ORIGINAL PAPER

Ground state solutions for a fractional system involving critical non‑linearities

Zhenyu Guo¹ · Yan Deng1

Received: 9 March 2022 / Accepted: 24 May 2022 / Published online: 18 June 2022 © Tusi Mathematical Research Group (TMRG) 2022

Abstract

The aim of this paper is to study a fractional system involving critical non-linearities. Using the Mountain Pass Theorem, the existence of ground state solutions for our problem is obtained in two cases.

Keywords Nehari manifold · Fractional Laplacian · Ground states

Mathematics Subject Classifcation 35B33 · 35A01

1 Introduction

In the past few decades, Laplace equations or systems have been extensively studied, and there are many results about multiple positive solutions, ground state solutions, sign-change solutions and so on (see [[8–](#page-20-0)[10,](#page-21-0) [14](#page-21-1), [15](#page-21-2), [17\]](#page-21-3) and references therein). In addition, the coupled Schrödinger system involving Laplacian appears in several branches of physics. It can accurately describe the multiplicate chemical reaction catalyzed by the catalyst grains under constant or variant temperature. Moreover, it can describe the interaction between the non-linear Schrödinger feld and the electromagnetic feld. The author in [\[3](#page-20-1)] studied a class of coupled quasi-linear semilinear Schrödinger system

$$
\label{eq:2} \left\{ \begin{array}{ll} -\Delta u+a(x)u=F_u(x,u,v), & x\in\mathbb{R}^N,\\ -\Delta v+b(x)v=F_v(x,u,v), & x\in\mathbb{R}^N, \end{array} \right.
$$

Communicated by Julian Bonder.

Yan Deng dengyanab@163.com

 \boxtimes Zhenyu Guo guozy@163.com

¹ Liaoning Normal University, Huanghe Road No. 850, Shahekou District, Dalian City, China

where $F \in C^1(\mathbb{R}^N \times \mathbb{R}^2, \mathbb{R})$. With the help of the generalized mountain pass lemma, the author proved that the system has a nontrivial solution. Since then, the coupled quasi-linear Schrödinger system has attracted more and more attention from related scholars (see [\[1](#page-20-2), [2](#page-20-3)] and the references therein).

In recent years, fractional diferential equations have played an important role in many felds such as science, electrical circuits, engineering and applied mathematics (see [[11](#page-21-4), [12](#page-21-5)]). Compared with the Laplace problem, the fractional Laplace problem is non-local and faces greater research difficulty. In recent years, both elliptic fractional and non-local operators have received great attention in the research of pure mathematics and the practical application of mathematics (see [\[6](#page-20-4), [7](#page-20-5), [16](#page-21-6)] and references therein). Therefore, the study of coupled systems is natural. Consider the following fractional system:

$$
\begin{cases} (-\Delta)^s u + \mu u = |u|^{p-1} u + \lambda v, & x \in \mathbb{R}^N, \\ (-\Delta)^s v + v v = |v|^{2^*-2} v + \lambda u, & x \in \mathbb{R}^N, \end{cases}
$$

where $(-\Delta)^s$ is the fractional Laplacian, μ , ν and λ are parameters, $0 < s < 1$, $N > 2s$, $\lambda < \sqrt{\mu v}$, $1 < p < 2^* - 1$, $2^* = \frac{2N}{N-2s}$ is the Sobolev critical exponent. The authors in [\[19](#page-21-7)] proved that there exists a $\mu_0 \in (0, 1)$, such that when $0 \lt \mu \leq \mu_0$, the system has a positive ground state solution. When $\mu > \mu_0$, there exists a $\lambda_{\mu,\nu} \in [\sqrt{(\mu - \mu_0)v}, \sqrt{\mu v})$, such that if $\lambda > \lambda_{\mu,\nu}$, the system has a positive ground state solution; if $\lambda < \lambda_{\mu,\nu}$, the system has no ground state solution.

In [[13](#page-21-8)], the authors studied the small energy solutions of the coupled fractional Schrödinger system with critical growth. Using a variant of fountain theorem, when the Ambrosetti–Rabinowitz (AR) condition is not satisfed, the criterion for the existence of an infnite number of small energy solutions was explained.

As far as we know, there are few research results on concave–convex non-linear fractional elliptic systems. In [[4\]](#page-20-6), the authors studied the multiple solutions of fractional equations that satisfy the homogeneous Dirichlet boundary conditions. They obtained multiple solutions for the following fractional elliptic system:

$$
\begin{cases}\n(-\Delta)^s u = \lambda |u|^{q-2} u + \frac{2\alpha}{\alpha + \beta} |u|^{\alpha - 2} u |v|^\beta, & x \in \Omega, \\
(-\Delta)^s v = \mu |v|^{q-2} v + \frac{2\beta}{\alpha + \beta} |u|^\alpha |v|^{p-2} v, & x \in \Omega, \\
u = v = 0, & x \in \mathbb{R}^N \setminus \Omega,\n\end{cases}
$$

where Ω is a smooth bounded set in \mathbb{R}^N , $n > 2s$, with $s \in (0, 1)$, $(-\Delta)^s$ is the fractional Laplace operator; λ , $\mu > 0$ are two parameters; the exponent $\frac{n}{n-2s} \le 2$; $\alpha > 1$, $\beta > 1$ satisfy $2 < \alpha + \beta = 2_s^*$, $2_s^* = \frac{2n}{n-2s}$ ($n > 2s$) is the fractional critical Sobolev exponent.

In [\[18](#page-21-9)], the authors focused on the following critical case fractional Laplacian system:

$$
\begin{cases}\n(-\Delta)^s u + \lambda_1 u = \mu_1 |u|^{2^*-2} u + \frac{\alpha y}{2^*} |u|^{\alpha-2} u |v|^\beta & \text{in } \Omega, \\
(-\Delta)^s v + \lambda_2 v = \mu_2 |v|^{2^*-2} v + \frac{\beta y}{2^*} |u|^\alpha |v|^{2^*-2} v & \text{in } \Omega, \\
u = v = 0 & \text{in } \mathbb{R}^N \setminus \Omega,\n\end{cases}
$$

where $(-\Delta)^s$ is the fractional Laplacian, $0 < s < 1$, $\mu_1, \mu_2 > 0$, $2^* = \frac{2N}{N-2s}$ is a fractional critical Sobolev exponent, $N > 2s$, $1 < \alpha, \beta < 2, \alpha + \beta = 2^*$, Ω is an openbounded set of ℝ^{*N*} with Lipschitz boundary and $\lambda_1, \lambda_2 > -\lambda_{1,s}(\Omega), \lambda_{1,s}$ is the first eigenvalue of the non-local operator (−Δ)*^s* with homogeneous Dirichlet boundary datum. Using the Nehari mainfold, the authors proved the existence of a positive ground state solution of the system for all $\gamma > 0$. Then, the asymptotic behaviors of the positive ground state solutions are analyzed when $\gamma \to 0$.

Recently, the positive ground states for a system of Schrödinger equations with critically growing non-linearities have been studied by many authors. At the same time, new difculties have arisen. Due to the non-linearities, sometimes traditional methods have lost their efectiveness. Therefore, from the perspective of the Palais–Smale sequence of the functional, the authors in [\[5](#page-20-7)] studied the following system:

$$
\begin{cases}\n-\Delta u = \lambda u + |u|^{2^*-2}v & \text{in } \Omega, \\
-\Delta v = \mu |v|^{2^*-2}v + |u|^{2^*-2}u & \text{in } \Omega, \\
u > 0, v > 0 & \text{in } \Omega, \\
u = v = 0 & \text{on } \partial\Omega,\n\end{cases}
$$

where Ω is a bounded domain of \mathbb{R}^N , $N \ge 4$, $2^* = \frac{2N}{N-2}$, $\lambda \in \mathbb{R}$ and $\mu \ge 0$. They obtained existence and nonexistence results, depending on the value of the parameters λ and μ .

Motivated by the above works, especially by [\[5](#page-20-7)], we propose the problem

$$
\begin{cases}\n(-\Delta)^s u = \lambda u + u^{2_s^* - 2} v, & x \in \Omega, \\
(-\Delta)^s v = \mu v^{2_s^* - 1} + u^{2_s^* - 1}, & x \in \Omega, \\
u > 0, v > 0, & x \in \Omega, \\
u = v = 0, & x \in \mathbb{R}^N \setminus \Omega,\n\end{cases}
$$
\n(1)

where $0 < s < 1, N \ge 4s$, $2_s^* := \frac{2N}{N-2s}$ is the fractional Sobolev critical exponent, Ω is an open-bounded domain of \mathbb{R}^{N-2s} with Lipschitz boundary, λ , μ are parameters and $\mu > 0$.

The fractional Laplacian operator can be defned by

$$
(-\Delta)^s u(x) = C_{N,s} \text{P.V.} \int_{\mathbb{R}^N} \frac{u(x) - u(y)}{|x - y|^{N+2s}} \text{d}y
$$

= $C_{N,s} \lim_{\varepsilon \to 0^+} \int_{B_\varepsilon^c(x)} \frac{u(x) - u(y)}{|x - y|^{N+2s}} \text{d}y$
= $-\frac{1}{2} C_{N,s} \int_{\mathbb{R}^N} \frac{u(x + y) + u(x - y) - 2u(x)}{|y|^{N+2s}} \text{d}y,$

where $C_{N,s}$ is given by

$$
C_{N,s} = \left(\int_{\mathbb{R}^N} \frac{1 - \cos(\zeta_1)}{|\zeta|^{N+2s}} d\zeta\right)^{-1},\,
$$

and P.V. is the principle value defned by the latter formula.

Define Hilbert space $D^{s}(\Omega)$ as the completion of $C_c^{\infty}(\Omega)$ with respect to the norm ‖ [⋅] ‖*Ds* induced by the following scalar product:

$$
\langle u, v \rangle_{D^s} := \frac{C_{N,s}}{2} \int_{\mathbb{R}^{2N}} \frac{\big(u(x) - u(y)\big)\big(v(x) - v(y)\big)}{|x - y|^{N+2s}} dxdy.
$$

If $Ω$ is an open-bounded Lipschitz domain, then $D^s(Ω)$ coincides with the Sobolev space

$$
X_0 := \{ f \in X : f = 0 \text{ a.e. in } \Omega^c \},
$$

where *X* is a linear space of Lebesgue measurable functions from \mathbb{R}^N to \mathbb{R} , such that the restriction to Ω of any function *f* in *X* belongs to $L^2(\Omega)$ and the map $(x, y) \mapsto (f(x) - f(y)) |x - y|^{-\frac{N}{2} + s}$ is in $L^2(\mathbb{R}^{2N} \setminus (\Omega^c \times \Omega^c))$, dxdy), and Ω^c is the complement of Ω in \mathbb{R}^N . Consider fractional Sobolev space

$$
H^{s}(\mathbb{R}^{N}) := \left\{ u \in L^{2}(\mathbb{R}^{N}) : \frac{|u(x) - u(y)|}{|x - y|^{\frac{N}{2} + s}} \in L^{2}(\mathbb{R}^{2N}) \right\},\
$$

equipped the Gagliardo seminorm

$$
[u]_{H^{s}(\mathbb{R}^N)}^2 := \frac{C_{N,s}}{2} \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^2}{|x - y|^{N+2s}} dxdy.
$$

Defne the fractional Sobolev space

$$
H^{s}(\Omega) := \left\{ x \in H^{s}(\mathbb{R}^{N}) : u = 0 \text{ a.e. in } \Omega^{c} \right\},
$$

$$
||u||_{H^{s}(\Omega)} := \left(\lambda \int_{\Omega} |u|^{2} dx + \frac{C_{N,s}}{2} \int_{\mathbb{R}^{2N} \setminus (\Omega^{c} \times \Omega^{c})} \frac{|u(x) - u(y)|^{2}}{|x - y|^{N+2s}} dx dy \right)^{\frac{1}{2}},
$$

which was introduced in [\[14](#page-21-1)]. From $u = 0$ a.e. in Ω^c , it is easy to see that

$$
|u|_2^2 := \int_{\Omega} |u|^2 dx = \int_{\mathbb{R}^N} |u|^2 dx,
$$

$$
\int_{\mathbb{R}^{2N}\setminus(\Omega^c \times \Omega^c)} \frac{|u(x) - u(y)|^2}{|x - y|^{N+2s}} dxdy = \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^2}{|x - y|^{N+2s}} dxdy.
$$

Hence, we just denote $||u||_{H^{s}(\Omega)}$ by

$$
||u||_{H^s} := \left(\lambda \int_{\mathbb{R}^N} |u|^2 dx + \frac{C_{N,s}}{2} \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^2}{|x - y|^{N+2s}} dxdy\right)^{\frac{1}{2}}.
$$

Birkhäuser

and $(H^{s}(\Omega), \| \cdot \|_{H^{s}})$ is a Hilbert space.

Indeed, the solutions of problem ([1\)](#page-2-0) correspond to critical points of the *C*¹−functional $J: H^s(\Omega) \times H^s(\Omega) \to \mathbb{R}$ given by

$$
J(u, v) = \frac{2_s^* - 1}{2} ||u||_{D^s}^2 - \frac{2_s^* - 1}{2} \lambda \int_{\Omega} |u|^2 dx + \frac{1}{2} ||v||_{D^s}^2 - \frac{1}{2_s^*} \mu \int_{\Omega} |v|^{2_s^*} dx - \int_{\Omega} |u|^{2_s^* - 2} uv dx.
$$

We are interested in nontrivial solutions of [\(1](#page-2-0)), namely solutions $(u, v) \in H^s(\Omega) \times H^s(\Omega)$ with both $u \neq 0$ and $v \neq 0$, especially positive ground states of (1) (1) . As it is known, the ground state solutions are the solutions of (1) (1) that minimize *J* on the Nehari manifold

$$
\mathcal{N} = \left\{ (u, v) \in H^{s}(\Omega) \times H^{s}(\Omega) \setminus \{ (0, 0) \} : G(u, v) = (0, 0) \right\},\
$$

where

$$
G(u, v) = \left(||u||_{D^s}^2 - \lambda \int_{\Omega} |u|^2 dx - \int_{\Omega} |u|^{2_s^* - 2} uv dx, ||v||_{D^s}^2 - \mu \int_{\Omega} |v|^{2_s^*} dx - \int_{\Omega} |u|^{2_s^* - 2} uv dx \right).
$$

The paper is organized as follows. In Sect. [2,](#page-5-0) we consider the limit case ($\Omega = \mathbb{R}^N$) and $\lambda = 0$). We provide results concerning the limiting problem for $N > 4s$ and the remaining problem $N = 4s$. Finally, in Sect. [3](#page-12-0), we investigate the existence of ground states for problem ([1\)](#page-2-0) and we prove our main result.

Theorem 1.1 *If* $\mu > 0$ *and* $\lambda \in (0, \lambda_1(\Omega))$, *then problem* [\(1](#page-2-0)) *has a ground state solution*.

To estimate the energy levels of *J*, now, we consider the limit system

$$
\begin{cases}\n(-\Delta)^s u = |u|^{2_s^*-2} v, & x \in \mathbb{R}^N, \\
(-\Delta)^s v = \mu |v|^{2_s^*-2} v + |u|^{2_s^*-2} u, & x \in \mathbb{R}^N, \\
u, v, \in D^s(\mathbb{R}^N).\n\end{cases}
$$
\n(2)

We search for nontrival solutions of (2) (2) as critical points of the functional

$$
J_0(u,v) = \frac{2_s^* - 1}{2} ||u||_{D^s}^2 + \frac{1}{2} ||v||_{D^s}^2 - \frac{1}{2_s^*} \mu \int_{\mathbb{R}^N} |v|^{2_s^*} dx - \int_{\mathbb{R}^N} |u|^{2_s^* - 2} uv dx
$$

defined in $D^s(\mathbb{R}^N) \times D^s(\mathbb{R}^N)$. In particular, we investigate ground state solutions of [\(2](#page-4-0)) of the form $(ku_{\epsilon}, lu_{\epsilon})$ with $k, l > 0$, where the definition of u_{ϵ} is given by ([3\)](#page-6-0) in Sect. [2](#page-5-0). Therefore, we consider

$$
\mathcal{N}_0 := \left\{ (u, v) \in \left(D^s(\mathbb{R}^N) \times D^s(\mathbb{R}^N) \right) \setminus \{ (0, 0) \} : G_0(u, v) = (0, 0) \right\},\
$$

where

$$
G_0(u, v) = \left(||u||_{D^s}^2 - \int_{\mathbb{R}^N} |u|^{2_s^*-2} uv \, \mathrm{d}x, \right)
$$

$$
||v||_{D^s}^2 - \mu \int_{\mathbb{R}^N} |v|^{2_s^*} \, \mathrm{d}x - \int_{\mathbb{R}^N} |u|^{2_s^*-2} uv \, \mathrm{d}x \right)
$$

and

$$
\mathcal{N}_0' := \left\{ (u, v) \in \left(D^s(\mathbb{R}^N) \times D^s(\mathbb{R}^N) \right) \setminus \{ (0, 0) \} : H_0(u, v) = 0 \right\},\
$$

where

$$
H_0(u,v) = (2_s^* - 1) ||u||_{D^s}^2 + ||v||_{D^s}^2 - 2_s^* \int_{\mathbb{R}^N} |u|^{2_s^* - 2} uv \, dx - \mu \int_{\mathbb{R}^N} |v|^{2_s^*} \, dx.
$$

It is known that \mathcal{N}_0 and \mathcal{N}'_0 are of class C^1 . For the limit case, we define that $A := \inf_{(u,v)\in\mathcal{N}_0} J_0(u,v)$ and $A' := \inf_{(u,v)\in\mathcal{N}_0} J_0(u,v)$, then we obtain the following.

 $\sqrt{2}$ **Theorem 1.2** *Suppose that* $N > 4s$ *and* $\mu > 0$ *hold.* Let $\epsilon > 0$, then *m* $\frac{1}{2_s^* - 2} u_\epsilon, m$ ^{3–2^{*}_{*s*}^{*}
^{2*}_{*s*}⁻²</sub>^{*u*}*ε*} λ *is a ground state solution of* [\(2](#page-4-0)) *and* $J^{}_{0}$ $\sqrt{2}$ *m* $\frac{\frac{1}{2_s^*-2}}{0}u_{\epsilon}$, *m* ^{3–2^{*}_{*s*}^{*} *u*^{*ε*}_{*ε*}^{*n*}_{*ε*}^{^{*n*}}*0*} $A = A' = \frac{s}{N}$ $((2_s^* - 1)k_0^2 + l_0^2)S_s^{N/(2s)},$

where (k_0, l_0) is a solution of [\(5](#page-7-0)).

Theorem 1.3 *Suppose that* $N = 4s$ *and* $\mu > 0$ *hold. Let* $\epsilon > 0$, *then* $\left(\sqrt{m_0}u_{\epsilon}, \frac{1}{\sqrt{m_0}}u_{\epsilon}\right)$ λ *is a ground state solution of* [\(2](#page-4-0)) *and*

$$
J_0\left(\sqrt{m_0}u_{\epsilon}, \frac{1}{\sqrt{m_0}}u_{\epsilon}\right) = A = A' = \frac{1}{4}(3\tilde{k}^2 + \tilde{l}^2)S_s^2,
$$

where \tilde{k} *,* \tilde{l} *is the unique solution of* ([5\)](#page-7-0).

2 The limit problem

Before starting to prove, let us clarify some facts. Let S_s be the best constant, such that

$$
S_s := \inf_{u \in D^s(\mathbb{R}^N) \setminus \{0\}} \frac{\|u\|_{D^s}^2}{|u|_{2_s^*, \mathbb{R}^N}^2},
$$

then S_s is attained by

$$
\widetilde{u}(x) = k(e^2 + |x - x_0|)^{\frac{N-2s}{2}},
$$

that is

$$
S_s = \frac{\|\widetilde{u}\|_{D^s}^2}{\|\widetilde{u}\|_{2_s^*,\mathbb{R}^N}^2}.
$$

Normalizing \widetilde{u} by $|\widetilde{u}|_{2^*_{s},\mathbb{R}^N}$, we obtain that

$$
\overline{u} = \frac{\widetilde{u}}{|\widetilde{u}|_{2^*,\mathbb{R}^N}}.
$$

Thus

$$
S_{s} = \inf_{\substack{u \in D^{s}(\mathbb{R}^{N}) \\ |u|_{2_{s}^{*}, \mathbb{R}^{N}=1}}} ||u||_{D^{s}}^{2} = ||\overline{u}||_{D^{s}}^{2},
$$

and \overline{u} is a positive ground state solution of

$$
(-\Delta)^s u = S_s |u|^{2_s^*-2} u \quad \text{in } \mathbb{R}^N.
$$

Let

$$
u_{\epsilon}(x) = \epsilon^{-\frac{N-2s}{2}} u_1(\frac{x}{\epsilon}),\tag{3}
$$

where $u_1 = S$ $\frac{1}{2s^{2s-2}}\overline{u}$ is a positive ground state solution of

$$
(-\Delta)^s u = |u|^{2_s^*-2} u \quad \text{in } \mathbb{R}^N,
$$

satisfying

$$
||u_1||_{D^s}^2 = |u_1|_{2_s^*,\mathbb{R}^N}^{2_s^*} = S_s^{N/(2s)}.
$$

2.1 The limit problem for $N > 4s$

Define a function $f_N : (0, +\infty) \to \mathbb{R}$

$$
f_N(m) = m^{2_s^*-1} - m^{2_s^*-3} + \mu.
$$

Then, the function f_N is strictly increasing and satisfies

$$
\lim_{m \to 0^+} f_N(m) = -\infty \text{ and } \lim_{m \to +\infty} f_N(m) = +\infty.
$$

Lemma 2.1 *f_N has at least one zero point. Let* $k, l > 0$ *satisfy*

$$
(2_s^* - 1)k^2 + l^2 \le 2_s^* k^{2_s^* - 1} l + \mu l^{2_s^*}.
$$
 (4)

Considering the system

$$
\begin{cases}\nk^{2_s^* - 3}l = 1, \\
\mu l^{2_s^* - 1} + k^{2_s^* - 1} = l, \\
k, l > 0,\n\end{cases} \tag{5}
$$

then

$$
(2_s^* - 1)k_0^2 + l_0^2 = \min_{i=1,2,\dots,n} \{ (2_s^* - 1)k_i^2 + l_i^2 \} \le (2_s^* - 1)k^2 + l^2,
$$

where (k_i, l_i) are solutions of system (5) (5) , and (k_0, l_0) is a particular solution of system $(5).$ $(5).$

Proof Multiplying the second equation of system ([5\)](#page-7-0) by l^{1-2^*} , and then brought the first equation of system (5) (5) into it and simplifying, we obtain

$$
\left(\frac{k}{l}\right)^{2_s^*-1} - \left(\frac{k}{l}\right)^{2_s^*-3} + \mu = 0.
$$

Obviously, f_N has a finite number of solutions and system (5) (5) has some solutions correspondingly.

(i) If f_N has a unique zero point m_1 , then system ([5\)](#page-7-0) has a unique solution denoted as (k_1, l_1) .

(ii) If f_N has *n* zero points, which are denoted as m_i ($i = 1, 2, ..., n$), then system [\(5](#page-7-0)) has *n* solutions correspondingly denoted as

$$
(k_i, l_i) = \left(m_i^{\frac{1}{2_s^* - 2}}, m_i^{\frac{3 - 2_s^*}{2_s^* - 2}} \right).
$$

Assume $m_1 < m_2 < \cdots < m_n$, then there exists a minimum one, which is denoted as $(k_0, l_0) := \left(m \right.$ $\frac{1}{2_s^*-2}$, *m* 3−2∗ *s* 2∗ *s* −2 0 λ . Then, we have $(2_s^* - 1)k_0^2 + l_0^2 := \min_{i=1,2,...,n} \{ (2_s^* - 1)k_i^2 + l_i^2 \}.$

Fix $k, l > 0$ satisfying ([4\)](#page-7-1) and

$$
k_i = kh^{\frac{1}{2_s^*-2}}, \quad l_i = lh^{\frac{1}{2_s^*-2}},
$$

where $h := \frac{(2_s^* - 1)k^2 + l^2}{l(2 k k^2_s^* - 1 + l^2 k^2_s^*)}$ $\frac{1}{l(2^{*}_{s}k^{2^{*}_{s}-1}+\mu l^{2^{*}_{s}-1})}$. Then

$$
\frac{k_i}{l_i} = \frac{k}{l},
$$

so (k_i, l_i) are solutions of system [\(5](#page-7-0)). Since

$$
0 < k_i \le k, \ 0 < l_i \le l,
$$

we conclude that

$$
(2_s^* - 1)k_i^2 + l_i^2 \le (2_s^* - 1)k^2 + l^2.
$$

Thus

$$
(2_s^* - 1)k_0^2 + l_0^2 = \min_{i=1,2,\dots,n} \{ (2_s^* - 1)k_i^2 + l_i^2 \} \le (2_s^* - 1)k^2 + l^2.
$$

Proof of Theorem 1.2 For $(au_\varepsilon, bu_\varepsilon) \in \mathcal{N}_0$, we know that $G_0(au_\varepsilon, bu_\varepsilon) = (0, 0)$, that is

$$
\begin{cases} ||au_{\epsilon}||_{D^s}^2 - \int_{\mathbb{R}^N} |au_{\epsilon}|^{2_s^* - 1} bu_{\epsilon} dx = 0, \\ ||bu_{\epsilon}||_{D^s}^2 - \mu \int_{\mathbb{R}^N} |bu_{\epsilon}|^{2_s^*} dx - \int_{\mathbb{R}^N} |au_{\epsilon}|^{2_s^* - 1} bu_{\epsilon} dx = 0, \end{cases}
$$

it yields that

$$
\begin{cases} \frac{\|u_{\epsilon}\|_{D^s}^2}{\int_{\mathbb{R}^N} |u_{\epsilon}|^{2_s^*} dx} = a^{2_s^* - 3} b, \\ b^{2 - 2_s^*} \cdot \frac{\|u_{\epsilon}\|_{D^s}^2}{\int_{\mathbb{R}^N} |u_{\epsilon}|^{2_s^*} dx} - \mu - \frac{a^{2_s^* - 1}}{b^{2_s^* - 1}} = 0, \end{cases}
$$

then

$$
\left(\frac{a}{b}\right)^{2_s^*-1} - \left(\frac{a}{b}\right)^{2_s^*-3} + \mu = 0.
$$

Since f_N admits a minimum nontrivial zero point m_0 , then $m_0 = \frac{a}{b}$. We derive

$$
a = \left[m_0 \|u_{\epsilon}\|_{D^s}^2 \left(\int_{\mathbb{R}^N} |u_{\epsilon}|^{2_s^*} dx\right)^{-1}\right]^{\frac{1}{2_s^* - 2}},
$$

$$
b = \left[m_0^{3 - 2_s^*} \|u_{\epsilon}\|_{D^s}^2 \left(\int_{\mathbb{R}^N} |u_{\epsilon}|^{2_s^*} dx\right)^{-1}\right]^{\frac{1}{2_s^* - 2}},
$$

which ensures that

$$
\left(au_{\epsilon},bu_{\epsilon}\right)\in\mathcal{N}_{0},
$$

and system ([5\)](#page-7-0) has a solution $(k_0, l_0) = \binom{m}{m}$ $\frac{\frac{1}{2_s^*-2}}{0}, m$ 3−2∗ *s* 2∗ *s* −2 0 \setminus . Since \mathcal{N}_0 ⊂ \mathcal{N}'_0 , then $A' \le A$. Also, by $J'_0(k_0u_\epsilon, l_0u_\epsilon) = 0$ and $(k_0u_\epsilon, l_0u_\epsilon) \in \mathcal{N}_0 \subset \mathcal{N}_0$, we have $A' \le A \le J_0$ $\sqrt{2}$ *m* $\frac{\frac{1}{2_s^* - 2}}{0} u_\epsilon, m$ $rac{\frac{3-2_s^*}{2_s^*-2}}{0}$ *u*€ $\bigg) = \frac{s}{N}$ $((2_s^* - 1)k_0^2 + l_0^2)S_s^{N/(2s)}$.

Take $\{(u_n, v_n)\} \subset \mathcal{N}_0$ a minimizing sequence, we get $J_0(u_n, v_n) \to A'$. Using Sobolev embedding and Hölder inequality, we deduce that

$$
S_{s} \left[(2_{s}^{*} - 1) |u_{n}|_{2_{s}^{*}}^{2} + |v_{n}|_{2_{s}^{*}}^{2} \right]
$$

\n
$$
\leq (2_{s}^{*} - 1) ||u_{n}||_{D^{s}}^{2} + ||v_{n}||_{D^{s}}^{2}
$$

\n
$$
= 2_{s}^{*} \int_{\mathbb{R}^{N}} |u_{n}|^{2_{s}^{*}-1} v_{n} dx + \mu \int_{\mathbb{R}^{N}} |v_{n}|^{2_{s}^{*}} dx
$$

\n
$$
\leq 2_{s}^{*} \int_{\mathbb{R}^{N}} |u_{n}|^{2_{s}^{*}} dx \int_{\mathbb{R}^{N}} |v_{n}|^{2_{s}^{*}} dx + \mu \int_{\mathbb{R}^{N}} |v_{n}|^{2_{s}^{*}} dx.
$$

Thereby, we obtain that

$$
(2_s^* - 1) \left(S_s^{\frac{2s-N}{4s}} |u_n|_{2_s^*} \right)^2 + \left(S_s^{\frac{2s-N}{4s}} |v_n|_{2_s^*} \right)^2
$$

$$
\leq 2_s^* \left(S_s^{\frac{2s-N}{4s}} |u_n|_{2_s^*} \right)^{2_s^* - 1} \left(S_s^{\frac{2s-N}{4s}} |v_n|_{2_s^*} \right) + \mu \left(S_s^{\frac{2s-N}{4s}} |u_n|_{2_s^*} \right)^{2_s^*};
$$

by Lemma [2.1,](#page-7-2) it is easy to verify that

$$
(2_s^* - 1)k_0^2 + l_0^2 \le S_s^{1 - \frac{N}{2s}} \Big[(2_s^* - 1) |u_n|_{2_s^*}^2 + |v_n|_{2_s^*}^2 \Big],
$$

which leads to

$$
A' + o_n(1) = J_0(u_n, v_n)
$$

\n
$$
= \frac{2_s^* - 1}{2} ||u_n||_{D^s}^2 + \frac{1}{2} ||v_n||_{D^s}^2 - \frac{1}{2_s^*} \mu \int_{\mathbb{R}^N} |v_n|^{2_s^*} dx - \int_{\mathbb{R}^N} |u_n|^{2_s^* - 2} u_n v_n dx
$$

\n
$$
= \frac{s}{N} [(2_s^* - 1) ||u_n||_{D^s}^2 + ||v_n||_{D^s}^2]
$$

\n
$$
\geq \frac{s \cdot S_s}{N} \left[(2_s^* - 1) \left(\int_{\mathbb{R}^N} |u_n|^{2_s^*} dx \right)^{\frac{2}{2_s^*}} + \left(\int_{\mathbb{R}^N} |v_n|^{2_s^*} dx \right)^{\frac{2}{2_s^*}} \right]
$$

\n
$$
\geq \frac{s}{N} ((2_s^* - 1)k_0^2 + l_0^2) S_s^{N/(2s)}.
$$

It follows that:

$$
A' = \frac{s}{N} \left((2_s^* - 1)k_0^2 + l_0^2 \right) S_s^{N/(2s)}.
$$

Thus, $\left(m_0^{\frac{1}{2_s^* - 2}} u_\epsilon, m_0^{\frac{3 - 2_s^*}{2_s^* - 2}} u_\epsilon \right)$ is a ground state solution of system (2).

2.2 The limit problem for $N = 4s$

In this subsection, we consider the limit problem for a general $N = 4s$. We notice that in the previous subsection, the key points consist of the existence of a zero of the function f_N and the solution of the system ([5](#page-7-0)). Similarly as before, it is easy to see that

$$
f(m) = m3 - m + \mu, m > 0,
$$

$$
\begin{cases} kl = 1, \\ \mu3 + k3 = l, \\ k, l > 0. \end{cases}
$$

To prove Theorem [1.3](#page-5-1), we give the following property.

Proposition 2.2 *Suppose that* $\mu \in$ $\sqrt{ }$ $\left(0, \frac{\sqrt{3}}{10}\right)$ holds.

(*i*) For $\mu = 0$, \mathcal{N}_0 does not contain semitrivial couples.

(*ii*) For $\mu \in (0, \frac{\sqrt{3}}{10})$, \mathcal{N}_0 does not contain semitrivial couples (*u*, 0) and $A' < \inf_{(0,v)\in\mathcal{N}_0'} J_0(0, v).$

Proof (i) For $\mu = 0$, a straightforward computation yields that

$$
H_0(u, v) = (2_s^* - 1) \|u\|_{D^s}^2 + \|v\|_{D^s}^2 - 2_s^* \int_{\mathbb{R}^N} |u|^{2_s^* - 2} uv \, dx.
$$

For any $(u, v) \in \mathcal{N}_0$, if $u = 0$ and $v \neq 0$, then $H_0(u, v) = H_0(0, v) = ||v||_{D^s}^2$, which is a contradiction with the definition of \mathcal{N}_0 . Likewise, if $v = 0$, $u \neq 0$, we also get a contradition.

(ii) It is obvious that if $\mu \in (0, \frac{\sqrt{3}}{10})$, \mathcal{N}_0 does not contain semitrivial couples $(u, 0)$. Next, we prove the second part of (ii). For any $(0, v) \in \mathcal{N}_0$, we get

$$
H_0(0, v) = ||v||_{D^s}^2 - \mu \int_{\mathbb{R}^N} |v|^{2_s^*} dx = 0
$$

and

$$
J_0(0, v) = \frac{1}{2} ||v||_{D^s}^2 - \frac{1}{2_s^*} \mu \int_{\mathbb{R}^N} |v|^{2_s^*} dx = \frac{1}{2} ||v||_{D^s}^2 - \frac{1}{2_s^*} ||v||_{D^s}^2 = \frac{1}{4} ||v||_{D^s}^2.
$$

For every $r > 0$, $(t(r)rv, t(r)v) \in \mathcal{N}_0$ with $t(r) = \left(\frac{(3r^2 + 1)\mu}{4r^3 + \mu}\right)^{\frac{1}{2}}$, and then

$$
A' \le J_0(t(r)rv, t(r)v) = \frac{1}{4} \frac{(3r^2 + 1)^2 \mu}{4r^3 + \mu} ||v||_{D^s}^2;
$$

so, according to the defnition of infmum, we deduce that

$$
A' \le \frac{(3r^2 + 1)^2 \mu}{4r^3 + \mu} \inf_{(0,v) \in \mathcal{N}_0'} J_0(0,v).
$$

For $\mu \in (0, \frac{\sqrt{3}}{10})$ and $r = \frac{3}{10\mu}$, we have $\frac{(3r^2+1)^2\mu}{4r^3+\mu} < 1$; therefore, $A' < \inf_{(0,\nu)\in\mathcal{N}_0'} J_0(0,\nu)$. ◻

Proof of Theorem 1.3 By the same argument as the proof of Theorem [1.2](#page-5-2), for every $(au_{\epsilon}, bu_{\epsilon}) \in \mathcal{N}_0$, we have $G_0(au_{\epsilon}, bu_{\epsilon}) = (0, 0)$, that is

$$
\begin{cases} ||au_{\epsilon}||_{D^s}^2 - \int_{\mathbb{R}^{4s}} |au_{\epsilon}|^3 bu_{\epsilon} dx = 0, \\ ||bu_{\epsilon}||_{D^s}^2 - \mu \int_{\mathbb{R}^{4s}} |bu_{\epsilon}|^4 dx - \int_{\mathbb{R}^{4s}} |au_{\epsilon}|^3 bu_{\epsilon} dx = 0; \end{cases}
$$

similarly, as in the proof of Theorem [1.2,](#page-5-2) it is easy to check that

$$
a = \left[m_0 \|u_{\epsilon}\|_{D^s}^2 \left(\int_{\mathbb{R}^{4s}} |u_{\epsilon}|^4 dx \right)^{-1} \right]^{\frac{1}{2}},
$$

$$
b = \left[\frac{1}{m_0} \|u_{\epsilon}\|_{D^s}^2 \left(\int_{\mathbb{R}^{4s}} |u_{\epsilon}|^4 dx \right)^{-1} \right]^{\frac{1}{2}}.
$$

Then, system ([5\)](#page-7-0) has a minimum solution $(\tilde{k}, \tilde{l}) = \left(\sqrt{m_0}, \frac{1}{\sqrt{m_0}}\right)$ \sum Since \mathcal{N}_0 ⊂ \mathcal{N}_0 ^{*,*} one has

$$
A' \le A \le J_0\left(\sqrt{m_0}u_{\varepsilon}, \frac{1}{\sqrt{m_0}}u_{\varepsilon}\right) = \frac{1}{4}(3\tilde{k}^2 + \tilde{l}^2)S_s^2.
$$

For $\mu \in [0, \frac{\sqrt{3}}{19})$, let $\{(u_n, v_n)\}\subset \mathcal{N}_0$ be a minimizing sequence, which implies $J_0(u_n, v_n) \to A^{\prime\prime}$. By proposition [2.2,](#page-10-0) we assume $u_n \neq 0$ and $v_n \neq 0$. Then. from Lemma [2.1](#page-7-2)

$$
A' + o_n(1) = J_0(u_n, v_n) = \frac{1}{4} \left(3||u_n||_{D^s}^2 + ||v_n||_{D^s}^2 \right)
$$

\n
$$
\geq \frac{1}{4} S_s \left(3|u_n|_{2_s^s}^2 + |v_n|_{2_s^s}^2 \right)
$$

\n
$$
\geq \frac{1}{4} (3\tilde{k}^2 + \tilde{l}^2) S_s^2.
$$

Therefore, $A' = \frac{1}{4}(3\tilde{k}^2 + \tilde{l}^2)S_s^2$ and $\left(\sqrt{m_0}u_{\epsilon}, \frac{1}{\sqrt{m_0}}u_{\epsilon}\right)$ λ is a nontrivial ground state solution of (2) (2) .

3 Positive ground states for [\(1](#page-2-0))

In this section, we study the existence of ground state solutions of problem (1) (1) (1) and we will give the proof of Theorem [1.1.](#page-4-1) Before proving the main result, we will give some Lemmas that will be used throughout this section. Since

$$
G'(u,v)[u,v] = \left((2-2_s^*)(\|u\|_{D^s}^2 - \int_{\Omega} |u|^2 dx), (2-2_s^*) \int_{\Omega} |v|^{2_s^*} dx \right) \neq (0,0)
$$

for all $(u, v) \in \mathcal{N}$, we get that \mathcal{N} is a C^1 -manifold, where \mathcal{N} is defined in ([2\)](#page-4-0).

Lemma 3.1 *Assume that* $\lambda \in (0, \lambda_1(\Omega))$ *and* $\mu > 0$ *hold, then* $\mathcal{N} \neq \emptyset$.

Proof For given $u \in H^{s}(\Omega)$, $u > 0$, we denote $\theta = \frac{\|u\|_{D^{s}}^2}{\|u\|_{D^{s}}^2 - \lambda \|u\|_{D^{s}}^2}$, $\overline{\theta} := \frac{\|u\|_{D^{s}}^2 - \lambda \|u\|_{D^{s}}^2}{\int_{\Omega} |u|^{2^{*}_{s}} dx}$. Then, let m_0 be a strictly positive solution of

$$
m^{2_s^*-1}-\theta m^{2_s^*-3}+\mu=0;
$$

there holds

$$
\left((m_0\overline{\theta})^{\frac{1}{2_s^*-2}}u,(m_0^{3-2_s^*}\overline{\theta})^{\frac{1}{2_s^*-2}}u\right)\in\mathcal{N}.
$$

◻

Denote

$$
\mathcal{B} := \inf_{w \in \Gamma} \max_{t \in [0,1]} J(w(t)),
$$

where $\Gamma := \{ w \in C([0, 1], H^s(\Omega) \times H^s(\Omega)) : w(0) = (0, 0), J(w(1)) < 0 \}.$

Lemma 3.2 *Assume that* $\lambda > 0$ *and* $\mu > 0$ *hold*, *then* $\beta < A$.

Proof To prove $\mathcal{B} < A$, we may assume that $0 \in \Omega$ without loss of generality. Then, there exists $r > 0$, such that $B_r(0) \subset \Omega$. Let $\phi \in C_0^1(\Omega)$ be a non-negative function with $\phi \equiv 1$ on $\overline{B_r}(0)$. For any $\epsilon > 0$, define $U_{\epsilon} := \phi U_{\epsilon,0}$. By [\[14](#page-21-1)], we obtain that

$$
||U_{\epsilon}||_{D^{s}}^{2} = S_{s}^{N/(2s)} + O(\epsilon^{N-2s}), |U_{\epsilon}|_{2_{s}^{*}}^{2_{s}^{*}} = S_{s}^{N/(2s)} + O(\epsilon^{N})
$$

and

$$
||U_{\epsilon}||_{D^s}^2 \geq C \psi_N(\epsilon)
$$

for some $C > 0$, where

$$
\psi_N(\epsilon) = \begin{cases} \epsilon^{2s} + O(\epsilon^{N-2s}) & \text{if } N > 4s, \\ \epsilon^{2s} |\log \epsilon| + O(\epsilon^{2s}) & \text{if } N = 4s. \end{cases}
$$

Define $(u_{\epsilon}, v_{\epsilon}) := (kU_{\epsilon}, lU_{\epsilon})$, where $(k, l) \in \mathbb{R}^2$, $k, l > 0$ and $(kU_{\epsilon, 0}, lU_{\epsilon, 0})$ is a ground state solution of the limit problem ([2\)](#page-4-0). Then

$$
||u_{\epsilon}||_{D^s}^2 = k^2 S_s^{N/(2s)} + O(\epsilon^{N-2s}), ||v_{\epsilon}||_{D^s}^2 = l^2 S_s^{N/(2s)} + O(\epsilon^{N-2s}),
$$

\n
$$
|u_{\epsilon}|_{2_s^s}^{2_s^*} = l^{2_s^*} S_s^{N/(2s)} + O(\epsilon^N), \int_{\Omega} u_{\epsilon}^{2_s^* - 1} v_{\epsilon} dx = k^{2_s^* - 1} l S_s^{N/(2s)} + O(\epsilon^N)
$$

and

$$
||u_{\varepsilon}||_{D^{s}}^{2} \geq C\psi_{N}(\varepsilon) + O(\varepsilon^{N-2s}).
$$

It is clear that

$$
(2_s^*-1)k^2+l^2=2_s^*k^{2_s^*-1}l+\mu l^{2_s^*};
$$

we have

$$
J(tu_{\epsilon},tv_{\epsilon}) = \frac{2_s^* - 1}{2} ||tu_{\epsilon}||_{D^s}^2 - \frac{2_s^* - 1}{2}\lambda \int_{\Omega} |tu_{\epsilon}|^2 dx + \frac{1}{2} ||tv_{\epsilon}||_{D^s}^2
$$

$$
- \frac{1}{2_s^*} \mu \int_{\Omega} |tv_{\epsilon}|^{2_s^*} dx - \int_{\Omega} |tu_{\epsilon}|^{2_s^* - 1} tv_{\epsilon} dx
$$

$$
\leq \frac{1}{2} t^2 [(2_s^* - 1)k^2 + l^2) S_s^{N/(2s)} - \lambda C \psi_N(\epsilon) + O(\epsilon^{N-2s})]
$$

$$
- \frac{1}{2_s^*} l^{2_s^*} [(2_s^* - 1)k^2 + l^2) S_s^{N/(2s)} + O(\epsilon^N)]
$$

$$
= \frac{1}{2} l^2 (\frac{NA}{s} - \lambda C \psi(\epsilon) + O(\epsilon^{N-2})) - \frac{1}{2_s^*} l^{2_s^*} (\frac{NA}{s} + O(\epsilon^N)).
$$

Consider

$$
h(t) := \frac{t^2}{2}a_{\epsilon} - \frac{t^{2^*}}{2^*_{s}}b_{\epsilon},
$$

B Birkhäuser

where

$$
a_{\epsilon} = \frac{NA}{s} - \lambda C \psi(\epsilon) + O(\epsilon^2), \ b_{\epsilon} = \frac{NA}{s} + O(\epsilon^N).
$$

Obviously, for $\epsilon > 0$ and small enough

$$
\max_{t>0} h(t) = \frac{s}{N} \left(\frac{a_{\epsilon}}{b_{\epsilon}^{(N-2s)/N}} \right)^{\frac{N}{2s}} < A,
$$

thus

$$
\mathcal{B} \le \max_{t>0} J(tu_{\epsilon}, tv_{\epsilon}) < A.
$$

◻

Now, we defne some notions which will be useful in the paper.

$$
\mathcal{N} = \left\{ (u, v) \in \left(H^{s}(\Omega) \times H^{s}(\Omega) \right) \setminus \{ (0, 0) \} : H(u, v) = 0 \right\},\
$$

where

$$
H(u, v) = (2_s^* - 1) ||u||_{D^s}^2 - (2_s^* - 1)\lambda \int_{\Omega} |u|^2 dx + ||v||_{D^s}^2
$$

$$
- \mu \int_{\Omega} |v|^{2_s^*} dx - 2_s^* \int_{\Omega} |u|^{2_s^* - 2} uv dx
$$

and

$$
\mathcal{A}:=\left\{(u,v)\in \left(H^s(\Omega)\times H^s(\Omega)\right)\,:\, \mu\int_{\Omega}|v|^{2^*_s}{\rm d}x+2^*_s\int_{\Omega}|u|^{2^*_s-2}uv{\rm d}x>0\right\}
$$

the set of admissible pairs. Moreover, if $\lambda \in (0, \lambda_1(\Omega))$, for all $(u, v) \in \mathcal{N}$, we have that $\mathcal N$ is a C^1 -manifold being. Notice that $\mathcal N \subset \mathcal N' \subset \mathcal A$, and for some constant $C > 0$, we have

$$
H(u, v) \ge ||(u, v)||^2 - C||(u, v)||^{2_s^*},
$$
\n(6)

where

$$
||(u, v)||^2 := ||u||_{D^s}^2 - \lambda \int_{\Omega} |u|^2 dx + \frac{1}{2_s^*-1} ||v||_{D^s}^2.
$$

Proposition 3.3 *Assume* $\lambda \in (0, \lambda_1(\Omega))$ *and* $\mu > 0$ *hold*, *then*

$$
\inf_{(u,v)\in\mathcal{N}} J(u,v) = \inf_{(u,v)\in\mathcal{A}} \max_{t\geq 0} J(tu,tv) = \mathcal{B} > 0.
$$

Proof Taking $(u, v) \in A$, if $H(\tilde{t}u, \tilde{t}v) = 0$, then

$$
H(\tilde{t}u, \tilde{t}v) = (2_s^* - 1)\tilde{t}^{2} ||u||_{D^{s}}^{2} - (2_s^* - 1)\lambda \tilde{t}^{2} \int_{\Omega} |u|^{2} dx + \tilde{t}^{2} ||v||_{D^{s}}^{2}
$$

$$
- \mu \tilde{t}^{2_s^*} \int_{\Omega} |v|^{2_s^*} dx - 2_s^* \tilde{t}^{2_s^*} \int_{\Omega} |u|^{2_s^* - 1} v dx
$$

$$
= \tilde{t}^{2} \left[(2_s^* - 1) ||u||_{D^{s}}^{2} - (2_s^* - 1)\lambda \int_{\Omega} |u|^{2} dx + ||v||_{D^{s}}^{2} - \mu \tilde{t}^{2_s^* - 2} \int_{\Omega} |v|^{2_s^*} dx - 2_s^* \tilde{t}^{2_s^* - 2} \int_{\Omega} |u|^{2_s^* - 2} u v dx \right],
$$

that is

$$
(2_s^* - 1) \|u\|_{D^s}^2 - (2_s^* - 1)\lambda \int_{\Omega} |u|^2 dx + \|v\|_{D^s}^2
$$

= $\tilde{t}^{2_s^* - 2} \bigg(\mu \int_{\Omega} |v|^{2_s^*} dx + 2_s^* \int_{\Omega} |u|^{2_s^* - 1} v dx \bigg);$

thus

$$
\tilde{t} = \left[\left((2_s^* - 1) ||u||_{D^s}^2 - (2_s^* - 1)\lambda \int_{\Omega} |u|^2 dx + ||v||_{D^s}^2 \right) \right]
$$

$$
\left(\mu \int_{\Omega} |v|^{2_s^*} dx + 2_s^* \int_{\Omega} |u|^{2_s^* - 1} v dx \right)^{-1} \right]^{\frac{1}{2_s^* - 2}};
$$

we derive $(\tilde{t}u, \tilde{t}v) \in \mathcal{N}$ and $J(\tilde{t}u, \tilde{t}v) \ge \inf_{(u,v)\in \mathcal{N}} J(u, v)$. For any $(u, v) \in \mathcal{A}$, there exists $t > 0$, such that $J(tu, tv) < 0$, therefore

$$
\inf_{(u,v)\in\mathcal{A}} \max_{t\geq 0} J(tu,tv) \geq \mathcal{B}.\tag{7}
$$

On the other hand, for any $(u, v) \in \mathcal{N}$, we have $\tilde{t} = 1$ and

$$
\inf_{(u,v)\in\mathcal{N}} J(u,v) \ge \inf_{(u,v)\in\mathcal{A}} \max_{t\ge 0} J(tu,tv).
$$
\n(8)

Taking $w = (w_1, w_2) \in \Gamma$, then for a small $t, H(w(t)) > 0$ and

$$
H(w(1)) = 2J(w(1)) - \frac{2s}{N} \left[\mu \int_{\Omega} |w_2(1)|^{2_s^*} dx + 2_s^* \int_{\Omega} |w_1(1)|^{2_s^* - 1} w_2(1) dx \right] < 0,
$$

which means that there exists $t' > 0$, such that $H(w(t')) = 0$, i.e., $w(t') \in \mathcal{N}$. Thereby

$$
\mathcal{B} \ge \inf_{(u,v)\in\mathcal{N}} J(u,v). \tag{9}
$$

Combining $(7)-(9)$ $(7)-(9)$ $(7)-(9)$ $(7)-(9)$, there holds

$$
\inf_{(u,v)\in\mathcal{N}}J(u,v)=\inf_{(u,v)\in\mathcal{A}}\max_{t\geq 0}J(tu,tv)=\mathcal{B}.
$$

We prove $B > 0$. If $J(u_n, v_n) \to 0$ and $(u_n, v_n) \in \mathcal{N}$, then $||(u_n, v_n)|| \to 0$ which is a contradiction with the inequality (6). Therefore, we have contradiction with the inequality [\(6](#page-14-0)). Therefore, we have

$$
\inf_{(u,v)\in\mathcal{N}} J(u,v) = \mathcal{B} > 0
$$

. ◻

Now, we show a preliminary property before we prove the main result of this section.

Proposition 3.4 *Assume* $\lambda \in (0, \lambda_1(\Omega))$ *and* $\mu > 0$ *hold. Then, every ground state solution of* [\(1](#page-2-0)) *is nontrivial*.

Proof Assume $(u, v) \in \mathcal{N}$, such that $J(u, v) = \inf_{(u, v) \in \mathcal{N}} J$. If $v = 0$, then $\langle J'(u, 0), (u, 0) \rangle = 0$ implies $u = 0$. Now, suppose that $u = 0$. If $\mu = 0$, then $v = 0$. So, let $\mu > 0$ and ν is a nontrivial solution to

$$
\begin{cases} (-\Delta)^s v = \mu |v|^{2_s^* - 2} v, \ x \in \Omega, \\ v = 0, \quad x \in \mathbb{R}^N \setminus \Omega. \end{cases}
$$

Observe that

$$
\inf \left\{ J(0, w) : w \in H^{s}(\Omega) \setminus \{0\}, ||w||_{D^{s}}^{2} = \mu \int_{\Omega} |w|^{2^{*}_{s}} dx \right\} \leq J(0, v) = \inf_{\mathcal{N}} J
$$

$$
\leq \inf \left\{ J(0, w) : w \in H^{s}(\Omega) \setminus \{0\}, ||w||_{D^{s}}^{2} = \mu \int_{\Omega} |w|^{2^{*}_{s}} dx \right\}
$$

and

$$
\inf \left\{ J(0, w) : w \in H^{s}(\Omega) \setminus \{0\}, ||w||_{D^{s}}^{2} = \mu \int_{\Omega} |w|^{2^{*}_{s}} dx \right\}
$$

= $\frac{s}{N} \inf \left\{ ||w||_{D^{s}}^{2} : w \in H^{s}(\Omega) \setminus \{0\}, ||w||_{D^{s}}^{2} = \mu \int_{\Omega} |w|^{2^{*}_{s}} dx \right\}$
= $\frac{s}{N \mu^{(N-2s)/(2s)}} \inf \left\{ ||w||_{D^{s}}^{N} : w \in H^{s}(\Omega), |w|_{2^{*}_{s}} = 1 \right\}.$

Then, $\tilde{v} = \left(\frac{\mu}{\|\mathbf{v}\|}\right)$ $||v||_{D^{s}}^{2}$ $\int_{0}^{\frac{1}{2s}} v \text{ satisfies } ||\tilde{v}||_{2_s^*} = 1$ and $||v||_{D^s}^N = \frac{N}{s\mu^{(N-2s)/(2s)}}J(0, v) = \inf\{||w||_{D^s}^N : w \in H^s(\Omega), |w|_{2_s^s} = 1\},$

which is a contradiction. Therefore, the ground state solutions of (1) (1) are nontrivial.

◻

Theorem 3.5 *Assume* $\lambda \in (0, \lambda_1(\Omega))$ *and* $\mu > 0$ *hold, then there exists a ground state* (u, v) *of* $J(u, v) = \inf_{\mathcal{N}} J = \inf_{\mathcal{N}} J = \mathcal{B}.$

Proof By the Sobolev and Poincar*é* inequalities, we know that

$$
J(u, v) \ge C\left(\|u\|_{D^s}^2 + \|v\|_{D^s}^2 - \|v\|_{D^s}^{2^*_{s}} - \|u\|_{D^s}^{2^*-1}\|v\|_{D^s}\right) \ge d
$$

for some $d > 0$ and $\rho = \sqrt{\|u\|_{D^s}^2 + \|v\|_{D^s}^2}$ sufficiently small. For any $(u, v) \in H^s(\Omega) \times H^s(\Omega)$ satisfying

$$
\int |y|^2^* dx + 2^* \int |y|^2^* dx
$$

$$
\mu \int_{\Omega} |v|^{2_s^*} \mathrm{d} x + 2_s^* \int_{\Omega} |u|^{2_s^* - 1} v \mathrm{d} x > 0,
$$

we obtain that

$$
J(tu, tv) = \frac{t^2}{2} \left[(2_s^* - 1) ||u||_{D^s}^2 - (2_s^* - 1)\lambda \int_{\Omega} |u|^2 dx + ||v||_{D^s}^2 \right] - t^{2_s^*} \left(\frac{\mu}{2_s^*} \int_{\Omega} |v|^{2_s^*} dx - \int_{\Omega} |u|^{2_s^* - 1} v dx \right) \to -\infty, \text{ as } t \to +\infty.
$$

Therefore, there exists a $(PS)_{\mathcal{B}}$ -sequence $\{(u_n, v_n)\}\in H^s(\Omega)\times H^s(\Omega)$ for *J* at level *B*, namely, a sequence, such that $J(u_n, v_n) \to \mathcal{B}$ and $J'(u_n, v_n) \to 0$. There holds

$$
C(||u_n||_{D^s}^2 + ||v_n||_{D^s}^2) \leq J(u_n, v_n) - \frac{1}{2_s^*} \langle J'(u_n, v_n), (u_n, v_n) \rangle
$$

$$
\leq (\mathcal{B} + 1) + \sqrt{||u_n||_{D^s}^2 + ||v_n||_{D^s}^2}
$$

for some constant $C > 0$, which implies the sequence $\{(u_n, v_n)\}$ is bounded. Thus, consider a weakly convergent subsequence, it follows from Sobolev embedding theorem that there exists $(u, v) \in H^s(\Omega) \times H^s(\Omega)$, such that:

$$
u_n \rightharpoonup u \text{ in } H^s(\Omega), \qquad u_n \to u \text{ in } L^2(\Omega), \qquad u_n \to u \text{ a.e. on } \Omega,
$$

\n
$$
v_n \rightharpoonup v \text{ in } H^s(\Omega), \qquad v_n \to v \text{ a.e. on } \Omega,
$$

\n
$$
|u_n|^{2_s^* - 1} \rightharpoonup |u|^{2_s^* - 1} \qquad \text{ in } L^{2_s^*/(2_s^* - 1)}(\Omega),
$$

\n
$$
|v_n|^{2_s^* - 1} \rightharpoonup |v|^{2_s^* - 1} \qquad \text{ in } L^{2_s^*/(2_s^* - 1)}(\Omega),
$$

\n
$$
|u_n|^{2_s^* - 3} u_n v_n \rightharpoonup |u|^{2_s^* - 3} u v \qquad \text{in } L^{2_s^*/(2_s^* - 1)}(\Omega).
$$

In fact, for any $(\xi, \eta) \in H^s(\Omega) \times H^s(\Omega)$, we have

$$
\left| \langle J'(u_n, v_n), (\xi, \eta) \rangle - \langle J'(u, v), (\xi, \eta) \rangle \right|
$$

=
$$
\left| (2_s^* - 1)(\|u_n\|_{D^s} - \|u\|_{D^s}) \cdot \|\xi\|_{D^s} - (2_s^* - 1)\lambda \int (u_n - u)\xi dx \right|
$$

-
$$
(2_s^* - 1) \int (|u_n|^{2_s^* - 2}v_n - |u|^{2_s^* - 2}v)\eta dx + (\|v_n\|_{D^s} - \|v\|_{D^s}) \cdot \|\eta\|_{D^s}
$$

-
$$
\mu \int (|v_n|^{2_s^* - 1} - |v|^{2_s^* - 1})\eta dx - \int (|u_n|^{2_s^* - 1} - |u|^{2_s^* - 1})\eta dx \right| \to 0.
$$

Therefore, $J'(u, v) = 0$. We claim that $(u, v) \neq (0, 0)$. Otherwise

$$
u_n \to 0 \text{ in } L^2(\Omega). \tag{10}
$$

Since *J* is continuous and $J(u_n, v_n) \to \mathcal{B} > 0$, then (u_n, v_n) cannot converge to (0, 0) in $H^s(\Omega) \times H^s(\Omega)$. Thus, up to a subsequence, we may assume that $(u_n, v_n) \neq (0, 0)$ and $||(u_n, v_n)|| \ge C > 0$, $(u_n, v_n) \in A$ for all $n \in \mathbb{N}$. Taking a subsequence $\{(u_{n_k}, v_{n_k})\}$ of $\{(u_n, v_n)\}\$ in $(H^s(\Omega) \times H^s(\Omega)) \cap \mathcal{A}^c$, then

$$
\langle J'(u_{n_k}, v_{n_k}), (u_{n_k}, v_{n_k}) \rangle \ge ||(u_{n_k}, v_{n_k})||^2.
$$

Thus, there exists a contradiction with

$$
\langle J'(u_{n_k}, v_{n_k}), (u_{n_k}, v_{n_k}) \rangle \to 0 \text{ as } k \to +\infty.
$$

Choose

$$
t_n = \left[\left((2_s^* - 1) ||u_n||_{D^s}^2 + ||v_n||_{D^s}^2 \right) \left(\mu \int_{\Omega} |v_n|^{2_s^*} \mathrm{d}x + 2_s^* \int_{\Omega} |u_n|^{2_s^* - 1} v_n \mathrm{d}x \right)^{-1} \right]^{\frac{1}{2_s^* - 2}},
$$

and we denote in the same way the functions in $H^s(\Omega)$ and their extensions in \mathbb{R}^N putting the function equal to zero in $\mathbb{R}^N \setminus \Omega$, we have $(t_n u_n, t_n v_n) \in \mathcal{N}_0$, and so

$$
\langle J'_0(t_n u_n, t_n v_n), (t_n u_n, t_n v_n) \rangle = 0.
$$
\n(11)

Recalling [\(10](#page-18-0)), we conclude that

$$
\langle J'_0(u_n, v_n), (u_n, v_n) \rangle = \langle J'(u_n, v_n), (u_n, v_n) \rangle + o(1) = o(1).
$$
 (12)

Thus, from [\(11](#page-18-1)) and ([12\)](#page-18-2), we get $t_n \to 1$. By Lemma [3.2](#page-12-1) and Theorem [1.2](#page-5-2) or Theorem [1.3,](#page-5-1) we obtain

$$
\mathcal{B} < A = A' \le \lim_{n} J(t_n u_n, t_n v_n) = \mathcal{B}
$$

which is a contradiction. Thus, $(u, v) \neq (0, 0)$ and $(u, v) \in \mathcal{N} \subset \mathcal{N}$. Likewise, we find $t_n \to 1$, such that $(t_n u_n, t_n v_n) \in \mathcal{N}$, and according to Proposition [3.3](#page-14-1), we have

$$
\inf_{\mathcal{N}} J \leq J(u, v) \leq \lim_{n \to \infty} J(t_n u_n, t_n v_n) = \mathcal{B} = \inf_{\mathcal{N}} J \leq \inf_{\mathcal{N}} J;
$$

thus, we completed the proof of Theorem [3.3.](#page-14-1) \Box

To prove that the solutions of problem [\(1\)](#page-2-0) are positive, we denote $u = u_{+} + u_{-}$, where *u*+ and *u*− are, respectively, the positive and the negative part of *u*. We can write

$$
J_{+}(u,v) = \frac{2_{s}^{*}-1}{2} ||u||_{D^{s}}^{2} - \frac{2_{s}^{*}-1}{2} \lambda \int_{\Omega} |u|^{2} dx + \frac{1}{2} ||v||_{D^{s}}^{2}
$$

$$
- \frac{1}{2_{s}^{*}} \mu \int_{\Omega} |v_{+}|^{2_{s}^{*}} dx - \int_{\Omega} |u_{+}|^{2_{s}^{*}-1} v dx,
$$

which is of C^1 class on $H^s(\Omega) \times H^s(\Omega)$. Furthermore, one easily checks that

$$
\langle J'_{+}(u, v), (\xi, \eta) \rangle = (2_s^* - 1) ||u||_{D^s} \cdot ||\xi||_{D^s} - (2_s^* - 1)\lambda \int_{\Omega} u\xi dx
$$

$$
-(2_s^* - 1) \int_{\Omega} |u|^{2_s^* - 2} v\xi dx + ||v||_{D^s} \cdot ||\eta||_{D^s}
$$

$$
-\mu \int_{\Omega} |v_+|^{2_s^* - 1} \eta dx - \int_{\Omega} |u_+|^{2_s^* - 1} \eta dx.
$$

Lemma 3.6 Assume that for $q > 0$, we have $\{(u_n, v_n)\}\$ is a $(PS)_c$ -sequence for J_+ . One gets that $\{(u_n, v_n)\}\$ is bounded and $\{(u_n)_+, (v_n)_+\}$ *is a* $(PS)_c$ -sequence for J_+ .

Proof Taking $\{(u_n, v_n)\}\$ a (*PS*)_c-sequence for J_+ , there exists $C > 0$, such that

$$
C(||u_n||_{D^s}^2 + ||v_n||_{D^s}^2) \le J_+(u_n, v_n) - \frac{1}{2_s^*} \langle J'_+(u_n, v_n), (u_n, v_n) \rangle
$$

$$
\le q + 1 + \sqrt{||u_n||_{D^s}^2 + ||v_n||_{D^s}^2},
$$

and so, $\{(u_n, v_n)\}\$ is bounded. We observe that

$$
o(1) = \langle J'_+(u_n, v_n), ((u_n)_-, (v_n)_-) \rangle
$$

= $(2_s^* - 1) ||u_n||_{D^s} ||(u_n)_-||_{D^s} - (2_s^* - 1)\lambda \int_{\Omega} |(u_n)_-|^2 dx$
+ $||v_n||_{D^s} ||(v_n)_-||_{D^s} - \int_{\Omega} (u_n)_+^{2_s^* - 1} (v_n)_- dx$
 $\geq C (||u_n||_{D^s} ||(u_n)_-||_{D^s} + ||v_n||_{D^s} ||(v_n)_-||_{D^s}),$

and then, $((u_n)_-, (v_n)_-) \to (0, 0)$ in $H^s(\Omega) \times H^s(\Omega)$ and $\int_{\Omega} (u_n)_+^{2_s^* - 1} (v_n)_- dx \to 0$. Therefore

$$
J_{+}(u_{n}, v_{n}) - J_{+}((u_{n})_{+}, (v_{n})_{+})
$$

=
$$
\frac{2_{s}^{*} - 1}{2} (\|u_{n}\|_{D^{s}} \|(u_{n})_{-}\|_{D^{s}} - \lambda |(u_{n})_{-}|^{2})
$$

+
$$
\frac{1}{2} \|v_{n}\|_{D^{s}} \|(v_{n})_{-}\|_{D^{s}} - \int_{\Omega} (u_{n})_{+}^{2_{s}^{*}-1} (v_{n})_{-} dx \to 0.
$$

Birkhäuser

It is clear that $\{(u_n)_+\}$ is bounded and $((u_n)_-,(v_n)_-) \to (0,0)$ in $H^s(\Omega)$. For any $(\xi, \eta) \in H^s(\Omega) \times H^s(\Omega)$, we derive that

$$
\left| \langle J'_{+}(u_n, v_n) - J'_{+}((u_n)_+, (v_n)_+), (\xi, \eta) \rangle \right|
$$

\n
$$
= (2_s^* - 1) \left[\| (u_n)_- \|_{D^s} \| \xi \|_{D^s} - \lambda \int_{\Omega} (u_n)_- \xi dx - \int_{\Omega} (u_n)_+^{2_s^* - 2} (v_n)_- \xi dx \right]
$$

\n
$$
+ \| (v_n)_- \|_{D^s} \| \eta \|_{D^s}
$$

\n
$$
\leq C \left(\| (u_n)_- \|_{D^s} \| \xi \|_{D^s} + \| (v_n)_- \|_{D^s} \| \eta \|_{D^s} + \| (u_n)_+ \|_{D^s}^{2_s^* - 2} \| (v_n)_- \|_{D^s} \| \xi \|_{D^s} \right)
$$

\n
$$
\leq C \left(\| (u_n)_- \|_{D^s} + \left(1 + \| (u_n)_+ \|_{D^s}^{2_s^* - 2} \right) \| (v_n)_- \|_{D^s} \right) \left(\| \xi \|_{D^s}^2 + \| \eta \|_{D^s}^2 \right)^{\frac{1}{2}},
$$

and then, $||J'_{+}(u_n, v_n) - J'_{+}((u_n)_+, (v_n)_+)|| \to 0$, that is, $\{(u_n, v_n)\}\$ is a $(PS)_c$ -sequence for J_+ .

Proof of Theorem 1.1 According to the proof of Theorem [3.5](#page-17-0), we can know that the functional J_{+} satisfies the geometrical assumptions of the Mountain Pass Theorem. For the functional J_+ , there exists a $(PS)_{\mathcal{B}}$ -sequence $\{(u_n, v_n)\}\in H^s(\Omega)\times H^s(\Omega)$. By Lemma [3.6](#page-19-0), we can assume that $u_n = (u_n)_+, v_n = (v_n)_+$ and $\{(u_n, v_n)\}$ is bounded. Since $J(u_n, v_n) = J_+(u_n, v_n)$, we can obtain the same conclusion as Theorem [3.5.](#page-17-0) Therefore, we get a ground state solution (u, v) of *J* with $u, v \ge 0$. Then, using the strong maximum principle, we obtain that $u, v > 0$. The proof is completed. \Box

Acknowledgements Supported by NSFC Mathematics Tianyuan Fund (12126334), NSFLN (2021-MS-275), and EFLN (LJKQZ2021093).

References

- 1. Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. (2) **75**(1), 67–82 (2007)
- 2. Ambrosio, V.: Concentration phenomena for critical fractional Schrödinger systems. Commun. Pure Appl. Anal. **17**(5), 2085–2123 (2018)
- 3. Costa, D.G.: On a class of elliptic systems in \${\mathbb{R}}^N\$. Electron. J. Difer. Equ. **1994**, 14 (1994)
- 4. Chen, W., Deng, S.: Multiple solutions for a critical fractional elliptic system involving concaveconvex nonlinearities. Proc. R. Soc. Edinb. Sect. A **146**(6), 1167–1193 (2016)
- 5. d'Avenia, P., Mederski, J.: Positive ground states for a system of Schrödinger equations with critically growing nonlinearities. Calc. Var. Part. Difer. Equ. **53**(3–4), 879–900 (2015)
- 6. Giacomoni, J., Mishra, P.K., Sreenadh, K.: Critical growth fractional elliptic systems with exponential nonlinearity. Nonlinear Anal. **136**, 117–135 (2016)
- 7. Guo, Z., Liu, M., Tang, Z.: A system involving fractional hardy-schrödinger operators and critical hardy-sobolev exponents (in chinese). Sci. Sin. Math. **50**, 1–14 (2020). [https://doi.org/10.1360/](https://doi.org/10.1360/SCM-2019-0571) [SCM-2019-0571](https://doi.org/10.1360/SCM-2019-0571)
- 8. Guo, Z., Luo, S., Zou, W.: On critical systems involving fractional Laplacian. J. Math. Anal. Appl. **446**(1), 681–706 (2017)
- 9. He, X., Squassina, M., Zou, W.: The Nehari manifold for fractional systems involving critical nonlinearities. Commun. Pure Appl. Anal. **15**(4), 1285–1308 (2016)
- 10. Hong, Q., Yang, Y.: On critical fractional systems with Hardy-Littlewood-Sobolev nonlinearities. Rocky Mount. J. Math. **50**(5), 1661–1683 (2020)
- 11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Diferential Equations. Elsevier Science, Amsterdam (2006)
- 12. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientifc Publishers, Cambridge (2009)
- 13. Li, P., Yuan, Y., Hui, Y.: Infnitely many small energy solutions for fractional coupled Schrödinger system with critical growth. J. Nonlinear Sci. Appl. **10**(9), 4930–4939 (2017)
- 14. Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. **367**(1), 67–102 (2015)
- 15. Wang, L., Zhang, B., Zhang, H.: Fractional Laplacian system involving doubly critical nonlinearities in \${\mathbb{R}}^N\$. Electron. J. Qual. Theory Difer. Equ. **57**, 17 (2017)
- 16. Wang, Q.: Positive least energy solutions of fractional Laplacian systems with critical exponent. Electron. J. Difer. Equ. **150**, 16 (2016)
- 17. Willem, M.: Minimax Theorems. Progress in Nonlinear Diferential Equations and their Applications, 24th edn. Birkhäuser Boston Inc., Boston (1996)
- 18. Zhen, M., He, J., Xu, H., Yang, M.: Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent. Bound. Value Probl. **96**, 25 (2018)
- 19. Zhen, M., He, J., Xu, H., Yang, M.: Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete Contin. Dyn. Syst. **39**(11), 6523– 6539 (2019)