreover, if ψ is a Musielak function verifying (2.7) and φ << ψ , then the following
embeddings:

Lψ(�) ↪→ L2(�) ↪→ Lψ(�),

are continuous. Consequently, the following embeddings W 1
0 Lψ(�) ↪→ H1

0 (�) and
H−1(�) ↪→ W −1Lψ(�) are continuous.

Proof By hypothesis, we have v2 ≤ φ(x, v) f or all x ∈ �, from whence follows
that:

∫

�

v2dx ≤
∫

�

ψ(x, v)dx for all x ∈ � and v ∈ Fφ(�),

we set v = u

‖ u ‖(φ),�

and u �= 0

∫

�

u2dx ≤‖ u ‖2(φ),�

∫

�

φ

(

x,
u

‖ u ‖(φ),�

)

dx for all x ∈ � and v ∈ Fφ(�).

It yields that

‖ u ‖L2(�)≤‖ u ‖(φ),�,

which proves the first embedding.
Now, let φ << ψ, for r ∈]0.S[

φ(x, s) ≤ ψ(x, rs) for each x ∈ � and for all s ≥ s0. (2.14)

Then, for v ∈ Fψ(�) and using Remark 2.1 in [18], we deduce the existence of a
positive constant C1, such that

∫

�

v2dx ≤
∫

{|v|≥s0}
φ(x, v)dx +

∫

{|v|<s0}
φ(x, v)dx for all x ∈ � and v ∈ Fφ(�),

∫

�

v2dx ≤
∫

�

ψ(x, rv)dx + C1 for all x ∈ � and v ∈ Fφ(�),

∫

�

v2dx ≤ r
∫

�

ψ(x, v)dx + C1 for all x ∈ � and v ∈ Fφ(�).

We replace v in the above inequality by
u

‖ u ‖(ψ),�

where u �= 0, and we use (2.2)

and we get

‖ u ‖L2(�)≤ C2 ‖ u ‖(ψ),�, u ∈ Lψ(�),
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where C2 = (C1 + r)1/2. �
Remark 2.13 We assume that the hypothesis of Lemma 2.12 is satisfied, then

L2
(
]0.S[; H−1(�)

)
↪→ W −1,x L φ̄(QS) ↪→ W −1,x Eψ̄ (QS).

For the proof, it suffices to assume that g ∈ L2(]0.S[; H−1(�)), then for gα ∈ L2(QS),
g = ∑

|α|≤1 Dα
x gα and by Lemma 2.8, we have

L2 (QS) ⊂ L φ̄ (QS) ⊂ Eψ̄ (QS) ,

and thus

g ∈ W −1,x L φ̄(QS) ↪→ W −1,x Eψ̄ (QS).

We introduce the truncation operation SR : R −→ R, appearing in [8]

SR(r) =
{

r if |r | ≤ R,

R
r

|r | if |r | > R.
(2.15)

Then, its primitive is defined as follows:

TR(r) =
∫ r

0
SR(s)ds =

{
r2/2 if |r | ≤ R,

R|r | − R2/2 if |r | > R.
(2.16)

3 Compactness results

In this section, we state trace and mollification results.
Let� be an open-bounded subset ofRN with a Lipschitz-continuous boundary, and

ψ be a Musielak function. We set QS =]0.S[×�. For u ∈ L1(QS), η > 0, r ∈ [0, S]
and x ∈ �, we define uη as follows:

uη(x, r) = η

∫ r

−∞
ũ(x, t) exp(η(t − r))dt, (3.1)

where ũ(x, t) = u(x, t)χ]0,S[.
The following lemmas play a crucial role in the sequel of this paper.

Lemma 3.1 (See [11]) The following assertions hold:

(1) Given any function u ∈ Lψ(QS), then uη ∈ C([0, S]; Lψ(�))and limη−→∞ uη = u
in Lψ(QS) for the modular convergence.

(2) Let u ∈ W 1,x Lψ(QS), we have uη ∈ C([0, S]; W 1Lψ(�)) and limη−→∞ uη = u
in W 1,x Lψ(QS) for the modular convergence.
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(3) Let u ∈ Eψ(QS) (resp, u ∈ W 1,x Eψ(QS)). limη−→∞ uη = u strongly in Eψ(QS)

(resp, strongly in W 1,x Eψ(QS)).

(4) Let u ∈ W 1,x Lψ(QS), then
∂uη

∂s
= η(u − uη) ∈ W 1,x Lψ(QS).

(5) Let (un)n∈N be a sequence in W 1,x Lψ(QS) and u ∈ W 1,x Lψ(QS), such that
un −→ u as n −→ ∞ strongly in W 1,x Lψ(QS) (resp, for the modular conver-
gence). Then, for each η > 0, we obtain (un)η −→ uη strongly in W 1,x Lψ(QS)

(resp, for the modular convergence).

Lemma 3.2 (See [11]) The following embedding:

Eψ (QS) ↪→ L1 (0, S; Eψ(�)
)
, (3.2)

is continuous.

Lemma 3.3 (See [11]) The following embeddings:

W 1Eψ (QS) ↪→ L1
(
0, S; W 1Eψ(�)

)
, (3.3)

W −1,x Eψ̄ (QS) ↪→ L1
(
0, S; W −1Eψ̄ (�)

)
, (3.4)

are continuous.

The Lemmas 3.4 and 3.6 play a key role in the proof of Theorem 5.2, whereas the
Lemma 3.5 plays an important role in the Step III.

Lemma 3.4 (See [12])Given a Banach space Y , such that L1(�) ↪→ Y is a continuous
embedding. If H is bounded in W 1,x

0 Lψ(QS) and relatively compact in L1(0, S; Y ),
then H is relatively compact in L1(QS) and in Eφ(QS) for every φ << ψ .

Lemma 3.5 (See [12]) Let � be an open-bounded subset of RN with the segment
property. Then, the following inclusion:

F = {u ∈ W 1,x
0 Lψ (QS) : ∂u

∂s
∈ W −1,x Lψ̄ (QS) + L1 (QS)} ⊂ C(]0, S[; L1(�))

holds with a continuous embedding.

Lemma 3.6 (See Theorem 2 in [12]) Let ψ be a Musielak function. If H is a bounded

subset of W 1,x
0 Lψ (QS) and {∂g

∂t
/g ∈ H} is bounded in W −1,x Lψ̄ (QS), then H is

relatively compact in L1 (QS).

In our study, we obtain the existence of a weak solution by applying Theorem 3.7.
We define the partial differential operator as follows:

B : D(B) ⊂ W 1,x Lψ (QS) −→ W 1,x Lψ (QS), such that B(u) = −div a(x, s,∇u)

where a(., ., .) : �×]0.S[×R
N −→ R

N is a Carathéodory function, and for all
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(x, s) ∈ QS , two real numbers λ > 0, k ≥ 0 and z, y ∈ R
N where z �= y, the

following conditions hold:

| a(x, s, z) |≤ λ(e1(x, s) + ψ̄−1(x, ψ(x, k|z|))), (3.5)

(a(x, s, z) − a(x, s, y))(z − y) > 0, (3.6)

a(x, s, z)z ≥ αψ(x, |z|). (3.7)

For each function g ∈ W −1,x Lψ̄ (QS) and for all u0 ∈ L2(�), we consider the
following parabolic problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂s
− div a(x, s,∇u) = g, in QS,

u(x, 0) = u0, in �,

u = 0, on ∂�×]0, S[.
(3.8)

The following theorem plays a key role in the proof of Theorem 5.2.

Theorem 3.7 (See [26])We suppose that the conditions (3.5) to (3.7) are satisfied, then
the problem (3.8) has a weak solution u ∈ D(B)∩ W 1,x

0 Lψ (QS) ∩ C([0, S]; L2(�))

where a(x, s,∇u) ∈ W −1,x Lψ̄ (QS), and for all ω ∈ W 1,x
0 Lψ (QS) with

∂ω

∂s
∈

W −1,x Lψ̄ (QS) and for all r ∈ [0, S], we have

−
〈
∂ω

∂s
, u

〉

Qr

+
∫

�

u(x, r)ω(x, r)dx +
∫ r

0

∫

�

a(x, s,∇u)∇ωdxds

= 〈g, ω〉Qr +
∫

�

u(x, 0)ω(x, 0)dx,

where 〈., .〉Qr = 〈., .〉W−1,x Lψ̄ (QS),W 1,x
0 Lψ(QS)

. Moreover, for all r ∈ [0, S], the follow-

ing energy identity holds:

1

2

∫

�

|u(x, r)|2dx +
∫ r

0

∫

�

∇u∇udxdt = 〈g, u〉Qr + 1

2

∫

�

|u(0, x)|2 dx .

4 Concept of capacity solution

Here, we define the concept of capacity solution for problem (1.1) in the context of
the Musielak–Orlicz–Sobolev spaces. Now, let � ⊂ R

N be an open-bounded set and
let ψ a Musielak function verifying the inequalities (2.11) and (2.12).

F =
{

ω ∈ W 1,x
0 Lψ (QS) : ∂ω

∂s
∈ W −1,x Lψ̄ (QS)

}

.
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We equip the space F by the following norm:

‖ω‖F = ‖ω‖W 1,x
0 Lψ(QS)

+
∥
∥
∥
∥
∂ω

∂s

∥
∥
∥
∥

W−1,x Lψ̄ (QS)

.

The pair (F, ‖ . ‖F) is a Banach space.
In the sequel of this paper, we consider 〈., .〉Qr = 〈., .〉W−1,x Lψ̄ (QS),W 1,x

0 Lψ(QS)
, and

we assume the following conditions:

φ << ψ and s2 ≤ φ(x, s) for each x ∈ � and for all s ∈ R. (4.1)

Let φ̄ and ψ̄ be two complementary functions of the Musielak functions φ(x, r) and
ψ(x, r), respectively, satisfying the conditions (2.9) and (2.10), respectively. We con-
sider also the operator

B : D(B) ⊂ W 1,x Lψ (QS) −→ W 1,x Lψ (QS),

where Bu = − div a(x, s,∇u), such that a(., ., .) is a Leray–Lions operator where
a(x, s,∇u) =| ∇u |p−2 ∇u. In our case, we take p = 2 where ∇ : RN −→ R

N

satisfies the following assumptions, for all (x, s) ∈ QS :

|∇u| ≤ ζ
[
c(x, s) + ψ̄−1

x (ψ(x, k|u|))
]
, (4.2)

αψ(x, |∇u − ∇v|) ≤ |∇u − ∇v|2 , (4.3)

where c(x, s) ∈ Eψ̄ (QS), α, k, ζ > 0 are given real numbers.
The initial condition is given by

u0 ∈ L2(�). (4.4)

We suppose that f is a locally L1-Lipschitz function and there exists a positive constant
σ , such that

σ ≤ f (t), for all t ∈ R. (4.5)

Remark 4.1 Under the condition (4.3) and for ∇v = 0, we get

αψ(x, |∇u|) ≤ |∇u|2 for all u ∈ R
N . (4.6)

We introduce the notion of capacity solution as follows:

Definition 4.2 The pair (u, f ) is called a capacity solution for the problem (1.1), if
the following conditions hold:

(1) u ∈ F and ∇u ∈ Lψ̄ (�)N .
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(2) (u, f ) satisfies the following equation:

∂u

∂s
− �u = λ f (u)

(
∫

�
f (u)dx)2

, in QS .

(3) u(., 0) = u0, in �.

We obtain using the Lemma 3.5 and the regularity of u that u ∈ C(]0, S[; L1(�)).
Then, u is well defined in L1(�).

5 An existence result

In this section, we develop the proof of the main result.

Theorem 5.1 We assume that hypotheses (2.7), (2.8), (2.11), (2.12) and (4.2)–(4.4)
hold, then the problem (1.1) has a capacity solution in the sense of Definition 4.2.

To prove this result, we need to apply the following theorem.

Theorem 5.2 We suppose that the conditions (2.7), (2.8), (4.3) and (4.4) hold. Then,
there exists a weak solution for the problem (1.1), that is

u ∈ W 1,x
0 Lψ (QS) ∩ C([0, S]; L2(�)), ∇u ∈ Lψ̄ (QS)

N ,

u(., 0) = u0, in �,
∫ s

0

〈
∂u

∂s
, ϕ

〉

ds +
∫ s

0

∫

�

∇u∇udxds =
〈

λ
f (u)

(∫

�
f (u)dx

)2 , u

〉

Qs

,

for each ϕ ∈ W 1,x
0 Lψ (QS) and s ∈ [0, S].

Proof To show the existence of a weak solution, Schauder’s fixed point theorem will
be applied. To this end, applying Theorem 3.7, we get the existence of a solution to
the following problem, for all v ∈ W 1,x

0 Lψ (QS) :
〈
∂u

∂s
, v

〉

QS

+
∫ S

0

∫

�

∇u · ∇vdxds =
〈

λ f (w)

(
∫

�
f (w)dx)2

, v

〉

QS

=
∫ S

0

λ

(
∫

�
f (w)dx)2

(∫

�

f (w) · vdx

)

ds,

(5.1)

u(., 0) = u0, in �.

From (4.5), we obtain

∥
∥
∥
∥

λ f (w)

(
∫

�
f (w)dx)2

∥
∥
∥
∥

L2(0,S;H−1(�))

≤ λ

(σ · meas(�))2
‖ f (w)‖L2(0,S;H−1(�)).
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We have to prove that

‖ f (w)‖L2(0,S;H−1(�)) ≤ K ,

where K is a positive constant.
In view of the fact that L2(�) ↪→ H−1(�), we get

‖ f (w)‖L2(0,S;H−1(�)) ≤ ‖ f (w)‖L2(0,S;L2(�)).

Since f is a Lipshitz function, then we get

‖ f (w) ‖L2(0,S;L2(�)) ≤ L1 ‖ w ‖L2(0,S;L2(�)) +
(
( f (0))2 · (meas(Q))

)1/2

+
(
2 f (0)· ‖ w ‖2L2(0,S;L2(�))

)1/2
.

(5.2)

All terms in the right-hand side are boundeddue tow ∈ Eψ (QS) ↪→ L1(0, S; H−1(�)).

Then, there exists a positive constant C , such that

∥
∥
∥
∥

λ f (w)

(
∫

�
f (w)dx)2

∥
∥
∥
∥

L2(0,S;H−1(�))

≤ C . (5.3)

Hence

λ · f (w)

(
∫

�
f (w)dx)2

∈ L2
(
0, S; H−1(�)

)
.

Using the following continuous embedding L2
(
0, S; H−1(�)

)
↪→ W −1,x Eψ̄ (QS)

obtained by applying Lemma 2.12 and Remark 2.13, we get that:

λ · f (w)

(
∫

�
f (w)dx)2

∈ W −1,x Eψ̄ (QS).

Now, we are in a position to employ Theorem 3.7, and we get the existence of a weak
solution. Now, we prove that | ∇u |∈ Fψ(�) and the following estimates:

∫ S

0

∫

�

ψ(x, |∇u|)dxds ≤ C . (5.4)

‖∇u‖ψ̄,QS
≤ C2, (5.5)

where C and C2 are a positive constant. Let us prove (5.4). To this end, we use (4.3),
to obtain

αψ(x, |∇u|) ≤ |∇u|2. (5.6)

Hence

α

∫ S

0

∫

�

ψ(x, |∇u|)dxds ≤
∫ S

0

∫

�

|∇u|2 dxds. (5.7)
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From (5.1), we get

∫ r

0

∫

�
∇u∇udxdt =

〈

λ
f (w)

(
∫

� f (w)dx)2
, u

〉

Qr

+ 1

2

∫

�
|u(x, 0)|2 dx − 1

2

∫

�
|u(x, r)|2dx . (5.8)

Using (4.5) and the hypothesis on f , we get that

∫ r

0

∫

�

∇u∇u ≤ 1

2
‖ u(., r) ‖2L2(�)

+ λ

(σ · meas(�))2

∫ r

0
f (w)· | u |

≤ λ

(σ · meas(�))2

(∫ r

0

∫

�

| f (w) − f (0)| · |u| + f (0) ·
∫ r

0

∫

�

|u|
)

+ 1

2
‖ u(., r) ‖2L2(�)

≤ λL1

(σ · meas(�))2

(∫ r

0

∫

�

|w| · |u| + f (0) ·
∫ r

0

∫

�

|u|
)

+ 1

2
‖u(., r)‖2L2(�)

≤ λL1

2(σ · meas(�))2

(
‖u‖2L2(Qr )

+ ‖w‖2L2(Qr )

)
+ 1

2
‖u(., r)‖2L2(�)

.

Owing to Lψ(�) ↪→ L2(�) and w ∈ Eψ (QS) ↪→ L1
(
0, S; Eψ(�)

)
↪→

L1(0, S; L2(�)), there exists a positive constant C , such that

∫ r

0

∫

�

∇u · ∇u ≤ C . (5.9)

From (5.7) and (5.9), we obtain

α

∫ S

0

∫

�

ψ(x, |∇u|)dxds ≤
∫ S

0

∫

�

∇u · ∇udxdt ≤ C; (5.10)

it yields that | ∇u |∈ Fψ(�).

Now, we state to prove the inequality (5.5). Knowing that

∫ S

0

∫

�

(∇u − ∇ϕ) (∇u − ∇ϕ) dxds ≥ 0.

This implies that

1

2

[∫ S

0

∫

�

| ∇u |2 dxds +
∫ S

0

∫

�

| ∇ϕ |2 dxds

]

≥
∫ S

0

∫

�

| ∇u || ∇ϕ | dxds.

Applying (5.9) and using (4.1), we get

∫ S

0

∫

�

| ∇ϕ |2 dxds ≤
∫ S

0

∫

�

ψ(x, |∇ϕ|)dxds,
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for each ϕ ∈ W 1,x
0 Eψ (QS) where ‖∇ϕ‖ψ,QS = 1

k + 1
. Consequently, we get

∫ S

0

∫

�

| ∇ϕ |2 dxds ≤ C,

from whence follows, there exists a positive constant C2, such that

∫ S

0

∫

�

| ∇u || ∇ϕ | dxds ≤ C2.

It yields that ‖∇u‖ψ̄,QS
≤ C2, as a consequence ∇u ∈ Eψ̄ (QS); hence, �u ∈

W −1,x
0 Eψ̄ (QS). Keeping this in mind, using the following inclusion:

λ f (w)

(
∫

�
f (w)dx)2

∈ L2
(
0, S; H−1(�)

)
↪→ W −1,x Eψ̄ (QS),

and the first equation of the problem (5.1), it follows that:

∂u

∂s
∈ W −1,x Eψ̄ (QS) and

∥
∥
∥
∥
∂u

∂s

∥
∥
∥
∥

W−1,x Lψ̄ (QS)

≤ C3. (5.11)

We introduce the following operator:

G : Eϕ (QS) −→ F
v �−→ G(v) = u,

(5.12)

where u is the solution for the problem (5.1). G is compact operator. Indeed, F ⊂
Eϕ (QS) (i.e., F is included in Eϕ (QS) with the compact injection), we can show
this embedding using Lemmas 3.6 and 3.4. From the inequality (5.11), we find that

set

{
∂u

∂s
; u ∈ F

}

is bounded in W −1,x Lψ̄ (QS). From Lemmas 3.6 and 3.4, where

Y := L1(�), we get the following compact embeddingF ↪→ Eϕ (QS). This combined
with (5.11) and (5.10) yields to the compactness of the mapping G.

We define

Bν := {
ω ∈ Eϕ (QS) /‖ω‖ϕ,� ≤ ν

}
.

Bν is bounded and closed. Keeping this and (5.10) in mind, we obtain G(Bν) ⊂ Bν .
To achieve the proof of the existence of a weak solution, it suffices to show that G is

a continuous operator. To this end, we assume that (vn)n∈N ⊂ Bν , such that vn −→ ω,
also, let us consider G(ω) = u and G(vn) = un . Hence

(vn)n∈N ⊂ Bν ⊂ Eϕ(QS) ⊂ Lϕ(QS) ⊂ L2(QS).
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Since L2(QS) is a Banach space, then vn −→ ω in L2(QS), so there exists a subse-
quence still denoted by (vn)n∈N, such that vn −→ ω a.e in QS . Knowing that

(vn)n∈N ⊂ Bν ⊂ Lϕ(QS).

Then, (vn)n∈N is bounded. Hence, there exists a subsequence, such that

un −→ V in Eϕ(QS), (5.13)

and
∇un −→ ∇V weakly in L2(QS)

N . (5.14)

We choose v = un − u in (5.1), and we obtain

〈
∂u

∂s
, un − u

〉

QS

+
∫ S

0

∫

�

∇u · ∇(un − u)dxds =
〈

λ
f (w)

(
∫

�
f (w)dx)2

, un − u

〉

QS

,

〈
∂un

∂s
, un − u

〉

QS

+
∫ S

0

∫

�

∇un · ∇(un − u)dxds =
〈

λ
f (vn)

(
∫

�
f (vn)dx)2

, un − u

〉

QS

.

By subtracting the above two equations, we get

〈
∂(un − u)

∂s
, un − u

〉

QS

+
∫ S

0

∫

�

| ∇(un − u) |2 dxds

=
〈

λ
f (vn)

(
∫

�
f (vn)dx)2

− λ
f (w)

(
∫

�
f (w)dx)2

, un − u

〉

QS

.

(5.15)

On the other hand, we have the following identity:

〈
∂(un − u)

∂s
, un − u

〉

QS

= 1

2

∫ S

0

∫

�

| un(s) − u(s) |2 dx = 1

2
‖ un − u ‖2L2(QS)

.

(5.16)
Then, from (5.15) and (5.16), it yields that

1

2
‖ un − u ‖2L2(QS)

≤
〈

λ
f (vn)

(
∫

�
f (vn)dx)2

− λ
f (w)

(
∫

�
f (w)dx)2

, un − u

〉

QS

. (5.17)

Putting

γn(x, s) := λ
f (vn)

(
∫

�
f (vn)dx)2

− λ
f (w)

(
∫

�
f (w)dx)2

.

Then

γn(x, s) = λ
f (vn) − f (w)

(
∫

�
f (vn)dx)2

+ λ f (w)

∫

�
[ f (w) − f (vn)] dx

∫

�
[ f (w) + f (vn)] dx

(
∫

�
f (w)dx)2(

∫

�
f (vn)dx)2

.
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Hence

γn(x, s) · (un − u) = λ
f (vn) − f (w)

(
∫

� f (vn)dx)2
(un − u)

+ λ f (w)

∫

� [ f (w) − f (vn)] dx
∫

� [ f (w) + f (vn)] dx

(
∫

� f (w)dx)2(
∫

� f (vn)dx)2
(un − u).

(5.18)
Then

∫ S

0

∫

�
γn(x, s) · (un − u)dxds

≤ λL1

(meas(�)σ)2

∫ S

0

∫

�
|vn − w| · |un − u|dxds

+ λL1 · meas(�)

(meas(�)σ)4

∫ S

0

∫

�
f (w)|vn − w| · |un − u|

(∫

�
( f (vn) + f (w))dx

)

dxds.

Knowing that (un)n∈N is bounded in L2(�), by applying the convergence dominate
theorem, we get

lim
n→∞

∫ S

0

∫

�

γn(x, s) · (un − u)dxds = 0. (5.19)

Combining (5.17) with (5.18), we get

1

2
‖un − u‖2L2(Q)

≤
∫ S

0

∫

�

γn(x, s) · (un − u)dxds. (5.20)

From (5.17)–(5.20), we get un

‖.‖L2(�)−−−−→ u. Knowing that un −→ V in Eϕ(QS) ⊂
Lϕ(QS) ⊂ L2(QS), we obtain that un

‖.‖L2(�)−−−−→ V . This implies that V = u, then
G(vn) −→ G(ω) = u. Hence, G is continuous. This completes the proof of Theorem
5.2. �
We now proceed to prove Theorem 5.1.

Proof The proof consists of four steps. We begin by presenting a sequence of
approximation problems, establishing a priori estimates for them, and demonstrat-
ing intermediate results, namely strong convergence in L1(�) of (∇un)n∈N.

Step I
For every n ∈ N, we consider the following approximate problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂un

∂s
− �un = λ f (un)

(
∫

�
f (un)dx)2

, in QS,

un(., .) = 0, on ∂�×]0, S[,
un(., 0) = u0, in �.

(5.21)
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Under the assumption (4.1), we obtain

| ∇u − ∇v |2≤ ψ(x, |∇u − ∇v|) + ψ(x, s).

From assumptions (4.2)–(4.3), we get

| ∇u |≤ ζ
[
c(x, s) + ψ̄−1

x (ψ(x, k|u|))
]
.

αψ(x, |∇u − ∇v|) ≤ |∇u − ∇v|2 .

Applying Theorem 5.2, to get the existence of a weak solution to the approximate
problem (5.21). We use un as a test function in (5.21). Then, we get

〈
∂un

∂s
, un

〉

QS

+
∫ S

0

∫

�

∇un · ∇undxds =
〈

λ f (un)

(
∫

�
f (un)dx)2

, un

〉

QS

.

Hence

1

2

∫

�

|un(x, r)|2dx +
∫ r

0

∫

�

|∇un|2dxds =
∫ r

0

∫

�

λ f (un)

(
∫

�
f (un)dx)2

· un

+ 1

2

∫

�

|un(x, 0)|2 dx .

Consequently

∫ r

0

∫

�

| ∇un |2 dxds ≤
∫ r

0

∫

�

λ f (un)

(
∫

�
f (un)dx)2

· un + ‖un(0, .)‖2L2(�)
.

Keeping this and (5.6) in mind, we obtain

α

∫ r

0

∫

�

ψ (x, | ∇un |) dxds ≤
∫ r

0

∫

�

λ f (un)

(
∫

�
f (un)dx)2

· un+ ‖ un(., 0) ‖2L2(�)
.

On the other hand, using the condition (4.5) and Hölder’s inequality, we get

α

∫ r

0

∫

�
ψ (x, | ∇un |) dxds ≤ λ

(meas(�)σ)2

∫ r

0

∫

�
| f (un)| · |un | + ‖un(., 0)‖2L2(�)

≤ λ

(meas(�)σ)2

∫ r

0

∫

�
(| f (un) − f (0)| + | f (0)|) · |un |

+ ‖ un(., 0) ‖2L2(�)

≤ λ

(meas(�)σ)2

(
L1 + f (0)(meas(�))1/2

) ∫ r

0

∫

�
|un |2.
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Since (un)n∈N is a bounded sequence in L2(QS). Then, there exists a positive constant
C5, such that

α

∫ r

0

∫

�

ψ (x, | ∇un |) dxds ≤ C5.

∫ r

0

∫

�

ψ (x, | ∇un |) dxds ≤ C . (5.22)

Recall from Remark 2.5 that

‖ un ‖1,ψ,�≤ (C0 + 1)max(C, 1);

this implies that (un)n∈N is a bounded sequence in W 1,x
0 Lψ (QS). Then, there exists

a subsequence still denoted (un)n∈N weakly converges in W 1,x
0 Lψ (QS) as n −→ ∞

to a limit u, such that

un⇀u in W 1,x
0 Lψ (QS) for σ

(
�Lψ,�Eψ̄

)
. (5.23)

On the other hand, for any function ϕ ∈ W 1,x
0 Eψ (QS)

N , such that ‖ ∇ϕ ‖ψ,QS =
1

m + 1
where m is a positive real number, we have

∫ S

0

∫

�

∇un · ∇ϕdxds ≤ 1

2

[∫ S

0

∫

�

| ∇un |2 dxds +
∫ S

0

∫

�

| ∇ϕ |2 dxds

]

≤ 1

2

∫ S

0

∫

�

ψ (x, | ∇un |) dxds

+ 1

2

∫ S

0

∫

�

ψ (x, | ∇ϕ |) dxds

≤ C

2
+ 1

2
‖ ∇ϕ ‖ψ,QS .

Using the equivalence between the Luxemburg norm and the Orlicz norm, and using
(5.22), there exists a positive constant C6, such that

∫ S

0

∫

�

∇un · ∇ϕdxds ≤ C6,

from whence follows, (∇un)n∈N is bounded in Lψ̄ (QS)N . This implies that there
exists a subsequence still denoted (∇un)n∈N, such that

un⇀u in Lψ̄ (QS)N for σ
(
�Lψ̄ ,�Eψ

)
. (5.24)
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Since the sequences (∇un)n∈N and

(

λ
f (un)

(
∫

�
f (un)dx)2

)

n∈N
are bounded inW −1,x Lψ̄ (QS).

Hence, using the first equation of the problem (5.21), we get that the sequence(
∂un

∂s

)

n∈N
is bounded in W −1,x Lψ̄ (QS). Consequently, (un)n∈N is bounded in F. In

view of the fact that F ↪→ Eφ (QS) is compact, then, for a subsequence still denoted
in the same way, we get

un −→ u strongly in Eφ (QS) and a.e. in QS, (5.25)

where u ∈ W 1,x
0 Lψ (QS) is also the same limit appearing in (5.23).

Step II
We introduce the following regularized sequences for i, j ∈ N:

(1) v j → u in W 1,x
0 Lψ (QS) with the modular convergence;

(2) v j → u and ∇v j → ∇u a.e in QS ;
(3) ωi → u0 in L2(�) with the strong convergence;
(4) ‖ωi‖L2(�) ≤ 2 ‖u0‖L2(�) , for all i ≥ 1.

These fourth points are satisfied for all ω ∈ D(�) and v j ∈ D(QS).
Let R > 0 a real number, and we define the truncation function as in (2.15). Then,

for each R, η > 0 and for i, j ∈ N, we consider the function ωi
η, j ∈ W 1,x

0 Lψ (QS)

defined as follows ωi
η, j := SR(v j )η + exp(−ηs)SR(ω j ), such that SR(v j )η is the

mollification with respect to the time variable of SR(v j ) appearing in (3.1). From
Lemma 3.1, it follows that:

∂ωi
η, j

∂s
= η

(
SR(v j ) − ωi

η, j

)
, ωi

η, j (., 0) = SR(ωi ), |ωi
η, j | ≤ R a.e in QS , (5.26)

ωi
η, j −→ ωi

η := SR(u)η + exp(−ηs)SR(ωi ) as j −→ ∞ in W 1,x
0 Lψ (QS) , (5.27)

SR(u)η + exp(−ηs)SR(ωi ) −→ SR(u) as η −→ ∞ in W 1,x
0 Lψ (QS) , (5.28)

with the modular convergence in the two last convergences. �
We consider subsequences in (5.26)–(5.28), without loss the generality that con-

vergences in (5.26)–(5.28) hold a.e. in QS .

Proposition 5.3 Let un be a solution to the problem (5.21). Then, for a subsequence,
we have the following convergence:

∇un −→ ∇u as n −→ ∞ a.e. in QS . (5.29)

Proof Throughout this paper, we use χ
j

r and χr as the characteristic functions of the
following sets:

Q j
r = {

(x, s) ∈ QS/ | ∇SR(v j ) |≤ r
}
, Qr = {(x, s) ∈ QS/ | ∇SR(u) |≤ r}.
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For any real numbers η, ϑ > 0 and for i, j, n ∈ N, we use the admissible test function
φ

η,i
n, j,ϑ := Sϑ(un − ωi

η, j ) in the first equation of the approximate problem (5.21), and
we get

〈
∂un

∂s
, φ

η,i
n, j,ϑ

〉

QS

+
∫ S

0

∫

�

∇Sϑ(un − ωi
η, j )∇undxds

=
〈

λ
f (un)

(
∫

�
f (un)dx)2

, Sϑ(un − ωi
η, j )

〉

QS

.

(5.30)

On the other hand, using the condition (4.5), and by the same reasoning done to get
(5.2), we obtain ∫

�

λ f (un)

(
∫

�
f (un)dx)2

dx ≤ C7, where C7 > 0. (5.31)

From (2.15), we obtain

∫ S

0

∫

�

λ
f (un)

(
∫

�
f (un)dx)2

· Sϑ(un − ωi
η, j ) ≤ λϑ

∫ S

0

∫

�

f (un)

(
∫

�
f (un)dx)2

.

Using (5.31), we get

〈
∂un

∂s
, φ

η,i
n, j,ϑ

〉

QS

+
∫ S

0

∫

�

∇Sϑ(un − ωi
η, j )∇undxds ≤ C7ϑ. (5.32)

Now, we split the first term on the left side of the above inequality into two parts and
estimate each one separately

〈
∂un

∂s
, φ

η,i
n, j,ϑ

〉

=
〈

∂un

∂s
− ∂ωi

ϑ, j

∂s
, φ

η,i
n, j,ϑ

〉

+
〈

∂ωi
ϑ, j

∂s
, φ

η,i
n, j,ϑ

〉

. (5.33)

We start by estimating the first term on the right side of the above identity

〈
∂un

∂s
− ∂ωi

ϑ, j

∂s
, φ

η,i
n, j,ϑ

〉

=
∫

�

Tϑ(un(S) − ωi
η, j (S))dx −

∫

�

Tϑ(u0 − Sϑ(ωi ))dx .

(5.34)
From (2.16), it can be shown that

0 ≤ TR(r) ≤ R|r |, for all r ∈ R.

It follows that:

0 ≤
∫

�

Tϑ(u0 − Sϑ(ωi ))dx≤ϑ

∫

�

|u0 − Sϑ(ωi )|dx

≤ ϑ(meas(�))1/2
(∫

�

|u0 − Sϑ(ωi )|2dx

)1/2

≤ 3ϑ(meas(�))1/2 ‖u0‖L2(�) := C8ϑ.
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Then, for all η, ϑ > 0 and i, j, n ≥ 1, and from (5.34), we get

−C8ϑ ≤
〈

∂un

∂s
− ∂ωi

ϑ, j

∂s
, φ

η,i
n, j,ϑ

〉

. (5.35)

Now, we derive an estimate for the second term on the right side of (5.33). Under
assumption (5.26), we get

〈
∂ωi

ϑ, j

∂s
, φ

η,i
n, j,ϑ

〉

= η

∫ S

0

∫

�

(SR(v j ) − ωi
η, j )Sϑ(un − ωi

η, j )dxds. (5.36)

Then

lim
n→∞ lim

j→∞

〈
∂ωi

ϑ, j

∂s
, φ

η,i
n, j,ϑ

〉

= η

∫ S

0

∫

�

(SR(u) − ωi
η)Sϑ(u − ωi

η)dxds.

Under hypotheses (5.26)–(5.27), we have |ωi
η| ≤ R, and due to r Sϑ(r) ≥ 0, r ∈ R,

we get that for all η, ϑ, R > 0 and i ≥ 1

lim
n→∞ lim

j→∞

〈
∂ωi

ϑ, j

∂s
, φ

η,i
n, j,ϑ

〉

≥ 0. (5.37)

Keeping this and (5.35) in mind, we get

lim
n→∞ inf lim

j→∞ inf

〈
∂un

∂s
, φ

η,i
n, j,ϑ

〉

≥ −C8ϑ. (5.38)

On the other hand, we have

Ii, j,n,ϑ : =
∫ S

0

∫

�

∇Sϑ(un − ωi
η, j )∇undxds

=
∫

{|un−ωi
η, j |≤ϑ}

(∇un − ∇ωi
η, j )∇undxds

=
∫

{|un−ωi
η, j |≤ϑ}∩{|un |>R}

(∇un − ∇ωi
η, j )∇undxds

+
∫

{|un−ωi
η, j |≤ϑ}∩{|un |≤R}

(∇un − ∇ωi
η, j )∇undxds.
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Then

Ii, j,n,ϑ =
∫

{|un−ωi
η, j |≤ϑ}∩{|un |>R}

(∇un − ∇ωi
η, j )∇undxds

+
∫

{|un−ωi
η, j |≤ϑ}∩{|un |≤R}

(∇un − ∇ωi
η, j )∇undxds

=
∫

{|SR(un)−ωi
η, j |≤ϑ}

(∇SR(un) − ∇ωi
η, j )∇SR(un)dxds

+
∫

{|un−ωi
η, j |≤ϑ}∩{|un |>R}

| ∇un |2 dxds

−
∫

{|un−ωi
η, j |≤ϑ}∩{|un |>R}

∇ωi
η, j∇undxds,

where

I0,i, j,n,ϑ =
∫

{|SR(un)−ωi
η, j |≤ϑ}

(∇SR(un) − ∇ωi
η, j )∇SR(un)dxds,

I1,i, j,n,ϑ =
∫

{|un−ωi
η, j |≤ϑ}∩{|un |>R}

| ∇un |2 dxds,

I2,i, j,n,ϑ =
∫

{|un−ωi
η, j |≤ϑ}∩{|un |>R}

∇ωi
η, j∇undxds.

Under assumption (4.3), we have

I1,i, j,n,ϑ ≥ α

∫

{|un−ωi
η, j |≤ϑ}∩{|un |>R}

ψ(x, |∇un |)dxds ≥ 0.

Then, Ii, j,n,ϑ ≥ I0,i, j,n,ϑ − I2,i, j,n,ϑ ; from (5.26), we have | ωi
η, j |≤ R, a.e. in QS,

and this implies that

| un |≤| un − ωi
η, j | + | ωi

η, j |≤ R + ϑ. (5.39)

It follows that for n > R + ϑ :

I2,i, j,n,ϑ =
∫

{|un−ωi
η, j |≤ϑ}∩{|un |>R}

∇ωi
η, j∇Sϑ+R(un)dxds,

which gives

Ii, j,n,ϑ≥ I0,i, j,n,ϑ − I2,i, j,n,ϑ

≥
∫

{|SR(un)−ωi
η, j |≤ϑ}

(∇SR(un) − ∇ωi
η, j )∇SR(un)dxds − I2,i, j,n,ϑ .

(5.40)
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Using again inequality (5.39), we get by definition Sϑ+R(un) = un , and hence,
∇Sϑ+R(un) = ∇un . In view of the fact that (∇un)n∈N is bounded in Lψ(QS)

N , we get
that (∇Sϑ+R(un))n∈N is also bounded in Lψ(QS)N . Then, there exists a1, such that

∇Sϑ+R(un)⇀a1 as n −→ ∞ in Lψ(QS)
N for the weak topology σ(

∏
Lψ,

∏
Eψ̄ ).

In view of the fact that

∇ωi
η, jχ{|un−ωi

η, j |≤ϑ}∩{|un |>R} −→ ∇ωi
η, jχ{|u−ωi

η, j |≤ϑ}∩{|u|>R},

strongly in Eψ(QS)N as n −→ ∞, we get

lim
n→∞

∫

{|un−ωi
η, j |≤ϑ}∩{|un |>R}

∇ωi
η, j∇Sϑ+R(un) =

∫

{|u−ωi
η, j |≤ϑ}∩{|u|>R}

∇ωi
η, j a1.

Under assumptions (5.27) and (5.28), we obtain

∇Sϑ+R(un)∇ωi
η, jχ{|un−ωi

η, j |≤ϑ}∩{|un |>R} −→ ∇Sϑ+R(u)∇ωi
η, jχ{|u−ωi

η, j |≤ϑ}∩{|u|>R},

as n, j −→ ∞. We apply Lemma 2.8, and letting ϑ, j −→ ∞, we obtain

∫

Q
∇Sϑ+R(u)∇ωi

η, jχ{|u−ωi
η, j |≤ϑ}∩{|u|>R} −→ I3 :=

∫

{|u−ωi
η, j |≤ϑ}∩{|u|>R}

∇SR(u)a1.

For |u| > R, we get SR(u) = 0, which yields I3 = 0. Thus

I2,i, j,n,ϑ −→ 0.
i, j, ϑ −→ ∞.

(5.41)

By using (5.40), we obtain

Ii, j,n,ϑ ≥
∫

{|SR(un)−ωi
η, j |≤ϑ}

(∇SR(un) − ∇ωi
η, j )∇SR(un)dxds − I2.

∫

{|SR(un)−ωi
η, j |≤ϑ}

(∇SR(un) − ∇ωi
η, j )∇SR(un)dxds ≤ Ii, j,n,ϑ + I2,i, j,n,ϑ .

Using (5.32), we get

Ii, j,n,ϑ ≤ C7ϑ −
〈
∂un

∂s
, φ

η,i
n, j,ϑ

〉

QS

.

Owing to (5.38), it follows that:

−
〈
∂un

∂s
, φ

η,i
n, j,ϑ

〉

QS

≤ C8ϑ.
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Then

Ii, j,n,ϑ ≤ (C7 + C8)ϑ := Cϑ.

We have ∫

{|SR(un)−ωi
η, j |≤ϑ}

(∇SR(un) − ∇ωi
η, j )∇SR(un)dxds

=
∫

A
(∇SR(un) − ∇SR(v j )χ

r
j )∇SR(un)dxds

+
∫

A
(∇SR(v j )χ

r
j − ∇ωi

η, j )∇SR(un)dxds

= I4,i, j,n,η + I5,i, j,n,η,

(5.42)

where A := {|SR(un) − ωi
η, j | ≤ ϑ}.

Now, we show that I5,i, j,n,η −→ 0. Knowing that (SR(un))n∈N is bounded. Hence,
there exits a0, such that

SR(un)⇀a0 as n −→ ∞.

Since

Γ n(v j ) := (∇SR(v j )χ
r
j − ∇ωi

η, j )χA

−→ (∇SR(v j )χ
r
j − ∇ωi

η, j )χ{(SR(u)−ωi
η, j )≤ϑ} in Eψ̄ (QS).

It follows that (Γ n(v j ))n∈N is bounded in Eψ̄ (QS). Hence, (∇SR(un)Γ n(v j ))n∈N is
bounded as well. Applying the dominated convergence theorem, we get

lim
i, j,n,η−→∞ I5,i, j,n,η =

∫

A
lim

i, j,n,η−→∞(∇SR(v j )χ
r
j − ∇ωi

η, j )∇SR(un)dxds = 0.

I5,i, j,n,η −→ 0 as i, j, n, η −→ ∞. (5.43)

Recall (5.40) and (5.42), we get

I4,i, j,n,η + I5,i, j,n,η ≤ Ii, j,n,ϑ + I2,i, j,n,ϑ ,

I4,i, j,n,η ≤ Ii, j,n,ϑ + I2,i, j,n,ϑ − I5,i, j,n,η ≤ Cϑ + I2,i, j,n,ϑ − I5,i, j,n,η.

From (5.41) and (5.43), we can take ε(n, i, η, j) := I2,i, j,n,ϑ − I5,i, j,n,η where
ε(n, i, η, j) −→ 0 as i, j, n, η −→ ∞. This implies that I4,i, j,n,η ≤ Cϑ +
ε(n, i, η, j).

Putting

Nn := (∇SR(un) − ∇SR(u))(∇SR(un) − ∇SR(u)),
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which is a nonnegative quantity. Since (∇SR(un)) is bounded in Lψ(QS)N , then the
same holds for Nn . Let us Jr

n := ∫

Qr
N θ

n dxds for each θ in ]0, 1[, we get

∫

Qr

N θ
n χAcdxds ≤

(∫

Qr

Nndxds

)θ (∫

Qr

χAcdxds

)(1−θ)

≤ C9meas(Ac).

Using Hölder’s inequality, we obtain

∫

Qr

N θ
n χAdxds ≤

(∫

Qr

Nndxds

)θ (∫

Qr

χAdxds

)(1−θ)

≤ C10

(∫

Qr ∩A
Nndxds

)θ

.

It follows that:

Jr
n =

∫

Qr

N θ
n dxds ≤

(

C9meas(Ac) + C10

(∫

Qr ∩A
Nndxds

)θ
)

.

On the other hand, for s ≥ r and r > 0, we have

∫

Qr ∩A
Nndxds ≤

∫

Qr ∩A
(∇SR(un) − ∇SR(u))(∇SR(un) − ∇SR(u))dxds

≤
∫

Qs∩A
(∇SR(un) − ∇SR(u)χs)(∇SR(un) − ∇SR(u)χs)dxds

≤
∫

Qs∩A
(∇SR(un) − ∇SR(v j )χs)(∇SR(un) − ∇SR(v j )χs)dxds

≤ J1,n, j + J2,n, j + J3,n, j + J4,n, j ,

where

J1,n, j :=
∫

A
(∇SR(un) − ∇SR(v j )χ

s
j )(∇SR(un) − ∇SR(v j )χ

s
j )dxds,

J2,n, j :=
∫

A

(
∇SR(v j )χ

s
j − ∇SR(u)χs

) (
∇SR(un) − ∇SR(v j )χ

s
j

)
dxds,

J3,n, j :=
∫

A

(
∇SR(un) − ∇SR(v j )χ

s
j

) (
∇SR(v j )χ

s
j − ∇SR(v j )χ

s
)
dxds,

J4,n, j :=
∫

A

(
∇SR(v j )χ

s
j − ∇SR(u)χs

) (
∇SR(v j )χ

s
j − ∇SR(v j )χ

s
)
dxds.
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Then

J1,n, j =
∫

A

(
∇SR(un) − ∇SR(v j )χ

s
j

)
∇SR(un)dxds

−
∫

A
∇SR(v j )χ

s
j

(
∇SR(un) − ∇SR(v j )χ

s
j

)
dxds

≤ I4,i, j,n,η −
∫

A
∇SR(v j )χ

s
j

(
∇SR(un) − ∇SR(v j )χ

s
j

)
dxds

≤ Cϑ + ε(n, i, η, j) −
∫

A
∇SR(v j )χ

s
j

(
∇SR(un) − ∇SR(v j )χ

s
j

)
dxds.

Putting

M j,n := ∇SR(v j )χ
s
j

(
∇SR(un) − ∇SR(v j )χ

s
j

)

= ∇SR(v j )χ
s
j ∇SR(un) − ∇SR(v j )χ

s
j ∇SR(v j )χ

s
j .

By virtue of∇SR(v j )χ
s
j −→ ∇SR(u)χ s as j −→ ∞ and∇SR(un)⇀∇SR(u)weakly

in Eψ(QS)
N , it follows that M j,n −→ 0 as n, j −→ ∞. Since (∇SR(v j )χ

s
j ) j con-

verges to ∇SR(u)χs strongly in Eψ(QS)
N . Applying the dominated convergence

theorem, we get J4,n, j −→ 0 as n, j −→ ∞. For J3,n, j , knowing that sequence
(∇SR(un))n∈N is bounded and (∇SR(v j )χ

s
j ) j converge strongly to ∇SR(u)χ s in

Eψ(QS)
N , then

(
∇SR(un) − ∇SR(v j )χ

s
j

)
is bounded. Using again the convergence

of (∇SR(v j )χ
s
j ) j to∇SR(u)χ s , then J3,n, j −→ 0 as n, j −→ ∞. For J2,n, j , we have

(
∇SR(v j )χ

s
j − ∇SR(u)χs

)
−→ 0 as j −→ ∞, (∇SR(un))n∈N and (∇SR(v j )χ

s
j ) j

are convergent. Consequently,
(
∇SR(un) − ∇SR(v j )χ

s
j

)
, is bounded. Applying

again the convergence dominate theorem, we get J2,n, j −→ 0 as n, j −→ ∞, and

lim
n, j→∞

∫

A
M j,ndxdt = 0.

Letting n, j , then η, i, s, ϑ to infinity, we get

lim
n→∞ sup Jr

n = lim
n→∞

∫

Qr

N θ
n dxds = 0.

On the other hand, from (4.3), we obtain

0 ≤
∫

Qr

[ψ (x, |∇SR(un) − ∇SR(u)|)]θ dxds ≤
∫

Qr

N θ
n dxds.

We recall that

∇SR(un) −→ ∇SR(u) as n −→ ∞,
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almost everywhere in Qr . Since r > 0 is arbitrary, we recall that for another subse-
quence∇SR(un) −→ ∇SR(u) almost everywhere in QS . Finally, for R > 0 arbitrary,
we get

∇un −→ ∇u a.e. in QS . (5.44)

This concludes the proof. �
Step III
Weobtain the first condition ofDefinition 4.2, by applying (5.31), (5.24), and (5.26).

For the second condition of the same definition obtained using the convergence (5.44)
and the smoothness of the function f . For the regularity of the solution u, we use
(5.11) and we apply directly Lemma 3.5, we get that u ∈ C

([0, S]; L1(�)
)
. This

concludes the proof of Theorem 5.1 � .

6 Conclusion and perspectives

In this paper, we showed the existence result for a capacity solution to a nonlocal
thermistor problem in Musielak–Orlicz–Sobolev spaces. In the future, we plan on
studying the regularity of a global attractor. Other intriguing problems about this
capacity solution surround the development of specific qualitative properties [5], such
as the calculation of an energy estimate, the study of long-term behavior, or even the
possibility of a blow-up event.

Acknowledgements The authors are thankful to the referees for remarks and suggestions that helped
improve this paper.
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