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Abstract
LetA1,A2,B1,B2,X1,X2, Y1 and Y2 be compact operators on a complex separable Hil-
bert space. Then 

for j = 1, 2, ... where 

and 

Several singular value inequalities for compact operators and matrices are also 
given.
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1 Introduction

Let 𝔹(ℍ) denote the space of all bounded linear operators on a complex separable Hil-
bert space ℍ and let 𝕂(ℍ) denote the two-sided ideal of compact operators in 𝔹(ℍ) . 
For A ∈ 𝕂(ℍ) , the singular values of A denoted by s

1
(A), s2(A), ... are the eigenvalues 

of the positive operator |A| = (A∗A)1∕2 , which is denoted by |A| ≥ 0 , enumerated as 

2sj(A
∗

1
X∗

1
X2A2 + B∗

1
Y∗

1
Y2B2) ≤ sj((L + |N|)⊕ (M + |N∗|))

L = X1A1A
∗

1
X∗

1
+ X2A2A

∗

2
X∗

2
,

M = Y1B1B
∗

1
Y∗

1
+ Y2B2B

∗

2
Y∗

2

N = Y1B1A
∗

1
X∗

1
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∗

2
X∗
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s
1
(A) ≥ s2(A) ≥ ⋯ and repeated according to multiplicity. Properties of singular values 

where A,B ∈ 𝕂(ℍ) are listed below: 

(a) 
 for j = 1, 2, ...

(b) If A,B ≥ 0 and A ≤ B , then 

 for j = 1, 2, ... This fact follows by applying Weyl’s monotonicity principle 
(see, e.g., [7, p. 63] or [10, p. 26]). Moreover, sj(A) ≤ sj(B) if and only if 
sj(A⊕ A) ≤ sj(B⊕ B) for j = 1, 2, ... . Here, we use the direct sum notation 
A⊕ B for the block-diagonal operator 

[
A 0

0 B

]
 defined on ℍ⊕ ℍ.

(c) 
 for j = 1, 2, ... , and they consist of those of A together with those of B.

Some related inequalities with our study are summarized below where 
A,B,X, Y ∈ 𝕂(ℍ):

Bhatia and Kittaneh proved in [8] that if A is self-adjoint, B ≥ 0 and ±A ≤ B, then

for j = 1, 2, ...

Audeh and Kittaneh obtained in [6] an equivalent inequality of (4):

If 
[
A B

B∗ C

]
≥ 0, then

for j = 1, 2, ...

Bhatia and Kittaneh in [9] obtained the arithmetic-geometric mean inequality of sin-
gular values,

for j = 1, 2, ... Zhan proved in [12] that if A,B ≥ 0 , then

for j = 1, 2, ... Hirzallah in [11] generalized inequality (6):

for j = 1, 2, ... Audeh in [4] gave another generalization of inequality (6):

(1)sj(A) = sj(A
∗) = sj(|A|) = sj(|A∗|)

(2)sj(A) ≤ sj(B)

(3)sj

[
A 0

0 B

]
= sj

[
0 B

A 0

]

(4)sj(A) ≤ sj(B⊕ B)

(5)sj(B) ≤ sj(A⊕ C)

(6)2sj(AB
∗) ≤ sj(A

∗A + B∗B)

(7)sj(A − B) ≤ sj(A⊕ B)

(8)
√
2sj

���A1A
∗

2
+ A3A

∗

4
��1∕2

�
≤ sj

��
A1 A3

A2 A4

��
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for j = 1, 2, ... Moreover, it has been shown in the same paper that if Xi, Yi ≥ 0 , 
i = 1, 2, ..., n . Then

for j = 1, 2, ..., where W =

[
A1X

1∕2

1
A2X

1∕2

2
... AnX

1∕2
n

B1Y
1∕2

1
B2Y

1∕2

2
... BnY

1∕2
n

]
 . Several results are demon-

strated as special cases for this inequality, some of these results are summarized 
below:

(i) Let X, Y ≥ 0 . Then

for j = 1, 2, ... In particular, replacing Y by X in inequality (11), leads to the follow-
ing inequality:

for j = 1, 2, ...

(ii) Let A,B,X ≥ 0 . Then

for j = 1, 2, ... , where P = X1∕2AX1∕2 , Q = X1∕2A1∕2B1∕2X1∕2 , and R = X1∕2BX1∕2 . 
Let X = I , we have

for j = 1, 2, ...

(iii) Let X1,X2, Y1, Y2 ≥ 0 . Then

for j = 1, 2, ...,where E = AX
1∕2

1
Y
1∕2

1
A∗ , F = BX

1∕2

2
Y
1∕2

2
B∗ , 

H = X
1∕2

1
A∗AX

1∕2

1
+ Y

1∕2

1
A∗AY

1∕2

1
 , L = X

1∕2

1
A∗BX

1∕2

2
− Y

1∕2

1
A∗BY

1∕2

2
 , and 

K = X
1∕2

2
B∗BX

1∕2

2
+ Y

1∕2

2
B∗BY

1∕2

2
 . For recent studies about generalizations and 

applications for singular value inequalities, we refer the reader to [1–6].
In Sect. 2, we provide generalizations of the inequalities (6)–(15).

(9)sj(AXY
∗B∗) ≤

1

2
sj
(
X∗|A|2X + Y∗|B|2Y)

(10)2sj

(
n∑
i=1

AiX
1∕2

i
Y
1∕2

i
B∗

i

)
≤ s2

j
(W)

(11)2sj
(
AX1∕2Y1∕2B∗ + BX1∕2Y1∕2A∗

)
≤ s2

j

([
AX1∕2 BX1∕2

BY1∕2 AY1∕2

])

(12)2sj(AXB
∗ + BXA∗) ≤ s2

j

([
AX1∕2 BX1∕2

BX1∕2 AX1∕2

])

(13)sj
(
A1∕2XA1∕2 + B1∕2XB1∕2

)
≤ sj((P + |Q∗|)⊕ (R + |Q|)

(14)sj(A + B) ≤ sj

((
A +

|||B
1∕2A1∕2|||

)
⊕

(
B +

|||A
1∕2B1∕2|||

))

(15)2sj(E − F) ≤ sj((H + |L∗|)⊕ (K + |L|))
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2  Singular value inequalities for compact operators

The following lemma is well-known.

Lemma 2.1 Let A be self-adjoint. Then

We are ready to state the first main result in this section.

Theorem 2.2 LetA1,A2,B1,B2,X1,X2, Y1, Y2 ∈ 𝕂(ℍ) . Then

for j = 1, 2, ... where

and

Proof In what follows in this proof, let

and

Let S =

[
X1A1 0

Y1B1 0

]
 and T =

[
X2B2 0

Y2B2 0

]
 . Note that

and

where

and

(16)±A ≤ |A|.

(17)2sj(A
∗

1
X∗

1
X2A2 + B∗

1
Y∗

1
Y2B2) ≤ sj((L + |N|)⊕ (M + |N∗|))

L = X1A1A
∗

1
X∗

1
+ X2A2A

∗

2
X∗

2
,

M = Y1B1B
∗

1
Y∗

1
+ Y2B2B

∗

2
Y∗

2

N = Y1B1A
∗

1
X∗

1
+ Y2B2A

∗

2
X∗

2
.

E =

[
X1A1A

∗
1
X∗
1
+ X2A2A

∗
2
X∗
2

0

0 Y1B1B
∗
1
Y∗
1
+ Y2B2B

∗
2
Y∗
2

]

F =

[
0 X1A1B

∗
1
Y∗
1
+ X2A2B

∗
2
Y∗
2

Y1B1A
∗
1
X∗
1
+ Y2B2A

∗
2
X∗
2

0

]
.

S∗T = A∗

1
X∗

1
X2A2 + B∗

1
Y∗

1
Y2B2

SS∗ + TT∗ = C + D

C =

[
X1A1A

∗
1
X∗
1
X1A1B

∗
1
Y∗
1

Y1B1A
∗
1
X∗
1
Y1B1B

∗
1
Y∗
1

]
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Apply inequality (6) for the operator matrices S and T, we get

Thus inequality (17) has thus been substantiated.   ◻

In the following, we will see some special cases of inequality (17).

Remark 2.3 Letting X1 = X2 = I , B1 = B2 = Y1 = Y2 = 0 in inequality (17), we give 
inequality (6).

Remark 2.4 Letting A1 = A2 = A1∕2 , B1 = −B2 = B1∕2 , X1 = X2 = Y1 = Y2 = I in 
inequality (17), implies inequality (7).

Remark 2.5 Letting B1 = B2 = Y1 = Y2 = 0 in inequality (17), leads to inequality 
(9).

Remark 2.6 Letting A1 = A2 = A1∕2 , B1 = B2 = B1∕2 , and X1 = X2 = Y1 = Y2 = I in 
inequality (17), one can get inequality (14).

In the following, we will present special case of inequality (17) which in turns a 
generalization of several known results.

Corollary 2.7 LetA1,A2,B1,B2,X ∈ 𝕂(ℍ) such that X ≥ 0 . Then

for j = 1, 2, ... where

D =

[
X2A2A

∗
2
X∗
2
X2A2B

∗
2
Y∗
2

Y2B2A
∗
2
X∗
2
Y2B2B

∗
2
Y∗
2

]
.

2sj(A
∗

1
X∗

1
X2A2 + B∗

1
Y∗

1
Y2B2) ≤ sj(C + D)

= sj(E + F)

= sj

[
L N∗

N M

]

= sj

([
L 0

0 M

]
+

[
0 N∗

N 0

])

≤ sj

([
L 0

0 M

]
+

[ |N| 0

0 |N∗|
])

,

(By applying inequalities (1.2) and (2.1)).

= sj((L + |N|)⊕ (M + |N∗|)).

(18)2sj(A
∗

1
XA2 + B∗

1
XB2) ≤ sj((L + |N|)⊕ (M + |N∗|))

L = X1∕2
(
A1A

∗

1
+ A2A

∗

2

)
X1∕2,

M = X1∕2
(
B1B

∗

1
+ B2B

∗

2

)
X1∕2
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and

Proof Letting X1 = X2 = Y1 = Y2 = X1∕2 in inequality (17), we give inequality (18).  
 ◻

Example Let A1 = B1 =

[
i 0

0 i

]
 , A2 = B2 =

[
1 0

0 − 1

]
 , and X =

[
4 0

0 1

]
 . Then 

2sj(A
∗
1
XA2 + B∗

1
XB2) = 16, 4, 0, 0 for j = 1, 2, 3, 4, and 

sj((L + |N|)⊕ (M + |N∗|)) = 16, 16, 4, 4 for j = 1, 2, 3, 4.

For A,B,X ∈ 𝔹(ℍ) , an operator of the form AX − XA is called a commuta-
tor and an operator of the form AX + XA is called anticommutator. Now we 
are ready to state the following generalization of singular value inequality for 
anticommutators.

Corollary 2.8 LetA,B,X ∈ 𝕂(ℍ) such that X ≥ 0 . Then

for j = 1, 2, ... where

and

Proof Let A∗
1
= B2 = A and A2 = B∗

1
= B in inequality (18), we give inequality (19).  

 ◻

Example Let A =

[
0 i

i 0

]
, B =

[
0 2i

i 0

]
, and X =

[
1 0

0 4

]
 . Then 

2sj(AXB + BXA) = 24, 6, 0, 0 for j = 1, 2, 3, 4, and 
sj((L + |N|)⊕ (M + |N∗|)) = 32, 20, 8, 5 for j = 1, 2, 3, 4.

A remarkable inequality for singular value inequalities of anticommutators is 
now ready to present.

Corollary 2.9 LetA,B ∈ 𝕂(ℍ) . Then

for j = 1, 2, ... where

N = X1∕2B1A
∗

1
X1∕2 + X1∕2B2A

∗

2
X1∕2.

(19)2sj(AXB + BXA) ≤ sj((L + |N|)⊕ (M + |N∗|))

L = X1∕2(A∗A + BB∗)X1∕2,

M = X1∕2(AA∗ + B∗B)X1∕2

N = X1∕2B∗AX1∕2 + X1∕2AB∗X1∕2.

(20)2sj(AB + BA) ≤ sj((L + |N|)⊕ (M + |N∗|))
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and

Proof Letting X = I in inequality (19), we give inequality (20 ).   ◻

Corollary 2.10 LetA1,A2,B1,B2,X1,X2, Y1, Y2 ∈ 𝕂(ℍ) . Then

for j = 1, 2, ... where

and

Proof Substituting B2 by −B2 in inequality (17), we give inequality (21).   ◻

We will present the following inequality which extends singular value inequality 
of commutators.

Corollary 2.11 LetA1,A2,B1,B2 ∈ 𝕂(ℍ) . Then

for j = 1, 2, ... where

and

Proof Letting X1 = X2 = Y1 = Y2 = I in inequality (21), we give inequality (22).  
 ◻

Now we state the singular value inequality of commutators.

Corollary 2.12 LetA,B ∈ 𝕂(ℍ) . Then

for j = 1, 2, ... where

L = (A∗A + BB∗),

M = (AA∗ + B∗B)

N = B∗A + AB∗.

(21)2sj(A
∗

1
X∗

1
X2A2 − B∗

1
Y∗

1
Y2B2) ≤ sj((L + |N|)⊕ (M + |N∗|))

L = X1A1A
∗

1
X∗

1
+ X2A2A

∗

2
X∗

2
,

M = Y1B1B
∗

1
Y∗

1
+ Y2B2B

∗

2
Y∗

2

N = Y1B1A
∗

1
X∗

1
− Y2B2A

∗

2
X∗

2
.

(22)2sj(A
∗

1
A2 − B∗

1
B2) ≤ sj((L + |N|)⊕ (M + |N∗|))

L = A1A
∗

1
+ A2A

∗

2
,

M = B1B
∗

1
+ B2B

∗

2

N = B1A
∗

1
− B2A

∗

2
.

(23)2sj(AB − BA) ≤ sj((L + |N|)⊕ (M + |N∗|))
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and

Proof Letting A∗
1
= B2 = A and A2 = B∗

1
= B in inequality (22), we give inequality 

(23).   ◻

We are ready to state the second general result of this section.

Theorem 2.13 Let Ai,Bi,Xi, Yi ∈ 𝕂(ℍ) , i = 1, 2, 3, 4 . Then

where

and

for j = 1, 2, ...

Proof On ⊕2
j=1

H , let C1 =

[
A1 0

A2 0

]
 , C2 =

[
A3 0

A4 0

]
 , D1 =

[
B1 0

B2 0

]
, D2 =

[
B3 0

B4 0

]
 , 

S1 =

[
X1 0

0 X2

]
 , S2 =

[
X3 0

0 X4

]
 , T1 =

[
Y1 0

0 Y2

]
 , and T2 =

[
Y3 0

0 Y4

]
 . It follows that 

C∗
1
S∗
1
S2C2 + D∗

1
T∗
1
T2D2 = K + L , S1C1C

∗
1
S∗
1
+ S2C2C

∗
2
S∗
2
= O , 

T1D1D
∗
1
T∗
1
+ T2D2D

∗
2
T∗
2
= V  and T1D1C

∗
1
S∗
1
+ T2D2C

∗
2
S∗
2
= T  . Substitute the opera-

tors A1,A2,B1,B2,X1,X2, Y1 and Y2 by C1,C2,D1,D2, S1, S2, T1 and T2 , respective‘ly, 
in inequality (17), we give inequality (24).   ◻

Inequality (24) is an extension of several known results, some of them are 
listed below.

Remark 2.14 Letting Bi = 0 for i = 1, 2, 3, 4 , X1 = X
1∕2

1
 , X2 = X

1∕2

2
 , X3 = Y

1∕2

1
 , 

X4 = Y
1∕2

2
 in inequality (24), we give inequality (10) for n = 2.

L = A∗A + BB∗,

M = AA∗ + B∗B

N = B∗A − AB∗.

(24)2sj(K + L) ≤ sj((O + |T|)⊕ (V + |T∗|))

K = A∗

1
X∗

1
X3A3 + A∗

2
X∗

2
X4A4,

L = B∗

1
Y∗

1
Y3B3 + B∗

2
Y∗

2
Y4B4,

O =

[
X1A1A

∗
1
X∗
1
+ X3A3A

∗
3
X∗
3
X1A1A

∗
2
X∗
2
+ X3A3A

∗
4
X∗
4

X2A2A
∗
1
X∗
1
+ X4A4A

∗
3
X∗
3
X2A2A

∗
2
X∗
2
+ X4A4A

∗
4
X∗
4

]
,

V =

[
Y1B1B

∗
1
Y∗
1
+ Y3B3B

∗
3
Y3 Y1B1B

∗
2
Y∗
2
+ Y3B3B

∗
4
Y∗
4

Y2B2B
∗
1
Y∗
1
+ Y4B4B

∗
3
Y∗
3
Y2B2B

∗
2
Y∗
2
+ Y4B4B

∗
4
Y∗
4

]

T =

[
Y1B1A

∗
1
X∗
1
+ Y3B3A

∗
3
X3 Y1B1A

∗
2
X∗
2
+ Y3B3A

∗
4
X∗
4

Y2B2A
∗
1
X∗
1
+ Y4B4A

∗
3
X∗
3
Y2B2A

∗
2
X∗
2
+ Y4B4A

∗
4
X∗
4

]
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Remark 2.15 Letting Bi = Yi = 0 for i = 1, 2, 3, 4 , A1 = A4 = A , A2 = A3 = B , 
X1 = X2 = X1∕2 and X3 = X4 = Y1∕2 in inequality (24), one can get inequality (11).

Remark 2.16 Letting Bi = Yi = 0 for i = 1, 2, 3, 4 , A1 = A4 = A , A2 = A3 = B , 
X1 = X2 = X3 = X4 = X1∕2 in inequality (24), leads to inequality (12).

Remark 2.17 Letting Bi = Yi = 0 and Xi = I for i = 1, 2, 3, 4 in inequality (24), 
implies inequality (8).

Remark 2.18 Letting Bi = Yi = 0 for i = 1, 2, 3, 4 and Ai = 0 for i = 2, 4 in inequality 
(24), we have inequality (9).

Remark 2.19 Letting Bi = Yi = 0 for i = 1, 2, 3, 4 , Ai = 0 for i = 2, 4 , and 
X1 = X3 = I in inequality (24), we get inequality (6).

We will give a special case of inequality (24) which is a generalization of ine-
quality (13).

Corollary 2.20 Let A,B,X, Y ∈ 𝕂(ℍ) ≥ 0 . Then

for j = 1, 2, ... where P = X1∕2AX1∕2 , Q = X1∕2A1∕2B1∕2Y1∕2 and R = Y1∕2BY1∕2 . In 
particular, letting Y = X in inequality (25), we give

for j = 1, 2, ... , where P = X1∕2AX1∕2 , T = X1∕2A1∕2B1∕2X1∕2 and S = X1∕2BX1∕2 . 
Moreover, letting X = I in inequality (13), we give inequality (14).

Proof Letting Bi = Yi = 0 for i = 1, 2, 3, 4 , A1 = A3 = A1∕2, A2 = A4 = B1∕2, 
X1 = X3 = X1∕2 and X2 = X4 = Y1∕2 in inequality (24), leads to

But

(25)sj
(
A1∕2XA1∕2 + B1∕2YB1∕2

)
≤ sj((P + |Q∗|)⊕ (R + |Q|)

sj
(
A1∕2XA1∕2 + B1∕2XB1∕2

)
≤ sj((P + |T∗|)⊕ (S + |T|)

(26)

2sj(A
1∕2XA1∕2 + B1∕2YB1∕2)

≤ 2sj

([
X1∕2AX1∕2 X1∕2A1∕2B1∕2Y1∕2

Y1∕2B1∕2A1∕2X1∕2 Y1∕2BY1∕2

])

= 2sj

([
P Q

Q∗ R

])

= 2sj

([
P 0

0 R

]
+

[
0 Q

Q∗ 0

])
.

[
0 Q

Q∗ 0

]
≤

|||||

[
0 Q

Q∗ 0

]|||||
=

[ |Q∗| 0

0 |Q|
]
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combining this with inequality (26), one can get

  ◻

In the following, we will give another special case of inequality (24) which has been 
proved in [13].

Corollary 2.21 Let A,B,X1,X2, Y1, Y2 ∈ 𝕂(ℍ) such thatX1,X2, Y1, Y2 ≥ 0 . Then

for j = 1, 2, ... , where E = AX
1∕2

1
Y
1∕2

1
A∗ , F = BX

1∕2

2
Y
1∕2

2
B∗ , 

H = X
1∕2

1
A∗AX

1∕2

1
+ Y

1∕2

1
A∗AY

1∕2

1
 , L = X

1∕2

1
A∗BX

1∕2

2
− Y

1∕2

1
A∗BY

1∕2

2
 and 

K = X
1∕2

2
B∗BX

1∕2

2
+ Y

1∕2

2
B∗BY

1∕2

2
.

Proof Letting Bi = Yi = 0 for i = 1, 2, 3, 4 , A1 = A3 = A∗ , A2 = −A4 = B∗ , 
X1 = X

1∕2

1
 , X2 = X

1∕2

2
 , X3 = Y

1∕2

1
 and X4 = Y

1∕2

2
 in inequality (24), we give

which is exactly inequality (15).   ◻

3  Singular value inequalities for matrices

Let �n be the space of all n × n complex matrices In this section, attractive generaliza-
tions of inequalities (6) and (7) for matrices are proved.

Bhatia and Kittaneh in [8] proved that if A,B ∈ �n and Q = AA∗ + BB∗ , then

(27)

sj(A
1∕2XA1∕2 + B1∕2YB1∕2)

≤ sj

([
P 0

0 R

]
+

[ |Q∗| 0

0 |Q|
])

= sj((P + |Q∗|)⊕ (R + |Q|).

2sj(E − F) ≤ sj((H + |L∗|)⊕ (K + |L|))

2sj

(
AX

1∕2

1
Y
1∕2

1
A∗ − BX

1∕2

2
Y
1∕2

2
B∗

)

≤ sj

([
H L

L∗ K

])

= sj

([
H 0

0 K

]
+

[
0 L

L∗ 0

])

≤ sj

([
H 0

0 K

]
+

[ |L∗| 0

0 |L|
])

= sj((H + |L∗|)⊕ (K + |L|)),

(28)sj(AB
∗ + BA∗) ≤ sj(Q⊕ Q)
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for j = 1, 2, ..., n . Among our results in this section, we obtained an inequality that is 
sharper than inequality (28).

Recently in [13] a new generalization of inequality (6) has been given: If 
A,B,X ∈ �n such that X ≥ 0 , then

for j = 1, 2, ..., n . In this section, we have established singular value inequality that 
is equivalent to inequality (29). Several relevant singular value inequalities are also 
given.

We start this section with the following lemmas.

Lemma 3.1 Let A be self-adjoint matrix. Then

Lemma 3.2 Let A,B,X ∈ �n such that X ≥ 0 . Then

for j = 1, 2, ..., n.

Proof Inequality (31) is a direct consequence of inequality (6) by substituting 
A = AX1∕2 and B = BX1∕2 .   ◻

Corollary 3.3 LetA,B,X ≥ 0 . Then

for j = 1, 2, ..., n.

Proof Inequality (32) is followed from Lemma 3.2 by substituting A = A1∕2 and 
B = B1∕2.   ◻

Now, we can present the first result of this section, which is an impressive gen-
eralization of arithmetic–geometric mean inequality.

Theorem 3.4 Let Ai,Bi,Xi ∈ �n such that Xi ≥ 0 for i = 1, 2, ..., n,

and

(29)2sj(AXB
∗) ≤ sj

[(|A|2 + |B|2)1∕2X(|A|2 + |B|2)1∕2
]

(30)±A ≤ |A|

(31)sj(AXB
∗) ≤

1

2
sj
(
X1∕2|A|2X1∕2 + X1∕2|B|2X1∕2

)

(32)sj(A
1∕2XB1∕2) ≤

1

2
sj
(
X1∕2AX1∕2 + X1∕2BX1∕2

)

K =

⎡⎢⎢⎢⎣

A∗
1
A1 + B∗

1
B1 ⋯ A∗

1
An + B∗

1
Bn

A∗
2
A1 + B∗

2
B1 ⋯ A∗

2
An + B∗

2
Bn

⋮ ⋱ ⋮

A∗
n
A1 + B∗

n
B1 ⋯ A∗

n
An + B∗

n
Bn

⎤⎥⎥⎥⎦
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then

for j = 1, 2, ..., n.

Proof Replace A =

⎡
⎢⎢⎢⎣

A1 A2 … An

0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0

⎤
⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎣

B1 B2 … Bn

0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0

⎤
⎥⎥⎥⎦
 and 

X =

⎡
⎢⎢⎢⎣

X1 0 … 0

0 X2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ Xn

⎤
⎥⎥⎥⎦
 in inequality (29), we get inequality (33).   ◻

Remark 3.5 Substituting Ai = Bi = Xi = 0 for i = 2, 3, ..., n in inequality (33), leads 
to inequality (29), the way to show that inequalities (29) and (33) are equivalent.

Corollary 3.6 Let Ai,Bi,Xi ∈ �n such that Xi ≥ 0 for i = 1, 2,

and

Then

for j = 1, 2, ..., n.

Proof Specifies inequality (33) to n = 2 , we give inequality (34).   ◻

Remark 3.7 Substituting X1 = X2 = I in inequality (34), we give inequality (8).

Depending on inequality (33), we now present our next inequality.

X =

⎡
⎢⎢⎢⎣

X1 0 … 0

0 X2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ Xn

⎤
⎥⎥⎥⎦
,

(33)2sj

(
n∑
i=1

AiXiB
∗

i

)
≤ sj

(
K1∕2XK1∕2

)

L =

[
A∗
1
A1 + B∗

1
B1 A∗

1
A2 + B∗

1
B2

A∗
2
A1 + B∗

2
B1 A∗

2
A2 + B∗

2
B2

]

X =

[
X1 0

0 X2

]
.

(34)2sj

(
2∑
i=1

AiXiB
∗

i

)
≤ sj

(
L1∕2XL1∕2

)
.
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Corollary 3.8 Let A,B,X1,X2 ∈ �n such that X1,X2 ≥ 0 , where

Then

for j = 1, 2, ..., n.

Proof Inequality (35) follows by substituting n = 2, A1 = B2 = A and A2 = B1 = B 
in inequality (33).   ◻

Depending on inequality (35), we now present our next result, which is a refine-
ment of inequality (28).

Corollary 3.9 Let A,B ∈ �n , Q1 = AA∗ + BB∗ + AB∗ + BA∗ , 
Q2 = AA∗ + BB∗ − AB∗ − BA∗. Then

for j = 1, 2, ...n.

Proof Substituting X = I in inequality (35), we give

which is precisely inequality (36).   ◻

Remark 3.10 In view of the fact that ±(AB∗ + BA∗) ≤ AA∗ + BB∗ and Weyl’s mono-
tonicity principle, one can see that inequality (36) is sharper than inequality (28).

L =

[
A∗A + B∗B A∗B + B∗A

A∗B + B∗A A∗A + B∗B

]
and X =

[
X1 0

0 X2

]
.

(35)2sj
(
AX1B

∗ + BX2A
∗
)
≤ sj

(
L1∕2XL1∕2

)

(36)2sj(AB
∗ + BA∗) ≤ sj(Q1 ⊕ Q2)

2sj(AB
∗ + BA∗) ≤sj

([
A∗A + B∗B A∗B + B∗A

B∗A + A∗B A∗A + B∗B

])

=sj

([
A∗ B∗

B∗ A∗

][
A B

B A

])

=s2
j

([
A B

B A

])

=s2
j

([
A∗ B∗

B∗ A∗

])

=s2
j

([
A∗ + B∗ 0

0 A∗ − B∗

])

(Since unitarily equivalent matrices

have the same singular values)

=sj

([
Q1 0

0 Q2

])
,
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Depending on inequality (35), we now present our next result, which is another 
refinement of inequality (28).

Corollary 3.11 Let A,B ∈ �n, Q = A∗A + B∗B + |A∗B + B∗A| . Then

for j = 1, 2, ...n.

Proof Throughout this proof let T =

[
A∗A + B∗B 0

0 A∗A + B∗B

]
 , 

Z =

[
0 A∗B + B∗A

B∗A + A∗B 0

]
 . Substituting X = I in inequality (35), we give

which is precisely inequality (37).   ◻

Remark 3.12 By the fact that |A∗B + B∗A| ≤ A∗A + B∗B and by applying Weyl’s 
monotonicity principle, one can see that inequality (37) is sharper than inequality 
(28).

The following result is an application of inequality (33).

Corollary 3.13 Let A, B,  X1,X2 ∈ �n ≥ 0 . Then

for j = 1, 2, ..., n where

Proof Substituting n = 2, A1 = B1 = A1∕2, A2 = B2 = B1∕2 in inequality (33), leads 
to

(37)2sj(AB
∗ + BA∗) ≤ sj(Q⊕ Q)

2sj(AB
∗ + BA∗) ≤sj

([
A∗A + B∗B A∗B + B∗A

B∗A + A∗B A∗A + B∗B

])

=sj(T + S)

≤sj(|(T + S)|)
≤sj(|T| + |S|)
=sj

(
T +

[ |A∗B + B∗A| 0

0 |A∗B + B∗A|
])

=sj

([
Q 0

0 Q

])
.

(38)sj
(
A1∕2X1A

1∕2 + B1∕2X2B
1∕2

)
≤ sj(X

1∕2JX1∕2)

J =

[
A A1∕2B1∕2

B1∕2A1∕2 B

]
and X =

[
X1 0

0 X2

]
.
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which implies that

as required.   ◻

Corollary 3.14 Let A, B,  X1,X2 ∈ �n ≥ 0 , where

Then

for j = 1, 2, ...n.

Proof Spreading inequality (38), leads to

which is precisely inequality (39).   ◻

2sj(A
1∕2X1A

1∕2 + B1∕2X2B
1∕2) ≤ sj

(
(2J)1∕2X(2J)1∕2

)
,

sj
(
A1∕2X1A

1∕2 + B1∕2X2B
1∕2

)
≤sj(J

1∕2XJ1∕2)

=�j(J
1∕2XJ1∕2)

=�j(JX)

=�j(X
1∕2JX1∕2)

=sj(X
1∕2JX1∕2),

S1 = X
1∕2

1
AX

1∕2

1
, S2 = X

1∕2

2
B1∕2A1∕2X

1∕2

1
,

T1 = X
1∕2

2
BX

1∕2

2
and T2 = X

1∕2

1
A1∕2B1∕2X

1∕2

2
.

(39)2sj(A
1∕2X1A

1∕2 + B1∕2X2B
1∕2) ≤ sj(

(
S1 +

||S2||
)
⊕

(
T1 +

||T2||
)
)

sj
(
A1∕2X1A

1∕2 + B1∕2X2B
1∕2

)
≤sj(X

1∕2JX1∕2)

=sj

[
S1 T2
S2 T1

]

=sj

|||||

[
S1 T2
S2 T1

]|||||
(Since

[
S1 T2
S2 T1

]
≥ 0)

=sj

(|||||

[
S1 0

0 T1

]
+

[
0 T2
S2 0

]|||||

)

≤sj

(|||||

[
S1 0

0 T1

]|||||
+

|||||

[
0 T2
S2 0

]|||||

)

=sj

([
S1 0

0 T1

]
+

[ ||S2|| 0

0 ||T2||
])

=sj

([
S1 +

||S2|| 0

0 T1 +
||T2||

])
,
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Remark 3.15 Substituting X1 = X2 = I in inequality (39), we give the following 
result which was proved in [5].

for j = 1, 2, ...n.

The following inequality is a generalization of inequality (7).

Corollary 3.16 Let A,  B,  X1, X2 ∈ �n such that X1,X2 ≥ 0 . Then

for j = 1, 2, ..., n . If A = B = I, we obtain inequality (7), and if X1 = X2 = I, then

for j = 1, 2, ..., n.

Proof Substituting n = 2, A1 = B1 = A, A2 = −B2 = B, in inequality (33), where 

Z =

[
A∗A 0

0 B∗B

]
 and X =

[
X1 0

0 X2

]
 , leads to

which is inequality (40).   ◻

By making use of inequality (40) incites, we here by present the following the-
orem which has been proven in completely different technique in [13].

Theorem 3.17 Let A,B,X ∈ �n such that X ≥ 0 . Then

for j = 1, 2, ..., n.

Proof Let C =

[
A

B

]
, D =

[
A

−B

]
, X1 = X2 = X , and W = X1∕2(A∗A + B∗B)X1∕2 . 

Then

sj(A + B) ≤ sj

((
A +

|||B
1∕2A1∕2|||

)
⊕ (B +

|||A
1∕2B1∕2|||

)
)

(40)sj
(
AX1A

∗ − BX2B
∗
)
≤ sj(X

1∕2

1
A∗AX

1∕2

1
⊕ X

1∕2

2
A∗AX

1∕2

2
)

(41)sj(AA
∗ − BB∗) ≤ sj(A

∗A⊕ B∗B)

2sj
(
AX1A

∗ − BX2B
∗
)
≤sj

(
Z1∕2XZ1∕2

)

=�j
(
Z1∕2XZ1∕2

)

=�j(ZX)

=�j
(
X1∕2ZX1∕2

)

=�j
(
X1∕2ZX1∕2

)

=sj
(
X1∕2ZX1∕2

)
,

(42)2sj(AXB
∗) ≤ sj

(
(A∗A + B∗B)1∕2X(A∗A + B∗B)1∕2

)
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and

Now, applying inequality (40), leads to

This gives
2sj(AXB

∗) ≤ sj
(
X1∕2(A∗A + B∗B)X1∕2

)
 for j = 1, 2, ..., n . as required.   ◻

Acknowledgements The author is grateful to anonymous referees for their careful reading of the paper 
and for their valuable comments and suggestions. The author is indebted to University of Petra for its 
support.

References

 1. Audeh, W.: Some generalizations for singular value inequalities of compact operators. Adv. Oper. 
Theory 14 (2021)

 2. Audeh, W.: Singular value and norm inequalities of Davidson-Power type. J. Math. Inequal. 15, 
1311–1320 (2021)

 3. Audeh, W.: Singular value inequalities and applications. Positivity 25, 843–852 (2020)
 4. Audeh, W.: Generalizations for singular value and arithmetic–geometric mean inequalities of opera-

tors. J. Math. Anal. Appl. 489 (2020)
 5. Audeh, W.: Generalizations for singular value inequalities of operators. Adv. Oper. Theory 5, 371–

381 (2020)
 6. Audeh, W., Kittaneh, F.: Singular value inequalites for compact operators. Linear Algebra Appl. 

437, 2516–2522 (2012)
 7. Bhatia, R.: Matrix Analysis, GTM169. Springer, New York (1997)
 8. Bhatia, R., Kittaneh, F.: The matrix arithmetic–geometric mean inequality revisited. Linear Algebra 

Appl. 428, 2177–2191 (2008)
 9. Bhatia, R., Kittaneh, F.: On the singular values of a product of operators. SIAM J. Matrix Anal. 

Appl. 11, 272–277 (1990)
 10. Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Amer. 

Math. Soc., Providence (1969)
 11. Hirzallah, O.: Inequalities for sums and products of operators. Linear Algebra Appl. 407, 32–42 

(2005)
 12. Zhan, X.: Singular values of differences of positive semidefinite matrices. SIAM J. Matrix Anal. 

Appl. 22(3), 819–823 (2000)
 13. Zou, L.: An arithmetic–geometric mean inequality for singular values and its applications. Linear 

Algebra Appl. 528, 25–32 (2017)

CXC∗ − DXD∗ =

[
0 2AXB∗

2BXA∗ 0

]
,
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2sj

[
BXA∗ 0

0 AXB∗

]
≤ sj((W)⊕ (W)).
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