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Abstract
We show that the group of isometries of an ultrametric normed space can be seen as 
a kind of a fractal. Then, we apply this description to study ultrametric counterparts 
of some classical problems in Archimedean analysis, such as the so called Problème 
des rotations de Mazur or Tingley’s problem. In particular, it turns out that, in con-
trast with the case of real normed spaces, isometries between ultrametric normed 
spaces can be very far from being linear.
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1  Introduction

The study of isometries dates back to their classification in the Euclidean plane as 
compositions of translations, reflections and rotations, and comprises a huge variety 
of results, that include one of the most ancient and celebrated results in the theory 
of Banach spaces: the Mazur–Ulam Theorem, which states that every onto isometry 
between real Banach spaces is affine.

In [9], there was an attempt to prove an ultrametric version of the Mazur–Ulam 
Theorem introducing the notion of non-Archimedean strictly convex space. Nev-
ertheless, Professor A. Kubzdela observed some years later that non-Archimedean 
strictly convex spaces are a rarity (see [8]).
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Quite recently, the authors of the present work have shown that any attempt to 
obtain ultrametric versions of the Mazur–Ulam Theorem via strictly convex spaces 
is doomed to fail (see [4]).

The aim of this paper is to go a little further and analyse to which extent the 
behaviour of isometries in ultrametric analysis is far from their behaviour in real 
analysis. Our main result is Theorem 2.3, whose proof is elementary, and that exhib-
its a fractal structure of the group of isometries of an ultrametric normed space.

As a consequence, we prove in Corollary 3.6 that the only ultrametric normed 
spaces that possess a Mazur–Ulam-like property are the trivial examples whose 
bijections are always affine; namely, the one-dimensional normed spaces over ℤ∕2ℤ 
or ℤ∕3ℤ , and the two-dimensional normed spaces over ℤ∕2ℤ.

1.1 � Preliminaries

The first definitions are a commonplace in ultrametric analysis, and we reflect them 
just for the sake of completeness, see [9].

Definition 1.1  A non-Archimedean (or ultrametric) valued field is a field � equipped 
with a function | ⋅ | ∶ � → [0,∞) , called a valuation, such that 

	 (i)	 |�| = 0 if and only if � = 0,
	 (ii)	 |��| = |�||�|,
	 (iii)	 |� + �| ≤ max{|�|, |�|} for all �,� ∈ �.

Given any field �, setting |�| = 1 for any non-zero � ∈ � and |0| = 0 defines a 
non-Archimedean valuation, called the trivial valuation.

Definition 1.2  An ultrametric normed space is a linear space X over a non-Archime-
dean field (�, | ⋅ |) that is endowed with an ultrametric norm; that is to say, endowed 
with a function ‖ ⋅ ‖ ∶ X → [0,∞) such that 

	 (iv)	 ‖x‖ = 0 if and only if x = 0,
	 (v)	 ‖�x‖ = ���‖x‖ , for all � ∈ �, x ∈ X.
	 (vi)	 ‖x + y‖ ≤ max{‖x‖, ‖y‖} for all x, y ∈ X.

Ultrametric normed spaces are metric spaces, so that it makes sense to study iso-
metries between (subsets of) them:

Definition 1.3  Let A ⊆ X and B ⊆ Y  be subsets of two ultrametric spaces X, Y. A 
map f ∶ A → B is an isometry if for any x, y ∈ A,

The inversion through the origin, x ↦ −x , is always an onto isometry X → X , as 
so they are translations by a vector x ↦ x + z.

Finally, let us also recall the following well-known fact:

‖f (y) − f (x)‖ = ‖y − x‖.
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Lemma 1.4  ([11], 8.C) On an ultrametric normed space X, every triangle is isosceles 
in the big, i.e., for any triplet of points x, y, z ∈ X , the inequality ‖x − z‖ < ‖y − z‖ 
implies ‖y − x‖ = ‖y − z‖.

2 � Fractality of onto isometries

Let X be an ultrametric normed space. Let us denote the open ball and the centred 
sphere of radius r ∈ (0,∞) as

and let us also convene that

Proposition 2.1  Let r ∈ (0,∞] , and consider an arbitrary family:

of onto isometries on each sphere SX(r�) , for r� ∈ (0, r) (we may have SX(r�) = �).

Then, the map:

is a centred onto isometry (i.e., an onto isometry such that f (0) = 0).

Proof  Observe that ‖x‖ = ‖f (x)‖ , for any x ∈ B(0, r).
Thus, for any pair of points x, y ∈ B(0, r),

•	 if ‖x‖ = ‖y‖ = r� , then 

•	 if ‖x‖ < ‖y‖ , then ‖f (x)‖ < ‖f (y)‖ and 

•	 if ‖x‖ > ‖y‖ , then ‖f (x)‖ > ‖f (y)‖ and 

	�  ◻

The following conditions define equivalence relations on X, for any radius 
r ∈ (0,∞],

B(x, r) ∶= {y ∈ X ∶ ‖y − x‖ < r} , SX(r) ∶= {x ∈ X ∶ ‖x‖ = r} ,

B(x,∞) ∶= X.

fr� ∶ SX(r
�) → SX(r

�)

f ∶ B(0, r) ⟶ B(0, r), f (x) ∶=

{
fr� (x), if x ∈ SX(r

�)

0, if x = 0

‖y − x‖ = ‖fr� (y) − fr� (x)‖ = ‖f (y) − f (x)‖ .

‖f (y) − f (x)‖ = ‖f (y)‖ = ‖y‖ = ‖y − x‖.

‖f (y) − f (x)‖ = ‖f (x)‖ = ‖x‖ = ‖y − x‖.
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The equivalence classes for these relations are precisely the open balls B(x,  r). 
Therefore, an ultrametric normed space X , as well as any other subset A ⊂ X , 
canonically decomposes as a disjoint union of open balls of any fixed radius r.

In particular, if we abbreviate the quotient space SX(r)∕∼r as S∕∼r and denote

any sphere decomposes as a disjoint union of open balls:

Proposition 2.2  Let r ∈ (0,∞) be a positive radius. If � is a permutation of the quo-
tient set S∕∼r and {𝜑x̄ ∶ Bx̄(r) → B𝜎(x̄)(r)}x̄∈S∕∼r

 is an arbitrary family of onto iso-
metries, then the disjoint union of these isometries

is an onto isometry of the sphere SX(r).

Proof  Any two points of the sphere x, y ∈ SX(r) satisfy ‖y − x‖ ≤ r (because of 
Lemma 1.4), so that the distance between points x, y ∈ SX(r) in different open balls 
of (2.1) is exactly r.

Therefore, for any pair of points x, y ∈ SX(r),

•	 if ‖y − x‖ < r , then x̄ = ȳ and 

•	 if ‖y − x‖ = r , then x̄ ≠ ȳ . Hence, 𝜎(x̄) ≠ 𝜎(ȳ) , so that B𝜎(x̄)(r) ≠ B𝜎(ȳ)(r) and, 
in particular, f(x) and f(y) lie in different open balls of (2.1); that is to say, 
‖f (y) − f (x)‖ = r.

	�  ◻

We can summarize these results as follows:

Theorem 2.3  The following statements hold: 

1.	 (Isometries between balls) Let B1 and B2 be open balls with the same (possibly 
infinite) radius r ∈ (0,∞] . A map f ∶ B1 → B2 is an isometry if and only if there 
exist translations �, �′ and a centred isometry fc ∶ B(0, r) → B(0, r) such that 

x ∼r y ∶⇔ ‖y − x‖ < r .

Bx̄(r) ∶= B(x, r) , where x ∈ X is any representative of x̄ ∈ S∕∼r ,

(2.1)SX(r) =
⨆

x̄∈S∕∼r

Bx̄(r) .

SX(r)
f

���������������→ SX(r) , f (x) ∶= 𝜑x̄(x) ,

‖f (y) − f (x)‖ = ‖𝜑x̄(y) − 𝜑x̄(x)‖ = ‖y − x‖ .

f = ��◦fc◦� .
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2.	 (Centred isometries between balls) A centred map f ∶ B(0, r) → B(0, r) , with 
r ∈ (0,∞] , is an isometry if and only if 

(a)	 It preserves norms: ‖f (x)‖ = ‖x‖ , for any x ∈ B(0, r).
(b)	 It is an isometry on each sphere: 

3.	 (Isometries between spheres) A map f ∶ SX(r) → SX(r) , with r ∈ (0,∞) , is an 
onto isometry if and only if there exist a permutation � of the quotient set S∕∼r 
and onto isometries 𝜑x̄ ∶ Bx̄(r) → B𝜎(x̄)(r) , for x̄ ∈ S∕∼r , such that f is the disjoint 
union of the 𝜑x̄ : 

Proof  For the first statement, assume f ∶ B1 → B2 is an isometry between open balls 
of the same radius r ∈ (0,∞].

For any pair of points x ∈ B1 and y ∈ B2 , the translation by the vector y − x is an 
isometry �y−x ∶ B1 → B2 : in fact, for any z ∈ B1 , ‖𝜏y−x(z) − y‖ = ‖z − x‖ < r , so that 
�y−x(z) ∈ B2.

Therefore, if we take any point x ∈ B1 , the translations �−x ∶ B1 → B(0, r) and 
�f (x) ∶ B(0, r) → B2 are well-defined, and fc is the unique isometry that makes the 
square commutative:

Finally, both the second and third statements are reformulations of Proposi-
tions 2.1 and 2.2, respectively. 	�  ◻

Example  In order to give an explanation of the name of this Section, let us describe 
the group of centred onto autoisometries of a quite simple space as X = ℚ2

3
 when we 

consider the following valuation and norm:

for every n, a, b ∈ ℤ such that a and b are coprime and �,� ∈ ℚ3.
The norm ‖ ⋅ ‖ only takes values in {0} ∪ {3n ∶ n ∈ ℤ} , so the second part of The-

orem 2.3 implies that we only need to study the autoisometries �n ∶ SX(3
n) → SX(3

n) 

f ∶ SX(r
�) → SX(r

�) is an isometry, for any r� ∈ (0, r).

SX(r) =
⨆

x̄∈S∕∼r

Bx̄(r)
f=⊔𝜑x̄

����������������������������������→

⨆

x̄∈S∕∼r

Bx̄(r) = SX(r) .

����
3n

a

b

����
= 3−n; ‖(�,�)‖ = max{���, ���},



	 J. C. Sánchez and J. N. Garmendia58  Page 6 of 11

for each n ∈ ℤ . Later, we can glue these isometries to obtain � ∶ X → X defined as 
�(x) = �n(x) when ‖x‖ = 3n , �(0) = 0.

It is clear that any isometry �n ∶ SX(3
n) → SX(3

n) is associated with �0 ∶ SX → SX 
via the dilations SX(3n) → SX and SX → SX(3

n) , so the structure of IsoX is determined 
by the structure of IsoSX : we only need to find one isometry SX → SX for each integer 
n and then glue them all in their corresponding spheres SX(3n) . But we can also take 
some bijection ℤ → ℕ ∪ {0} , like the one defined as n ↦ 2n, −n ↦ (−2n − 1) for 
every n ∈ ℕ and 0 ↦ 0 . This way, we have a correspondence between IsoX and IsoBX

 
thanks to IsoSX . So, let us analyse what happens with IsoSX . We can decompose SX 
as in (2.1), but we have the nice feature that BX(x, 1) = BX[x, 1∕3] for every x ∈ X

—because ‖y‖ < 1 is equivalent to ‖y‖ ≤ 1∕3—and in particular we get

The decomposition given in (2.2) is much more simple than it seems. Namely, 
as the space that we are dealing with is X = ℚ2

3
 , the quotient S∕∼1 contains 

only a finite number k of equivalence classes. So, we only need to choose 
some permutation � ∈ Sk ( Sk stands for the symmetric group) and k isometries 
�i ∶ BX[0, 1∕3] → BX[0, 1∕3] . Of course, the structure of IsoBX [0,1∕3]

 and the one of 
IsoBX

 are the same, so we can restrict ourselves to the study of IsoBX
...

3 � Some consequences

3.1 � Isotropy of ultrametric spaces

One of the most famous open problems in functional analysis is the following:

Remark 3.1  (Problème des rotations de Mazur) Let (X, ‖ ⋅ ‖X) be a separable real or 
complex Banach space and suppose that, for every x, y ∈ SX there is an onto isome-
try f ∶ (X, ‖ ⋅ ‖X) → (X, ‖ ⋅ ‖X) such that f (x) = y . Does this imply that (X, ‖ ⋅ ‖X) is 
an inner product space, i.e, a Hilbert space? For definitions and results related with 
Hilbert spaces the reader may see [6, §1].

This was solved affirmatively for finite-dimensional spaces and negatively for 
non-separable spaces, but it is still open in the above form.

In the ultrametric setting, though, the group of isometries always acts transi-
tively on the spheres:

Corollary 3.2  Let X be an ultrametric normed space. For any pair of vectors x, y ∈ X 
with the same norm, there exists a centred onto isometry f ∶ X → X such that 
f (x) = y.

(2.2)SX =
⨆

x̄∈S∕∼1

BX[x, 1∕3].
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Proof  For any x, y ∈ SX(r) , there exists an onto isometry � ∶ SX(r) → SX(r) such 
that �(x) = y (Proposition 2.2).

A global isometry is a gluing of isometries on each sphere (Proposition 2.1) so 
we are done. 	�  ◻

Remark 3.3  We distinguish non-Archimedean from ultrametric, although both ter-
minologies are sometimes seen as equivalent. But they do not need to be. Actually, 
the definition of normed space over a valued field that the reader can find in Bour-
baki’s monumental work [1] does not involve the ultrametric inequality. Both con-
cepts are equivalent when one refers to valued fields (because a multiplicative norm 
| ⋅ | ∶ � → [0,∞) satisfies the ultrametric inequality if and only if the image of the 
natural map ℕ → 𝕂 is bounded, [11, 8.2]), but we have found no reason whatsoever 
to limit the non-Archimedean norms to ultrametric norms.

In fact, recent work [3] points out that it may be interesting to study the structure 
that usual (not ultrametric) norms give to linear spaces over non-Archimedean fields.

3.2 � Tingley’s problem

Due to the Mazur–Ulam Theorem and Mankiewicz’s Theorem, that states that 
every onto isometry � ∶ BX → BY between the unit balls of two real Banach 
spaces extends to a linear isometry �̃ ∶ X → Y  , it stands to reason to wonder 
whether every onto isometry � ∶ SX → SY between the unit spheres of real Banach 
spaces extends to a linear isometry, too. This is known as Tingley’s Problem, and 
is receiving a lot of attention nowadays, see, e.g., [5, 10] and the question can be 
generalised to does every onto isometry between the boundaries of open convex 
subsets extend to a linear isometry between the spaces?, see [2]; and to finding 
minimal requirements on the subset where the isometry is defined, see [7]. One 
key in this question is that � extends linearly if and only if it extends to an isom-
etry, so we have that the question is equivalent, in real Banach spaces, to any of 
the following: 

1.	 Does every onto isometry � ∶ SX → SY extend to an isometry �̃ ∶ X → Y?
2.	 Does every onto isometry � ∶ SX → SY extend to a linear map �̃ ∶ X → Y?

In ultrametric normed spaces, it is clear that the answer to the first question is 
yes, with conditions and the answer to the second one is not even close. Please be 
aware that, for the question to make sense we need to choose a nonempty sphere 
instead of the unit sphere.

Proposition 3.4  Let (X, ‖ ⋅ ‖X) and (Y , ‖ ⋅ ‖Y ) be ultrametric normed spaces over 
some valued field � , r, r′ > 0 such that rSX ≠ ∅ and � ∶ rSX → r�SY an onto isom-
etry. If the valuation is not the trivial one, then r� = r and � extends to an onto isom-
etry �̃ ∶ X → Y .
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Proof  Let x0 ∈ rSX . The ultrametric inequality implies that BX(x0, r) ⊆ SX(0, r) . It 
is clear that � ∶ BX(x0, r) → BY (�(x0), r) is also an onto isometry, so we may com-
pose � with translations to get a (centred) isometry �̃ ∶ BX(0, r) → BY (0, r) defined 
as �̃(x) = �(x + x0) − �(x0) . Gluing � with �̃  we obtain an isometry, which we will 
not rename,

Take some � ∈ � such that a = |𝛼| > 1 – it exists because the valuation is not 
trivial. For any x ∈ BX[0, ra] ⧵ BX[0, r] (equivalently, r < ‖x‖X ≤ ra ), define 
�̃(x) = ��(x∕�) . It is clear that �̃ ∶ SX(0, t) → SY (0, t) is a well-defined onto isom-
etry for every t ∈ (r, ra] . This implies that �̃ ∶ BX[0, ra] → BY [0, ra] is a cen-
tred onto isometry. The same way we can define �̃(x) = �n�(x∕�n) whenever 
x ∈ BX[0, ra

n] ⧵ BX[0, ra
n−1] , thus finishing the proof. 	�  ◻

Remark 3.5  If the valuation of � is trivial, then we can find at least two pathological 
behaviours. Namely, if (ℤ∕2ℤ)2 is endowed with the ultrametric norms

then both unit spheres consist in the singleton {(1, 0)} but the isometry � ∶ SX → SY 
defined as �(1, 0) = (1, 0) does not extend. The same happens if we define the same 
norm over any other two-dimensional space over a field whose valuation is trivial.

Moreover, if we endow (ℤ∕2ℤ)2 with

then both SX and 2SY contain exactly one point. This means that they are trivially 
isometric, but, with the notations of Proposition 3.4, we have r′ ≠ r.

3.3 � Non‑existence of Mazur–Ulam type theorems

Example  The map x → −x is always a centred isometry X → X and, for any fixed x0 , 
the map x ↦ x + x0 is an isometry of any sphere SX(r) with r > ‖x0‖.

Therefore, for any r > ‖x0‖ such that SX(r) ≠ � , the maps f , f̃ ∶ X → X defined as

are centred onto isometries.
Observe that, whenever they are distinct from the identity, f and f̃  are non-linear 

maps.

Example  (Isometries of one-dimensional spaces over finite fields) Any finite field 
�q is a non-Archimedean field in a unique way: equipped with the trivial valuation 
|�| = 1 , for any non-zero element � ∈ �q . As a result, any bijective map f ∶ �q → �q 
is an isometry.

�̃ ∶ BX[0, r] → BY [0, r].

‖(a, b)‖X = max{�a�, 2�b�}, ‖(a, b)‖Y = max{�a�, 3�b�}

‖(a, b)‖X = max{�a�, 2�b�}, ‖(a, b)‖Y = max{2�a�, 3�b�}

f (x) =

{
−x, if x ∈ SX(r)

x, if x ∉ SX(r)
, f̃ (x) =

{
x + x0, if x ∈ SX(r)

x, if x ∉ SX(r)
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In the same way, every ultrametric norm on a one-dimensional linear space X1 
over �q is trivial; i.e., for any such norm there exists a ∈ (0,∞) such that ‖x‖ = a for 
any non-zero x ∈ X1 . Consequently, any bijective map f ∶ X1 → X1 is an isometry.

Corollary 3.6  Let X be an ultrametric normed space. If every centred onto isometry 
f ∶ X → X is a linear map, then one of the following options holds: 

1.	 X = 0.
2.	 X is a one-dimensional linear space over ℤ∕2ℤ.
3.	 X is a one-dimensional linear space over ℤ∕3ℤ.
4.	 X is a two-dimensional linear space over ℤ∕2ℤ.

Proof  If the norm on X is trivial, then any bijection f ∶ X → X is an isometry. If X 
has more than four elements, then we may take different x1, x2 ∈ X ⧵ {0} such that 
x3 = x1 + x2 ≠ 0 and x4 ∉ {x1, x2, x3, 0} and define f ∶ X → X as f (x) = x for every 
x ∉ {x3, x4}, f (x3) = x4, f (x4) = x3 . This is obviously a nonlinear onto isometry from 
X to X.

If ‖ ⋅ ‖ is not trivial, then we have two options: apart from the value 0, either ‖ ⋅ ‖ 
takes exactly two values or it takes at least three.

If there are x0, x1, x2 such that 0 < ‖x0‖ < ‖x1‖ < ‖x2‖ , then we may define the 
mapping f ∶ X → X as

Proposition  2.1 implies that f is an onto isometry and it is not linear because 
f (x2 + x1) = x2 + x1 , f (x2) = x2, f (x1) = x1 + x0.

The only option left is that ‖ ⋅ ‖ takes exactly two positive values, say there are 
x0, x1 ∈ X such that 0 < ‖x0‖ < ‖x1‖.

Consider the map

This map is a bijection such that f (0) = 0 and it is clear that fulfills the conditions in 
Proposition 2.1, so it is an onto isometry.

Moreover, this map is not linear:

unless 2 = 0 in � . So, the only problem we have right now is that � has characteris-
tic 2, its valuation is trivial (if it is not, then the valuation takes infinitely many val-
ues, and so does the norm), and the norm takes exactly two positive values.

If X fulfils everything, then take 0 < ‖x1‖ < ‖x2‖ . As every triangle is isosceles 
in the big, for every pair x, y such that ‖x‖ = ‖y‖ = ‖x1‖ we have ‖x + y‖ ≤ ‖x1‖ . 
Furthermore, the valuation of � is trivial, so

f (x) =

�
x, if ‖x‖ ≠ ‖x1‖

x + x0, if ‖x‖ = ‖x1‖
.

f ∶ X → X, f (x) ∶=

�
x , if ‖x‖ = ‖x1‖

−x , if ‖x‖ = ‖x0‖
.

f (x1 + x0) − f (x1) − f (x0) = x1 + x0 − x1 + x0 = 2x0 ≠ 0…
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is closed under addition and scalar multiplication and this means that it is a vector 
subspace of X with trivial norm, so if it has only affine isometries it must have 4 
elements or less. If there is some nonlinear isometry X1 → X1 that sends 0 to 0 then 
we just need to extend it to X by identity, so our only problem is that X1 has at most 
four elements. In this case, 𝕂 = ℤ∕2ℤ implies that X is (linearly) isometric to either 
ℤ∕2ℤ or (ℤ∕2ℤ)2 and � = �4 implies that X is (linearly) isometric to �.

In the first case, it is easy to see that a bijection f ∶ X → X is an isometry if 
and only if f (x + x1) = f (x) + x1 for every x ∈ X . As the dimension of X is at least 
3, there are x, y, z ∉ X1 such that z = x + y . Now, the map f ∶ X → X defined as 
f (x) = x whenever x ∉ {z, z + x1} , f (z) = z + x1, f (z + x1) = z is an isometry and it 
is not affine.

In the second case, we only need to consider some linear isometry � ∶ X1 → X1 
that does not send x1 to x1 –it exists because X1 contains four elements– and define 
f ∶ X → X as

This is an isometry by Proposition  2.1. Furthermore it is not linear because 
f (x2 + x1) = x2 + x1, f (x1) = �(x1) ≠ x1 and f (x2) = x2.

To finish the proof, we must observe that if we consider the four element field 
�4 , that can be seen as 𝔽4 =

(
(ℤ∕2ℤ)[x]

)
∕(x2 + x + 1) , then every centred bijection 

�4 → �4 is an additive isometry. But it is clear that the map f ∶ �4 → �4 defined as

is not (�4)-linear. 	� ◻

Acknowledgements   Supported in part by DGICYT project PID2019-103961GB-C21 (Spain), ERDF 
and Junta de Extremadura - Consejería de Economía, Ciencia y Agenda Digital programs IB18087, 
IB20038, GR18001 and GR15152.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

X1 = {x ∈ X ∶ ‖x‖ ≤ ‖x1‖} = {x ∈ X ∶ ‖x‖ = ‖x1‖} ∪ {0}

f (x) =

{
x if x ∉ X1

�(x) if x ∈ X1

.

f ([0]) = [0], f ([1]) = [1], f ([x]) = [x2], f ([x2]) = [x]
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