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Abstract

We prove that the weighted Bergman projection P, is a bounded operator on the
weighted Lebesgue space L(Q, r(x)*dm(x)) for a certain range of parameters p, y
and A. Here Q is a bounded domain in R” with smooth boundary. This result is used
to prove boundedness of P, acting on weighted mixed norm space LP9(Q), again
assuming certain conditions on the parameters. We describe the dual of harmonic
mixed norm space B2Y(Q) for a certain range of parameters.
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Mathematics Subject Classification 42B35 - 31B05

1 Introduction

Boundedness of the Bergman projection on harmonic mixed norm space on a
smoothly bounded domain in R” was proved by Hu and Lv [6]. The proof relies on
an equivalent norm on the mixed norm space. As a consequence, they obtained the
dual of such space. In this paper, we generalize these results to the case of weighted
mixed norm spaces, see Theorems 3.2 and 4.5. The same general scheme of proof
presented in [6] for the unweighted case works in the weighted case, however, we
need delicate estimates for the weighted Bergman kernel obtained in [3]. These
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estimates are used to prove boundedness of the weighted Bergman projection P,
acting on weighted Lebesgue spaces L7(, r(x)*dm(x)), see Theorem 3.1.

Note that the harmonic weighted case in the unit ball of R” has been considered
in [8]. It is worth mentioning that the problem of the boundedness of Bergman pro-
jection on certain holomorphic mixed norm spaces has been considered by several
authors. About three decades ago, sufficient conditions for boundedness of the Berg-
man projection on certain weighted mixed norm spaces of functions on the unit ball
in C" are given in [4, 7] and the dual of such space is identified. In [5], it was proven
that the Bergman operator is bounded on holomorphic weighted mixed norm spaces
on the unit ball with radial weights satisfying Békollé’s conditions and characteriza-
tion of the corresponding dual space was obtained. Sufficient conditions for bound-
edness of the Bergman type operators on certain weighted mixed norm spaces of
functions on the unit ball in C", for a certain range of parameters, are given in [10].

The boundedness of the weighted Bergman projection on weighted mixed norm
space on symmetric tube domains was discussed in [2], and on homogeneous Siegel
domains of type II in [9]. The boundedness of the multifunctional Bergman type
operators in symmetric tube domains was considered in [1].

2 Notation and preliminary results

Throughout the paper Q denotes a bounded domain in R” (i.e. open and connected)
with C* boundary and h(Q) denotes the vector space of all real-valued harmonic
functions in Q. Let p(x) be a defining function for Q. This means p is a real val-
ued function on R” which is C* in a neighborhood of the boundary Q2 of Q such
that Q = {x € R" : p(x) > 0} is bounded and |Vp(x)| # 0 on dQ. Throughout this
paper such a domain Q is fixed. It is convenient to work with a particular defin-
ing function, namely the distance function r(x) defined by r(x) = d(x,0Q) for
x € Q and r(x) = —d(x, 0Q) for x & Q. Indeed, there is an € > 0 such that for all
0<r<ethesetQ, ={xe€R": r(x) > r}is a smoothly bounded subdomain of Q
with defining function r(x) — r. We fix such € > 0. We denote by I, the boundary
0Q, ={xeR":r(x)=r}.

We denote by do, the induced surface measure on 0Q,. dm denotes the Lebesgue
volume measure on R”. We also work with weighted measures dmy (x) = r(x)"dm(x)
on Q, where y € R and set L";(Q) =[7(Q, dmy). The exponent conjugate to
1 < p < +oois denoted by p'.

The weighted Bergman spaces are b’;(Q) = [P(Q, dmy) N h(Q)where 0 < p < 40
andy > —1.

ForO<p <ooand0 < r < e, we set

M,(f,r) = { / 1f<¢>|ﬂda,<c>}", @2.1)
FV
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with obvious modification for the case p = +o00. Now let 0 < p < 4+00,0 < g < +0
and a > 0. We define a mixed norm space B./(Q) as the space of all f € h(Q) such

that the (quasi) norm
€ 1/q
IIfllgea = { / r T MAf, r)dr} (2.2)
0

is finite, again with obvious modification to include the case g = +oo0. The space
BY(Q) is a Banach space for 1 < p < +o00 and 1 < g < +o0. This scale of spaces

includes weighted Bergman spaces: b} (Q) = B'(’y”jr]) Q7 >=1,0<p<co.

Throughout this paper we will use the convention of using C to denote any posi-
tive constant which may change from one occurrence to the next. Given two positive
quantities A and B, we write A < B if there are constants 0 < ¢ < C < 400 such that
cA < B < CA.

Note that ry = max{r(x) : x € Q} is a finite strictly positive number and set r; = ;—”
for all j € N.For j € N, we define

S;i={xeQ:r<rx) <r_}

It is obvious that Q = UJi’ilSj.
For 0 < p,q,a < co, we define weighted mixed norm space L, /(Q) as the set of all
Lebesgue measurable functions f'on Q such that

Wz = {2 [ /S @)1 dm()] 57‘5‘“‘”}" < .
J=1 j

Since

1
P
Flls = la@ll.  where  ayf) = ( / lf(X)I”r(x)"”“dm(x)) 23)
S;
we easily deduce the following lemma.

Lemma 2.1 If0 < p < +oo0 and a > 0, then L' (Q) = Lfrp_l(Q) and the two (quasi)
norms on the space are equivalent.

For 0 < p < o0 and ¢ = co, we define a space L2 (Q) as the set of all Lebesgue
measurable functions f on Q such that

ANl = sup [/ lf(x)lpdm(x)] G < .
21 L,

It is clear that these definitions extend to the case p = +o0 in a standard manner.
Fory > —1, let R, (x, y) be the reproducing kernel of the harmonic Bergman space

b>(Q). For every function f € b7(€), we have a reproducing formula
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fx) = / R (x,y)f(y)dm,(y), xeQ.
Q

The kernel R, (x,y) is symmetric and real-valued. The (weighted) Bergman projec-
tion P, is the orthogonal projection from Li(Q) onto its subspace bi(Q); it is given
by the following integral formula

P fx) = /Q R, (e, y)f (n)dm, (y),  x€Q. (2.4)

We prove below, see Corollary to Theorem 3.1, that the weighted Bergman pro-
jection defined by the above formula is a bounded operator from L’; () onto
Bh(Q) = h(Q)n LP(L, dm,), forl < p < co.

For x,y € Q, we introduce a quasi distance D(x,y) = r(x) + r(y) + |[x — y| on Q.
In the next proposition, we state delicate estimates of the weighted Bergman ker-
nel in terms of D(x, y). These estimates are very special cases of results obtained
by Engli§ in [3].

Proposition 2.2 [3] Let y > —1. There is a positive constant C = C, o such that

IR, (x.y)| < Co—— and | 722

1
<C . Moreover, for some constant ¢ > 0
DGy dy < f

D(x,y)”*’“

we have

1
IRy(X,X)I > Cr(_x)—"‘*'}’.

We will need next lemma from [6] to prove a theorem about boundedness of
Bergman projections.

Lemma 2.3 [6] Fory > —1,t < landy +t > 0, there exists a constant C such that

/ dmy) ¢
o DY)~ @

The next lemma was also proven in [6]. We use it to obtain certain estimates
for integral means M,,(P,f,r) of the Bergman projections.

Lemma 2.4 [6] For any s > n — 1 there is a constant C = C; g such that for all x € Q
and)<r<e

/ dar(y) < C
r, DO,yy = (r(x) + ry=0=D°

Also, we use the next auxiliary result about the equivalence of norms on the
space By?, obtained in [11].

Theorem 2.5 [11] Let1 < p,q < o and a > 0. Then, we have
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i =, [ / @ Pdmeo| 2570, f e h.
=1 7S

Notice that

o

)y / lf(x)lpdm(x) 2570 2 / @ Idm, ]2
; = s

J=1

where y = p(a — cl,)'

3 Boundedness of weighted Bergman projections

Our first main result is Theorem 3.1 below about the boundedness of Bergman projec-
tions P, acting on weighted Lebesgue spaces L’;(Q).

Theorem 3.1 Assumey > —1,1 < p < +o0 and A > —1 satisfy inequality

A—y ) <1+/1 1+y>
o= —— <mn| ——, = U. 3.1
0 ) » » 1 3.1

Then P, is a bounded linear operator on the space LZ(Q).

Proof Since
(PA)0x) = /Q R ()Y O)Mm,0),  xeQ, (32)

the weighted Bergman projection P, is an integral operator with kernel
K;(x,y) =R, (x, y)r(y)'~*, when considered as an operator acting on LZ(Q).

Casel < p < +o0.

In this case y; > 0 and we can fix s > 0 in the interval (u,, ¢;). We we are going
to use Schur’s test, with auxiliary function A(x) = r(x)™*. Since the conditions
sp’ —y < 1and sp’ > 0 are satisfied by the assumption (3.1) we can use Proposition
2.2 and Lemma 2.3 to obtain

/ K (e »IRY dm () = /Q IR, G )P ()7 dm(y)
Q

< C/ dm()’) , < Cr(x)—xp’
o D@, y)y=*1r(y)yr=r

= Ch(x)"'.

Also, by (3.1) conditions sp — A < 1 and y + sp — A > 0 are satisfied so we can use
Proposition 2.2 and Lemma 2.3 to obtain
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/ K, )| )P dm, (x) = / IR, (x, )| r(y) r(x) ™"+ dm(x)
Q Q

Za dm(x)
< Cr(yy /Q DOy 7

< CryY ~r(y)t =t
= Ch(y).

The above two estimates show that conditions of the Schur’s test are satisfied. There-
fore P, is bounded on L (Q).

Case p = 1.

Now y; = 0and y > A. Again using Proposition 2.2 and Lemma 2.3, we obtain

1P Fll, = /Q

< / ( / |Ry<x,y)|rcy>7-iv<y>|dmi<y>)dnu(x)
Q Q

_a dm(x)
<c /Q oY lf(y)l( /Q S (x)_j>dmm>

<c / YA O ) dm ()
Q

= C”f“LL'

/ Kﬂ<x,y>fcy)dmﬂ<y>‘dmi<x>
Q

O

Two special cases, p =1 and A1 = y, of the above theorem are worth mention-
ing separately. This is the content of the following corollary.

Corollary Let y > —1. Then P, is bounded linear operator from L‘?(Q) to bﬁ(Q) for
all'1 < p < +oo. Also, for =1 < A <y, P, is a bounded linear operator from LZ(Q)
10 V) (Q) for all1 < p < +co.

Theorem 3.2 Let 1 < p,qg < o0, a >0 and set y = p(a — zl;)' Assume y > a — 1. If
p < q, then P, is a bounded projection from L(Q) onto BLY(Q). Also, if p > q and

y>lie a> i + :1], then P, is a bounded projection from L(Q) onto B (Q).

Proof From the assumption y > a — 1, we see that A = ap — 1 satisfies condition
(3.1) of the above theorem. Since y, and y, from (3.1) depend continuously on 4,
it follows that there is an # > O such that 6 = A+ and { = A — 5 also satisfy this
condition. Thus, by the above theorem, we have

1Pl < CliFly, f € LY@

and
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IPflly < Clflly. f € LU,

In particular, if f € Lf;(Q) and supp(f) C S;, then
/ |Pf O r(x)™ 127 dm(x) < C / [F@)P o™= 27 dm(x)
Sk S;
forallke Z. If f € L‘Z(Q) and supp(f) C S;, then for all k € Z we have

|PfOFrx)~ 12" dm(x) < € / P r@) =12V dm(x).
Sk 5
Let f € Ly?(Q). Since Q is disjoint union of shells S;, f = ij)(sj' First, we assume
that the sum is finite i.e. f ¥y # O only for finitely many j > 1. By Minkowski’s ine-
quality and the above two inequalities, we obtain

”(ny))(sk”L’;p_] = H ( ZPy(f)(Sj)>)(Sk
J

< 2P Exs)as (3.3)
J

LI’
ap—1

—nk=j) k=)
<C Y2 Wasle +C 227 sl -

Jj<k >k :
_ _aldl
For je Z, let x; = 2 » and

Wrslly ,j=1
v, = i 1"
4 0, j< 1

Now for two sequences X = {xj};:’f and Y = {yj}]f;"fm, we define convolution

{e)

X * Y as sequence Z = {z; };:’foo, where
5= xtk—jyk).
k=—o00

This is the classical convolution of ¥ with the sequence W = {x_; };;"joo and therefore
we can apply the standard norm estimates like Young’s inequality. Note that

1
—k(a— ;)

1P s e =27 NP 25,

and

— A—ila—1)
sl =277 I sl

1

Now, using the notion of convolution, inequality (3.3) means that
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1P x5 Mz < CX 5 V)K),  keZ (3.4)

Young’s inequality for convolutions, (3.4) and (2.3) give
1P fllze < Clia®, Ol = CIIP sz M
< ClUXp M 25,1z Mo < Clla (Dl < ClF Nz
The vector subspace of compactly supported functions in I2%(Q) is dense in L27(Q),

and it easily follows that P, is bounded from L};?(Q) to B, *(Q).
Next we show that for a constant C we have ||f ||, < C||f|| g7+, where = min(p, g).

We are going to use Theorem 2.5 on the equivalence of norms. Let us consider the
cases p < g and p > g separately.
i(4—
Case p < g. In this case, t = p. Sincef—} —1>0and PATIR > 1for j € N, we have

ity = ([ weoran,co )

< ( / wxw’dmy(x)) 25 = g I
S; “

Hence, summation over j gives |[f||Z, < If |1, for harmonic function f.
4 f

Case p > q. In this case t = g and % — 1 £ 0. We use Holder’s inequality with
conjugate exponents = and pL_t and the fact that r(x) < 27/ on §;, to obtain

s, = [ trcotam,co

L 1-4
< < / (tf(x)r)’fdmy(x)) ( / dmyoo)
s; s,

J

< c< / lf(X)I”dmy(x)>p 2y
Sj

sc( / lf(X)I”dmy(X)> 257 = g I
S; “

where the last inequality holds because of the assumption y > 1 in this case. Sum-

mation over j gives||f]|?, < C |[f||;’;,,vq, for harmonic function f.
v I3

This means that B2Y(Q) C b (), so every function f € B9(Q) belongs to the

Bergman space b; (), with given assumptions on parameters p, g and a. Now we
conclude that P f = f, which means P, (L;?(Q)) = B;(Q). O
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Corollary Let y > -1, a >0, 1 <g<+oo and set y=a—1/q. Then P, is a
bounded projection from L4(Q) onto BL(Q).

We note that the corollary is false for ¢ = 1: then y = a — 1 and, by Lemma 2.1,
L;’l Q) = L; () and B;’l Q) = b;(ﬂ). However, P, is not bounded on L;, (). Of course,
for p = 1and g = 1the condition y > a — 1is not satisfied since theny = o — 1.

On the other hand, if ¢ = 1 condition y > a — 1 from Theorem 3.2 is equivalent to
a>landp > 1.

Corollary Under the assumptions of the previous theorem, h(Q) N C°°(§) is dense in
B ().

Proof Let us choose f € BiyY. For € > 0, let y, be the characteristic function of Q,
and set F, = P (f x,). Then lim,_, f y, = f in L;*(Q) and hence, by Theorem 3.2,

f=P,()=P(imfr) =limP,(fz)=1lmF,.

The last two limits are taken, by Theorem 3.2, in B.?(Q) (quasi)-norm.

Since  harmonic  Bergman kernel is a smooth function on
ﬁxﬁ\ {(£,8) : &£ € 0Q} (see [3]), we have P,(p) € C°°(§) for compactly sup-
ported ¢ in L'(Q). Hence F, € C® (ﬁ) N h(€) and the proof is completed. O

4 Duality

Now we consider duality for mixed norm spaces. Since the argument presented in [6] works
in abstract situations, it seems a general treatment is natural here. We start with a o- finite
measure 4 on a o- algebra M on a set X and consider a partition X = U]?i]Xj of X into

measurable pairwise disjoint subsets X;. For j > 1 we can restrict ¢ to X and obtain a meas-
ure space (X;, M, u;), where M; ={E € M : E CX;}, uy(E) = u(E) for E € M,.
Hence we have spaces LF(X, y;), 1 <p < 0.
Next we fix a sequence @ = (wj)j?'i , of strictly positive integers and define a sequence
spaceIZ, 0 < ¢ < co with
o
IR = (2 15140)
j=1
I, e = sup |4
=1

<=

,0<g< o

1
Note that if we set { = (Cj);’il, we can write [|{||g = @il Also, we define a

sequence space [, ¢, 0 < ¢ < 1 with
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-1
”(Cj)j=1 “l:"" = sup |Cj|wj ‘.
=1
Note that [ 1 =1®.For0 < q<1,weuse l;'j’q to denote a sequence space with norm

1
1€ s, = S]E? |Gjl@; .

These sequence spaces are just Lebesgue spaces formed with respect to weighted
counting measure v, : Vv, (E) = Zje £ @; on the set N. With the above data, we form

a mixed norm space L.?(X, u) consisting of all measurable functions f : X — C

such that flx/_ € LP(X;, p;) for all j > 1 and such that (|lf|xf||Lv(xf,yj))f21 belongs to I
1

(i.e. (@] IfIx | rcx, )52, belongs to 19). We use [[f]],; to denote [If]x Il ,,)- Explic-

itly, for finite p and g, the condition that f € L2?(X, u) means

Il = i(/x

J=1 j

1

q q

lflpd}l> ;¢ < +00.

The spaces L27(X, u) are Banach spaces for 1 < p,q < co. The vector subspace

L2 (X, u) consisting of all f € Ly;?(X, u) such that f =0 on X; for all but finitely

many integers j is dense in L2?(X, u) if ¢ < +00. For 0 < ¢ < 1, we define a space

Ly5 (X, u) consisting of all measurable functions f :X — C such that
-1

sup; . [f]l,; < +oo. In the following theorem we work with the above abstract
Jz1 75 pi
framework.

+L=1. Ser

Theorem 4.1 Assume 1 <p < o0, 1 <g < o and set{l’+i=l,é 7

J

a)l’ = a)i_? . For every ¢ in L’;’,’q’ X, p) formula

Ap(f) = /X fdu= Y /X iy,

j=1
defines a continuous linear functional A, on LP(X, u). Conversely, for each
A € (L2U(X, w))* there exist a unique ¢ € L’;:,’ql (X, u) such that A = A . Moreover,

@

ol = ALl

Proof Fix ¢ in LZ)/ “7'(X, u). Then, for f in L7(X, y), using Holder’s inequality for
integrals, we have
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/fd’dﬂj
X

< Il il

and therefore

|A4f] < 2|w|p,,||¢||” lefIIpr lpll 0, *

< 2 117 o ]> ” < > ||¢||,€1ij?> "l e
J=1

Hence, A, € (L, (X, u))*, moreover || A4l < ||¢||;’,;

Conversely, let A € (I27(X, u))*. For any j > 1 we have a continuous linear func-

(0}

A
tional A; on L/(X;, dy;) given by L (X;,du;) < L},"(X, u)— C and therefore we have
q')j S Lp/(Xj, dyj) such that Ajg = /X gd)jdyj forg e Lp(Xj, dyj). Hence

N=f= [ s = [ 5o
X X
if f; = 0 outside X; and f; € LF(X;, du;). Moreover, ||A;|| = [|&;|l,, ; for j > 1. In fact,
the norm of A, is attamed there ex1st a function g; in L X; dy_,) such that|[g;]l,; = 1

and A;g; = [|A]l. We define ¢ : X — C by setting ¢(x) = ¢;(x) for x € X;. Next we
prove that ¢ belongs to the space LZ ,’q/ (X, u). Let us fix a positive integer N and set

N
f=Y 48 420
=1
Then Af = 2/ L 4ill¢ll, ; and

N 1/q
[ON7R—. q
lF1Ies = (Zl A,.wj) :
=

Now we introduce §; = Ajw].l/q, 1 <j < N.Since Af < ||A|||[f||,‘;’*(;‘, we obtain

N 1/q
< “A“(Z éf)
. j=1

P

N .
-
1
a)],/q

J=1

for all scalars &, ..., &y > 0. By duality, the vector (; a 1/q||<l> Il in R" has ¢'-

norm bounded by ||A|| and that implies

Pljl
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w9 '/q q
2 119, oo < AN

Letting N — oo, we obtain ||¢||p o < NIA]l. Since ¢ € Lp (X, u), functional A, is
continuous. By construction of ¢, continuous linear functlonals A and A, coincide
on a dense subspace Lp (X, u) of L' (X, ), therefore A = A O

Now we consider duality for 0 < ¢ < 1. Let A : IZ = C be a continuous linear
functional on lclu. We consider multiplication operators M 1 : [f — 17 and
w

M_i:l, > 2" which are in fact isometries. Then the composition
w 9

1

A=AoM _1 : 1~ Cis continuous. We have A = AoM 1 and Al = ¥°| ! 6;
w 9 w9 =

for some 0 € [®. Here we used a well known fact that the dual of 19 1s [* for all

0 < g < 1. We can represent A as A{ = Z CQ'),CU

], where ¢ = a)q 'g. Sequence ¢

is obviously in space ¥ since lpll e = supjs, a) |¢ | < co. Hence, (I1)y* = [>>4
and the pairing is given by

. ¢) = Z de’jwj-
j=1
Equivalently, (2)* ~ l;‘iq and the pairing is given by
Cw) = Gw
j=t

Now we can formulate duality theorem for1 <p < coand0 < g < 1.

+1=1. For every

Theorem 4.2 Assume 1<p<oo0,0<qg<1 and set i o

¢peL woo(X u) formula

Ay = / NTEDY / Fdu
X =10%

defines a continuous linear functional A, on LP(X, u). Conversely, for each

A € (LDU(X, p))* there exist a unique ¢ € Lf;:f’(X, ) such that A = A . Moreover,
lloll = 1Al

Combining Theorems 4.1 and 4.2, we obtain the dual space of weighted mixed
norm space for 0 < g < oo.

Theorem 4.3 Assume 1<p<oo, 0<g<oo and set

J

coj’ =w, *. j € N.Then, we have
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L’;/"”(X,u), 1<g<oo, ¢ =-"%

q
(LK, )" = { o !
Ly X,mw), 0<g<l

Now we obtain some consequences of the above theorems. For X = Q, XJ = Sj,
- . .
p=m and w; = 2467 the space I2(X, u) becomes the weighted mixed norm

space L27(Q), so we obtain the next consequence of Theorem 4.1.

Proposition 4.4 Forl <p,q < coand 0 < a < 1, we have (L1 (Q))* = L’l’/_”(’l/(ﬂ) and
the pairing is given by

f.9) = /Q fbam.

.1
Proof Since w; = 240,79 we have

!

- o' (L= i (a—(1— L i (L —(1—
wj/_=wi 0 970G _ oiqa=(=00) _ 5ig (5 =(1 a)).

Hence, the space L’u’; ,’q’ (X) becomes the space L’lj’_’?l’ () in this setting. O

Finally, in the following theorem, we obtain the dual space of B,?(Q), for a
certain range of parameters p, ¢ and a.

Theorem 4.5 Let]l <p<o0,1 <g<o0,0<a<land(@p—-1a> %’.prﬁq,we
have BY(Q)* ~ Bf/_"fl/ (Q) and duality is given by

f.9) = /Q fbam.

Also, if p > gand a > i + é, we have the same duality result.

Proof Theorem 3.2 asserts that assuming a certain conditions on parameters p, g and
a, the operator P, is a surjective continuous map from L;?(Q) to B;?(Q). Hence,

its adjoint P is an embedding of (B(Q))* into (Ly'(Q))* = LY ’_?1’ (). One easily
checks that the range of P: consists of harmonic functions and the result follows

from L4 (Q) n h(Q) = B) " (©). O

For 0 < g <1, we obtain the next duality result for mixed norm Lebesgue
spaces L29(Q).

Proposition 4.6 Let 1<p<oo,0<gx<1 and O<a<l. Then
LHN(Q)* = L?/_’w () and the pairing is given by

a

% Birkhauser
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f.4) = /Q fobdm.

Proof In the definition of the space L’q’:&,m(X, W), set X=Q, X; =S, y=m and

L1 -1 Co_ 1 co g1 cl g . .
w; = 2477 We obtain w = =) — Je=U=00) _ oG =10 Hence. in this set-

ting we get the space L"l’,_"::(Q) and the result is direct consequence of Theorem 4.2.
O

Combining Propositions 4.4 and 4.6, we obtain the next result.

Proposition 4.7 Assumel <p < 0,0<g<0,0< a < land seti + ]% = 1. Then,

we have

L1Q), 1<g<o, ¢ =L

q
W@y =4 w1
L@, 0<g< 1.
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