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Abstract
In this article, we study a generalization of the n-inner product which we name weak 
n-inner product. As particular case, we consider the n-iterated 2-inner product and 
we give its representation in terms of the standard k-inner products, k ≤ n , using the 
Dodgson’s identity for determinants. Finally, we present several applications, includ-
ing a brief characterization of a linear regression model for the random variables in 
discrete case and a generalization of the Chebyshev functional using the n-iterated 
2-inner product.

Keywords  n-inner product space · n-pre-Hilbert space · Cauchy–Schwarz inequality

Mathematics Subject Classification  46C05; 26D15 · 26D10

1  Introduction

The concept of linear 2-normed spaces and 2-metric spaces has been investigated by 
Gähler [13]. In [6] and [7], Diminnie, Gähler, and White studied the 2-inner product 
spaces.

A classification of results related to the theory of 2-inner product spaces can be 
found in book [3]. Here, several properties of 2-inner product spaces are given. In 
[10], Dragomir et al. show the corresponding version of Boas–Bellman inequality in 
2-inner product spaces. Others properties of a 2-inner product space can be found in 
[4].

Misiak [20] generalizes this concept of a 2-inner product space, in 1989, in the 
following way: let n be a nonnegative integer (n ≥ 2) and X be a vector space of 
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dimension dimX = d ≥ n (d may be infinite) over the field of real numbers ℝ . An ℝ
-valued function ⟨⋅, ⋅ ∣ ⋅, ..., ⋅⟩ on Xn+1 satisfying the following properties: 

	 (I1)	 ⟨v1, v1�v2, ..., vn⟩ ≥ 0;⟨v1, v1�v2, ..., vn⟩ = 0 if and only if v1, v2, ..., vn are lin-
early dependent;

	 (I2)	 ⟨v1, v1�v2, ..., vn⟩ = ⟨vi1 , vi1 �vi2 , vi3 , ..., vin⟩ , for every permutation (i1, i2, ..., in) 
of (1, 2, ..., n);

	 (I3)	 ⟨v,w�v2, ..., vn⟩ = ⟨w, v�v2, ..., vn⟩;
	 (I4)	 ⟨�v,w�v2, ..., vn⟩ = �⟨v,w�v2, ..., vn⟩ , for every scalar � ∈ ℝ.
	 (I5)	 ⟨v + v�,w�v2, ..., vn⟩ = ⟨v,w�v2, ..., vn⟩ + ⟨v�,w�v2, ..., vn⟩;

is called an  n-inner product on X, and the pair (X, ⟨⋅, ⋅�⋅, ..., ⋅⟩) is called an n-inner 
product space or n-pre-Hilbert space.

It is easy to see that the n-inner product is a linear function of its two 
first arguments. Several results related to the theory of the n-inner prod-
uct spaces can be found in [15, 21]: ⟨v,w��v2, ..., vn⟩ = �2⟨v,w�v2, ..., vn⟩ , 
for every real number � and for v,w, v2, .., vn ∈ X ; 
⟨v,w�v2 + v�

2
, v3,… , xn⟩ − ⟨v,w�v2 − v�

2
, v3,… , vn⟩ = ⟨v2, v�2�v + w, v3, ..., vn⟩ 

−⟨v2, v�2�v − w, v3, ..., vn⟩ , for all v,w, v2, v3, ..., vn, v�2 ∈ X and an extension of the 
Cauchy–Schwarz inequality to arbitrary n:

for all v,w, v2, ..., vn ∈ X . The equality holds in (1) if and only if v,w, v2, ..., vn are 
linearly dependent.

Other consequences from the above properties can be inferred very easily:

for all v,w, v2, ..., vn ∈ X.
Let (X, ⟨⋅, ⋅�⋅, ..., ⋅⟩) be an n-inner product space, n ≥ 2 . We can define a function 

‖⋅, ..., ⋅‖ on X × X × ... × X = Xn by:

for all v, v2, ..., vn ∈ X , which in [20] is shown that satisfies the following conditions: 

	(N1)	 ‖v�v2, ..., vn‖ ≥ 0 and ‖v�v2, ..., vn‖ = 0 if and only if v, v2, ..., vn are linearly 
dependent;

	(N2)	 ‖v�v2, ..., vn‖ is invariant under permutation;
	(N3)	 ‖�v�v2, ..., vn‖ = ���‖v�v2, ..., vn‖ , for any scalar � ∈ ℝ.

	(N4)	 ‖v + w�v2, ..., vn‖ ≤ ‖v�v2, ..., vn‖ + ‖w�v2, ..., vn‖,
for all v,w, v2, ..., vn ∈ X.

(1.1)�⟨v,w�v2, ..., vn⟩� ≤
√⟨v, v�v2, ..., vn⟩

√⟨w,w�v2, ..., vn⟩,

⟨0,w�v2, ..., vn⟩ = ⟨v, 0�v2, ..., vn⟩ = ⟨v,w�0, ..., vn⟩ = 0,

⟨v2,w�v2, ..., vn⟩ = ⟨v, v2�v2, ..., vn⟩ = 0,

‖v�v2, ..., vn‖ ∶=
√⟨v, v�v2, ..., vn⟩,
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A function ‖ ⋅ �⋅, ..., ⋅‖ defined on Xn and satisfying the above conditions is called 
an n-norm on X and (X, ‖ ⋅ �⋅, ..., ⋅‖) is called a linear n-normed space.

It is easy to see that if (X, ⟨⋅, ⋅�⋅, ..., ⋅⟩) is an n-inner product space over the field 
of real numbers ℝ , then (X, ‖ ⋅ �⋅, ..., ⋅‖) is a linear n-normed space and the n-norm 
‖ ⋅ �⋅, ..., ⋅‖ is generated by the n-inner product ⟨⋅, ⋅�⋅, ..., ⋅⟩.

Furthermore, we have the parallelogram law [3]:

for all v,w, v2, .., vn ∈ X and the polarization identity (see, e.g., [3] and [4]):

for all v,w, v2, ..., vn ∈ X.

The standard n -inner product on an inner product space X = (X, ⟨⋅.⋅⟩) is given 
by:

which generates n-norm ‖v�v2, ..., vn‖ ∶=
√⟨v, v�v2, ..., vn⟩, representing the volume 

of the n-dimensional parallelepiped spanned by v, v2, ..., vn.
Various type of applications of n-inner products and n-norms can be found in 

recent papers [2, 16–18, 22, 23, 25, 26].

Remark 1.1  The standard n-inner product satisfies also the following additional 
condition: 

	 I6)	 If v, v2,… , vn are linearly dependent, then ⟨v,w�v2,… , vn⟩ = 0,

for v,w, v2,… , vn ∈ X.
The motivation of this article is to study another type of n-inner product built 

based on the properties of the n-inner product, except property I2. We will define the 
weak n-inner product and the n-iterated 2-inner product and we will give its repre-
sentation in terms of the standard k-inner products, k ≤ n , using the Dodgson’s iden-
tity for determinants. We also present a brief characterization of a linear regression 
model for the random variables in discrete case. Finally, we generalize the Cheby-
shev functional using the n-iterated 2-inner product.

(1.2)
‖v + w�v2, ..., vn‖2 + ‖v − w�v2, ..., vn‖2 = 2‖v�v2, ..., vn‖2 + 2‖w�v2, ..., vn‖2,

(1.3)‖v + w�v2, ..., vn‖2 − ‖v − w�v2, ..., vn‖2 = 4⟨v,w�v2, ..., vn⟩,

(1.4)⟨v,w�v2, ..., vn⟩ ∶=
��������

⟨v,w⟩ ⟨v, v2⟩ ... ⟨v, vn⟩⟨v2,w⟩ ⟨v2, v2⟩ ... ⟨v2, vn⟩
⋮ ⋮ ⋮ ⋮

⟨vn,w⟩ ⟨vn, v2⟩ ... ⟨vn, vn⟩

��������
,
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2 � The weak n‑inner product

Let X be a real vector space.

Definition 2.1  An ℝ-valued function (⋅, ⋅ ∣ ⋅, ..., ⋅) on Xn+1 , n ≥ 2 , satisfying the fol-
lowing properties: 

	(P1)	 Positivity: (x, x|xn, ..., x2) ≥ 0 and (x, x|xn, ..., x2) = 0 if and only if x, x2, x3, ..., xn 
are linearly dependent;

	(P2)	 Interchangeability: (x, x|xn, ..., x2) = (xn, xn|x, xn−1, ..., x2);
	(P3)	 Symmetry: (x, y|xn, ..., x2) = (y, x|xn, ..., x2);
	(P4)	 Homogeneity: (�x, y|xn, ..., x2) = �(x, y|xn, ..., x2) , for every scalar � ∈ ℝ.
	(P5)	 Additivity: (x + x�, y|xn, ..., x2) = (x, y|xn, ..., x2) + (x�, y|xn, ..., x2);
is called a weak n -inner product on X, and the pair (X, (⋅, ⋅|⋅, ..., ⋅)) is called a weak n 
-inner product space or weak n -pre-Hilbert space.
Remark 2.2  It is easy to see that:

Remark 2.3  Obviously, an n-inner product is a weak n-inner product, so an n-inner 
product space is a weak n-inner product space, but the reciprocal is not true. This 
fact will be shown in Remark 2.14.

For n = 2 , a weak n-inner product is also an n-inner product. For n ≥ 3 , a weak 
n-inner product can be build, for instance, by formula:

where Θ(x, y|xn … , x2) is a n-inner product and Ψ ∶ Xn−2
→ ℝ is a function with 

properties Ψ(xn−1,… , x2) ≥ 0. ∀(xn−1,… , x2) and Ψ(xn−1,… , x2) = 0 iff xn−1,… , x2 
are linearly dependent (in the case n = 3 , this means x2 = 0).

In the next lemma, we generalize a property that exists in the case of 2-inner 
products. The method of the proof is based on the method used in [4].

Lemma 2.4  Let , x2,… , xn, x, y ∈ X . If x2,… , xn, x are linearly dependent, then:

Proof  We consider two cases.
Case 1. x2,… , xn, y are linearly independent. Consider the vector:

(0, y|xn, ..., x2) = (x, 0|xn, ..., x2) = (x, y|0, ..., x2) = 0.

(x, y|xn,… , x2) = Θ(x, y|xn … , x2) ⋅Ψ(xn−1,… , x2),

(2.1)(x, y|xn,… , x2) = 0.

u = (y, y|xn,… , x2)x − (x, y|xn,… , x2)y.
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Then from P1), we have (u, u|xn,… , x2) ≥ 0 . This inequality is equivalent to:

Since x2,… , xn, x are linearly dependent, from one has (x, x|xn,… , x2) = 0 and 
hence:

Since x2,… , xn, y are linearly independent, it follows that (y, y|xn,… , x2) > 0 . Con-
sequently, one obtains (2.1).

Case 2. x2,… , xn, y are linearly dependent. Then, also x2,… , xn, x + y are lin-
early dependent. We have:

Because (x, x|xn,… , x2) = 0 , (y, y|xn,… , x2) = 0 , (x + y, x + y|xn,… , x2) = 0 rela-
tion (2.1) follows. 	�  ◻

Theorem  2.5  Suppose that (X, (⋅, ⋅|⋅, ..., ⋅)) is a weak n-inner product 
space over the field of real numbers ℝ . Let x2,… , xn ∈ X , n ≥ 2 be fixed. 
Denote Y = span{x2,… , xn} . Define the quotient space X∕Y = {x̂| x ∈ X} , 
where x̂ = {u ∈ X|u − x ∈ Y} , x ∈ X . Then, function � ∶ (X∕Y)2 → ℝ , 
𝜓(x̂, ŷ) ∶= (x, y|xn, ..., x2) , x̂, ŷ ∈ X∕Y  is well defined and is a semi-inner product on 
X/Y. Moreover, if x2,… , xn are linearly independent, then � is an inner product.

Proof  Let x, x�, y, y� ∈ X , such that x� − x ∈ Y  and y� − y ∈ Y  . Using Lemma 2.4, we get 
𝜓(�x�, ŷ�) = (x�, y�|x

n
, ..., x2) = (x, y|x

n
, ..., x2) + (x� − x, y|x

n
, ..., x2) + (x, y� − y|x

n
, ..., x2)

+(x� − x, y� − y|x
n
, ..., x2) = (x, y|x

n
, ..., x2) = 𝜓(�x, ŷ) . This means that � is well 

defined.
From P1), we have 𝜓(x̂, x̂) = (x, x|xn, ..., x2) ≥ 0 . Moreover, if 𝜓(x̂, x̂) = 0 , 

then (x, x|x2,… , xn) = 0 , which implies that x, x2,… , xn are linearly dependent. If 
x2,… , xn are linearly independent, it follows that x ∈ Y  . Then x̂ = 0̂.

The other properties of the inner product follow in a simple manner from condi-
tions P3), P4), and P5). 	�  ◻

Theorem 2.6  (Schwarz type inequality) Let (X, (⋅, ⋅|⋅, ..., ⋅)) be a weak n-inner prod-
uct space. For any x, y, x2, ..., xn ∈ X , we have:

(y, y|xn,… , x2)[(x, x|xn,… , x2)(y, y|xn,… , x2) − (x, y|xn,… , x2)
2] ≥ 0.

−(y, y|xn,… , x2)(x, y|xn,… , x2)
2 ≥ 0.

(x, y|xn,… , x2)

=
1

2
[(x + y, x + y|xn,… , x2) − (x, x|xn,… , x2) − (y, y|xn,… , x2)].

(2.2)�(x, y�xn, ..., x2)� ≤
√
(x, x�xn, ..., x2)

√
(y, y�xn, ..., x2).
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In the case, when x2,… , xn are linearly independent, then the equality holds in 
(2.2) if and only if there exist � ∈ ℝ+ and u ∈ Y ∶= span{x2,… , xn} , such that 
y = �x + u.

Proof  By taking into account Theorem 2.5 and the notations given there, we have:

If x2,… , xn are linearly independent, then the equality holds in (2.2) iff there is 
� ≥ 0 , such that ŷ = 𝜇x̂ , i.e., exists u ∈ Y  for which y = �x + u . 	�  ◻

Definition 2.7  Let (X, (⋅, ⋅|⋅, ..., ⋅)) be a weak n-inner product space, n ≥ 2 . We can 
define a function ‖⋅, ..., ⋅‖ on X × X × ... × X = Xn by:

Proposition 2.8  If (X, (⋅, ⋅|⋅, ..., ⋅)) is a weak n-inner product space, then function 
‖⋅, ..., ⋅‖ defined in (2.3) satisfies the following conditions: 

(C1)	� ‖x�xn, ..., x2‖ ≥ 0 and ‖x�xn, ..., x2‖ = 0 if and only if x, x2, ..., xn are linearly 
dependent;

(C2)	� ‖x�xn, xn−1, ..., x2‖ = ‖xn�x, xn−1, ..., x2‖;
(C3)	� ‖�x�xn, ..., x2‖ = ���‖x�xn, ..., x2‖ , for any scalar � ∈ ℝ;

(C4)	� ‖x + y�xn, ..., x2‖ ≤ ‖x�xn, ..., x2‖ + ‖y�xn, ..., x2‖

 for all x, y, x2, ..., xn ∈ X.

Proof  Conditions (C1)– (C4) follow immediately from conditions (P1)–(P5) and 
Definition 2.7. 	�  ◻

Definition 2.9  Let X be a real vector space. A real function ‖ ⋅ �⋅, ..., ⋅‖ defined 
on Xn and satisfying conditions (C1)–(C4) is called a weak n-norm on X and 
(X, ‖ ⋅ �⋅, ..., ⋅‖) is called a linear weak n-normed space.

It follows that if (X, (⋅, ⋅|⋅, ..., ⋅)) is a weak n-inner product space over the field 
of real numbers ℝ , then (X, ‖ ⋅ �⋅, ..., ⋅‖) is a linear weak n-normed space and the 
weak n-norm ‖ ⋅ �⋅, ..., ⋅‖ is generated by the weak n-inner product (⋅, ⋅|⋅, ..., ⋅).

Theorem  2.10  In conditions of Theorem  2.5, function � ∶ X∕Y → ℝ+ , 
𝜑(x̂) ∶= ‖x�xn, ..., x2‖ , x̂ ∈ X∕Y  is well defined and is a semi-norm on X/Y. Moreo-
ver, if x2,… , xn are linearly independent, then � is a norm.

Proof  It follows immediately from Theorem 2.5, since 𝜑(x̂) =
√
𝜓(x̂, x̂) , x̂ ∈ X∕Y  , 

where function � was defined in this theorem. 	�  ◻

�(x, y�xn, ..., x2)� = �Ψ(x̂, ŷ)� ≤ √
Ψ(x̂, x̂)

√
Ψ(ŷ, ŷ)

=
√
(x, x�xn, ..., x2)

√
(y, y�xn, ..., x2).

(2.3)‖x�xn, ..., x2‖ ∶=
√
(x, x�xn, ..., x2), for all x, x2, ..., xn ∈ X.
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In an inner product space, a special weak n-inner product can be defined by 
recurrence starting from the 2-inner product. Recall that the 2-inner product was 
studied in [3, 4].

Definition 2.11  Let (X, ⟨⋅, ⋅⟩) be a real pre-Hilbert space. The n-iterated 2-inner 
product, or standard weak n-inner product (⋅, ⋅|⋅,… , ⋅)∗ ∶ Xn+1

→ ℝ is defined for 
n ≥ 2 as follows. For n = 2 , (⋅, ⋅|⋅)∗ coincides with the standard 2-inner product, that 
is:

Then, if n ≥ 3 and x, y, x2, ..., xn ∈ X , define:

Theorem  2.12  If (X, ⟨⋅, ⟩) is a real pre-Hilbert space, then for any n ≥ 2 function 
(⋅, ⋅|⋅,… , ⋅)∗ ∶ Xn+1

→ ℝ given in Definition 2.11 is a weak n-inner product.

Proof  Consider proposition S(n): the n-iterated 2-inner product satisfies conditions 
(P1)–(P6). We prove this proposition by mathematical induction, for n ≥ 2.

For n = 2 , S(n) is true, since we know from [3, 4] that the standard 2-inner prod-

uct, (x, y�z)∗ = det

�⟨x, y⟩ ⟨x, z⟩
⟨z, y⟩ ⟨z, z⟩

�
 , satisfies conditions P1) − P6).

Suppose S(n) is true and prove that proposition S(n + 1) is true. The (n + 1)-iter-
ated 2-inner product is given by:

Let us prove P1) for n + 1 . First, we prove that (x, x|xn+1, ..., x2)∗ ≥ 0 , for 
x, x2,… xn+1 ∈ X.

Case 1: (x, x|xn, ..., x2)∗ = 0 . Then, from property P1) for n, it results that 
x, x2, ..., xn are linearly dependent. From the hypothesis of induction and from 
Lemma 2.4, it follows that (x, xn+1|xn, ..., x2)∗ = 0 . Then:

Case 2: (x, x|xn, ..., x2)∗ > 0 . From (P1) for n, we have (z, z|xn, ..., x2)∗ ≥ 0 , for all 
z ∈ X , and then:

We obtain the following relation:

(2.4)

(x, y�z)∗ ∶= ⟨x, y�z⟩ = ����
⟨x, y⟩ ⟨x, z⟩
⟨z, y⟩ ⟨z, z⟩

���� = ⟨x, y⟩⟨z, z⟩ − ⟨x, z⟩⟨z, y⟩, x, y, z ∈ X.

(2.5)(x, y|xn, ..., x2)∗ ∶=
||||
(x, y|xn−1, ..., x2)∗ (x, xn|xn−1, ..., x2)∗
(xn, y|xn−1, ..., x2)∗ (xn, xn|xn−1, ..., x2)∗

|||| .

(x, y|xn+1, xn, ..., x2)∗ =
||||
(x, y|xn, ..., x2)∗ (x, xn+1|xn, ..., x2)∗

(xn+1, y|xn, ..., x2)∗ (xn+1, xn+1|xn, ..., x2)∗
|||| .

(x, x|xn+1,… , x2)∗ =
||||
(x, x|xn, ..., x2)∗ (x, xn+1|xn, ..., x2)∗

(xn+1, x|xn, ..., x2)∗ (xn+1, xn+1|xn, ..., x2)∗
||||

=
||||

0 0

(xn+1, x|xn, ..., x2)∗ (xn+1, xn+1|xn, ..., x2)∗
|||| = 0.

(�x + xn+1, �x + xn+1|xn, ..., x2)∗ ≥ 0, for all � ∈ ℝ.
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Since (x, x|xn, ..., x2)∗ > 0 , the discriminant Δ� of this polynomial in variable � is not 
strictly positive. Hence, (x, x|xn+1, xn, ..., x2)∗ = −

1

4
Δ� ≥ 0. Therefore, in both cases, 

we obtain (x, x|xn+1, ..., x2)∗ ≥ 0.
On the other hand, let us suppose that (x, x|xn+1, xn, ..., x2)∗ = 0 , which means 

that:

If (xn+1, xn+1|xn, ..., x2)∗ ≠ 0 , the expression above is equal to − 1

4
Δ� , where Δ� 

is the discriminant of the polynomial equation of degree 2 in � : Q(�) = 0 , where 
Q(�) = (x + �xn+1, x + �xn+1|xn, ..., x2)∗ . Since the discriminant is 0, then there 
exists �0 ∈ ℝ , for which Q(�0) = 0 . From condition (P1) for n, it follows that 
x + �0xn+1, xn, ..., x2 are linearly dependent. Then, there are the numbers �, �i ∈ ℝ , 
not all null, such that �(x + �0xn+1) +

∑n

i=2
�ixi = 0 . Therefore, x, x2, ..., xn+1 are lin-

early dependent. If (xn+1, xn+1|xn, ..., x2)∗ = 0 , then x2, ..., xn+1 are linearly dependent 
from (P1) for n. Then, x, x2, ..., xn+1 are linearly dependent. Condition (P1) is com-
pletely proved for n + 1.

We prove condition (P2) for n + 1:

Consequently, condition (P2) is true for n + 1.
We pass to the verification of condition (P3). We have:

because detA = detAT , for any square matrix A and (x, y|xn, ..., x2)∗ = (y, x|xn, .., x2)∗ . 
Therefore, the (n + 1)-iterated 2-inner product satisfies condition (P3) for n + 1.

We pass now to condition (P4). Since we have:

it follows that condition (P4) is proved for n + 1.
For (P5) for n + 1 , the determinant (x + x�, y|xn+1, xn, ..., x2)∗ can be expressed by a 

determinant of second order, having on the first line the elements (x + x�, y|xn, ..., x2)∗ 

�2(x, x|xn, ..., x2)∗ + 2�(x, xn+1|xn, ..., x2)∗ + (xn+1, xn+1|xn, ..., x2)∗ ≥ 0, ∀�.

(x, x|xn, ..., x2)∗(xn+1, xn+1|xn, ..., x2)∗ − (x, xn+1|xn, ..., x2)2∗ = 0.

(x, x|xn+1, ..., x2)∗ =
||||
(x, x|xn, ..., x2)∗ (x, xn+1|xn, ..., x2)∗

(xn+1, x|xn, ..., x2)∗ (xn+1, xn+1|xn, ..., x2)∗
||||

=
||||
(xn+1, xn+1|xn, ..., x2)∗ (xn+1, x|xn, ..., x2)∗
(x, xn+1|xn, ..., x2)∗ (x, x|xn, ..., x2)∗

||||
= (xn+1, xn+1|x, xn, ..., x2)∗.

(x, y|xn+1, xn, ..., x2)∗ =
||||
(x, y|xn, ..., x2)∗ (x, xn+1|xn, ..., x2)∗

(xn+1, y|xn, ..., x2)∗ (xn+1, xn+1|xn, ..., x2)∗
||||

=
||||
(y, x|xn, ..., x2)∗ (xn+1, y|xn, ..., x2)∗

(x, xn+1|xn, ..., x2)∗ (xn+1, xn+1|xn, ..., x2)∗
|||| = (y, x|xn+1, xn, ..., x2)∗,

(�x, y|xn+1, xn, ..., x2)∗ =
||||
(�x, y|xn, ..., x2)∗ (�x, xn+1|xn, ..., x2)∗
(xn+1, y|xn, ..., x2)∗ (xn+1, xn+1|xn, ..., x2)∗

||||
=
||||
�(x, y|xn, ..., x2)∗ �(x, xn+1|xn, ..., x2)∗
(xn+1, y|xn, ..., x2)∗ (xn+1, xn+1|xn, ..., x2)∗

|||| = �(x, y|xn+1, xn, ..., x2)∗,
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and (x + x�, xn+1|xn, ..., x2)∗ , respectively, and on the second line, elements which do 
not depend on x and x′ . Then, using by induction the additivity in the first argument 
of the products above, and then the additivity of the determinant with regard to the 
first line, it follows immediately that:

	�  ◻

Proposition 2.13  Let (X, ⟨⋅, ⋅⟩) be a real pre-Hilbert space. For x, y, x2,… , xn ∈ X , 
n ≥ 2 and: t ∈ ℝ:

Proof  For n = 2 , (tx, ty|tx2)∗ = t4(x, y|x2)∗. Then, it follows by mathematical induc-
tion. 	�  ◻

Remark 2.14  Theorem 2.12 allows us to furnish an example of weak n-inner product 
which is not a n-inner product. For this, let X = ℝ

3 endowed with the usual inner 
product. Then, from Theorem 2.12, 3-iterated 2-inner product (⋅, ⋅|⋅, ⋅)∗ ∶ X4

→ ℝ is 
a weak 3-inner product, but it is not a 3-inner product. Indeed, if axiom I2) would be 
true for 3-iterated 2-inner product, then we must have:

However, if we choose x = (1, 0, 0) , u = (1, 1, 1) , v = (2, 1, 2) , we have:

and on the other hand:

(x + x�, y|xn+1, xn, ..., x2)∗ = (x, y|xn+1, xn, ..., x2)∗ + (x�, y|xn+1, xn, ..., x2)∗.

(2.6)(tx, ty|tx2,… , txn)∗ = t2
n

(x, y|x2,… , xn)∗.

(2.7)(x, x|u, v)∗ = (v, v|u, x)∗, for all x, u, v ∈ X.

(x, x|u, v)∗ =

x, x x, v
v, x v, v

x, u x, v
v, u v, v

u, x u, v
v, x v, v

u, u u, v
v, u v, v

=

1 2
2 9

1 2
5 9

1 5
2 9

3 5
5 9

=
5 −1
−1 2 = 9.

(v, v�u, x)∗ =

����������

����
⟨v, v⟩ ⟨v, x⟩
⟨x, v⟩ ⟨x, x⟩

����
����
⟨v, u⟩ ⟨v, x⟩
⟨x, u⟩ ⟨x, x⟩

����
����
⟨u, v⟩ ⟨u, x⟩
⟨x, v⟩ ⟨x, x⟩

����
����
⟨u, u⟩ ⟨u, x⟩
⟨x, u⟩ ⟨x, x⟩

����

����������

=

����������

����
9 2

2 1

����
����
5 2

1 1

����
����
5 1

2 1

����
����
3 1

1 1

����

����������
=
����
5 3

3 2

���� = 1.
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Hence, relation (2.7) is not true. Consequently, axiom (I2) is not satisfied. Therefore, 
3-iterated 2-inner product is not a 3-inner product.

3 � Representation of the n‑iterated 2‑inner product in terms 
of the standard k‑inner products, (k ≤ n)

In this section, we obtain a representation of the n-iterated 2-inner product, given 
in Definition 2.11 in terms of the standard k-inner products k ≤ n . For this, we use 
Dodgson’s identity for determinants, [8, 9]. Historical notes about this identity, in 
connection with Chiò’s formula can be found in [1]. To express this identity, we 
adopt the compact notation used by Eves [11]. If A = (ai,j)1≤i,j≤n is a square matrix, 
denote the determinant of A by |a1,1 … an,n| and the sub-determinant involving rows 
i1,… , is and columns j1,… , js by |ai1,j1 … ais,js | . In [11]—Theorem  3.6.3, the fol-
lowing Dodgson-type identity (n ≥ 3) is proved:

For us, it is more convenient to use the following identity (n ≥ 3):

For n = 3 , one has:

Formula (3.2) can be easily obtained applying formula (3.1). Indeed, first note that:

(3.1)
|a1,1 … an−2,n−2| ⋅ |a1,1 … an,n|

=
||||
|a1,1 … an−2,n−2 an−1,n−1| |a1,1 … an−2.n−2 an−1,n||a1,1 … an−2,n−2 an,n−1| |a1,1 … an−2,n−2 an,n|

|||| .

(3.2)
|a2,2 … an−1,n−1| ⋅ |a1,1 … an,n|

=
||||
|a1,1 … an−2,n−2 an−1,n−1| |a1,2 … an−2,n−1 an−1,n||a2,1 … an−1,n−2 an,n−1| |a2,2 … an−1,n−1 an,n|

|||| .

(3.3)a2,2 ⋅ |a1,1 a2,2 a3,3| =
||||
|a1,1 a2,2| |a1,2 a2,3||a2,1 a3,2| |a2,2 a3,3|

|||| .

|a1,1 … an,n| = (−1)n−1|a1,2 … an−1,n an,1| = |a2,2 … an,n a1,1|.
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Then, applying rule (3.1) for our new matrix, we find, using the notation � = (−1)n−2

:

Note that, conversely, from relation (3.2), one can deduce relation (3.1).
Let (X, ⟨⋅, ⋅⟩) be an inner product space. For x, y, z, v ∈ X , from (3.2), for n = 3 , 

we deduce:

Hence, we obtained:

Also, using formula (3.2), for n = 4 , and then formula (3.4) we obtain :

|a2,2 … a
n−1,n−1| ⋅ |a2,2 … a

n,n a1,1|
=
||||
|a2,2 … a

n−1,n−1 an,n| |a2,2 … a
n−1,n−1 an,1||a2,2 … a

n−1,n−1 a1,n| |a2,2 … a
n−1,n−1 a1,1|

||||
=
||||
|a2,2 … a

n−1,n−1 an,n| �|a2,1 … a
n−1,n−2 an,n−1|

�|a1,2 … a
n−2,n−1 an−1,n| �2|a1,1 … a

n−2,n−2 an−1,n−1|
||||

=
||||
|a1,1 … a

n−2,n−2 an−1,n−1| |a1,2 … a
n−2,n−1 an−1,n||a2,1 … a

n−1,n−2 an,n−1| |a2,2 … a
n−1,n−1 an,n|

|||| .

(x, y�v, z)∗ =
����
(x, y�z)∗ (x, v�z)∗
(v, y�z)∗ (v, v�z)∗

���� =

����������

����
⟨x, y⟩ ⟨x, z⟩
⟨z, y⟩ ⟨z, z⟩

����
����
⟨x, v⟩ ⟨x, z⟩
⟨z, v⟩ ⟨z, z⟩

����
����
⟨v, y⟩ ⟨v, z⟩
⟨z, y⟩ ⟨z, z⟩

����
����
⟨v, v⟩ ⟨v, z⟩
⟨z, v⟩ ⟨z, z⟩

����

����������

=

����������

����
⟨x, y⟩ ⟨x, z⟩
⟨z, y⟩ ⟨z, z⟩

����
����
⟨x, z⟩ ⟨x, v⟩
⟨z, z⟩ ⟨z, v⟩

����
����
⟨z, y⟩ ⟨z, z⟩
⟨v, y⟩ ⟨v, z⟩

����
����
⟨z, z⟩ ⟨z, v⟩
⟨v, z⟩ ⟨v, v⟩

����

����������

= ⟨z, z⟩
������

⟨x, y⟩ ⟨x, z⟩ ⟨x, v⟩
⟨z, y⟩ ⟨z, z⟩ ⟨z, v⟩
⟨v, y⟩ ⟨v, z⟩ ⟨v, v⟩

������

= ⟨z, z⟩
������

⟨x, y⟩ ⟨x, v⟩ ⟨x, z⟩
⟨v, y⟩ ⟨v, v⟩ ⟨v, z⟩
⟨z, y⟩ ⟨z, v⟩ ⟨z, z⟩

������
.

(3.4)(x, y�v, z)∗ = ⟨z, z⟩⟨x, y�v, z⟩.
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Hence:

The results obtained in (3.4) and (3.5) can be generalized as it is shown in the next 
theorem. We extend the definition of the standard weak n-inner product, for n = 1 , 
by the convention ⟨x, y�x1,… , x2⟩ = ⟨x, y⟩.

Theorem 3.1  Let (X, ⟨⋅, ⋅⟩) be an inner product space. For n ≥ 2 , consider the vec-
tors x, y, x2,… , xn ∈ X. . Then:

where E2 = 1 and:

⟨z, z�w⟩⟨z, z⟩2
��������

⟨x, y⟩ ⟨x, z⟩ ⟨x, v⟩ ⟨x,w⟩
⟨z, y⟩ ⟨z, z⟩ ⟨z, v⟩ ⟨z,w⟩
⟨v, y⟩ ⟨v, z⟩ ⟨v, v⟩ ⟨v,w⟩
⟨w, y⟩ ⟨w, z⟩ ⟨w, v⟩ ⟨w,w⟩

��������

=⟨z, z⟩2 ����
⟨z, z⟩ ⟨z,w⟩
⟨w, z⟩ ⟨w,w⟩

����

��������

⟨x, y⟩ ⟨x, z⟩ ⟨x,w⟩ ⟨x, v⟩
⟨z, y⟩ ⟨z, z⟩ ⟨z,w⟩ ⟨z, v⟩
⟨w, y⟩ ⟨w, z⟩ ⟨w,w⟩ ⟨w, v⟩
⟨v, y⟩ ⟨v, z⟩ ⟨v,w⟩ ⟨v, v⟩

��������

=⟨z, z⟩2

���������������

������

⟨x, y⟩ ⟨x, z⟩ ⟨x,w⟩
⟨z, y⟩ ⟨z, z⟩ ⟨z,w⟩
⟨w, y⟩ ⟨w, z⟩ ⟨w,w⟩

������

������

⟨x, z⟩ ⟨x,w⟩ ⟨x, v⟩
⟨z, z⟩ ⟨z,w⟩ ⟨z, v⟩
⟨w, z⟩ ⟨w,w⟩ ⟨w, v⟩

������
������

⟨z, y⟩ ⟨z, z⟩ ⟨z,w⟩
⟨w, y⟩ ⟨w, z⟩ ⟨w,w⟩
⟨v, y⟩ ⟨v, z⟩ ⟨v,w⟩

������

������

⟨z, z⟩ ⟨z,w⟩ ⟨z, v⟩
⟨w, z⟩ ⟨w,w⟩ ⟨w, v⟩
⟨v, z⟩ ⟨v,w⟩ ⟨v, v⟩

������

���������������

=

���������������

⟨z, z⟩
������

⟨x, y⟩ ⟨x,w⟩ ⟨x, z⟩
⟨w, y⟩ ⟨w,w⟩ ⟨w, z⟩
⟨z, y⟩ ⟨z,w⟩ ⟨z, z⟩

������
⟨z, z⟩

������

⟨x, v⟩ ⟨x,w⟩ ⟨x, z⟩
⟨w, v⟩ ⟨w,w⟩ ⟨w, z⟩
⟨z, v⟩ ⟨z,w⟩ ⟨z, z⟩

������

⟨z, z⟩
������

⟨v, y⟩ ⟨v,w⟩ ⟨v, z⟩
⟨w, y⟩ ⟨w,w⟩ ⟨w, z⟩
⟨z, y⟩ ⟨z,w⟩ ⟨z, z⟩

������
⟨z, z⟩

������

⟨v, v⟩ ⟨v,w⟩ ⟨v, z⟩
⟨w, v⟩ ⟨w,w⟩ ⟨w, z⟩
⟨z, v⟩ ⟨z,w⟩ ⟨z, z⟩

������

���������������
=
����
⟨z, z⟩⟨x, y�w, z⟩ ⟨z, z⟩⟨x, v�w, z⟩
⟨z, z⟩⟨v, y�w, z⟩ ⟨z, z⟩⟨v, v�w, z⟩

����
=
����
(x, y�w, z)∗ (x, v�w, z)∗
(v, y�w, z)∗ (v, v�w, z)∗

����
=(x, y�v,w, z)∗.

(3.5)(x, y�v,w, z)∗ = ⟨z, z�w⟩⟨z, z⟩2⟨x, y�v,w, z⟩.

(3.6)(x, y�xn,… , x2)∗ = En ⋅ ⟨x, y�xn,… , x2⟩,
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Proof  For n = 2 , the theorem is immediate, since (x, y�x2)∗ = ⟨x, y�x2⟩ and E2 = 1 . 
For n = 3 , the theorem follows from relation (3.4), for the choice v = x3 and z = x2 . 
Then, E3 = ⟨z, z⟩ . For n ≥ 4 , we prove by induction. Suppose the theorem true for 
n ≥ 3 and let us prove it for n + 1 . Using the hypothesis of induction, we get:

We transform all the four elements from the above determinant. Each of them is a 
determinant of order n. First, in the following determinant, changing the order of 
the last n − 1 lines and then changing the order of the last n − 1 columns, we obtain 
successively:

Next, for the second determinant, we change the order of all the n columns and then 
we change the order of the last n − 1 lines; we obtain:

(3.7)En =

n−1�
k=2

⟨xk, xk�xk−1,… , x2⟩2n−k−1 , (n ≥ 3).

(3.8)

(x, y�xn+1, xn,… , x2)∗ =
����
(x, y�xn,… , x2)∗ (x, xn+1�xn,… , x2)∗

(xn+1, y�xn,… , x2)∗ (xn+1, xn+1�xn,… , x2)∗

����
=
����
En⟨x, y�xn,… , x2⟩ En⟨x, xn+1�xn,… , x2⟩

En⟨xn+1, y�xn,… , x2⟩ En⟨xn+1, xn+1�xn,… , x2⟩
����

=(En)
2
����
⟨x, y�xn,… , x2⟩ ⟨x, xn+1�xn,… , x2⟩⟨xn+1, y�xn,… , x2⟩ ⟨xn+1, xn+1�xn,… , x2⟩

���� .

(3.9)

⟨x, y�xn,… , x2⟩ =
��������

⟨x, y⟩ ⟨x, xn⟩ … ⟨x, x2⟩⟨xn, y⟩ ⟨xn, xn⟩ … ⟨xn, x2⟩
⋮ ⋮ ⋱ ⋮

⟨x2, y⟩ ⟨x2, xn⟩ … ⟨x2, x2⟩

��������

=(−1)
(n−1)(n−2)

2

��������

⟨x, y⟩ ⟨x, xn⟩ … ⟨x, x2⟩⟨x2, y⟩ ⟨x2, xn⟩ … ⟨x2, x2⟩
⋮ ⋮ ⋱ ⋮

⟨xn, y⟩ ⟨xn, xn⟩ … ⟨xn, x2⟩

��������

=

��������

⟨x, y⟩ ⟨x, x2⟩ … ⟨x, xn⟩⟨x2, y⟩ ⟨x2, x2⟩ … ⟨x2, xn⟩
⋮ ⋮ ⋱ ⋮

⟨xn, y⟩ ⟨xn, x2⟩ … ⟨xn, xn⟩

��������
.
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since (n−1)n
2

+
(n−2)(n−1)

2
= (n − 1)2.

Similar operations there can be made for the third determinant. We change the 
order of all the n lines and then we change the order of the last n − 1 columns, and 
we get:

Finally, applying formula (I2), we have:

Consider the matrix:

(3.10)

⟨x, xn+1�xn,… , x2⟩ =
��������

⟨x, xn+1⟩ ⟨x, xn⟩ … ⟨x, x2⟩⟨xn, xn+1⟩ ⟨xn, xn⟩ … ⟨xn, x2⟩
⋮ ⋮ ⋱ ⋮

⟨x2, xn+1⟩ ⟨x2, xn⟩ … ⟨x2, x2⟩

��������

= (−1)
(n−1)n

2

��������

⟨x, x2⟩ ⟨x, x3⟩ … ⟨x, xn+1⟩⟨xn, x2⟩ ⟨xn, x3⟩ … ⟨xn, xn+1⟩
⋮ ⋮ ⋱ ⋮

⟨x2, x2⟩ ⟨x2, x3⟩ … ⟨x2, xn+1⟩

��������

= (−1)(n−1)
2

��������

⟨x, x2⟩ ⟨x, x3⟩ … ⟨x, xn+1⟩⟨x2, x2⟩ ⟨x2, x3⟩ … ⟨x2, xn+1⟩
⋮ ⋮ ⋱ ⋮

⟨xn, xn+1⟩ ⟨xn, x3⟩ … ⟨xn, xn+1⟩

��������
,

(3.11)

⟨xn+1, y�xn,… , x2⟩ =
��������

⟨xn+1, y⟩ ⟨xn+1, xn⟩ … ⟨xn+1, x2⟩⟨xn, y⟩ ⟨xn, xn⟩ … ⟨xn, x2⟩
⋮ ⋮ ⋱ ⋮

⟨x2, y⟩ ⟨x2, xn⟩ … ⟨x2, x2⟩

��������

= (−1)
(n−1)n

2

��������

⟨x2, y⟩ ⟨x2, xn⟩ … ⟨x2, x2⟩⟨x3, y⟩ ⟨x3, xn⟩ … ⟨x3, x2⟩
⋮ ⋮ ⋱ ⋮

⟨xn+1, y⟩ ⟨xn+1, xn⟩ … ⟨xn+1, x2⟩

��������

= (−1)(n−1)
2

��������

⟨x2, y⟩ ⟨x2, x2⟩ … ⟨x2, xn⟩⟨x3, y⟩ ⟨x3, x2⟩ … ⟨x3, xn⟩
⋮ ⋮ ⋱ ⋮

⟨xn+1, y⟩ ⟨xn+1, x2⟩ … ⟨xn+1, xn⟩

��������
.

(3.12)

⟨xn+1, xn+1�xn,… , x2⟩ = ⟨x2, x2�x3,… , xn+1⟩

=

��������

⟨x2, x2⟩ ⟨x2, x3⟩ … ⟨x2, xn+1⟩⟨x3, x2⟩ ⟨x3, x3⟩ … ⟨x3, xn+1⟩
⋮ ⋮ ⋱ ⋮

⟨xn+1, x2⟩ ⟨xn+1, x3⟩ … ⟨xn+1, xn+1⟩

��������
.
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Denote the elements of A by ai,j , 1 ≤ i, j ≤ n + 1 . Using the notation given in the 
beginning of the section, we have |A| = |a1,1 a2,2 … an+1,n+1|.

From (3.9), one has ⟨x, y�xn,… , x2⟩ = �a1,1 a2,2 … an,n�.
From (3.10), one has ⟨x, xn+1�xn,… , x2⟩ = (−1)(n−1)

2 �a1,2 a2,3 … an,n+1�.
From (3.11), one has ⟨xn+1, y�xn,… , x2⟩ = (−1)(n−1)

2 �a2,1 a3,2 … an+1,n�.
From (3.12), one has ⟨xn+1, xn+1�xn,… , x2⟩ = �a2,2 a3,3 … an+1,n+1�.
Then, applying formula (3.2) for n + 1 instead of n, we arrive to:

If we change the order of the last n lines and of the last n columns in |A|, the deter-
minant does not change, that is:

However:

Therefore:

Also, if we change the order of the lines and columns in determinant 
|a2,2 a3,3 … an,n| , the value does not change. Hence:

However:

Therefore:

A =

��������

⟨x, y⟩ ⟨x, x2⟩ … ⟨x, xn+1⟩⟨x2, y⟩ ⟨x2, x2⟩ … ⟨x2, xn+1⟩
⋮ ⋮ ⋱ ⋮

⟨xn+1, y⟩ ⟨xn+1, x2⟩ … ⟨xn+1, xn+1⟩

��������
.

(3.13)

����
⟨x, y�xn,… , x2⟩ ⟨x, xn+1�xn,… , x2⟩⟨xn+1, y�xn,… , x2⟩ ⟨xn+1, xn+1�xn,… , x2⟩

����
=�a1,1 a2,2 … an+1,n+1� ⋅ �a2,2 a3,3 … an,n�.

|a1,1 a2,2 … an+1,n+1| = |a1,1 an+1,n+1 an,n … a2,2|.

�a1,1 an+1,n+1 an,n … a2,2� =
��������

⟨x, y⟩ ⟨x, xn+1⟩ … ⟨x, x2⟩⟨xn+1, y⟩ ⟨xn+1, xn+1⟩ … ⟨xn+1, x2⟩
⋮ ⋮ ⋱ ⋮

⟨x2, y⟩ ⟨x2, xn+1⟩ … ⟨x2, x2⟩

��������
=⟨x, y�xn+1, xn,… , x2⟩.

(3.14)�a1,1 a2,2 … an+1,n+1� = ⟨x, y�xn+1, xn,… , x2⟩.

|a2,2 a3,3 … an,n| = |an,n an−1,n−1 … a2,2|.

�an,n an−1,n−1 … a2,2� =
��������

⟨xn, xn⟩ ⟨xn, xn−1⟩ … ⟨xn, x2⟩⟨xn−1, xn⟩ ⟨xn−1, xn−1⟩ … ⟨xn−1, x2⟩
⋮ ⋮ ⋱ ⋮

⟨x2, xn⟩ ⟨x2, xn−1⟩ … ⟨x2, x2⟩

��������
=(xn, xn�xn−1,… , x2).
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From relations (3.13), (3.14), and (3.15), we conclude that:

Replacing in (3.8), we obtain:

Since (En)
2⟨xn, xn�xn−1,… , x2⟩ = En+1 , it results, finally, that:

	�  ◻

4 � Several applications of the n iterated 2‑inner product

1. Let X = (X, ⟨⋅, ⋅⟩) be an inner product space. Let x,w, z ∈ X . From Definition 
2.11, we deduce:

Relation (4.1) can be written as:

Since (x, x|w, z)∗ ≥ 0 , then we obtain the inequality from Lupu and Schwarz [19] 
given by the following:

2. Formula (3.4) can be written in the form:

Therefore, for ‖z‖ ≠ 1 , we have (x, y|w, z)∗ ≠ ⟨x, y�w, z⟩. Also, since in the case x = y , 
the determinant in (4.4) is the Gram’s determinant Γ(x,w, z) , from relation (4.4), we 
can deduce:

(3.15)�a2,2 a3,3 … an,n� = ⟨xn, xn�xn−1,… , x2⟩.

(3.16)

����
⟨x, y�xn,… , x2⟩ ⟨x, xn+1�xn,… , x2⟩⟨xn+1, y�xn,… , x2⟩ ⟨xn+1, xn+1�xn,… , x2⟩

����
= ⟨x, y�xn+1, xn,… , x2⟩⟨xn, xn�xn−1,… , x2⟩.

(x, y�xn+1, xn,… , x2)∗ = (En)
2⟨x, y�xn+1, xn,… , x2⟩⟨xn, xn�xn−1,… , x2⟩.

(x, y�xn+1, xn,… , x2)∗ = En+1⟨x, y�xn+1, xn,… , x2⟩.

(4.1)
(x, x�w, z)∗ =(x, x�z)∗(w,w�z)∗ − (x,w�z)∗(w, x�z)∗

=‖x�z‖2‖w�z‖2 − (x,w�z)2
∗
.

(4.2)
(x, x�w, z)∗ =(‖x‖2‖w‖2‖z‖2 + 2⟨w, z⟩⟨z, x⟩⟨x,w⟩ − ‖x‖2⟨w, z⟩2

− ‖w‖2⟨z, x⟩2 − ‖z‖2⟨x,w⟩2)‖z‖2.

(4.3)
‖x‖2⟨w, z⟩2 + ‖w‖2⟨z, x⟩2 + ‖z‖2⟨x,w⟩2 ≤ ‖x‖2‖w‖2‖z‖2 + 2⟨w, z⟩⟨z, x⟩⟨x,w⟩.

(4.4)(x, y�w, z)∗ = ⟨x, y�w, z⟩‖z‖2 =
������

⟨x, y⟩ ⟨x,w⟩ ⟨x, z⟩
⟨w, y⟩ ⟨w,w⟩ ⟨w, z⟩
⟨z, y⟩ ⟨z,w⟩ ⟨z, z⟩

������
⋅ ‖z‖2.
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Since, also (x, x�z,w)∗ = Γ(x, z,w) ⋅ ‖w‖2 and Γ(x,w, z) = Γ(x, z,w) , it results:

3. From Theorem 3.1 for n = 4 , we find that the 4 iterated 2-inner product can be 
given in the following way:

From relation (4.7), for x = y , we deduce:

where Γ(x, v,w, z) is the Gram’s determinant.
In [4], Cho, Matić, and Pec̆arić used Gram’s determinant of the vectors 

x1, x2, ..., xk with respect to the vector z by:

We consider the following determinant, which can be rewritten using formula (3.3):

From relations (4.7) and (4.10), we find the following identity:

which implies the relation:

(4.5)(x, x�w, z)∗ = Γ(x,w, z) ⋅ ‖z‖2.

(4.6)(x, x�z,w)∗‖z‖2 = (x, x�w, z)∗‖w‖2.

(4.7)
(x, y�v,w, z)∗ =‖w�z‖2‖z‖4

��������

⟨x, y⟩ ⟨x, z⟩ ⟨x,w⟩ ⟨x, v⟩
⟨z, y⟩ ⟨z, z⟩ ⟨z,w⟩ ⟨z, v⟩
⟨w, y⟩ ⟨w, z⟩ ⟨w,w⟩ ⟨w, v⟩
⟨v, y⟩ ⟨v, z⟩ ⟨v,w⟩ ⟨v, v⟩

��������
=⟨x, y�v,w, z⟩‖w�z‖2‖z‖4.

(4.8)(x, x�v,w, z)∗ = Γ(x, v,w, z) ⋅ ‖w�z‖2‖z‖4,

(4.9)Γ(x1, x2, ..., xk�z) =
��������

⟨x1, x1�z⟩ ⟨x1, x2�z⟩ ... ⟨x1, xk�z⟩⟨x2, x1�z⟩ ⟨x2, x2�z⟩ ... ⟨x2, xk�z⟩
⋮ ⋮ ⋱ ⋮

⟨xk, x1�z⟩ ⟨xk, x2�z⟩ ... ⟨xk, xk�z⟩

��������
.

(4.10)

������

⟨x, y�z⟩ ⟨x,w�z⟩ ⟨x, v�z⟩
⟨w, y�z⟩ ⟨w,w�z⟩ ⟨w, v�z⟩
⟨v, y�z⟩ ⟨v,w�z⟩ ⟨v, v�z⟩

������
=

1

⟨w,w�z⟩
�
(x, y�w, z)∗(v, v�w, z)∗ − (x, v�w, z)∗(v, y�w, z)∗

�

=
1

⟨w,w�z⟩ (x, y�v,w, z)∗.

(4.11)
������

⟨x, y�z⟩ ⟨x,w�z⟩ ⟨x, v�z⟩
⟨w, y�z⟩ ⟨w,w�z⟩ ⟨w, v�z⟩
⟨v, y�z⟩ ⟨v,w�z⟩ ⟨v, v�z⟩

������
= ⟨x, y�v,w, z⟩‖z‖4,

(4.12)Γ(x,w, v�z) = Γ(x,w, v)‖z‖4.
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4. Let x, y, e, w be vectors in the inner product space X,  over the field of real num-
bers and the vectors {e, x, y} being linearly independent, such that:

where a, b, c ∈ ℝ.

We want to study the problem of determining the scalars a,  b,  c. Using the 
inner product and its properties, we deduce:

Therefore, we have to solve this system with three equations and three unknowns 
a, b, c ∈ ℝ. The matrix of the system is:

From formula (4.4), we find:

From P1), (x, x|y, e)∗ is zero if and only if the vectors x, y, e are linearly depend-
ent. However, the vectors {e, x, y} are linearly independent; therefore, we have 
(x, x|y, e)∗ > 0 . Using the Cramer method, we find that:

In the particular case, when ‖e‖ = 1 , we obtain:

5. Next, we will make a correlation of the previous calculations with the coefficients 
that appear in the case of a multiple linear regression model.

A process is called multiple linear regression, when we have more than one 
independent variable [12]. For a general linear model for two independent varia-

bles V and W and a dependent variable Z, Z = aV + bW + c , where V =

(
xi
1

n

)

1≤i≤n

 ; 

W =

(
yi
1

n

)

1≤i≤n

 ; Z =

(
zi
1

n

)

1≤i≤n

 with probabilities P(V = xi) =
1

n
 , P(W = yi) =

1

n
 , 

P(Z = zi) =
1

n
, for any i = 1, n.

ax + by + ce = w,

(4.13)

⎧
⎪⎨⎪⎩

a⟨x, x⟩ + b⟨y, x⟩ + c⟨e, x⟩ = ⟨w, x⟩
a⟨x, y⟩ + b⟨y, y⟩ + c⟨e, y⟩ = ⟨w, y⟩
a⟨x, e⟩ + b⟨y, e⟩ + c⟨e, e⟩ = ⟨w, e⟩.

A =

⎛
⎜⎜⎝

⟨x, x⟩ ⟨y, x⟩ ⟨e, x⟩
⟨x, y⟩ ⟨y, y⟩ ⟨e, y⟩
⟨x, e⟩ ⟨y, e⟩ ⟨e, e⟩

⎞
⎟⎟⎠
.

detA = Γ(x, y, e) =
1

‖e‖2 (x, x�y, e)∗.

a =
(w, x�y, e)∗
(x, x�y, e)∗ , b =

(w, y�x, e)∗
(x, x�y, e)∗ , c =

‖e‖2(w, e�x, y)∗
‖y‖2(x, x�y, e)∗

.

a =
(w, x�y, e)∗
(x, x�y, e)∗ , b =

(w, y�x, e)∗
(x, x�y, e)∗ , c = ⟨w, e⟩ − a⟨x, e⟩ − b⟨y, e⟩.
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We can describe the underlying relationship between zi and xi, yi involving error 
term �i by �i = zi − axi − byi − c.

If we take S(a, b, c) =
∑n

i=1
�2
i
=
∑n

i=1
(zi − axi − byi − c)2 , then we have to find 

min
a,b,c∈ℝ

S(a, b, c). Using the Lagrange method, we obtain:

By simple calculations, we deduce:

Now, we take the vector space (X = ℝ
n, ⟨⋅, ⋅⟩). For 

x = (x1, x2, ..., xn), y = (y1, y2, ..., yn), z = (z1, z2, ..., zn), we have:

and

If e =
u

‖u‖ , where u = (1, 1, ..., 1) ∈ ℝ
n , then the average of vector x is 

�x =

�
x

‖u‖ , e
�

=
1

n

∑n

i=1
xi , and we have:

Therefore, in (ℝn, ⟨⋅, ⋅⟩) , we define the variance of a vector x by var(x) ∶=
����

x

‖u‖ �e
����
2

.

The standard deviation �(x) of x ∈ ℝ
n is defined by �(x) ∶=

√
var(x) , so we 

deduce that �(x) =
����

x

‖u‖ �e
����. Since, using the standard 2-inner product, we have:

a

n∑
i=1

xi + b

n∑
i=1

yi + nc =

n∑
i=1

zi,

a

n∑
i=1

x2
i
+ b

n∑
i=1

xiyi + c

n∑
i=1

xi =

n∑
i=1

xizi,

a

n∑
i=1

xiyi + b

n∑
i=1

y2
i
+ c

n∑
i=1

yi =

n∑
i=1

yizi.

a =
Var(W)Cov(V , Z) − Cov(V ,W)Cov(W, Z)

Var(V)Var(W) − Cov
2(V ,W)

,

b =
Var(V)Cov(W, Z) − Cov(V ,W)Cov(V , Z)

Var(V)Var(W) − Cov
2(V ,W)

,

c =E(Z) − aE(V) − bE(W).

⟨x, y⟩ = x1y1 + x2y2 + ... + xnyn, ‖x‖ =

�
x2
1
+ x2

2
+ ... + x2

n
,

(x, y�z)∗ = ⟨x, y⟩⟨z, z⟩ − ⟨x, z⟩⟨z, y⟩ =
n�
i=1

xiyi

n�
i=1

z2
i
−

n�
i=1

xizi

n�
i=1

ziyi

‖x�z‖ =

���� n�
i=1

x2
i

n�
i=1

z2
i
−

� n�
i=1

xizi

�2

.

����
x

‖u‖�e
���� =

����1

n

n�
i=1

x2
i
−

�
1

n

n�
i=1

xi

�2

.
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it is easy to define the covariance of two vectors x and y by:

It is easy to see that, we obtain:

We observe that, by the vector method, we obtain the same coefficients as by the 
Lagrange method.

6. In [24], the Chebyshev functional is defined by:

for all x, y ∈ X , where z ∈ X is a given nonzero vector.
It is easy to see that if the standard 2-inner product (⋅, ⋅|⋅) is defined by the inner 

product ⟨⋅, ⋅⟩, then we have Tz(x, y) = (x, y|z)∗ = (x, y|z).
Therefore, we generalize this Chebyshev functional to the following functional:

which we will call n-Chebyshev functional, so:

for all x, y ∈ X , where x2, ..., xn ∈ X are given nonzero vectors.
In a particular case, when n = 3 , we have:

so, we have:

�
x

‖u‖ ,
y

‖u‖�e
�

∗

=
1

n

n�
i=1

xiyi −

�
1

n

n�
i=1

xi

��
1

n

n�
i=1

yi

�
,

cov(x, y) ∶=

�
x

‖u‖ ,
y

‖u‖�e
�

∗

.

a =
Var(y)cov(x, z) − cov(x, y)cov(y, z)

Var(x)Var(y) − cov2(x, y)
,

b =
Var(x)cov(y, z) − cov(y, x)cov(x, z)

Var(x)Var(y) − cov2(x, y)
,

c =�z − a�x − b�y.

Tz(x, y) = ‖z‖2⟨x, y⟩ − ⟨x, z⟩⟨y, z⟩,

Txn,...,x2 (x, y) ∶= (x, y|xn, ..., x2)∗,

(4.14)
Txn,...,x2 (x, y) =Txn−1,...,x2 (x, y)Txn−1,...,x2 (xn, xn)

− Txn−1,...,x2 (x, xn)Txn−1,...,x2 (xn, y),

Tw,z(x, y) = (x, y|w, z)∗ = (x, y|z)∗(w,w|z∗) − (x,w|z)∗(w, y|z)∗;

Tw,z(x, x) =(x, x�w, z)∗ = (x, x�z)∗(w,w�z)∗ − (x,w�z)∗(w, x�z)∗
=‖x�z‖2‖w�z‖2 − (x,w�z)2
=(‖x‖2‖w‖2‖z‖2 + 2⟨w, z⟩⟨z, x⟩⟨x,w⟩ − ‖x‖2⟨w, z⟩2
− ‖w‖2⟨z, x⟩2 − ‖z‖2⟨x,w⟩2)‖z‖2.
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Therefore, the Cauchy–Schwarz inequality in terms of the n-Chebyshev functional 
becomes:

5 � Conclusions

In this paper, we exemplified the weak n-inner product only by the weak n iter-
ated 2-inner product. This particular case of weak n-inner product does not exhaust 
all the possibilities of particular cases. The weak n-inner product is clearly more 
general then the n-inner product, and consequently, it offers more possibilities. An 
important connection is between the vector method and the Lagrange method given 
above. In the future, we will determine a formula for multiple regression for n inde-
pendent variables.

Acknowledgements  The authors would like to thank to the reviewers for the pertinent remarks, which 
led to an improvement of the paper.
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