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Abstract
The aim of this paper is to study a fractional system involving critical non-lineari-
ties. Using the Mountain Pass Theorem, the existence of ground state solutions for 
our problem is obtained in two cases.
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1  Introduction

In the past few decades, Laplace equations or systems have been extensively studied, 
and there are many results about multiple positive solutions, ground state solutions, 
sign-change solutions and so on (see [8–10, 14, 15, 17] and references therein). In 
addition, the coupled Schrödinger system involving Laplacian appears in several 
branches of physics. It can accurately describe the multiplicate chemical reaction 
catalyzed by the catalyst grains under constant or variant temperature. Moreover, it 
can describe the interaction between the non-linear Schrödinger field and the elec-
tromagnetic field. The author in [3] studied a class of coupled quasi-linear semilin-
ear Schrödinger system

{
−Δu + a(x)u = Fu(x, u, v), x ∈ ℝ

N ,

−Δv + b(x)v = Fv(x, u, v), x ∈ ℝ
N ,
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where F ∈ C1(ℝN ×ℝ
2,ℝ) . With the help of the generalized mountain pass lemma, 

the author proved that the system has a nontrivial solution. Since then, the coupled 
quasi-linear Schrödinger system has attracted more and more attention from related 
scholars (see [1, 2] and the references therein).

In recent years, fractional differential equations have played an important role in 
many fields such as science, electrical circuits, engineering and applied mathematics 
(see [11, 12]). Compared with the Laplace problem, the fractional Laplace problem is 
non-local and faces greater research difficulty. In recent years, both elliptic fractional 
and non-local operators have received great attention in the research of pure mathemat-
ics and the practical application of mathematics (see [6, 7, 16] and references therein). 
Therefore, the study of coupled systems is natural. Consider the following fractional 
system:

where (−Δ)s is the fractional Laplacian, � , � and � are parameters, 0 < s < 1 , 
N > 2s , 𝜆 <

√
𝜇𝜈 , 1 < p < 2∗ − 1 , 2∗ = 2N

N−2s
 is the Sobolev critical exponent. The 

authors in [19] proved that there exists a �0 ∈ (0, 1) , such that when 0 < 𝜇 ≤ 𝜇0 , 
the system has a positive ground state solution. When 𝜇 > 𝜇0 , there exists a 
��,� ∈ [

√
(� − �0)�,

√
��) , such that if 𝜆 > 𝜆𝜇,𝜈 , the system has a positive ground 

state solution; if 𝜆 < 𝜆𝜇,𝜈 , the system has no ground state solution.
In [13], the authors studied the small energy solutions of the coupled fractional 

Schrödinger system with critical growth. Using a variant of fountain theorem, when the 
Ambrosetti–Rabinowitz (AR) condition is not satisfied, the criterion for the existence 
of an infinite number of small energy solutions was explained.

As far as we know, there are few research results on concave–convex non-linear 
fractional elliptic systems. In [4], the authors studied the multiple solutions of fractional 
equations that satisfy the homogeneous Dirichlet boundary conditions. They obtained 
multiple solutions for the following fractional elliptic system:

where Ω is a smooth bounded set in ℝN , n > 2s , with s ∈ (0, 1) , (−Δ)s is the frac-
tional Laplace operator; 𝜆,𝜇 > 0 are two parameters; the exponent n

n−2s
≤ 2 ; 𝛼 > 1 , 

𝛽 > 1 satisfy 2 < 𝛼 + 𝛽 = 2∗
s
 , 2∗

s
=

2n

n−2s
(n > 2s) is the fractional critical Sobolev 

exponent.
In [18], the authors focused on the following critical case fractional Laplacian 

system:

{
(−Δ)su + �u = |u|p−1u + �v, x ∈ ℝ

N ,

(−Δ)sv + �v = |v|2∗−2v + �u, x ∈ ℝ
N ,

⎧⎪⎨⎪⎩

(−Δ)su = ��u�q−2u + 2�

�+�
�u��−2u�v�� , x ∈ Ω,

(−Δ)sv = ��v�q−2v + 2�

�+�
�u���v��−2v, x ∈ Ω,

u = v = 0, x ∈ ℝ
N ⧵Ω,
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where (−Δ)s is the fractional Laplacian, 0 < s < 1 , 𝜇1,𝜇2 > 0 , 2∗ = 2N

N−2s
 is a frac-

tional critical Sobolev exponent, N > 2s , 1 < 𝛼, 𝛽 < 2 , � + � = 2∗ , Ω is an open-
bounded set of ℝN with Lipschitz boundary and 𝜆1, 𝜆2 > −𝜆1,s(Ω) , �1,s is the first 
eigenvalue of the non-local operator (−Δ)s with homogeneous Dirichlet boundary 
datum. Using the Nehari mainfold, the authors proved the existence of a positive 
ground state solution of the system for all 𝛾 > 0 . Then, the asymptotic behaviors of 
the positive ground state solutions are analyzed when � → 0.

Recently, the positive ground states for a system of Schrödinger equations with criti-
cally growing non-linearities have been studied by many authors. At the same time, 
new difficulties have arisen. Due to the non-linearities, sometimes traditional meth-
ods have lost their effectiveness. Therefore, from the perspective of the Palais–Smale 
sequence of the functional, the authors in [5] studied the following system:

where Ω is a bounded domain of ℝN , N ≥ 4 , 2∗ = 2N

N−2
 , � ∈ ℝ and � ≥ 0 . They 

obtained existence and nonexistence results, depending on the value of the param-
eters � and �.

Motivated by the above works, especially by [5], we propose the problem

where 0 < s < 1,N ≥ 4s , 2∗
s
∶=

2N

N−2s
 is the fractional Sobolev critical exponent, Ω 

is an open-bounded domain of ℝN with Lipschitz boundary, � , � are parameters and 
� ≥ 0.

The fractional Laplacian operator can be defined by

where CN,s is given by

⎧
⎪⎨⎪⎩

(−Δ)su + �1u = �1�u�2∗−2u + ��

2∗
�u��−2u�v�� in Ω,

(−Δ)sv + �2v = �2�v�2∗−2v + ��

2∗
�u���v��−2v in Ω,

u = v = 0 in ℝN ⧵Ω,

⎧⎪⎨⎪⎩

−Δu = 𝜆u + �u�2∗−2v in Ω,

−Δv = 𝜇�v�2∗−2v + �u�2∗−2u in Ω,

u > 0, v > 0 in Ω,

u = v = 0 on 𝜕Ω,

(1)

⎧⎪⎨⎪⎩

(−Δ)su = 𝜆u + u2
∗
s
−2v, x ∈ Ω,

(−Δ)sv = 𝜇v2
∗
s
−1 + u2

∗
s
−1, x ∈ Ω,

u > 0, v > 0, x ∈ Ω,

u = v = 0, x ∈ ℝ
N ⧵Ω,

(−Δ)su(x) = CN,sP.V.∫
ℝN

u(x) − u(y)

|x − y|N+2s dy

= CN,s lim
�→0+ ∫Bc

�
(x)

u(x) − u(y)

|x − y|N+2s dy

= −
1

2
CN,s ∫

ℝN

u(x + y) + u(x − y) − 2u(x)

|y|N+2s dy,
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and P.V. is the principle value defined by the latter formula.
Define Hilbert space Ds(Ω) as the completion of C∞

c
(Ω) with respect to the norm 

‖ ⋅ ‖Ds induced by the following scalar product:

If Ω is an open-bounded Lipschitz domain, then Ds(Ω) coincides with the Sobolev 
space

where X is a linear space of Lebesgue measurable functions from ℝN to ℝ , such 
that the restriction to Ω of any function f in X belongs to L2(Ω) and the map 
(x, y) ↦

(
f (x) − f (y)

)|x − y|− N

2
+s is in L2

(
ℝ

2N ⧵ (Ωc × Ωc), dxdy
)
 , and Ωc is the 

complement of Ω in ℝN . Consider fractional Sobolev space

equipped the Gagliardo seminorm

Define the fractional Sobolev space

which was introduced in [14]. From u = 0 a.e. in Ωc , it is easy to see that

Hence, we just denote ‖u‖Hs(Ω) by

CN,s =

(
∫
ℝN

1 − cos(�1)

|� |N+2s d�

)−1

,

⟨u, v⟩Ds ∶=
CN,s

2 ∫
ℝ2N

�
u(x) − u(y)

��
v(x) − v(y)

�
�x − y�N+2s dxdy.

X0 ∶= {f ∈ X ∶ f = 0 a.e. in Ωc},

Hs(ℝN) ∶=

{
u ∈ L2(ℝN) ∶

|u(x) − u(y)|
|x − y| N

2
+s

∈ L2(ℝ2N)

}
,

[u]2
Hs(ℝN )

∶=
CN,s

2 ∫
ℝ2N

|u(x) − u(y)|2
|x − y|N+2s dxdy.

Hs(Ω) ∶=
�
x ∈ Hs(ℝN) ∶ u = 0 a.e. in Ωc

�
,

‖u‖Hs(Ω) ∶=

�
�∫Ω

�u�2dx + CN,s

2 ∫
ℝ2N⧵(Ωc×Ωc)

�u(x) − u(y)�2
�x − y�N+2s dxdy

� 1

2

,

|u|2
2
∶= ∫Ω

|u|2dx = ∫
ℝN

|u|2dx,

∫
ℝ2N⧵(Ωc×Ωc)

|u(x) − u(y)|2
|x − y|N+2s dxdy = ∫

ℝ2N

|u(x) − u(y)|2
|x − y|N+2s dxdy.

‖u‖Hs ∶=

�
�∫

ℝN

�u�2dx + CN,s

2 ∫
ℝ2N

�u(x) − u(y)�2
�x − y�N+2s dxdy

� 1

2

.
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and 
�
Hs(Ω), ‖ ⋅ ‖Hs

�
 is a Hilbert space.

Indeed, the solutions of problem (1) correspond to critical points of the C1−func-
tional J ∶ Hs(Ω) × Hs(Ω) → ℝ given by

We are interested in nontrivial solutions of (1), namely solutions 
(u, v) ∈ Hs(Ω) × Hs(Ω) with both u ≢ 0 and v ≢ 0 , especially positive ground states 
of (1). As it is known, the ground state solutions are the solutions of (1) that mini-
mize J on the Nehari manifold

where

The paper is organized as follows. In Sect. 2, we consider the limit case (Ω = ℝ
N 

and � = 0) . We provide results concerning the limiting problem for N > 4s and 
the remaining problem N = 4s . Finally, in Sect. 3, we investigate the existence of 
ground states for problem (1) and we prove our main result.

Theorem  1.1  If 𝜇 > 0 and � ∈ (0, �1(Ω)) , then problem (1) has a ground state 
solution.

To estimate the energy levels of J, now, we consider the limit system

We search for nontrival solutions of (2) as critical points of the functional

defined in Ds(ℝN) × Ds(ℝN) . In particular, we investigate ground state solutions of 
(2) of the form (ku� , lu�) with k, l > 0 , where the definition of u� is given by (3) in 
Sect. 2. Therefore, we consider

J(u, v) =
2∗
s
− 1

2
‖u‖2

Ds −
2∗
s
− 1

2
�∫Ω

�u�2dx + 1

2
‖v‖2

Ds

−
1

2∗
s

� ∫Ω

�v�2∗s dx − ∫Ω

�u�2∗s−2uvdx.

N =

{
(u, v) ∈ Hs(Ω) × Hs(Ω) ⧵ {(0, 0)} ∶ G(u, v) = (0, 0)

}
,

G(u, v) =

�
‖u‖2

Ds − �∫Ω

�u�2dx − ∫Ω

�u�2∗s−2uvdx,

‖v‖2
Ds − � ∫Ω

�v�2∗s dx − ∫Ω

�u�2∗s−2uvdx
�
.

(2)

⎧⎪⎨⎪⎩

(−Δ)su = �u�2∗s−2v, x ∈ ℝ
N ,

(−Δ)sv = ��v�2∗s−2v + �u�2∗s−2u, x ∈ ℝ
N ,

u, v,∈ Ds(ℝN).

J0(u, v) =
2∗
s
− 1

2
‖u‖2

Ds +
1

2
‖v‖2

Ds −
1

2∗
s

� ∫
ℝN

�v�2∗s dx − ∫
ℝN

�u�2∗s−2uvdx



	 Z. Guo and Y. Deng46  Page 6 of 22

where

and

where

It is known that N0 and N′
0
 are of class C1 . For the limit case, we define that 

A ∶= inf
(u,v)∈N0

J0(u, v) and A� ∶= inf
(u,v)∈N�

0

J0(u, v) , then we obtain the following.

Theorem  1.2  Suppose that N > 4s and 𝜇 > 0 hold. Let 𝜖 > 0 , then (
m

1

2∗s −2

0
u� ,m

3−2∗s
2∗s −2

0
u�

)
 is a ground state solution of (2) and

where 
(
k0, l0

)
 is a solution of (5).

Theorem 1.3  Suppose that N = 4s and 𝜇 > 0 hold. Let 𝜖 > 0 , then 
�√

m0u� ,
1√
m0

u�

�
 

is a ground state solution of (2) and

where k̃, l̃ is the unique solution of (5).

2 � The limit problem

Before starting to prove, let us clarify some facts. Let Ss be the best constant, such that

N0 ∶=

{
(u, v) ∈

(
Ds(ℝN) × Ds(ℝN)

)
⧵ {(0, 0)} ∶ G0(u, v) = (0, 0)

}
,

G0(u, v) =

�
‖u‖2

Ds − ∫
ℝN

�u�2∗s−2uvdx,

‖v‖2
Ds − � ∫

ℝN

�v�2∗s dx − ∫
ℝN

�u�2∗s−2uvdx
�

N
�
0
∶=

{
(u, v) ∈

(
Ds(ℝN) × Ds(ℝN)

)
⧵ {(0, 0)} ∶ H0(u, v) = 0

}
,

H0(u, v) = (2∗
s
− 1)‖u‖2

Ds + ‖v‖2
Ds − 2∗

s ∫
ℝN

�u�2∗s−2uvdx − � ∫
ℝN

�v�2∗s dx.

J0

(
m

1

2∗s −2

0
u� ,m

3−2∗s
2∗s −2

0
u�

)
= A = A� =

s

N

(
(2∗

s
− 1)k2

0
+ l2

0

)
SN∕(2s)
s

,

J0

�
√
m0u𝜖 ,

1√
m0

u𝜖

�
= A = A� =

1

4
(3k̃2 + l̃2)S2

s
,
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then Ss is attained by

that is

Normalizing ũ by |ũ|2∗
s
,ℝN , we obtain that

Thus

and u is a positive ground state solution of

Let

where u1 = S

1

2∗s −2

s u is a positive ground state solution of

satisfying

2.1 � The limit problem for N > 4s

Define a function fN ∶ (0,+∞) → ℝ

Then, the function fN is strictly increasing and satisfies

Ss ∶= inf
u∈Ds(ℝN )⧵{0}

‖u‖2
Ds

�u�2
2∗
s
,ℝN

,

ũ(x) = k(�2 + |x − x0|)
N−2s

2 ,

Ss =
‖ũ‖2

Ds

�ũ�2
2∗
s
,ℝN

.

u =
ũ

|ũ|2∗
s
,ℝN

.

Ss = inf
u ∈ Ds(ℝN)

�u�2∗
s
,ℝN=1

‖u‖2
Ds = ‖u‖2

Ds ,

(−Δ)su = Ss|u|2∗s−2u in ℝN .

(3)u�(x) = �
−

N−2s

2 u1(
x

�
),

(−Δ)su = |u|2∗s−2u in ℝ
N ,

‖u1‖2Ds = �u1�2
∗
s

2∗
s
, ℝN

= SN∕(2s)
s

.

fN(m) = m2∗
s
−1 − m2∗

s
−3 + �.
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Lemma 2.1  fN has at least one zero point. Let k, l > 0 satisfy

Considering the system

then

where (ki, li) are solutions of system (5), and (k0, l0) is a particular solution of system 
(5).

Proof  Multiplying the second equation of system (5) by l1−2∗s , and then brought the 
first equation of system (5) into it and simplifying, we obtain

Obviously, fN has a finite number of solutions and system (5) has some solutions 
correspondingly.

(i) If fN has a unique zero point m1 , then system (5) has a unique solution denoted 
as (k1, l1).

(ii) If fN has n zero points, which are denoted as mi(i = 1, 2,… , n) , then system 
(5) has n solutions correspondingly denoted as

Assume m1 < m2 < ⋯ < mn , then there exists a minimum one, which is denoted as 

(k0, l0) ∶=

(
m

1

2∗s −2

0
,m

3−2∗s
2∗s −2

0

)
 . Then, we have

Fix k, l > 0 satisfying (4) and

lim
m→0+

fN(m) = −∞ and lim
m→+∞

fN(m) = +∞.

(4)(2∗
s
− 1)k2 + l2 ≤ 2∗

s
k2

∗
s
−1l + �l2

∗
s .

(5)

⎧
⎪⎨⎪⎩

k2
∗
s
−3l = 1,

𝜇l2
∗
s
−1 + k2

∗
s
−1 = l,

k, l > 0,

(2∗
s
− 1)k2

0
+ l2

0
= min

i=1,2…,n
{(2∗

s
− 1)k2

i
+ l2

i
} ≤ (2∗

s
− 1)k2 + l2,

(
k

l

)2∗
s
−1

−
(
k

l

)2∗
s
−3

+ � = 0.

(ki, li) =

(
m

1

2∗s −2

i
,m

3−2∗s
2∗s −2

i

)
.

(2∗
s
− 1)k2

0
+ l2

0
∶= min

i=1,2,…,n
{(2∗

s
− 1)k2

i
+ l2

i
}.

ki = kh
1

2∗s −2 , li = lh
1

2∗s −2 ,
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where h ∶=
(2∗

s
−1)k2+l2

l(2∗
s
k2

∗
s −1+�l2

∗
s −1)

 . Then

so (ki, li) are solutions of system (5). Since

we conclude that

Thus

	�  ◻

Proof of Theorem 1.2  For (au� , bu�) ∈ N0 , we know that G0(au� , bu�) = (0, 0) , that 
is

it yields that

then

Since fN admits a minimum nontrivial zero point m0 , then m0 =
a

b
 . We derive

which ensures that

ki

li
=

k

l
,

0 < ki ≤ k, 0 < li ≤ l,

(2∗
s
− 1)k2

i
+ l2

i
≤ (2∗

s
− 1)k2 + l2.

(2∗
s
− 1)k2

0
+ l2

0
= min

i=1,2…,n
{(2∗

s
− 1)k2

i
+ l2

i
} ≤ (2∗

s
− 1)k2 + l2.

�‖au�‖2Ds − ∫
ℝN �au��2∗s−1bu�dx = 0,

‖bu�‖2Ds − � ∫
ℝN �bu��2∗s dx − ∫

ℝN �au��2∗s−1bu�dx = 0,

⎧⎪⎨⎪⎩

‖u�‖2Ds
∫
ℝN

�u� �2∗s dx
= a2

∗
s
−3b,

b2−2
∗
s ⋅

‖u�‖2Ds
∫
ℝN

�u� �2∗s dx
− � −

a2
∗
s −1

b2
∗
s −1

= 0,

(
a

b

)2∗
s
−1

−
(
a

b

)2∗
s
−3

+ � = 0.

a =

�
m0‖u�‖2Ds

�
∫
ℝN

�u��2∗s dx
�−1

� 1

2∗s −2

,

b =

�
m

3−2∗
s

0
‖u�‖2Ds

�
∫
ℝN

�u��2∗s dx
�−1

� 1

2∗s −2

,

(
au� , bu�

)
∈ N0,
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and system (5) has a solution (k0, l0) =

(
m

1

2∗s −2

0
,m

3−2∗s
2∗s −2

0

)
 . Since N0 ⊂ N

′
0
 , then 

A′ ≤ A . Also, by J�
0

(
k0u� , l0u�

)
= 0 and 

(
k0u𝜖 , l0u𝜖

)
∈ N0 ⊂ N

�
0
 , we have

Take {(un, vn)} ⊂ N
�
0
 a minimizing sequence, we get J0(un, vn) → A� . Using Sobolev 

embedding and Hölder inequality, we deduce that

Thereby, we obtain that

by Lemma 2.1, it is easy to verify that

which leads to

It follows that:

A� ≤ A ≤ J0

(
m

1

2∗s −2

0
u� ,m

3−2∗s
2∗s −2

0
u�

)
=

s

N

(
(2∗

s
− 1)k2

0
+ l2

0

)
SN∕(2s)
s

.

Ss

�
(2∗

s
− 1)�un�22∗

s

+ �vn�22∗
s

�

≤ (2∗
s
− 1)‖un‖2Ds + ‖vn‖2Ds

= 2∗
s �

ℝN

�un�2∗s−1vndx + � �
ℝN

�vn�2∗s dx

≤ 2∗
s �

ℝN

�un�
2∗s −1

2∗s dx�
ℝN

�vn�2∗s dx + � �
ℝN

�vn�2∗s dx.

(2∗
s
− 1)

(
S

2s−N

4s

s |un|2∗
s

)2

+

(
S

2s−N

4s

s |vn|2∗
s

)2

≤ 2∗
s

(
S

2s−N

4s

s |un|2∗
s

)2∗
s
−1(

S
2s−N

4s

s |vn|2∗
s

)
+ �

(
S

2s−N

4s

s |un|2∗
s

)2∗
s

;

(2∗
s
− 1)k2

0
+ l2

0
≤ S

1−
N

2s

s

[
(2∗

s
− 1)|un|22∗

s

+ |vn|22∗
s

]
,

A� + on(1) = J0(un, vn)

=
2∗
s
− 1

2
‖un‖2Ds +

1

2
‖vn‖2Ds −

1

2∗
s

� �
ℝN

�vn�2∗s dx − �
ℝN

�un�2∗s−2unvndx

=
s

N

�
(2∗

s
− 1)‖un‖2Ds + ‖vn�2Ds

�

≥ s ⋅ Ss

N

�
(2∗

s
− 1)

�
�
ℝN

�un�2∗s dx
� 2

2∗s

+

�
�
ℝN

�vn�2∗s dx
� 2

2∗s

�

≥ s

N

�
(2∗

s
− 1)k2

0
+ l2

0

�
SN∕(2s)
s

.
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Thus, 

(
m

1

2∗s −2

0
u� ,m

3−2∗s
2∗s −2

0
u�

)
 is a ground state solution of system (2). 	�  ◻

2.2 � The limit problem for N = 4s

In this subsection, we consider the limit problem for a general N = 4s . We notice 
that in the previous subsection, the key points consist of the existence of a zero of 
the function fN and the solution of the system (5). Similarly as before, it is easy 
to see that

To prove Theorem 1.3, we give the following property.

Proposition 2.2  Suppose that � ∈

�
0,

√
3

10

�
 holds.

(i) For � = 0 , N′
0
 does not contain semitrivial couples.

(ii) For � ∈ (0,
√
3

10
) , N′

0
 does not contain semitrivial couples (u,  0) and 

A� < inf
(0,v)∈N�

0

J0(0, v).

Proof  (i) For � = 0 , a straightforward computation yields that

For any (u, v) ∈ N
�
0
 , if u = 0 and v ≠ 0 , then H0(u, v) = H0(0, v) = ‖v‖2

Ds , which is 
a contradiction with the definition of N′

0
 . Likewise, if v = 0 , u ≠ 0 , we also get a 

contradition.
(ii) It is obvious that if � ∈ (0,

√
3

10
) , N′

0
 does not contain semitrivial couples 

(u, 0). Next, we prove the second part of (ii). For any (0, v) ∈ N
�
0
 , we get

and

A� =
s

N

(
(2∗

s
− 1)k2

0
+ l2

0

)
SN∕(2s)
s

.

f (m) = m3 − m + 𝜇, m > 0,

⎧
⎪⎨⎪⎩

kl = 1,

𝜇l3 + k3 = l,

k, l > 0.

H0(u, v) = (2∗
s
− 1)‖u‖2

Ds + ‖v‖2
Ds − 2∗

s ∫
ℝN

�u�2∗s−2uvdx.

H0(0, v) = ‖v‖2
Ds − � ∫

ℝN

�v�2∗s dx = 0
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For every r > 0 , 
(
t(r)rv, t(r)v

)
∈ N

�
0
 with t(r) =

(
(3r2+1)�

4r3+�

) 1

2 , and then

so, according to the definition of infimum, we deduce that

For � ∈ (0,
√
3

10
) and r = 3

10�
 , we have (3r

2+1)2𝜇

4r3+𝜇
< 1 ; therefore, A� < inf

(0,v)∈N�
0

J0(0, v) . 	

� ◻

Proof of Theorem 1.3  By the same argument as the proof of Theorem 1.2, for every 
(au� , bu�) ∈ N0 , we have G0(au� , bu�) = (0, 0) , that is

similarly, as in the proof of Theorem 1.2, it is easy to check that

Then, system (5) has a minimum solution 
�
k̃, l̃

�
=

�√
m0,

1√
m0

�
 . Since N0 ⊂ N

′
0
 , 

one has

For � ∈ [0,
√
3

10
) , let {(un, vn)} ⊂ N

�
0
 be a minimizing sequence, which implies 

J0(un, vn) → A� . By proposition 2.2, we assume un ≠ 0 and vn ≠ 0 . Then. from 
Lemma 2.1

J0(0, v) =
1

2
‖v‖2

Ds −
1

2∗
s

� ∫
ℝN

�v�2∗s dx = 1

2
‖v‖2

Ds −
1

2∗
s

‖v‖2
Ds =

1

4
‖v‖2

Ds .

A� ≤ J0

�
t(r)rv, t(r)v

�
=

1

4

(3r2 + 1)2�

4r3 + �
‖v‖2

Ds ;

A� ≤ (3r2 + 1)2�

4r3 + �
inf

(0,v)∈N�
0

J0(0, v).

�‖au�‖2Ds − ∫
ℝ4s �au��3bu�dx = 0,

‖bu�‖2Ds − � ∫
ℝ4s �bu��4dx − ∫

ℝ4s �au��3bu�dx = 0;

a =

�
m0‖u�‖2Ds

�
∫
ℝ4s

�u��4dx
�−1

� 1

2

,

b =

�
1

m0

‖u�‖2Ds

�
∫
ℝ4s

�u��4dx
�−1

� 1

2

.

A� ≤ A ≤ J0

�
√
m0u𝜖 ,

1√
m0

u𝜖

�
=

1

4
(3k̃2 + l̃2)S2

s
.
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Therefore, A� =
1

4
(3k̃2 + l̃2)S2

s
 and 

�√
m0u� ,

1√
m0

u�

�
 is a nontrivial ground state 

solution of (2). 	�  ◻

3 � Positive ground states for (1)

In this section, we study the existence of ground state solutions of problem (1) 
and we will give the proof of Theorem 1.1. Before proving the main result, we 
will give some Lemmas that will be used throughout this section. Since

for all (u, v) ∈ N  , we get that N  is a C1-manifold, where N  is defined in (2).

Lemma 3.1  Assume that � ∈
(
0, �1(Ω)

)
 and 𝜇 > 0 hold, then N ≠ ∅.

Proof  For given u ∈ Hs(Ω) , u > 0 , we denote � =
‖u‖2

Ds

‖u‖2
Ds
−�‖u‖2

Ds

 , � ∶=
‖u‖2

Ds
−�‖u‖2

Ds

∫
Ω
�u�2∗s dx . 

Then, let m0 be a strictly positive solution of

there holds

	�  ◻

Denote

where Γ ∶=
{
w ∈ C

(
[0, 1],Hs(Ω) × Hs(Ω)

)
∶ w(0) = (0, 0), J(w(1)) < 0

}
.

Lemma 3.2  Assume that 𝜆 > 0 and 𝜇 > 0 hold, then B < A.

A� + on(1) = J0(un, vn) =
1

4

�
3‖un‖2Ds + ‖vn‖2Ds

�

≥ 1

4
Ss

�
3�un�22∗

s

+ �vn�22∗
s

�

≥ 1

4
(3k̃2 + l̃2)S2

s
.

G�(u, v)[u, v] =

�
(2 − 2∗

s
)(‖u‖2

Ds − �Ω

�u�2dx), (2 − 2∗
s
)�Ω

�v�2∗s dx
�

≠ (0, 0)

m2∗
s
−1 − �m2∗

s
−3 + � = 0;

(
(m0�)

1

2∗s −2 u, (m
3−2∗

s

0
�)

1

2∗s −2 u

)
∈ N.

B ∶= inf
w∈Γ

max
t∈[0,1]

J(w(t)),
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Proof  To prove B < A , we may assume that 0 ∈ Ω without loss of generality. Then, 
there exists r > 0 , such that Br(0) ⊂ Ω . Let � ∈ C1

0
(Ω) be a non-negative function 

with � ≡ 1 on Br(0) . For any 𝜖 > 0 , define U� ∶= �U�,0 . By [14], we obtain that

and

for some C > 0 , where

Define (u� , v�) ∶= (kU� , lU�) , where (k, l) ∈ ℝ
2 , k, l > 0 and (kU�,0, lU�,0) is a ground 

state solution of the limit problem (2). Then

and

It is clear that

we have

Consider

‖U�‖2Ds = SN∕(2s)
s

+ O(�N−2s), �U��2
∗
s

2∗
s

= SN∕(2s)
s

+ O(�N)

‖U�‖2Ds ≥ C�N(�)

𝜓N(𝜖) =

{
𝜖2s + O(𝜖N−2s) if N > 4s,

𝜖2s| log 𝜖| + O(𝜖2s) if N = 4s.

‖u�‖2Ds = k2SN∕(2s)
s

+ O
�
�N−2s

�
, ‖v�‖2Ds = l2SN∕(2s)

s
+ O

�
�N−2s

�
,

�u��2
∗
s

2∗
s

= l2
∗
s SN∕(2s)

s
+ O(�N),∫Ω

u
2∗
s
−1

� v�dx = k2
∗
s
−1lSN∕(2s)

s
+ O

�
�N

�

‖u�‖2Ds ≥ C�N(�) + O
�
�N−2s

�
.

(2∗
s
− 1)k2 + l2 = 2∗

s
k2

∗
s
−1l + �l2

∗
s ;

J(tu� , tv�) =
2∗
s
− 1

2
‖tu�‖2Ds −

2∗
s
− 1

2
��Ω

�tu��2dx + 1

2
‖tv�‖2Ds

−
1

2∗
s

� �Ω

�tv��2∗s dx − �Ω

�tu��2∗s−1tv�dx

≤1

2
t2
��
(2∗

s
− 1)k2 + l2

�
SN∕(2s)
s

− �C�N(�) + O(�N−2s)
�

−
1

2∗
s

t2
∗
s

���
2∗
s
− 1

�
k2 + l2

�
SN∕(2s)
s

+ O
�
�N

��

=
1

2
t2
�
NA

s
− �C�(�) + O

�
�N−2

��
−

1

2∗
s

t2
∗
s

�
NA

s
+ O

�
�N

��
.

h(t) ∶=
t2

2
a� −

t2
∗
s

2∗
s

b� ,



Ground state solutions... Page 15 of 22  46

where

Obviously, for 𝜖 > 0 and small enough

thus

	�  ◻

Now, we define some notions which will be useful in the paper.

where

and

the set of admissible pairs. Moreover, if � ∈ (0, �1(Ω)) , for all (u, v) ∈ N
� , we have 

that N′ is a C1-manifold being. Notice that N ⊂ N
′ ⊂ A , and for some constant 

C > 0 , we have

where

Proposition 3.3  Assume � ∈ (0, �1(Ω)) and 𝜇 > 0 hold, then

a� =
NA

s
− �C�(�) + O

(
�2
)
, b� =

NA

s
+ O

(
�N

)
.

max
t>0

h(t) =
s

N

(
a𝜖

b
(N−2s)∕N
𝜖

) N

2s

< A,

B ≤ max
t>0

J(tu𝜖 , tv𝜖) < A.

N
� =

{
(u, v) ∈

(
Hs(Ω) × Hs(Ω)

)
⧵ {(0, 0)} ∶ H(u, v) = 0

}
,

H(u, v) =(2∗
s
− 1)‖u‖2

Ds − (2∗
s
− 1)�∫Ω

�u�2dx + ‖v‖2
Ds

− � ∫Ω

�v�2∗s dx − 2∗
s ∫Ω

�u�2∗s−2uvdx

A ∶=

{
(u, v) ∈

(
Hs(Ω) × Hs(Ω)

)
∶ 𝜇 ∫Ω

|v|2∗s dx + 2∗
s ∫Ω

|u|2∗s−2uvdx > 0

}

(6)H(u, v) ≥ ‖(u, v)‖2 − C‖(u, v)‖2∗s ,

‖(u, v)‖2 ∶= ‖u‖2
Ds − �∫Ω

�u�2dx + 1

2∗
s
− 1

‖v‖2
Ds .

inf
(u,v)∈N�

J(u, v) = inf
(u,v)∈A

max
t≥0 J(tu, tv) = B > 0.
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Proof  Taking (u, v) ∈ A , if H(t̃u, t̃v) = 0 , then

that is

thus

we derive (t̃u, t̃v) ∈ N
� and J(t̃u, t̃v) ≥ inf

(u,v)∈N�
J(u, v) . For any (u, v) ∈ A , there exists 

t > 0 , such that J(tu, tv) < 0 , therefore

On the other hand, for any (u, v) ∈ N
� , we have t̃ = 1 and

Taking w = (w1,w2) ∈ Γ , then for a small t, H(w(t)) > 0 and

which means that there exists t′ > 0 , such that H(w(t�)) = 0 , i.e., w(t�) ∈ N
� . Thereby

Combining (7)–(9), there holds

H(t̃u, t̃v) = (2∗
s
− 1)t̃2‖u‖2

Ds − (2∗
s
− 1)𝜆t̃2 ∫Ω

�u�2dx + t̃2‖v‖2
Ds

− 𝜇t̃2
∗
s ∫Ω

�v�2∗s dx − 2∗
s
t̃2

∗
s ∫Ω

�u�2∗s−1vdx

= t̃2
�
(2∗

s
− 1)‖u‖2

Ds − (2∗
s
− 1)𝜆∫Ω

�u�2dx + ‖v‖2
Ds

−𝜇t̃2
∗
s
−2 ∫Ω

�v�2∗s dx − 2∗
s
t̃2

∗
s
−2 ∫Ω

�u�2∗s−2uvdx
�
,

(2∗
s
− 1)‖u‖2

Ds − (2∗
s
− 1)𝜆∫Ω

�u�2dx + ‖v‖2
Ds

= t̃2
∗
s
−2

�
𝜇 ∫Ω

�v�2∗s dx + 2∗
s ∫Ω

�u�2∗s−1vdx
�
;

t̃ =

��
(2∗

s
− 1)‖u‖2

Ds − (2∗
s
− 1)𝜆∫Ω

�u�2dx + ‖v‖2
Ds

�

�
𝜇 ∫Ω

�v�2∗s dx + 2∗
s ∫Ω

�u�2∗s−1vdx
�−1

� 1

2∗s −2

;

(7)inf
(u,v)∈A

max
t≥0 J(tu, tv) ≥ B.

(8)inf
(u,v)∈N�

J(u, v) ≥ inf
(u,v)∈A

max
t≥0 J(tu, tv).

H(w(1)) = 2J(w(1)) −
2s

N

[
𝜇 ∫Ω

|w2(1)|2∗s dx + 2∗
s ∫Ω

|w1(1)|2∗s−1w2(1)dx

]
< 0,

(9)B ≥ inf
(u,v)∈N�

J(u, v).
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We prove B > 0 . If J(un, vn) → 0 and (un, vn) ∈ N
� , then ‖(un, vn)‖ → 0 which is a 

contradiction with the inequality (6). Therefore, we have

. 	�  ◻

Now, we show a preliminary property before we prove the main result of this 
section.

Proposition 3.4  Assume � ∈ (0, �1(Ω)) and 𝜇 > 0 hold. Then, every ground state 
solution of (1) is nontrivial.

Proof  Assume (u, v) ∈ N  , such that J(u, v) = inf
(u,v)∈N

J . If v = 0 , then 
⟨J�(u, 0), (u, 0)⟩ = 0 implies u = 0 . Now, suppose that u = 0 . If � = 0 , then v = 0 . 
So, let 𝜇 > 0 and v is a nontrivial solution to

Observe that

and

Then, ṽ =
�

𝜇

‖v‖2
Ds

� 1

2∗s v satisfies ‖ṽ‖2∗
s
= 1 and

which is a contradiction. Therefore, the ground state solutions of (1) are nontrivial. 	
� ◻

inf
(u,v)∈N�

J(u, v) = inf
(u,v)∈A

max
t≥0 J(tu, tv) = B.

inf
(u,v)∈N�

J(u, v) = B > 0

{
(−Δ)sv = �|v|2∗s−2v, x ∈ Ω,

v = 0, x ∈ ℝ
N ⧵Ω.

inf

�
J(0,w) ∶ w ∈ Hs(Ω) ⧵ {0}, ‖w‖2

Ds = � �Ω

�w�2∗s dx
�

≤ J(0, v) = inf
N

J

≤ inf

�
J(0,w) ∶ w ∈ Hs(Ω) ⧵ {0}, ‖w‖2

Ds = � �Ω

�w�2∗s dx
�

inf

�
J(0,w) ∶ w ∈ Hs(Ω) ⧵ {0}, ‖w‖2

Ds = � ∫Ω

�w�2∗s dx
�

=
s

N
inf

�
‖w‖2

Ds ∶ w ∈ Hs(Ω) ⧵ {0}, ‖w‖2
Ds = � ∫Ω

�w�2∗s dx
�

=
s

N�(N−2s)∕(2s)
inf

�
‖w‖N

Ds ∶ w ∈ Hs(Ω), �w�2∗
s
= 1

�
.

‖v‖N
Ds =

N

s�(N−2s)∕(2s)
J(0, v) = inf{‖w‖N

Ds ∶ w ∈ Hs(Ω), �w�2∗
s
= 1},
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Theorem 3.5  Assume � ∈ (0, �1(Ω)) and 𝜇 > 0 hold, then there exists a ground state 
(u, v) of J(u, v) = inf

N
J = inf

N
�
J = B.

Proof  By the Sobolev and Poincaré inequalities, we know that

for some d > 0 and � =
�

‖u‖2
Ds + ‖v‖2

Ds  sufficiently small.
For any (u, v) ∈ Hs(Ω) × Hs(Ω) satisfying

we obtain that

Therefore, there exists a (PS)B-sequence {(un, vn)} ∈ Hs(Ω) × Hs(Ω) for J at level B , 
namely, a sequence, such that J(un, vn) → B and J�(un, vn) → 0 . There holds

for some constant C > 0 , which implies the sequence {(un, vn)} is bounded. Thus, 
consider a weakly convergent subsequence, it follows from Sobolev embedding the-
orem that there exists (u, v) ∈ Hs(Ω) × Hs(Ω) , such that:

In fact, for any (�, �) ∈ Hs(Ω) × Hs(Ω) , we have

J(u, v) ≥ C
�
‖u‖2

Ds + ‖v‖2
Ds − ‖v‖2∗s

Ds − ‖u‖2∗s−1
Ds ‖v‖Ds

� ≥ d

𝜇 ∫Ω

|v|2∗s dx + 2∗
s ∫Ω

|u|2∗s−1vdx > 0,

J(tu, tv) =
t2

2

�
(2∗

s
− 1)‖u‖2

Ds − (2∗
s
− 1)�∫Ω

�u�2dx + ‖v‖2
Ds

�

− t2
∗
s

�
�

2∗
s
∫Ω

�v�2∗s dx − ∫Ω

�u�2∗s−1vdx
�

→ −∞, as t → +∞.

C
�‖un‖2Ds + ‖vn‖2Ds

� ≤J(un, vn) − 1

2∗
s

⟨J�(un, vn), (un, vn)⟩

≤(B + 1) +

�
‖un‖2Ds + ‖vn‖2Ds

un ⇀ u in Hs(Ω), un → u in L2(Ω), un → u a.e. on Ω,

vn ⇀ v in Hs(Ω), vn → v a.e. on Ω,

|un|2∗s−1 ⇀ |u|2∗s−1 in L2
∗
s
∕(2∗

s
−1)(Ω),

|vn|2∗s−1 ⇀ |v|2∗s−1 in L2
∗
s
∕(2∗

s
−1)(Ω),

|un|2∗s−3unvn ⇀ |u|2∗s−3uv in L2
∗
s
∕(2∗

s
−1)(Ω).
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Therefore, J�(u, v) = 0 . We claim that (u, v) ≠ (0, 0) . Otherwise

Since J is continuous and J(un, vn) → B > 0 , then (un, vn) cannot converge to (0, 0) 
in Hs(Ω) × Hs(Ω) . Thus, up to a subsequence, we may assume that (un, vn) ≠ (0, 0) 
and ‖(un, vn)‖ ≥ C > 0 , (un, vn) ∈ A for all n ∈ ℕ . Taking a subsequence {(unk , vnk )} 
of {(un, vn)} in (Hs(Ω) × Hs(Ω)) ∩A

c , then

Thus, there exists a contradiction with

Choose

and we denote in the same way the functions in Hs(Ω) and their extensions in ℝN 
putting the function equal to zero in ℝN ⧵Ω , we have (tnun, tnvn) ∈ N

�
0
 , and so

Recalling (10), we conclude that

Thus, from (11) and (12), we get tn → 1 . By Lemma 3.2 and Theorem 1.2 or Theo-
rem 1.3, we obtain

which is a contradiction. Thus, (u, v) ≠ (0, 0) and (u, v) ∈ N ⊂ N
� . Likewise, we find 

tn → 1 , such that (tnun, tnvn) ∈ N
� , and according to Proposition 3.3, we have

thus, we completed the proof of Theorem 3.3. 	�  ◻

�⟨J�(un, vn), (�, �)⟩ − ⟨J�(u, v), (�, �)⟩�
=
����(2

∗
s
− 1)(‖un‖Ds − ‖u‖Ds) ⋅ ‖�‖Ds − (2∗

s
− 1)�∫ (un − u)�dx

− (2∗
s
− 1)∫ (�un�2∗s−2vn − �u�2∗s−2v)�dx + (‖vn‖Ds − ‖v‖Ds ) ⋅ ‖�‖Ds

− � ∫ (�vn�2∗s−1 − �v�2∗s−1)�dx − ∫ (�un�2∗s−1 − �u�2∗s−1)�dx���� → 0.

(10)un → 0 in L2(Ω).

⟨J�(unk , vnk ), (unk , vnk )⟩ ≥ ‖(unk , vnk )‖2.

⟨J�(unk , vnk ), (unk , vnk )⟩ → 0 as k → +∞.

tn =

��
(2∗

s
− 1)‖un‖2Ds + ‖vn‖2Ds

��
� ∫Ω

�vn�2∗s dx + 2∗
s ∫Ω

�un�2∗s−1vndx
�−1

� 1

2∗s −2

,

(11)⟨J�
0
(tnun, tnvn), (tnun, tnvn)⟩ = 0.

(12)⟨J�
0
(un, vn), (un, vn)⟩ = ⟨J�(un, vn), (un, vn)⟩ + o(1) = o(1).

B < A = A� ≤ lim
n

J(tnun, tnvn) = B

inf
N

J ≤ J(u, v) ≤ lim
n→∞

J(tnun, tnvn) = B = inf
N

�
J ≤ inf

N
J;
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To prove that the solutions of problem (1) are positive, we denote u = u+ + u− , 
where u+ and u− are, respectively, the positive and the negative part of u. We can write

which is of C1 class on Hs(Ω) × Hs(Ω) . Furthermore, one easily checks that

Lemma 3.6  Assume that for q > 0 , we have {(un, vn)} is a (PS)c-sequence for J+ . One 
gets that {(un, vn)} is bounded and {

(
(un)+, (vn)+

)
} is a (PS)c-sequence for J+.

Proof  Taking {(un, vn)} a (PS)c-sequence for J+ , there exists C > 0 , such that

and so, {(un, vn)} is bounded. We observe that

and then, ((un)−, (vn)−) → (0, 0) in Hs(Ω) × Hs(Ω) and ∫
Ω
(un)

2∗
s
−1

+ (vn)−dx → 0 . 
Therefore

J+(u, v) =
2∗
s
− 1

2
‖u‖2

Ds −
2∗
s
− 1

2
�∫Ω

�u�2dx + 1

2
‖v‖2

Ds

−
1

2∗
s

� ∫Ω

�v+�2∗s dx − ∫Ω

�u+�2∗s−1vdx,

⟨J�
+
(u, v), (�, �)⟩ = (2∗

s
− 1)‖u‖Ds ⋅ ‖�‖Ds − (2∗

s
− 1)�∫Ω

u�dx

−(2∗
s
− 1)∫Ω

�u�2∗s−2v�dx + ‖v‖Ds ⋅ ‖�‖Ds

−� ∫Ω

�v+�2∗s−1�dx − ∫Ω

�u+�2∗s−1�dx.

C(‖un‖2Ds + ‖vn‖2Ds) ≤J+(un, vn) − 1

2∗
s

⟨J�
+
(un, vn), (un, vn)⟩

≤q + 1 +

�
‖un‖2Ds + ‖vn‖2Ds ,

o(1) = ⟨J�
+
(un, vn), ((un)−, (vn)−)⟩

= (2∗
s
− 1)‖un‖Ds‖(un)−‖Ds − (2∗

s
− 1)��Ω

�(un)−�2dx

+ ‖vn‖Ds‖(vn)−‖Ds − �Ω

(un)
2∗
s
−1

+ (vn)−dx

≥ C
�‖un‖Ds‖(un)−‖Ds + ‖vn‖Ds‖(vn)−‖Ds

�
,

J+(un, vn) − J+((un)+, (vn)+)

=
2∗
s
− 1

2
(‖un‖Ds‖(un)−‖Ds − ��(un)−�2)

+
1

2
‖vn‖Ds‖(vn)−‖Ds − ∫Ω

(un)
2∗
s
−1

+ (vn)−dx → 0.
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It is clear that {(un)+} is bounded and 
(
(un)−, (vn)−

)
→ (0, 0) in Hs(Ω) . For any 

(�, �) ∈ Hs(Ω) × Hs(Ω) , we derive that

and then, ‖J�
+
(un, vn) − J�

+
((un)+, (vn)+)‖ → 0 , that is, {(un, vn)} is a (PS)c-sequence 

for J+ . 	�  ◻

Proof of Theorem 1.1  According to the proof of Theorem 3.5, we can know that the 
functional J+ satisfies the geometrical assumptions of the Mountain Pass Theorem. 
For the functional J+ , there exists a (PS)B-sequence {(un, vn)} ∈ Hs(Ω) × Hs(Ω) . By 
Lemma 3.6, we can assume that un = (un)+ , vn = (vn)+ and {(un, vn)} is bounded. 
Since J(un, vn) = J+(un, vn) , we can obtain the same conclusion as Theorem  3.5. 
Therefore, we get a ground state solution (u, v) of J with u, v ≥ 0 . Then, using the 
strong maximum principle, we obtain that u, v > 0 . The proof is completed. 	�  ◻
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