ORIGINAL PAPER

Hyperinvariant subspaces for sets of polynomially compact operators

J. Bračič¹ · M. Kandić^{2,3}

Received: 23 May 2022 / Accepted: 10 September 2022 / Published online: 29 September 2022 © Tusi Mathematical Research Group (TMRG) 2022

Abstract

We prove the existence of a non-trivial hyperinvariant subspace for several sets of polynomially compact operators. The main results of the paper are: (i) a non-trivial norm closed algebra $\mathcal{A} \subseteq \mathcal{B}(\mathscr{X})$ which consists of polynomially compact quasinilpotent operators has a non-trivial hyperinvariant subspace; (ii) if there exists a non-zero compact operator in the norm closure of the algebra generated by an operator band \mathcal{S} , then \mathcal{S} has a non-trivial hyperinvariant subspace.

Keywords Polynomially compact operator · Hyperinvariant subspace

Mathematics Subject Classification 47A15 · 47B07 · 47L10 · 47B10

1 Introduction

Let \mathscr{X} be a complex Banach space. Denote by $\mathcal{B}(\mathscr{X})$ the algebra of all bounded linear operators on \mathscr{X} . A closed subspace $\mathscr{M} \subseteq \mathscr{X}$ is said to be invariant for an operator $T \in \mathcal{B}(\mathscr{X})$ if $T \mathscr{M} \subseteq \mathscr{M}$. Let $S \subseteq \mathcal{B}(\mathscr{X})$ be a non-empty set of operators. Then, \mathscr{M} is an invariant subspace of S if it is invariant for every operator in S. If \mathscr{M} is invariant for every operator in S and for every operator in the commutant

Communicated by Mostafa Mbekhta.

M. Kandić marko.kandic@fmf.uni-lj.si

> J. Bračič janko.bracic@ntf.uni-lj.si

- ¹ Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva Cesta 12, 1000 Ljubljana, SI, Slovenia
- ² Faculty of Mathematics and Physics, University of Ljubljana, Jadranska Ulica 19, 1000 Ljubljana, SI, Slovenia
- ³ Institute of Mathematics, Physics and Mechanics, Jadranska Ulica 19, 1000 Ljubljana, SI, Slovenia

 $S' = \{T \in \mathcal{B}(\mathcal{X}); TS = ST \text{ for every } S \in S\}$, then it is a hyperinvariant subspace of S. Of course, the trivial subspaces $\{0\}$ and $\mathscr X$ are (hyper)invariant for any set of operators. We are interested in the existence of non-trivial invariant and hyperinvariant subspaces. The problem of existence of invariant and hyperinvariant subspaces for a given operator or a non-empty set of operators is an extensively studied topic in operator theory. The problem is solved in the finite-dimensional setting by Burnside's theorem (see [14, Theorem 1.2.2]). In the context of infinite-dimensional Banach spaces, the problem is open for reflexive Banach spaces, in particular, for the infinite-dimensional separable Hilbert space. However, there are some Banach spaces for which we know either that every operator has a non-trivial invariant subspace or that there exist operators without it. For instance, Argyros and Haydon [1] have proved the existence of an infinite-dimensional Banach spaces $\mathscr X$ such that every operator in $\mathcal{B}(\mathcal{X})$ is of the form $\lambda I + K$, where I is the identity operator and K is compact. It follows, by the celebrated von Neumann-Aronszajn-Smith theorem [2] and Lomonosov's theorem [12], that any operator in $\mathcal{B}(\mathcal{X})$ has a non-trivial invariant subspace and any non-scalar operator in $\mathcal{B}(\mathcal{X})$ has a non-trivial hyperinvariant subspace. On the other hand, several examples of Banach spaces (including ℓ_1) with operators without a non-trivial invariant subspace are known (see [3, 15] for the first examples and [6] for a general approach to Read's type constructions of operators without non-trivial invariant closed subspaces).

With the von Neumann-Aronszajn-Smith theorem and Lomonosov's theorem in mind, it is not a surprise that suitable compactness conditions imply existence of non-trivial invariant and hyperinvariant subspaces for different classes of operators and sets of operators. For instance, Shulman [16, Theorem 2] proved that an algebra of operators whose radical contains a non-zero compact operator has a nontrivial hyperinvariant subspace. Turovskii [17, Corollary 5] extended this result to semigroups of quasinilpotent operators. Another type of results are those related to triangularizability of a set of operators. Recall that a non-empty set $S \subseteq \mathcal{B}(\mathcal{X})$ is triangularizable if there exists a chain \mathscr{C} which is maximal as a chain of subspaces of \mathscr{X} and every subspace in \mathscr{C} is invariant for all operators in \mathscr{S} . Every commutative set of compact operators is triangularizable (see [14, Theorem 7.2.1]). Konvalinka [10, Corollary 2.6] has extended this result by showing that a commuting family of polynomially compact operators is triangularizable. Another result in this direction, obtained by the second author [9], says that for a norm closed subalgebra $\mathcal{A} \subseteq \mathcal{B}(\mathscr{X})$ of power compact operators the following assertions are equivalent: (a) A is triangularizable; (b) the Jacobson radical $\mathcal{R}(\mathcal{A})$ consists precisely of quasinilpotent operators in \mathcal{A} ; (c) the quotient algebra $\mathcal{A}/\mathcal{R}(\mathcal{A})$ is commutative.

The aim of this paper is to consider the problem of existence of a non-trivial hyperinvariant subspace for sets of polynomially compact operators. For instance, we prove (Theorem 3.3) that a non-trivial norm closed algebra $\mathcal{A} \subseteq \mathcal{B}(\mathcal{X})$ which consists of polynomially compact quasinilpotent operators has a non-trivial hyperinvariant subspace. Another result (Theorem 4.3) which we mention here is related to operator bands, that is, to semigroups of idempotent operators. It says that an operator band S has a non-trivial hyperinvariant subspace if there exists a non-zero compact operator in the norm closure of the algebra generated by S.

2 Preliminaries

2.1 Notation

Let \mathscr{X} be a non-trivial complex Banach space. Since the results proved in this paper are either trivial or well known when \mathscr{X} is finite-dimensional, we always assume that $\dim(\mathscr{X}) = \infty$. Let $\mathcal{B}(\mathscr{X})$ denote the Banach algebra of all bounded linear operators on \mathscr{X} and let $\mathcal{K}(\mathscr{X}) \subseteq \mathcal{B}(\mathscr{X})$ be the ideal of compact operators. The identity operator is denoted by *I* and an operator is said to be scalar if it is a scalar multiple of *I*. The norm closure of a set $\mathcal{S} \subseteq \mathcal{B}(\mathscr{X})$ is denoted by $\overline{\mathcal{S}}$.

For two operators $S_1, S_2 \in \mathcal{B}(\mathcal{X})$, we denote their commutator $S_1S_2 - S_2S_1$ by $[S_1, S_2]$. A non-empty set $S \subseteq \mathcal{B}(\mathcal{X})$ is commutative if any two operators from S commute, that is, $[S_1, S_2] = 0$ for all $S_1, S_2 \in S$. Similarly, S is essentially commutative if $[S_1, S_2] \in \mathcal{K}(\mathcal{X})$. For an arbitrary non-empty subset $S \subseteq \mathcal{B}(\mathcal{X})$ the commutant of S is $S' = \{T \in \mathcal{B}(\mathcal{X}); [T, S] = 0, \forall S \in S\}$. It is clear that S' is a closed subalgebra of $\mathcal{B}(\mathcal{X})$. If S is commutative, then $S \subseteq S'$.

2.2 Invariant subspaces

A non-empty subset $\mathcal{M} \subseteq \mathscr{X}$ is a subspace if it is a closed linear manifold. It is said that a subspace \mathscr{M} of \mathscr{X} is invariant for the operator T if $T\mathcal{M} \subseteq \mathscr{M}$. An invariant subspace \mathscr{M} is non-trivial if $\{0\} \neq \mathcal{M} \neq \mathscr{X}$. A non-empty set $S \subseteq \mathcal{B}(\mathscr{X})$ is reducible if there exists a non-trivial subspace $\mathscr{M} \subseteq \mathscr{X}$ which is invariant for every $T \in S$. If there exists a chain \mathscr{C} which is maximal as a chain of subspaces of \mathscr{X} and every subspace in \mathscr{C} is invariant for all operators in S, then S is said to be triangularizable.

If a subspace \mathcal{M} is invariant for every operator T in a set \mathcal{S} and in its commutant \mathcal{S}' , then \mathcal{M} is said to be a hyperinvariant subspace for \mathcal{S} .

Next theorem (see Assertion in the end of [12]) is one of the deepest results in the theory of invariant subspaces.

Theorem 2.1 (Lomonosov) *Every non-scalar operator which commutes with a nonzero compact operator has a non-trivial hyperinvariant subspace.*

The proof of Theorem 2.1 relies on the following useful lemma.

Lemma 2.2 (Lomonosov's Lemma) Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{X})$ be an algebra. If \mathcal{A} is not reducible, then for every non-zero compact operator $K \in \mathcal{B}(\mathcal{X})$ there exist an operator $A \in \mathcal{A}$ and a non-zero vector $x \in \mathcal{X}$ such that AKx = x.

2.3 Spectral radius

The spectrum of an operator $T \in \mathcal{B}(\mathcal{X})$ is denoted by $\sigma(T)$ and the spectral radius of *T* is $\rho(T) = \max\{|z|; z \in \sigma(T)\}$. By the spectral radius formula (Gelfand's formula), $\rho(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}}$. An operator $T \in \mathcal{B}(\mathcal{X})$ is quasinilpotent if $\rho(T) = 0$. A compact quasinilpotent operator is called a Volterra operator.

Let \mathcal{F} be a non-empty set of operators in $\mathcal{B}(\mathscr{X})$. For each $n \in \mathbb{N}$, let $\mathcal{F}^{(n)} = \{T_1 \cdots T_n; T_1, \dots, T_n \in \mathcal{F}\}$. By $||\mathcal{F}|| = \sup\{||T||; T \in \mathcal{F}\}$ we denote the joint norm of \mathcal{F} and by $\rho(\mathcal{F})$, we denote the joint spectral radius of \mathcal{F} defined as

$$\rho(\mathcal{F}) = \limsup_{n \to \infty} \|\mathcal{F}^{(n)}\|^{\frac{1}{n}}.$$

A subalgebra $\mathcal{A} \subseteq \mathcal{B}(\mathscr{X})$ is said to be finitely quasinilpotent if $\rho(\mathcal{F}) = 0$ for every finite subset \mathcal{F} of \mathcal{A} . By [16, Theorem 1], every subalgebra $\mathcal{A} \subseteq \mathcal{B}(\mathscr{X})$ of Volterra operators is finitely quasinilpotent.

2.4 Polynomially compact operators

An operator $T \in \mathcal{B}(\mathcal{X})$ is polynomially compact if there exists a non-zero complex polynomial p such that p(T) is a compact operator. In particular, algebraic operators (nilpotents, idempotents, etc.) are polynomially compact. Hence, T is polynomially compact if and only if $\pi(T)$, where $\pi : \mathcal{B}(\mathcal{X}) \to \mathcal{B}(\mathcal{X})/\mathcal{K}(\mathcal{X})$ is the quotient projection, is an algebraic element in the Calkin algebra $\mathcal{B}(\mathcal{X})/\mathcal{K}(\mathcal{X})$. If T^n is compact for some $n \in \mathbb{N}$, then T is said to be power compact. For a polynomially compact operator T, there exists a unique monic polynomial m_T of the smallest degree such that $m_T(T)$ is a compact operator. The polynomial m_T is called the minimal polynomial of T. The following is the structure theorem for polynomially compact operators proved by Gilfeather [4, Theorem 1].

Theorem 2.3 Let $T \in \mathcal{B}(\mathcal{X})$ be a polynomially compact operator with minimal polynomial $m_T(z) = (z - \lambda_1)^{n_1} \cdots (z - \lambda_k)^{n_k}$. Then there exist invariant subspaces $\mathcal{X}_1, \ldots, \mathcal{X}_k$ for T such that $\mathcal{X} = \mathcal{X}_1 \oplus \cdots \oplus \mathcal{X}_k$ and $T = T_1 \oplus \cdots \oplus T_k$, where T_i is the restriction of T to \mathcal{X}_i . The operators $(T_i - \lambda_i I_i)^{n_j}$ are all compact.

The spectrum of T consists of countably many points with $\{\lambda_1, \ldots, \lambda_k\}$ as the only possible limit points and such that all but possibly $\{\lambda_1, \ldots, \lambda_k\}$ are eigenvalues with finite-dimensional generalized eigenspaces. Each point λ_j $(j = 1, \ldots, k)$ is either the limit of eigenvalues of T or else \mathscr{X}_j is infinite-dimensional and $T_j - \lambda_j I_j$ is a quasinilpotent operator on \mathscr{X}_j .

Corollary 2.4 A quasinilpotent operator $T \in \mathcal{B}(\mathcal{X})$ is polynomially compact if and only if it is power compact.

Proof It is clear that every power compact operator is polynomially compact. On the other hand, if *T* is a polynomially compact and quasinilpotent, then $\sigma(T) = \{0\}$ and therefore $m_T(z) = z^n$ for a positive integer *n*, by Theorem 2.3, that is, *T* is power compact.

2.5 Algebras and ideals

For a non-empty set of operators $S \subseteq \mathcal{B}(\mathcal{X})$, let $\mathcal{A}(S)$ be the subalgebra of $\mathcal{B}(\mathcal{X})$ generated by S and let $\mathcal{A}_1(S)$ be the subalgebra of $\mathcal{B}(\mathcal{X})$ generated by S and I. By $\mathcal{H}(S)$ we denote the algebra which is generated by S and its commutant S'. We will call it the *hyperalgebra* of S. If S is a semigroup, then an operator $T \in \mathcal{B}(\mathcal{X})$ is in $\mathcal{H}(S)$ if and only if there exist $n \in \mathbb{N}$ and operators $S_1, \ldots, S_n \in S$ and $T_0, T_1, \ldots, T_n \in S'$ such that

$$T = T_0 + S_1 T_1 + \dots + S_n T_n = T_0 + T_1 S_1 + \dots + T_n S_n.$$

Here, we used the fact that $I \in S'$. Since $S \subseteq \mathcal{H}(S)$ and $\mathcal{A}(S)$ is the smallest algebra which contains S, we have $\mathcal{A}(S) \subseteq \mathcal{H}(S)$. On the other hand, it is obvious that $S' = \mathcal{A}(S)'$ and therefore $\mathcal{A}(S)' \subseteq \mathcal{H}(S)$. We conclude that the hyperalgebra of S is generated by $\mathcal{A}(S)$ and $\mathcal{A}(S)'$, that is, $\mathcal{H}(S) = \mathcal{H}(\mathcal{A}(S))$.

If \mathcal{M} and \mathcal{N} are non-empty subsets of $\mathcal{B}(\mathscr{X})$, then let $\mathcal{M} + \mathcal{N} = \{M + N; M \in \mathcal{M}, N \in \mathcal{N}\}$ and let $\mathcal{M}\mathcal{N}$ be the set of all finite sums $M_1N_1 + \cdots + M_kN_k$, where $M_i \in \mathcal{M}$ and $N_i \in \mathcal{N}$ for each $i = 1, \ldots, k$. Hence, if \mathcal{A} is a subalgebra of $\mathcal{B}(\mathscr{X})$, then its hyperalgebra is $\mathcal{H}(\mathcal{A}) = \mathcal{A}' + \mathcal{A}\mathcal{A}' = \mathcal{A}' + \mathcal{A}'\mathcal{A}$.

If \mathcal{J} is an ideal in an algebra $\mathcal{A} \subseteq \mathcal{B}(\mathcal{X})$, then we write $\mathcal{J} \triangleleft \mathcal{A}$. We will denote by $\mathcal{J}_{\mathcal{J}}$ the ideal in $\mathcal{H}(\mathcal{A})$ generated by \mathcal{J} .

Lemma 2.5 Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{X})$ be an algebra. If $\mathcal{J} \triangleleft \mathcal{A}$, then $\mathcal{J}_{\mathcal{H}} = \mathcal{A}' \mathcal{J} = \mathcal{J} \mathcal{A}'$.

Proof From equalities $\mathcal{J}_{\mathcal{H}} = \mathcal{J} + \mathcal{H}(\mathcal{A})\mathcal{J} + \mathcal{J}\mathcal{H}(\mathcal{A}) + \mathcal{H}(\mathcal{A})\mathcal{J}\mathcal{H}(\mathcal{A})$ and $\mathcal{H}(\mathcal{A}) = \mathcal{A}' + \mathcal{A}'\mathcal{A}$, we conclude

$$\begin{split} \mathcal{J}_{_{\mathcal{H}}} &= \mathcal{J} + \mathcal{H}(\mathcal{A})\mathcal{J} + \mathcal{J}\mathcal{H}(\mathcal{A}) + \mathcal{H}(\mathcal{A})\mathcal{J}\mathcal{H}(\mathcal{A}) \\ &= \mathcal{J} + \Leftarrow \mathcal{A}' + \mathcal{A}'\mathcal{A}\mathcal{J} + \mathcal{J} \Leftarrow \mathcal{A}' + \mathcal{A}'\mathcal{A} + \Leftarrow \mathcal{A}' + \mathcal{A}'\mathcal{A}\mathcal{J} \\ &\subseteq \mathcal{J} + \mathcal{A}'\mathcal{J} \subseteq \mathcal{A}'\mathcal{J} \end{split}$$

as \mathcal{A}' contains the identity operator. On the other hand, since we also have $\mathcal{A}'\mathcal{J}\subseteq \mathcal{J}_{\mathcal{H}}$, we obtain the equality $\mathcal{J}_{\mathcal{H}}=\mathcal{A}'\mathcal{J}$.

An algebra \mathcal{A} over an arbitrary field is said to be a nil-algebra if every element of \mathcal{A} is nilpotent. A nil-algebra \mathcal{A} is of bounded nil-index if there exists a positive integer *n* such that $x^n = 0$ for each $x \in \mathcal{A}$. If there exists $n \in \mathbb{N}$ such that $a_1 \cdots a_n = 0$ for all $a_1, \ldots, a_n \in \mathcal{A}$, then \mathcal{A} is said to be a nilpotent algebra. By the celebrated Nagata-Higman theorem (see [8, 13]), every nil-algebra of bounded nil-index is nilpotent. **Lemma 2.6** Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{X})$ be an algebra. An ideal $\mathcal{J} \triangleleft \mathcal{A}$ is nilpotent if and only if $\mathcal{J}_{\mathcal{H}} \triangleleft \mathcal{H}(\mathcal{A})$ is nilpotent. The nilpotency indices of \mathcal{J} and $\mathcal{J}_{\mathcal{H}}$ are equal.

Proof Since \mathcal{A}' and \mathcal{J} commute, an easy induction shows that for each $n \in \mathbb{N}$ we have $(\mathcal{A}'\mathcal{J})^n = \mathcal{A}'\mathcal{J}^n$. Hence, if $\mathcal{J}^n = \{0\}$, then $(\mathcal{A}'\mathcal{J})^n = \{0\}$, as well. If $(\mathcal{A}'\mathcal{J})^n = \{0\}$, then $\mathcal{J}^n \subseteq \mathcal{A}'\mathcal{J}^n = (\mathcal{A}'\mathcal{J})^n = \{0\}$ yields that $\mathcal{J}^n = \{0\}$.

If \mathcal{J} is a nil-ideal of bounded nil-index, then \mathcal{J} is nilpotent by the Nagata-Higman theorem. This immediately implies that $\mathcal{J}_{\mathcal{H}}$ is nilpotent. In particular, if \mathcal{A} is a nilpotent algebra, then $\mathcal{A}\mathcal{A}'$ is a nilpotent ideal in the hyperalgebra $\mathcal{H}(\mathcal{A})$.

3 Hyperinvariant subspaces of algebras of polynomially compact operators

The simplest polynomially compact operators which are not necessary compact are algebraic operators, in particular nilpotent operators. Hadwin et al. [7, Corollary 4.2] proved that a norm closed algebra of nilpotent operators on the separable infinite-dimensional complex Hilbert space is triangularizable. The following proposition shows that a norm closed algebra of nilpotent operators on an arbitrary complex Banach space has a non-trivial hyperinvariant subspace.

Proposition 3.1 If a subalgebra $\{0\} \neq A \subseteq \mathcal{B}(\mathcal{X})$ consists of nilpotent operators, then its hyperalgebra $\mathcal{H}(\mathcal{A})$ is reducible in either of the following cases.

- (a) The algebra \mathcal{A} is nilpotent.
- (b) The algebra \mathcal{A} is norm closed.

Proof (a) There exists $n \in \mathbb{N}$ such that an arbitrary product of at least *n* operators from \mathcal{A} is the zero operator. Let n_0 be the smallest positive integer with this property. Since $\mathcal{A} \neq \{0\}$ we have $n_0 > 1$. There exist operators $A_1, \ldots, A_{n_0-1} \in \mathcal{A}$ such that $A_0 := A_1, \ldots, A_{n_0-1} \neq 0$. Note that $A_0T = TA_0 = 0$ for every operator $T \in \mathcal{A}$, that is, $\mathcal{A} \subseteq (A_0)'$, where $(A_0)'$ is the commutant of A_0 . It is clear that $\mathcal{A}' \subseteq (A_0)'$. Hence, $\mathcal{H}(\mathcal{A}) \subseteq (A_0)'$. Since $A_0 \neq 0$ the kernel ker (A_0) is a non-trivial subspace of \mathscr{X} and it is hyperinvariant for A_0 . It follows that ker (A_0) is a non-trivial hyperinvariant subspace for \mathcal{A} , that is, $\mathcal{H}(\mathcal{A})$ is reducible.

(b) Since \mathcal{A} is a closed subalgebra of $\mathcal{B}(\mathscr{X})$, it is a Banach algebra. Therefore, \mathcal{A} is a Banach algebra which is also a nil-algebra, so that by Grabiner's theorem [5], \mathcal{A} is a nilpotent algebra. Now, we apply (a).

Hadwin et al. have constructed a semi-simple algebra of nilpotent operators on a separable Hilbert space such that for each pair (x, y) of vectors, where $x \neq 0$, there exists an operator $A \in A$ such that Ax = y (see [7, Section 4]). Hence, Proposition 3.1(b) (and consequently Theorem 3.3 below) does not hold, in general, for non-closed algebras. However, as the following example shows there are simple special cases when a not necessarily closed algebra generated by a set of nilpotents has a non-trivial hyperinvariant subspace.

Example The idea for this example is from [7, Theorem 4.3] where quadratic nilpotent operators are considered. Choose and fix $\lambda \in \mathbb{C}$. Let $S \subseteq \mathcal{B}(\mathcal{X})$ be a nonempty set of operators such that $A^2 = \lambda A$ for every $A \in S$. If S is a linear manifold and contains a non-scalar operator, then $\mathcal{A}(S)$ has a non-trivial hyperinvariant subspace. To see this, choose a non-scalar operator $A \in S$. Then its kernel ker(A) is a non-trivial hyperinvariant subspace for A. Since $\mathcal{A}(S)' \subseteq (A)'$, we see that ker(A) is invariant for every operator from $\mathcal{A}(S)'$. Let $B \in S$ be arbitrary. It follows from $(A + B)^2 = \lambda(A + B)$ that AB = -BA. Hence, ABx = -BAx = 0 for every $x \in \text{ker}(A)$, that is, ker(A) is invariant for every $B \in S$. We conclude that ker(A) is invariant for every operator $\mathcal{H}(S)$.

Proposition 3.2 Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{X})$ be a non-trivial subalgebra. If there exists a non-trivial nilpotent ideal $\mathcal{J} \triangleleft \mathcal{A}$, then \mathcal{A} has a non-trivial hyperinvariant subspace.

Proof Let \mathcal{J} be a non-trivial nilpotent ideal in $\mathcal{A}(\mathcal{S})$. Then, by Lemma 2.6, the ideal $\mathcal{J}_{\mathcal{H}}$ which is generated by \mathcal{J} in the hyperalgebra $\mathcal{H}(\mathcal{A})$ is nilpotent, as well. By Proposition 3.1(a) the ideal $\mathcal{J}_{\mathcal{H}}$ has a non-trivial hyperinvariant subspace, in particular, it is reducible. By [14, Lemma 7.4.6], $\mathcal{H}(\mathcal{A})$ is reducible, as well.

The following two theorems show that an algebra \mathcal{A} of polynomially compact operators has a non-trivial hyperinvariant subspace if \mathcal{A} satisfies some additional condition. For instance, as we already mentioned, the key assumption in Theorem 3.3 is that the involved algebra is norm closed.

Theorem 3.3 Let $\{0\} \neq A \subseteq \mathcal{B}(\mathcal{X})$ be a norm closed algebra. If every operator in A is quasinilpotent and polynomially compact, then A has a non-trivial hyperinvariant subspace.

Proof Note first that each operator in \mathcal{A} is power compact, by Corollary 2.4. If each operator in \mathcal{A} is nilpotent, then $\mathcal{H}(\mathcal{A})$ is reducible, by Proposition 3.1(b). Assume therefore that there exists an operator $T \in \mathcal{A}$ which is not nilpotent. Since T is power compact there exists $m \in \mathbb{N}$ such that $K = T^m \neq 0$ is compact. Let \mathcal{J} be the two-sided ideal in \mathcal{A}_1 generated by K. It is clear that $K \in \mathcal{J} \subseteq \mathcal{A}$. Hence, \mathcal{J} is an algebra of Volterra operators. By [16, Theorem 1], \mathcal{J} is finitely quasinilpotent. Let $A = B_0 + \sum_{i=1}^n A_i B_i$, where $A_i \in \mathcal{A}$ and $B_i \in \mathcal{A}'$, be an arbitrary operator in $\mathcal{H}(\mathcal{A})$ and let $\mathcal{M} = \{K, A_1K, \dots, A_nK\}$. Since \mathcal{M} is a finite subset of \mathcal{J} it is a quasinilpotent set, that is, $\rho(\mathcal{M}) = 0$. Let $\mathcal{N} = \{B_0, B_1, \dots, B_n\} \subseteq \mathcal{A}'$. Since B_0, B_1, \dots, B_n commute with operators from \mathcal{M} we have $\rho(AK) \leq (n+1)\rho(\mathcal{M})\rho(\mathcal{N}) = 0$, by [16, Lemma 1]. This shows that the operator AK is quasinilpotent for each $A \in \mathcal{H}(\mathcal{A})$. It follows, by Lemma 2.2, that the hyperalgebra $\mathcal{H}(\mathcal{A})$ is reducible.

Theorem 3.4 Let $S \subseteq \mathcal{B}(\mathcal{X})$ be an essentially commutative set of polynomially compact operators which contains at least one non-scalar operator. If S is triangularizable, then $\mathcal{A}(S)$ has a non-trivial hyperinvariant subspace.

Proof It is obvious that every subspace of \mathscr{X} which is invariant for S is invariant for $\mathcal{A}(S)$, as well. Hence, $\mathcal{A}(S)$ is triangularizable. Since S consists of polynomially compact operators, the same holds for the algebra $\mathcal{A}(S)$, by [10, Theorem 1.5]. Denote by $\pi(\mathcal{A}(S))$ and $\pi(S)$ the image of $\mathcal{A}(S)$ and S, respectively, in the Calkin algebra $\mathcal{B}(\mathscr{X})/\mathcal{K}(\mathscr{X})$. Since $\pi(\mathcal{A}(S))$ is the subalgebra of the Calkin algebra generated by the commutative set $\pi(S)$ we see that $\pi(\mathcal{A}(S))$ is commutative, as well. It follows that $\mathcal{A}(S)$ is an essentially commutative subalgebra of $\mathcal{B}(\mathscr{X})$. By [9, Theorem 3.5], for an algebra of essentially commuting polynomially compact operators triangularizability of $\mathcal{A}(S)$ is equivalent to the fact that each commutator [S, T], where $S, T \in \mathcal{A}(S)$, is a quasinilpotent operator.

Suppose that there exist operators $S, T \in \mathcal{A}(S)$ such that the commutator K := [S, T] is non-zero. Let \mathcal{J} be the ideal in $\mathcal{A}(S)$ generated by K. Of course, \mathcal{J} consists of compact operators and, by Ringrose's Theorem (see [14, Theorem 7.2.3]), every operator in \mathcal{J} is quasinilpotent. Hence, \mathcal{J} is an algebra of Volterra operators. Let \mathcal{J}_n be the ideal in the hyperalgebra $\mathcal{H}(S)$ generated by \mathcal{J} . It is clear that $\mathcal{J}_n \subseteq \mathcal{K}(\mathcal{X})$. We claim that \mathcal{J}_n consists of quasinilpotent operators, as well. Choose an arbitrary operator $A \in \mathcal{J}_n$. By Lemma 2.5, there exist operators $J_1, \ldots, J_n \in \mathcal{J}$ and operators $B_1, \ldots, B_n \in \mathcal{A}(S)'$ such that $A = \sum_{i=1}^n J_i B_i$. By [16, Lemma 1], $\rho(A) \leq n\rho(\{J_1, \ldots, J_n\})\rho(\{B_1, \ldots, B_n\})$. Since each finite subset of an algebra of Volterra operators is quasinilpotent, by [16, Theorem 1], we have $\rho(\{J_1, \ldots, J_n\}) = 0$ and consequently $\rho(A) = 0$. We have proved that \mathcal{J}_n is a nontrivial ideal of Volterra operators. By [16, Theorem 2], the hyperalgebra $\mathcal{H}(S)$ is reducible.

Suppose now that $\mathcal{A}(S)$ is commutative. Hence, $\mathcal{A}(S) \subseteq \mathcal{A}(S)'$. Let *T* be any non-scalar polynomially compact operator in $\mathcal{A}(S)$ and let m_T be its minimal polynomial. Hence, $m_T(T)$ is a compact operator. If m(T) is a non-zero compact operator, then it has a non-trivial hyperinvariant subspace \mathscr{Y} , by Lomonosov's Theorem. Since $\mathcal{A}(S) \subseteq \mathcal{A}(S)' \subseteq (m_T(T))'$ subspace \mathscr{Y} is invariant for every operator in $\mathcal{A}(S)$ and $\mathcal{A}(S)'$. Thus, $\mathcal{H}(S)$ is reducible. On the other hand, if $m_T(T) = 0$, then *T* is a non-scalar algebraic operator. Hence, for every $\lambda \in \sigma(T)$, the kernel ker $(T - \lambda I)$ is a non-trivial hyperinvariant subspace for *T*, and consequently, for $\mathcal{A}(S)$ as $\mathcal{A}(S) \subseteq \mathcal{A}(S)' \subseteq (T)'$.

4 Hyperinvariant subspaces for operator bands

An operator band on a Banach space \mathscr{X} is a (multiplicative) semigroup $\mathcal{S} \subseteq \mathcal{B}(\mathscr{X})$ of idempotents, that is, $S^2 = S$ for each $S \in S$. The linear span of an operator band S is the algebra $\mathcal{A}(S)$ called a band algebra. We will denote by $\mathcal{N}(S)$, the set of all nilpotent operators in the band algebra $\mathcal{A}(S)$. By [11, Theorem 5.2], $\mathcal{N}(S)$ is the linear

span of [S, S], that is, $\mathcal{N}(S) = \{\sum_{i=1}^{n} [A_i, B_i]; n \in \mathbb{N}, A_i, B_i \in \mathcal{A}(S)\}$. By [11, Corollary 5.5], the set $\mathcal{N}(S)$ of nilpotent operators in $\mathcal{A}(S)$ coincides with the Jacobson radical $\mathcal{R}(\mathcal{A}(S))$ of $\mathcal{A}(S)$.

Proposition 4.1 Let $\{0\} \neq S \subseteq \mathcal{B}(\mathcal{X})$ be an operator band. If $\mathcal{N} \subseteq \mathcal{N}(S)$ is a nonempty set, then the ideal $\mathcal{J}_{\mathcal{A}}$ in the hyperalgebra $\mathcal{H}(S)$ generated by \mathcal{N} is a nil-ideal.

Proof Denote by \mathcal{J} the ideal in $\mathcal{A}(\mathcal{S})$ generated by \mathcal{N} . We have already mentioned that $\mathcal{R}(\mathcal{A}(\mathcal{S})) = \mathcal{N}(\mathcal{S})$. Since the radical is an ideal, we have that $\mathcal{J} \subseteq \mathcal{R}(\mathcal{A}(\mathcal{S}))$. Hence, \mathcal{J} is a nil-ideal in $\mathcal{A}(\mathcal{S})$.

It is clear that \mathcal{N} and ideal \mathcal{J} generate the same ideal \mathcal{J}_{n} in the hyperalgebra $\mathcal{H}(S)$. Let $A \in \mathcal{J}_{n}$ be arbitrary. By Lemma 2.5, there exist $n \in \mathbb{N}$, $J_{i} \in \mathcal{J}$ and $B_{i} \in \mathcal{A}(S)'$ such that $A = \sum_{i=1}^{n} J_{i}B_{i}$. Let \mathcal{F} be a finite subset of S such that J_{1}, \ldots, J_{n} are contained in the algebra $\mathcal{A}(\mathcal{F})$ generated by \mathcal{F} . Note that such finite sets exist, because each J_{i} is of the form $p_{i}(S_{1}^{(i)}, \ldots, S_{k_{i}}^{(i)})$, where p_{i} is a polynomial of k_{i} noncommuting variables and $S_{1}^{(i)}, \ldots, S_{k_{i}}^{(i)}$ ($i = 1, \ldots, n$) are idempotents from S. Denote by \mathcal{S}_{0} the operator band generated by \mathcal{F} . Thus, $\mathcal{A}(\mathcal{F}) \subseteq \mathcal{A}(S_{0})$. Since \mathcal{F} is finite, the operator band generated by \mathcal{F} . Thus, $\mathcal{A}(\mathcal{F}) \subseteq \mathcal{A}(S_{0})$. Since \mathcal{F} is finite, the operator band \mathcal{S}_{0} is finite, as well, by the Green-Rees theorem (see [14, Theorem 9.3.11]). Now, we apply [14, Theorem 9.3.15] which says that there exists a finite chain $\{0\} = \mathcal{X}_{0} \subseteq \mathcal{X}_{1} \subseteq \cdots \subseteq \mathcal{X}_{m} = \mathcal{X}$ of invariant subspaces for \mathcal{S}_{0} such that for each $E \in \mathcal{S}_{0}$ the operator induced by E on $\mathcal{X}_{i}/\mathcal{X}_{i-1}$ is either zero or the identity operator. Since each J_{i} is nilpotent, every operator J_{i} induces the zero operator on $\mathcal{X}_{j}/\mathcal{X}_{j-1}$. Hence, for each i and each j, we have $J_{i}(\mathcal{X}_{j}) \subseteq \mathcal{X}_{j-1}$. This implies that an arbitrary product of length at least m with letters from $\{J_{1}, \ldots, J_{n}\}$ is zero. Now it is obvious that $A^{m} = \left(\sum_{i=1}^{n} J_{i}B_{i}\right)^{m} = 0$ as J_{i} and B_{j} commute.

Proposition 4.2 Let $\{0\} \neq S \subseteq \mathcal{B}(\mathcal{X})$ be an operator band. If $K \in \overline{\mathcal{A}(S)}$ is a compact operator, then for each operator $A \in \overline{\mathcal{H}(S)}$ the commutator [K, A] is in the Jacobson radical of $\overline{\mathcal{H}(S)}$, that is, $[K, \overline{\mathcal{H}(S)}] \subseteq \mathcal{R}(\overline{\mathcal{H}(S)})$.

Proof Let $K \in \overline{\mathcal{A}(S)}$ be a compact operator and let $A \in \overline{\mathcal{H}(S)}$ be an arbitrary operator. To prove that the commutator [K, A] is in $\mathcal{R}(\overline{\mathcal{H}(S)})$, we need to show that [K, A]C is quasinilpotent for each $C \in \overline{\mathcal{H}(S)}$. Since [K, A]C is compact, the continuity of the spectral radius at compact operators yields that it suffices to prove that [K, A]C is quasinilpotent for all $A, C \in \mathcal{H}(S)$.

Let $A, C \in \mathcal{H}(S)$ be arbitrary. Since *K* belongs to the closure of $\mathcal{A}(S)$, there is a sequence $(K_n)_{n \in \mathbb{N}} \subseteq \mathcal{A}(S)$ which converges to *K*. We claim that for each $n \in \mathbb{N}$ the commutator $[K_n, A]$ is nilpotent and belongs to the ideal $\mathcal{N}(S)_n$ in $\mathcal{H}(S)$ generated by the Jacobson radical $\mathcal{N}(S)$ of the band algebra $\mathcal{A}(S)$. Since $A \in \mathcal{H}(S)$, there exist operators $A_1, \ldots, A_k \in \mathcal{A}(S)$ and $B_0, \ldots, B_k \in \mathcal{A}(S)'$ such that $A = B_0 + \sum_{i=1}^k A_i B_i$. It follows that $[K_n, A] = \sum_{i=1}^k [K_n, A_i] B_i$. Since every commutator $[K_n, A_i]$ is in $\mathcal{N}(S)$

and $\mathcal{N}(S) \subseteq \mathcal{N}(S)_{\mathcal{H}}$, it follows $[K_n, A_i] \in \mathcal{N}(S)_{\mathcal{H}}$. Since $\mathcal{N}(S)_{\mathcal{H}}$ is an ideal in the hyperalgebra $\mathcal{H}(S)$ we have $[K_n, A]C \in \mathcal{N}(S)_{\mathcal{H}}$. By Proposition 4.1, the operator $[K_n, A]C$ is nilpotent. To finish the proof, we apply the fact that the spectral radius is continuous at compact operators and that the compact operator [K, A]C is the limit of the sequence $([K_n, A]C)_{n \in \mathbb{N}}$ of nilpotent operators. \Box

Theorem 4.3 Let $S \subseteq \mathcal{B}(\mathcal{X})$ be an operator band. If there exists a non-zero compact operator in $\overline{\mathcal{A}(S)}$, then S has a non-trivial hyperinvariant subspace.

Proof Let *K* be a non-zero compact operator in $\overline{\mathcal{A}(S)}$. Then, by Proposition 4.2, [K, A] is a compact operator contained in the radical $\mathcal{R}(\overline{\mathcal{H}(S)})$ for each $A \in \overline{\mathcal{H}(S)}$. If [K, A] = 0 for every $A \in \overline{\mathcal{H}(S)}$, then $\overline{\mathcal{H}(S)} \subseteq (K)'$ and, therefore, every non-trivial hyperinvariant subspace of *K* is a non-trivial hyperinvariant subspace for $\mathcal{A}(S)$. Hence, we may assume that for some $A \in \overline{\mathcal{H}(S)}$ the commutator [K, A] is a non-zero operator. Let \mathcal{J} be the ideal in $\overline{\mathcal{H}(S)}$ generated by [K, A]. Of course, each operator in \mathcal{J} is compact. Since, by Proposition 4.2, [K, A] is in the Jacobson ideal of $\mathcal{R}(\overline{\mathcal{H}(S)})$ we have $\mathcal{J} = \overline{\mathcal{H}(S)}[K, A]\overline{\mathcal{H}(S)} \subseteq \overline{\mathcal{H}(S)}\mathcal{R}(\mathcal{H}(S))\overline{\mathcal{H}(S)} \subseteq \mathcal{R}(\mathcal{H}(S))$. It follows that operators in \mathcal{J} are quasinilpotent. Thus, \mathcal{J} is a Volterra ideal in $\overline{\mathcal{H}(S)}$. By [16, Theorem 2], \mathcal{J} is reducible. Now we apply [14, Lemma 7.4.6] and conclude that $\overline{\mathcal{H}(S)}$ is reducible.

Corollary 4.4 Every essentially commuting non-scalar operator band $S \subseteq \mathcal{B}(\mathcal{X})$ has a non-trivial hyperinvariant subspace.

Proof If S is commutative, then $S \subseteq S'$. In this case the kernel of any non-scalar operator from S is invariant for each $S \in S'$. If S is not commutative, then there exist idempotents $E, F \in S$ with a non-zero compact commutator $EF - FE \in A(S)$. The assertion follows, by Theorem 4.3.

Since every essentially commuting band of operators has an invariant subspace, an application of the Triangularization lemma (see [14, Lemma 7.1.11]) immediately implies the following result.

Corollary 4.5 *Every essentially commuting band of operators on a Banach space is triangularizable.*

Acknowledgements The authors would like to thank the anonymous referee for carefully reading the manuscript. The paper is a part of the project *Distinguished subspaces of a linear operator* and the work of the first author was partially supported by the Slovenian Research Agency through the research program P2-0268. The second author acknowledges financial support from the Slovenian Research Agency, Grants Nos. P1-0222, J1-2453 and J1-2454.

References

- Argyros, S.A., Haydon, R.G.: A hereditarily indecomposable L_∞-space that solves the scalar-pluscompact problem. Acta Math. 54, 1–54 (2011)
- Aronszajn, N., Smith, K.T.: Invariant subspaces of completely continuous operators. Ann. Math. 60, 345–350 (1954)
- 3. Enflo, P.: On the invariant subspace problem for Banach spaces. Acta Math. 158, 213-313 (1987)
- Gilfearther, F.: The structure and asymptotic behavior of polynomially compact operators. Proc. Am. Math. Soc. 25, 127–134 (1970)
- 5. Grabiner, S.: The nilpotency of Banach nil algebras. Proc. Am. Math. Soc. 21, 510 (1969)
- Grivaux, S., Roginskaya, M.: A general approach to Read's type constructions of operators without non-trivial invariant closed subspaces. Proc. Lond. Math. Soc. 109, 596–652 (2014)
- Hadwin, D., Nordgren, E., Radjabalipour, M., Radjavi, H., Rosenthal, P.: On simultaneous triangularization of collections of operators. Houston J. Math. 17, 581–602 (1991)
- 8. Higman, G.: On a conjecture of Nagata. Math. Proc. Camb. Philos. Soc. 52, 1-4 (1956)
- Kandić, M.: On algebras of polynomially compact operators. Linear Multilinear Algebra 64(6), 1185–1196 (2016)
- Konvalinka, M.: Triangularizability of polynomially compact operators. Integr. Equ. Oper. Theory 52, 271–284 (2005)
- 11. Livshits, L., MacDonald, G., Mathes, B., Radjavi, H.: On band algebras. J. Oper. Theory 46, 545–560 (2001)
- 12. Lomonosov, V.I.: Invariant subspaces for the family of operators which commute with a completely continuous operator. Funct. Anal. Appl. **7**, 213–214 (1973)
- 13. Nagata, M.: On the nilpotency of nil-algebras. J. Math. Soc. Jpn. 4, 296–301 (1952)
- 14. Radjavi, H., Rosenthal, P.: Simultaneous Triangularization. Springer, New York (2000)
- 15. Read, C.J.: A solution to the invariant subspace problem. Bull. Lond. Math. Soc. 16, 337-401 (1984)
- 16. Shulman, V.S.: On invariant subspaces of volterra operators. Funk. Anal. i Prilozhen. 18, 84–86 (1984). (in Russian)
- 17. Turovskii, Y.V.: Volterra semigroups have invariant subspaces. J. Funct. Anal. 162, 313–322 (1999)

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.