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Abstract
We prove the existence of a non-trivial hyperinvariant subspace for several sets of 
polynomially compact operators. The main results of the paper are: (i) a non-trivial 
norm closed algebra A ⊆ B(X) which consists of polynomially compact quasinil-
potent operators has a non-trivial hyperinvariant subspace; (ii) if there exists a non-
zero compact operator in the norm closure of the algebra generated by an operator 
band S , then S has a non-trivial hyperinvariant subspace.

Keywords  Polynomially compact operator · Hyperinvariant subspace

Mathematics Subject Classification  47A15 · 47B07 · 47L10 · 47B10

1  Introduction

Let X  be a complex Banach space. Denote by B(X) the algebra of all bounded 
linear operators on X  . A closed subspace M ⊆ X  is said to be invariant for an 
operator T ∈ B(X) if TM ⊆ M  . Let S ⊆ B(X) be a non-empty set of operators. 
Then, M  is an invariant subspace of S if it is invariant for every operator in S . 
If M  is invariant for every operator in S and for every operator in the commutant 
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S� = {T ∈ B(X); TS = ST for every S ∈ S} , then it is a hyperinvariant subspace of 
S . Of course, the trivial subspaces {0} and X  are (hyper)invariant for any set of 
operators. We are interested in the existence of non-trivial invariant and hyperin-
variant subspaces. The problem of existence of invariant and hyperinvariant sub-
spaces for a given operator or a non-empty set of operators is an extensively studied 
topic in operator theory. The problem is solved in the finite-dimensional setting by 
Burnside’s theorem (see [14, Theorem 1.2.2]). In the context of infinite-dimensional 
Banach spaces, the problem is open for reflexive Banach spaces, in particular, for 
the infinite-dimensional separable Hilbert space. However, there are some Banach 
spaces for which we know either that every operator has a non-trivial invariant sub-
space or that there exist operators without it. For instance, Argyros and Haydon [1] 
have proved the existence of an infinite-dimensional Banach spaces X  such that 
every operator in B(X) is of the form �I + K , where I is the identity operator and K 
is compact. It follows, by the celebrated von Neumann-Aronszajn-Smith theorem [2] 
and Lomonosov’s theorem [12], that any operator in B(X) has a non-trivial invari-
ant subspace and any non-scalar operator in B(X) has a non-trivial hyperinvariant 
subspace. On the other hand, several examples of Banach spaces (including �1 ) with 
operators without a non-trivial invariant subspace are known (see [3, 15] for the first 
examples and [6] for a general approach to Read’s type constructions of operators 
without non-trivial invariant closed subspaces).

With the von Neumann–Aronszajn–Smith theorem and Lomonosov’s theorem 
in mind, it is not a surprise that suitable compactness conditions imply existence 
of non-trivial invariant and hyperinvariant subspaces for different classes of opera-
tors and sets of operators. For instance, Shulman [16, Theorem 2] proved that an 
algebra of operators whose radical contains a non-zero compact operator has a non-
trivial hyperinvariant subspace. Turovskii [17, Corollary 5] extended this result to 
semigroups of quasinilpotent operators. Another type of results are those related to 
triangularizability of a set of operators. Recall that a non-empty set S ⊆ B(X) is 
triangularizable if there exists a chain C  which is maximal as a chain of subspaces 
of X  and every subspace in C  is invariant for all operators in S . Every commutative 
set of compact operators is triangularizable (see [14, Theorem 7.2.1]). Konvalinka 
[10, Corollary 2.6] has extended this result by showing that a commuting family of 
polynomially compact operators is triangularizable. Another result in this direction, 
obtained by the second author [9], says that for a norm closed subalgebra A ⊆ B(X) 
of power compact operators the following assertions are equivalent: (a) A is triangu-
larizable; (b) the Jacobson radical R(A) consists precisely of quasinilpotent opera-
tors in A ; (c) the quotient algebra A∕R(A) is commutative.

The aim of this paper is to consider the problem of existence of a non-trivial 
hyperinvariant subspace for sets of polynomially compact operators. For instance, 
we prove (Theorem 3.3) that a non-trivial norm closed algebra A ⊆ B(X) which 
consists of polynomially compact quasinilpotent operators has a non-trivial 
hyperinvariant subspace. Another result (Theorem 4.3) which we mention here is 
related to operator bands, that is, to semigroups of idempotent operators. It says 
that an operator band S has a non-trivial hyperinvariant subspace if there exists 
a non-zero compact operator in the norm closure of the algebra generated by S.
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2 � Preliminaries

2.1 � Notation

Let X  be a non-trivial complex Banach space. Since the results proved in this 
paper are either trivial or well known when X  is finite-dimensional, we always 
assume that dim(X) = ∞ . Let B(X) denote the Banach algebra of all bounded lin-
ear operators on X  and let K(X) ⊆ B(X) be the ideal of compact operators. The 
identity operator is denoted by I and an operator is said to be scalar if it is a scalar 
multiple of I. The norm closure of a set S ⊆ B(X) is denoted by S.

For two operators S1, S2 ∈ B(X) , we denote their commutator S1S2 − S2S1 by 
[S1, S2] . A non-empty set S ⊆ B(X) is commutative if any two operators from S 
commute, that is, [S1, S2] = 0 for all S1, S2 ∈ S . Similarly, S is essentially commu-
tative if [S1, S2] ∈ K(X) . For an arbitrary non-empty subset S ⊆ B(X) the com-
mutant of S is S� = {T ∈ B(X); [T , S] = 0, ∀ S ∈ S} . It is clear that S′ is a closed 
subalgebra of B(X) . If S is commutative, then S ⊆ S′.

2.2 � Invariant subspaces

A non-empty subset M ⊆ X  is a subspace if it is a closed linear manifold. It 
is said that a subspace M  of X  is invariant for the operator T if TM ⊆ M  . An 
invariant subspace M  is non-trivial if {0} ≠ M ≠ X  . A non-empty set S ⊆ B(X) 
is reducible if there exists a non-trivial subspace M ⊆ X  which is invariant for 
every T ∈ S . If there exists a chain C  which is maximal as a chain of subspaces 
of X  and every subspace in C  is invariant for all operators in S , then S is said to 
be triangularizable.

If a subspace M  is invariant for every operator T in a set S and in its commu-
tant S′ , then M  is said to be a hyperinvariant subspace for S.

Next theorem (see Assertion in the end of [12]) is one of the deepest results in 
the theory of invariant subspaces.

Theorem 2.1  (Lomonosov) Every non-scalar operator which commutes with a non-
zero compact operator has a non-trivial hyperinvariant subspace.

The proof of Theorem 2.1 relies on the following useful lemma.

Lemma 2.2  (Lomonosov’s Lemma) Let A ⊆ B(X) be an algebra. If A is not reduc-
ible, then for every non-zero compact operator K ∈ B(X) there exist an operator 
A ∈ A and a non-zero vector x ∈ X  such that AKx = x.
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2.3 � Spectral radius

The spectrum of an operator T ∈ B(X) is denoted by �(T) and the spectral radius 
of T is �(T) = max{|z|; z ∈ �(T)} . By the spectral radius formula (Gelfand’s for-
mula), �(T) = lim

n→∞
‖Tn‖

1

n . An operator T ∈ B(X) is quasinilpotent if �(T) = 0 . A 
compact quasinilpotent operator is called a Volterra operator.

Let F  be a non-empty set of operators in B(X) . For each n ∈ ℕ , let 
F(n) = {T1 ⋯Tn; T1,… , Tn ∈ F} . By ‖F‖ = sup{‖T‖; T ∈ F} we denote the joint 
norm of F  and by �(F) , we denote the joint spectral radius of F  defined as

A subalgebra A ⊆ B(X) is said to be finitely quasinilpotent if �(F) = 0 for every 
finite subset F  of A . By [16, Theorem 1], every subalgebra A ⊆ B(X) of Volterra 
operators is finitely quasinilpotent.

2.4 � Polynomially compact operators

An operator T ∈ B(X) is polynomially compact if there exists a non-zero com-
plex polynomial p such that p(T) is a compact operator. In particular, algebraic 
operators (nilpotents, idempotents, etc.) are polynomially compact. Hence, T is 
polynomially compact if and only if �(T) , where � ∶ B(X) → B(X)∕K(X) is the 
quotient projection, is an algebraic element in the Calkin algebra B(X)∕K(X) . 
If Tn is compact for some n ∈ ℕ , then T is said to be power compact. For a poly-
nomially compact operator T, there exists a unique monic polynomial mT of the 
smallest degree such that mT (T) is a compact operator. The polynomial mT is 
called the minimal polynomial of T. The following is the structure theorem for 
polynomially compact operators proved by Gilfeather [4, Theorem 1].

Theorem  2.3  Let T ∈ B(X) be a polynomially compact operator with minimal 
polynomial mT (z) = (z − �1)

n1 ⋯ (z − �k)
nk . Then there exist invariant subspaces 

X1,… ,Xk for T such that X = X1 ⊕⋯⊕Xk and T = T1 ⊕⋯⊕ Tk , where Ti is 
the restriction of T to Xi . The operators (Tj − �jIj)

nj are all compact.

The spectrum of T consists of countably many points with {�1,… , �k} as the only 
possible limit points and such that all but possibly {�1,… , �k} are eigenvalues with 
finite-dimensional generalized eigenspaces. Each point �j (j = 1,… , k) is either the 
limit of eigenvalues of T or else Xj is infinite-dimensional and Tj − �jIj is a quasinil-
potent operator on Xj.

Corollary 2.4  A quasinilpotent operator T ∈ B(X) is polynomially compact if and 
only if it is power compact.

�(F) = lim sup
n→∞

‖F(n)‖
1

n .
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Proof  It is clear that every power compact operator is polynomially compact. On 
the other hand, if T is a polynomially compact and quasinilpotent, then �(T) = {0} 
and therefore mT (z) = zn for a positive integer n, by Theorem 2.3, that is, T is power 
compact. 	�  ◻

2.5 � Algebras and ideals

For a non-empty set of operators S ⊆ B(X) , let A(S) be the subalgebra of B(X) 
generated by S and let A1(S) be the subalgebra of B(X) generated by S and 
I. By H(S) we denote the algebra which is generated by S and its commutant 
S′ . We will call it the hyperalgebra of S . If S is a semigroup, then an operator 
T ∈ B(X) is in H(S) if and only if there exist n ∈ ℕ and operators S1,… , Sn ∈ S 
and T0, T1,… , Tn ∈ S� such that

Here, we used the fact that I ∈ S� . Since S ⊆ H(S) and A(S) is the smallest alge-
bra which contains S , we have A(S) ⊆ H(S) . On the other hand, it is obvious that 
S� = A(S)� and therefore A(S)� ⊆ H(S) . We conclude that the hyperalgebra of S is 
generated by A(S) and A(S)� , that is, H(S) = H

(
A(S)

)
.

If M and N  are non-empty subsets of B(X) , then let 
M +N = {M + N; M ∈ M,N ∈ N} and let MN  be the set of all finite sums 
M1N1 +⋯ +MkNk , where Mi ∈ M and Ni ∈ N  for each i = 1,… , k . Hence, if A 
is a subalgebra of B(X) , then its hyperalgebra is H(A) = A� +AA� = A� +A�A.

If J  is an ideal in an algebra A ⊆ B(X) , then we write J ⊲A . We will denote 
by J

H
 the ideal in H(A) generated by J .

Lemma 2.5  Let A ⊆ B(X) be an algebra. If J ⊲A , then J
H
= A�J = JA�.

Proof  From equalities J
H
= J +H(A)J + JH(A) +H(A)JH(A) and 

H(A) = A� +A�A , we conclude

as A′ contains the identity operator. On the other hand, since we also have 
A′J ⊆ J

H
 , we obtain the equality J

H
= A�J  . 	�  ◻

An algebra A over an arbitrary field is said to be a nil-algebra if every ele-
ment of A is nilpotent. A nil-algebra A is of bounded nil-index if there exists a 
positive integer n such that xn = 0 for each x ∈ A . If there exists n ∈ ℕ such that 
a1 ⋯ an = 0 for all a1,… , an ∈ A , then A is said to be a nilpotent algebra. By the 
celebrated Nagata-Higman theorem (see [8, 13]), every nil-algebra of bounded 
nil-index is nilpotent.

T = T0 + S1T1 +⋯ + SnTn = T0 + T1S1 +⋯ + TnSn.

J
H
= J +H(A)J + JH(A) +H(A)JH(A)

= J +⇐A� +A�A)J + J⇐A� +A�A) +⇐A� +A�A)J⇐A� +A�A)

⊆ J +A�J ⊆ A�J
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Lemma 2.6  Let A ⊆ B(X) be an algebra. An ideal J ⊲A is nilpotent if and only if 
J

H
⊲H(A) is nilpotent. The nilpotency indices of J  and J

H
 are equal.

Proof  Since A′ and J  commute, an easy induction shows that for each n ∈ ℕ 
we have (A�J)n = A�Jn . Hence, if Jn = {0} , then (A�J)n = {0} , as well. If 
(A�J)n = {0} , then Jn ⊆ A�Jn = (A�J)n = {0} yields that Jn = {0} . 	�  ◻

If J  is a nil-ideal of bounded nil-index, then J  is nilpotent by the Nagata-Hig-
man theorem. This immediately implies that J

H
 is nilpotent. In particular, if A is a 

nilpotent algebra, then AA′ is a nilpotent ideal in the hyperalgebra H(A).

3 � Hyperinvariant subspaces of algebras of polynomially compact 
operators

The simplest polynomially compact operators which are not necessary compact are 
algebraic operators, in particular nilpotent operators. Hadwin et  al. [7, Corollary 
4.2] proved that a norm closed algebra of nilpotent operators on the separable infi-
nite-dimensional complex Hilbert space is triangularizable. The following proposi-
tion shows that a norm closed algebra of nilpotent operators on an arbitrary complex 
Banach space has a non-trivial hyperinvariant subspace.

Proposition 3.1  If a subalgebra {0} ≠ A ⊆ B(X) consists of nilpotent operators, 
then its hyperalgebra H(A) is reducible in either of the following cases. 

(a)	 The algebra A is nilpotent.
(b)	 The algebra A is norm closed.

Proof  (a) There exists n ∈ ℕ such that an arbitrary product of at least n operators 
from A is the zero operator. Let n0 be the smallest positive integer with this property. 
Since A ≠ {0} we have n0 > 1. There exist operators A1,… ,An0−1

∈ A such that 
A0 ∶= A1,… ,An0−1

≠ 0 . Note that A0T = TA0 = 0 for every operator T ∈ A , that 
is, A ⊆ (A0)

� , where (A0)
� is the commutant of A0 . It is clear that A� ⊆ (A0)

� . Hence, 
H(A) ⊆ (A0)

� . Since A0 ≠ 0 the kernel ker(A0) is a non-trivial subspace of X  and it 
is hyperinvariant for A0 . It follows that ker(A0) is a non-trivial hyperinvariant sub-
space for A , that is, H(A) is reducible.

(b) Since A is a closed subalgebra of B(X) , it is a Banach algebra. Therefore, A 
is a Banach algebra which is also a nil-algebra, so that by Grabiner’s theorem [5], A 
is a nilpotent algebra. Now, we apply (a). 	�  ◻

Hadwin et al. have constructed a semi-simple algebra of nilpotent operators on 
a separable Hilbert space such that for each pair (x, y) of vectors, where x ≠ 0 , 
there exists an operator A ∈ A such that Ax = y (see [7, Section 4]). Hence, Prop-
osition 3.1(b) (and consequently Theorem 3.3 below) does not hold, in general, 
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for non-closed algebras. However, as the following example shows there are sim-
ple special cases when a not necessarily closed algebra generated by a set of nil-
potents has a non-trivial hyperinvariant subspace.

Example  The idea for this example is from [7, Theorem 4.3] where quadratic nil-
potent operators are considered. Choose and fix � ∈ ℂ . Let S ⊆ B(X) be a non-
empty set of operators such that A2 = �A for every A ∈ S . If S is a linear manifold 
and contains a non-scalar operator, then A(S) has a non-trivial hyperinvariant sub-
space. To see this, choose a non-scalar operator A ∈ S . Then its kernel ker(A) is 
a non-trivial hyperinvariant subspace for A. Since A(S)� ⊆ (A)� , we see that ker(A) 
is invariant for every operator from A(S)� . Let B ∈ S be arbitrary. It follows from 
(A + B)2 = �(A + B) that AB = −BA . Hence, ABx = −BAx = 0 for every x ∈ ker(A) , 
that is, ker(A) is invariant for every B ∈ S . We conclude that ker(A) is invariant for 
every operator from the hyperalgebra H(S).

Proposition 3.2  Let A ⊆ B(X) be a non-trivial subalgebra. If there exists a non-
trivial nilpotent ideal J ⊲A , then A has a non-trivial hyperinvariant subspace.

Proof  Let J  be a non-trivial nilpotent ideal in A(S) . Then, by Lemma 2.6, the ideal 
J

H
 which is generated by J  in the hyperalgebra H(A) is nilpotent, as well. By Prop-

osition 3.1(a) the ideal J
H
 has a non-trivial hyperinvariant subspace, in particular, it 

is reducible. By [14, Lemma 7.4.6], H(A) is reducible, as well. 	�  ◻

The following two theorems show that an algebra A of polynomially compact 
operators has a non-trivial hyperinvariant subspace if A satisfies some additional 
condition. For instance, as we already mentioned, the key assumption in Theo-
rem 3.3 is that the involved algebra is norm closed.

Theorem 3.3  Let {0} ≠ A ⊆ B(X) be a norm closed algebra. If every operator in A 
is quasinilpotent and polynomially compact, then A has a non-trivial hyperinvariant 
subspace.

Proof  Note first that each operator in A is power compact, by Corollary 2.4. If each 
operator in A is nilpotent, then H(A) is reducible, by Proposition 3.1(b). Assume 
therefore that there exists an operator T ∈ A which is not nilpotent. Since T is 
power compact there exists m ∈ ℕ such that K = Tm ≠ 0 is compact. Let J  be the 
two-sided ideal in A1 generated by K. It is clear that K ∈ J ⊆ A . Hence, J  is an 
algebra of Volterra operators. By [16, Theorem 1], J  is finitely quasinilpotent. Let 
A = B0 +

∑n

i=1
AiBi , where Ai ∈ A and Bi ∈ A� , be an arbitrary operator in H(A) 

and let M = {K,A1K,… ,AnK} . Since M is a finite subset of J  it is a quasinil-
potent set, that is, �(M) = 0 . Let N = {B0,B1,… ,Bn} ⊆ A� . Since B0,B1,… ,Bn 
commute with operators from M we have �(AK) ≤ (n + 1)�(M)�(N) = 0 , by [16, 
Lemma 1]. This shows that the operator AK is quasinilpotent for each A ∈ H(A) . It 
follows, by Lemma 2.2, that the hyperalgebra H(A) is reducible.
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Theorem 3.4  Let S ⊆ B(X) be an essentially commutative set of polynomially com-
pact operators which contains at least one non-scalar operator. If S is triangulariz-
able, then A(S) has a non-trivial hyperinvariant subspace.

Proof  It is obvious that every subspace of X  which is invariant for S is invariant 
for A(S) , as well. Hence, A(S) is triangularizable. Since S consists of polynomi-
ally compact operators, the same holds for the algebra A(S) , by [10, Theorem 1.5]. 
Denote by �

(
A(S)

)
 and �(S) the image of A(S) and S , respectively, in the Calkin 

algebra B(X)∕K(X) . Since �
(
A(S)

)
 is the subalgebra of the Calkin algebra gener-

ated by the commutative set �(S) we see that �
(
A(S)

)
 is commutative, as well. It 

follows that A(S) is an essentially commutative subalgebra of B(X) . By [9, Theo-
rem 3.5], for an algebra of essentially commuting polynomially compact operators 
triangularizability of A(S) is equivalent to the fact that each commutator [S,  T], 
where S, T ∈ A(S) , is a quasinilpotent operator.

Suppose that there exist operators S, T ∈ A(S) such that the commutator 
K ∶= [S, T] is non-zero. Let J  be the ideal in A(S) generated by K. Of course, 
J  consists of compact operators and, by Ringrose’s Theorem (see [14, Theo-
rem 7.2.3]), every operator in J  is quasinilpotent. Hence, J  is an algebra of Vol-
terra operators. Let J

H
 be the ideal in the hyperalgebra H(S) generated by J  . It 

is clear that J
H
⊆ K(X) . We claim that J

H
 consists of quasinilpotent operators, 

as well. Choose an arbitrary operator A ∈ J
H
 . By Lemma 2.5, there exist opera-

tors J1,… , Jn ∈ J  and operators B1,… ,Bn ∈ A(S)� such that A =
∑n

i=1
JiBi . By 

[16, Lemma 1], �(A) ≤ n�({J1,… , Jn})�({B1,… ,Bn}) . Since each finite subset 
of an algebra of Volterra operators is quasinilpotent, by [16, Theorem 1], we have 
�({J1,… , Jn}) = 0 and consequently �(A) = 0 . We have proved that J

H
 is a non-

trivial ideal of Volterra operators. By [16, Theorem  2], the hyperalgebra H(S) is 
reducible.

Suppose now that A(S) is commutative. Hence, A(S) ⊆ A(S)� . Let T be any 
non-scalar polynomially compact operator in A(S) and let mT be its minimal poly-
nomial. Hence, mT (T) is a compact operator. If m(T) is a non-zero compact opera-
tor, then it has a non-trivial hyperinvariant subspace Y  , by Lomonosov’s Theorem. 
Since A(S) ⊆ A(S)� ⊆ (mT (T))

� subspace Y  is invariant for every operator in A(S) 
and A(S)� . Thus, H(S) is reducible. On the other hand, if mT (T) = 0 , then T is a 
non-scalar algebraic operator. Hence, for every � ∈ �(T) , the kernel ker(T − �I) 
is a non-trivial hyperinvariant subspace for T, and consequently, for A(S) as 
A(S) ⊆ A(S)� ⊆ (T)� . 	�  ◻

4 � Hyperinvariant subspaces for operator bands

An operator band on a Banach space X  is a (multiplicative) semigroup S ⊆ B(X) 
of idempotents, that is, S2 = S for each S ∈ S . The linear span of an operator band S 
is the algebra A(S) called a band algebra. We will denote by N(S) , the set of all nil-
potent operators in the band algebra A(S) . By [11, Theorem 5.2], N(S) is the linear 
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span of [S,S] , that is, N(S) = {
∑n

i=1
[Ai,Bi]; n ∈ ℕ, Ai,Bi ∈ A(S)} . By [11, Corol-

lary 5.5], the set N(S) of nilpotent operators in A(S) coincides with the Jacobson 
radical R

(
A(S)

)
 of A(S).

Proposition 4.1  Let {0} ≠ S ⊆ B(X) be an operator band. If N ⊆ N(S) is a non-
empty set, then the ideal J

H
 in the hyperalgebra H(S) generated by N  is a nil-ideal.

Proof  Denote by J  the ideal in A(S) generated by N  . We have already mentioned 
that R

(
A(S)

)
= N(S) . Since the radical is an ideal, we have that J ⊆ R

(
A(S)

)
 . 

Hence, J  is a nil-ideal in A(S).
It is clear that N  and ideal J  generate the same ideal J

H
 in the hyperalgebra 

H(S) . Let A ∈ J
H
 be arbitrary. By Lemma 2.5, there exist n ∈ ℕ , Ji ∈ J  and 

Bi ∈ A(S)� such that A =
∑n

i=1
JiBi . Let F  be a finite subset of S such that J1,… , Jn 

are contained in the algebra A(F) generated by F  . Note that such finite sets exist, 
because each Ji is of the form pi(S

(i)

1
,… , S

(i)

ki
) , where pi is a polynomial of ki non-

commuting variables and S(i)
1
,… , S

(i)

ki
 (i = 1,… , n) are idempotents from S . Denote 

by S0 the operator band generated by F  . Thus, A(F) ⊆ A(S0) . Since F  is finite, the 
operator band S0 is finite, as well, by the Green-Rees theorem (see [14, Theo-
rem  9.3.11]). Now, we apply [14, Theorem  9.3.15] which says that there exists a 
finite chain {0} = X0 ⊆ X1 ⊆ ⋯ ⊆ Xm = X  of invariant subspaces for S0 such 
that for each E ∈ S0 the operator induced by E on Xi∕Xi−1 is either zero or the iden-
tity operator. This implies that operator induced by Ji on Xj∕Xj−1 is a scalar multi-
ple of the identity operator. Since each Ji is nilpotent, every operator Ji induces the 
zero operator on Xj∕Xj−1 . Hence, for each i and each j, we have Ji(Xj) ⊆ Xj−1 . This 
implies that an arbitrary product of length at least m with letters from {J1,… , Jn} is 
zero. Now it is obvious that Am =

�∑n

i=1
JiBi

�m
= 0 as Ji and Bj commute. 	�  ◻

Proposition 4.2  Let {0} ≠ S ⊆ B(X) be an operator band. If K ∈ A(S) is a compact 
operator, then for each operator A ∈ H(S) the commutator [K, A] is in the Jacobson 
radical of H(S) , that is, [K,H(S)] ⊆ R

(
H(S)

)
.

Proof  Let K ∈ A(S) be a compact operator and let A ∈ H(S) be an arbitrary oper-
ator. To prove that the commutator [K,  A] is in R

(
H(S)

)
 , we need to show that 

[K, A]C is quasinilpotent for each C ∈ H(S) . Since [K, A]C is compact, the conti-
nuity of the spectral radius at compact operators yields that it suffices to prove that 
[K, A]C is quasinilpotent for all A,C ∈ H(S).

Let A,C ∈ H(S) be arbitrary. Since K belongs to the closure of A(S) , there is a 
sequence (Kn)n∈ℕ ⊆ A(S) which converges to K. We claim that for each n ∈ ℕ the 
commutator [Kn,A] is nilpotent and belongs to the ideal N(S)

H
 in H(S) generated 

by the Jacobson radical N(S) of the band algebra A(S) . Since A ∈ H(S) , there exist 
operators A1,… ,Ak ∈ A(S) and B0,… ,Bk ∈ A(S)� such that A = B0 +

∑k

i=1
AiBi . 

It follows that [Kn,A] =
∑k

i=1
[Kn,Ai]Bi. Since every commutator [Kn,Ai] is in N(S) 
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and N(S) ⊆ N(S)
H
 , it follows [Kn,Ai] ∈ N(S)

H
 . Since N(S)

H
 is an ideal in the hyper-

algebra H(S) we have [Kn,A]C ∈ N(S)
H
 . By Proposition 4.1, the operator [Kn,A]C 

is nilpotent. To finish the proof, we apply the fact that the spectral radius is continu-
ous at compact operators and that the compact operator [K, A]C is the limit of the 
sequence ([Kn,A]C)n∈ℕ of nilpotent operators. 	�  ◻

Theorem 4.3  Let S ⊆ B(X) be an operator band. If there exists a non-zero compact 
operator in A(S) , then S has a non-trivial hyperinvariant subspace.

Proof   Let K be a non-zero compact operator in A(S) . Then, by Proposition 4.2, 
[K, A] is a compact operator contained in the radical R

(
H(S)

)
 for each A ∈ H(S) . 

If [K,A] = 0 for every A ∈ H(S) , then H(S) ⊆ (K)� and, therefore, every non-triv-
ial hyperinvariant subspace of K is a non-trivial hyperinvariant subspace for A(S) . 
Hence, we may assume that for some A ∈ H(S) the commutator [K, A] is a non-zero 
operator. Let J  be the ideal in H(S) generated by [K, A]. Of course, each operator in 
J  is compact. Since, by Proposition 4.2, [K, A] is in the Jacobson ideal of R

(
H(S)

)
 

we have J = H(S)[K,A]H(S) ⊆ H(S)R
(
H(S)

)
H(S) ⊆ R

(
H(S)

)
 . It follows that 

operators in J  are quasinilpotent. Thus, J  is a Volterra ideal in H(S) . By [16, Theo-
rem 2], J  is reducible. Now we apply [14, Lemma 7.4.6] and conclude that H(S) is 
reducible. 	�  ◻

Corollary 4.4  Every essentially commuting non-scalar operator band S ⊆ B(X) has 
a non-trivial hyperinvariant subspace.

Proof  If S is commutative, then S ⊆ S′ . In this case the kernel of any non-scalar 
operator from S is invariant for each S ∈ S� . If S is not commutative, then there exist 
idempotents E,F ∈ S with a non-zero compact commutator EF − FE ∈ A(S) . The 
assertion follows, by Theorem 4.3. 	� ◻

Since every essentially commuting band of operators has an invariant subspace, 
an application of the Triangularization lemma (see [14, Lemma 7.1.11]) immedi-
ately implies the following result.

Corollary 4.5  Every essentially commuting band of operators on a Banach space is 
triangularizable.
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