Tusi
Mathematical
Research
Group

®

Check for
updates

Ann. Funct. Anal. (2021) 12:22
https://doi.org/10.1007/s43034-020-00108-3

ORIGINAL PAPER

Weak n-inner product spaces

Nicusor Minculete' - Radu Paltanea’

Received: 15 June 2020 / Accepted: 18 December 2020 / Published online: 26 January 2021
© Tusi Mathematical Research Group (TMRG) 2021

Abstract

In this article, we study a generalization of the n-inner product which we name weak
n-inner product. As particular case, we consider the n-iterated 2-inner product and
we give its representation in terms of the standard k-inner products, k < n, using the
Dodgson’s identity for determinants. Finally, we present several applications, includ-
ing a brief characterization of a linear regression model for the random variables in
discrete case and a generalization of the Chebyshev functional using the n-iterated
2-inner product.
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1 Introduction

The concept of linear 2-normed spaces and 2-metric spaces has been investigated by
Gibhler [13]. In [6] and [7], Diminnie, Géhler, and White studied the 2-inner product
spaces.

A classification of results related to the theory of 2-inner product spaces can be
found in book [3]. Here, several properties of 2-inner product spaces are given. In
[10], Dragomir et al. show the corresponding version of Boas—Bellman inequality in
2-inner product spaces. Others properties of a 2-inner product space can be found in
[4].

Misiak [20] generalizes this concept of a 2-inner product space, in 1989, in the
following way: let n be a nonnegative integer (n > 2) and X be a vector space of
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dimension dim X = d > n (d may be infinite) over the field of real numbers R. An R
-valued function (-, | -, ..., -) on X! satisfying the following properties:

Dy (v, vilve, e v,) 2 0y, v(|vy, ..., v,) = 0 if and only if v, v,, ..., v, are lin-
early dependent;

A2) (v vilva, s vy) = vy vy, vy, 0 v, ), for every permutation (iy, i, ..., i)
of (1,2, ..., n);

a3 (v,wlvy, v,y = (W, V|vy, oy V)

a4 (av,w|v,,...,v,) = a{v,w|v,, ..., v,), for every scalar @ € R.

I5) v+, wlvy, v,y = W, wlvy, v,y + (V wlvy, v, )

is called an n-inner product on X, and the pair (X, (-, |-, ..., -)) is called an n-inner
product space or n-pre-Hilbert space.

It is easy to see that the m-inner product is a linear function of its two
first arguments. Several results related to the theory of the n-inner prod-
uct spaces can be found in [15, 21]: (v,w|avy,..,v,) = az(v,w|v2, s Vs
for every real number a and for V, W, Vy,..,V, €X;
(v, w|v, + v’2,v3, ey Xy — (v wlvy — v’z, Viyeuny Vy) = (vz,v’2|v + W, Vs, V)

—(v,, v’2|v —W,V3,...,V,), for all v,w,v,,vs,..,v,, v; € X and an extension of the
Cauchy—Schwarz inequality to arbitrary n:

[{v, w[vy, . v )| < \/(V, VVa, ey vn)\/(w, WVys s V)5 (1.1)

for all v,w,v,,...,v, € X. The equality holds in (1) if and only if v,w,v,,...,v, are
linearly dependent.
Other consequences from the above properties can be inferred very easily:

(0, w|vy, s v,y = (v,0]vy, ..., v,) = (v, w]0, ..., v,) =0,

Vo WYy, ey v,) = (V, 5]V, ..., ) =0,

forallv,w,v,,...,v, € X.
Let (X, (-, |, ...,-)) be an n-inner product space, n > 2. We can define a function
|-, [JOn X X X X ... X X = X" by:

[V[vas s vull 2= AV V[Vas e V)

for all v, v,, ..., v, € X, which in [20] is shown that satisfies the following conditions:

(N1) |[v|vy,.ees v, |l = 0 and ||v|v,, ..., v, || = 0 if and only if v,v,, ..., v, are linearly

dependent;
(N2) ||v]v,, ..., v,||lis invariant under permutation;
(N3) [lav|vy, ..., v, || = |||V|Vy, ..., v, ||, for any scalar a € R.

(N4 |lv+w|vy, oo, vl L IVIVascoos V|l + IW]Vas s v, |l

forallv,w,v,,...,v, € X.
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A function || - |+, ..., -|| defined on X" and satisfying the above conditions is called
an n-normon X and (X, || - |-, ..., -||) is called a linear n-normed space.

It is easy to see that if (X, (-,|,...,-)) is an n-inner product space over the field
of real numbers R, then (X, || - |-, ..., -]|]) is a linear n-normed space and the n-norm
| -], ..., -]l is generated by the n-inner product (-, |-, ..., *).

Furthermore, we have the parallelogram law [3]:

v+ w|v,, ..., vnll2 + v —w|v,, ..., vn||2 =2{|v|vy, .eus vnll2 +2|[wlv,, ... vn||2,
(1.2)
for all v,w, v,, .., v, € X and the polarization identity (see, e.g., [3] and [4]):

[[v+w|v,, ...,vn||2 — [[v = w|v,, ...,vn||2 =4, w|vy, .y, ), (1.3)

forallv,w,v,,...,v, € X.
The standard n -inner product on an inner product space X = (X, (-.-)) is given
by:

v, w)y (1) o vy,

— <V2:W> <V2,.V2> <V2’.vn> ,

W, wlvy, ey vy) (1.4)

(Vn;W> <vn"v2> <Vn’.vn>

which generates n-norm ||v|v,, ..., v, || := 1/(v,V|v,,...,v,), representing the volume
of the n-dimensional parallelepiped spanned by v, v,, ..., v,,.

Various type of applications of n-inner products and n-norms can be found in
recent papers [2, 16—18, 22, 23, 25, 26].

Remark 1.1 The standard n-inner product satisfies also the following additional
condition:

16) Ifv,v,,...,v,are linearly dependent, then (v, w|v,, ..., v,) =0,

forv,w,vy,...,v, € X.

The motivation of this article is to study another type of n-inner product built
based on the properties of the n-inner product, except property 12. We will define the
weak n-inner product and the n-iterated 2-inner product and we will give its repre-
sentation in terms of the standard k-inner products, k < n, using the Dodgson’s iden-
tity for determinants. We also present a brief characterization of a linear regression
model for the random variables in discrete case. Finally, we generalize the Cheby-
shev functional using the n-iterated 2-inner product.
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2 The weak n-inner product
Let X be a real vector space.

Definition 2.1 An R-valued function (-, - | -, ...,-) on X**\, n > 2, satisfying the fol-
lowing properties:

(P1) Positivity: (x, x|x,, ...,x,) = 0 and (x,x|x,, ...,x,) = Oifand only if x, x,, x5, ..., X,,
are linearly dependent;

(P2) Interchangeability: (x,x|X,, ..., Xp) = (X5, X, | X, X,,_15 -0y X);

(P3) Symmetry: (x,y|x,, ..., %) = (V, X|X,5 .., X5);

(P4) Homogeneity: (ax,y|x,, ...,X;) = a(x,y|x,, ..., x,), for every scalar a € R.

(P5) Additivity: (x + X', ¥]x,, ...y Xp) = (X, Y|, o0y X5) + (X, Y[, s X0

is called a weak 7 -inner product on X, and the pair (X, (-, |+, ..., )) is called a weak n
-inner product space or weak n -pre-Hilbert space.
Remark 2.2 1t is easy to see that:

0,y1x,, ... x,) = (x,0]x,,, ..., x,) = (x,¥]0, ..., x,) = 0.

Remark 2.3 Obviously, an n-inner product is a weak n-inner product, so an n-inner
product space is a weak n-inner product space, but the reciprocal is not true. This
fact will be shown in Remark 2.14.

For n =2, a weak n-inner product is also an n-inner product. For n > 3, a weak
n-inner product can be build, for instance, by formula:

@, y1x,, o0 x0) = O, Y|X, oy Xy) s WX,y -5 X)),

where O(x, y|x, ...,x,) is a n-inner product and ¥ : X"2 - R is a function with
properties W(x,_;, ..., x;) > 0. V(x,_;, ..., xy) and W(x,,_, ..., x) =0iff x,_;,....x,
are linearly dependent (in the case n = 3, this means x, = 0).

In the next lemma, we generalize a property that exists in the case of 2-inner
products. The method of the proof is based on the method used in [4].

Lemma2.4 Let,x,,...,x,,x,y € X.If x,, ..., x,,x are linearly dependent, then:

(x, ylx,, ..., xp) = 0. 2.1

Proof We consider two cases.
Case 1. x,, ..., x,,y are linearly independent. Consider the vector:

u=ylx,, ..., x)x = ,ylx,, ..., x)y.
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Then from P1), we have (u, ulx,, ... ,x,) > 0. This inequality is equivalent to:

(y,)’|xn, ’-x2)[(-x7-x|-xn’ ’-x2)(y’y|-xn7 ,.X2) - (X,Y|xm 7-x2)2] Z 0

Since x,,...,x,,x are linearly dependent, from one has (x,x|x,,...,x,) =0 and
hence:

-0, Y1%,5 - X)X YIX,,, ,x2)2 >0.

Since x,, ..., x,,y are linearly independent, it follows that (y, y|x,, ...,x,) > 0. Con-
sequently, one obtains (2.1).
Case 2. x,,...,x,,y are linearly dependent. Then, also x,,...,x,,x+y are lin-

early dependent. We have:
@, y|x,, .. 5 xp)

1
=§[(x+y,x+y|xn, v X)) = (6 x|, o X)) = (0, VX, X))

Because (x,x|x,,...,x) =0, 0, ylx,,....x) =0, x+y,x+ylx,,...,x,) =0 rela-
tion (2.1) follows. O

Theorem 2.5 Suppose that (X,(-,-|-,...,")) is a weak n-inner product
space over the field of real numbers R. Let x,,...,x, €X, n>2 be fixed.
Denote Y = span{x,,...,x,}. Define the quotient space X/Y = {%|x € X},
where i={u€Xlu—x€Y}, x€X. Then, function wy :(X/Y)>— R,
&, P) 1=, y)x,, X)), X,9 € X/Y is well defined and is a semi-inner product on
X/Y. Moreover, if x,, ..., x, are linearly independent, then y is an inner product.

Progf Letx,x’,y,y" € X,suchthatx’ —x € Yandy' — y € Y.UsingLemma?2.4, we get
w(x,y) = O Y %X e X)) = (6, Y| %X s v X)) + (X = X, Y%, s %) + (6, Y = Y[Xys s Xy)
+( =X,y =YX, s Xy) = (X, V1%, s %) = W(X, $). This means that y is well
defined.

From Pl), we have w(&, %) = (x,x|x,,...,x,) > 0. Moreover, if w(&,%) =0,
then (x, x|x,, ..., x,) = 0, which implies that x,x,, ... ,x, are linearly dependent. If
X5, ..., X, are linearly independent, it follows that x € Y. Then % = 0.

The other properties of the inner product follow in a simple manner from condi-

tions P3), P4), and P5). O

Theorem 2.6 (Schwarz type inequality) Let (X, (-, |-, ...,*)) be a weak n-inner prod-
uct space. For any x,y,x,, ...,x,, € X, we have:

[Ce, ylx, s Xp)| < \/(x,xlxn, ...,xz)\/(y, VIX,5 eees Xo). 2.2)

% Birkhauser
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In the case, when x,,...,x, are linearly independent, then the equality holds in
(2.2) if and only if there exist p € R, and u € Y := span{x,, ...,x,}, such that
y = ux+u.

Proof By taking into account Theorem 2.5 and the notations given there, we have:
(6 y1%, -0 20) | = [P D) < VIR DV, )
=1/ X%, 00 %)V 5, VX e Xp).

If x,,...,x, are linearly independent, then the equality holds in (2.2) iff there is

u > 0, such that y = ux, i.e., exists u € Y for which y = ux + u. a
Definition 2.7 Let (X, (-, |-, ...,-)) be a weak n-inner product space, n > 2. We can
define a function||-, ..., -|Jlon X X X X ... X X = X" by:

x1%,0 oo o [l 2= /(6 X[X,, 0 xy), foOr all x,xp,...,x, € X. (2.3)
Proposition 2.8 If (X,(-,-|-,....*)) is a weak n-inner product space, then function

I, ..., - || defined in (2.3) satisfies the following conditions:

(C1) [Ix|x,,.... %]l = 0 and ||x|x,,, ..., x,|| = 0 if and only if x, x,, ..., x, are linearly

dependent;
(C2) ”'xlxn"xn—l > "”x2” = ||'xn|'x7 Xn—1s ""x2||;
(C3) |lax|x,, ... x5 || = |e|llx]x,,, ..., X, ||, for any scalar @ € R;

(€4 lx+y1x, s X || < X180 s o]+ Y1 s X

for all x,y, x,, ...,x, € X.
Proof Conditions (C1)- (C4) follow immediately from conditions (P1)—(P5) and
Definition 2.7. O

Definition 2.9 Let X be a real vector space. A real function | - |-,...,-|| defined
on X" and satisfying conditions (C1)—(C4) is called a weak n-norm on X and
X, Il - |+ ..., -|) is called a linear weak n-normed space.

It follows that if (X, (-, |-, ...,+)) is a weak n-inner product space over the field
of real numbers R, then (X, || - |-, ..., -||) is a linear weak n-normed space and the
weak n-norm || - |-, ..., -|| is generated by the weak n-inner product (-, -|-, ..., -).

Theorem 2.10 In conditions of Theorem 2.5, function ¢ :X/Y > R,,
Q@) = |Ix|x,, ... %, |, X € X/Y is well defined and is a semi-norm on X/Y. Moreo-

ver, if x5, ..., x, are linearly independent, then @ is a norm.

Proof 1t follows immediately from Theorem 2.5, since @(%) = Vw(%,%), X € X/Y,
where function y was defined in this theorem. O

% Birkhauser
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In an inner product space, a special weak n-inner product can be defined by
recurrence starting from the 2-inner product. Recall that the 2-inner product was
studied in [3, 4].

Definition 2.11 Let (X, (:,-)) be a real pre-Hilbert space. The n-iterated 2-inner
product, or standard weak n-inner product (-, |-, ..., ), : X! - R is defined for
n > 2 as follows. For n = 2, (-, -|-), coincides with the standard 2-inner product, that
is:

(x,y) (x.2)

(6, yl2), 1= (xylz) = = (X, y{z,2) — (5, 21z y), xy.z€X.

(Y (z2)
2.4
Then, if n > 3 and x,y, x,, ..., x,, € X, define:
. o YIx s e X)X, 1%, e X0,
X V%, X)), 1= . .
( yl " 2)* (‘xn’ ylxn—l ’ ""'x2)>'s (‘xn’xnl'xn—l’ ""x2)* (2 5)

Theorem 2.12 If (X, (-,)) is a real pre-Hilbert space, then for any n > 2 function
Cyolseees ), @ X = R given in Definition 2.11 is a weak n-inner product.

Proof Consider proposition S(n): the n-iterated 2-inner product satisfies conditions
(P1)—(P6). We prove this proposition by mathematical induction, for n > 2.

For n = 2, S(n) is true, since we know from [3, 4] that the standard 2-inner prod-
(x,y) (x.2)
(z.y) (z.2)

Suppose S(n) is true and prove that proposition S(n + 1) is true. The (n + 1)-iter-
ated 2-inner product is given by:

uct, (x, y|z), = det < , satisfies conditions P1) — P6).

X y1x,, oo Xn), (2, X1 12X o X))

6 Y115 Xyps ey Xp)y = .
’ AR (xn+l7y|xn"""x2)* (xn+l"xn+l|'xn"”’x2)*

Let us prove P1) for n+4 1. First, we prove that (x,x|x,,,....x,), >0, for
X, X5, 0. Xy € X

Case 1: (x,x|x,,...,x;), =0. Then, from property P1) for n, it results that
X,X,,...,X, are linearly dependent. From the hypothesis of induction and from
Lemma 2.4, it follows that (x, x,, . |x,, ..., x,),, = 0. Then:

(x, x|x,, ... Xp), (6, X1 1%, s X)),
(xn+1 ’xlxn’ ""XZ)* (xn+1 > Xnt1 |xn7 ""XZ)*
0 0

P15 XX o0 X)) (g1 X 1 X os X))

(0, X[ X 15 e X)), =

=0.

Case 2: (x,x|x,,...,X,), > 0. From (P1) for n, we have (z,zl|x,,...,X,), = 0, for all
z € X, and then:

Ax+x,, 0, Ax+x,,]%,, ... %), >0, for all 21 €R.

We obtain the following relation:

% Birkhauser
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2
ATQ6 XX, oy X))y F 2400, X, 1,0 1o X)) F (s X1 [ Xy o X0), 2 0, VA

Since (x, x|x,,, ..., X,), > 0, the discriminant A, of this polynomial in variable A is not
strictly positive. Hence, (x, x|x,, |, X,, ..., %), = _iAi > 0. Therefore, in both cases,
we obtain (x, x|x,, 1, ..., x,), > 0.

On the other hand, let us suppose that (x, x|x,

that:

w1 X s X2),, = 0, which means

2
(6, X[, e X)) (g 15 X 1 X o0s XD — Q6 X g %0 o Xp)2 =

If (x40, %,011%,, ... Xy), #0, the expression above is equal to —iA,l, where A,
is the discriminant of the polynomial equation of degree 2 in A: Q(4) = 0, where
O(A) = (x + Ax, . x + Ax, 11X, ..., X,),. Since the discriminant is O, then there
exists 4, € R, for which Q(4,) = 0. From condition (P1) for n, it follows that
X+ AgX, 415X, ... X, are linearly dependent. Then, there are the numbers «, a; € R,
not all null, such that a(x + Apx,,;) + X_, a:x; = 0. Therefore, x, x,, ..., x,,, are lin-
early dependent. If (x,,;, X, |%,, ... %), = 0 then Xy, ..., X,y are linearly dependent
from (P1) for n. Then, x,x,, ..., x,; are linearly dependent. Condition (P1) is com-
pletely proved for n + 1.
We prove condition (P2) for n + 1:

(X, X)X, ooy X5) (6, X1 %5 s X)),
(xn+1’x|xn’ ""x2)* (xn+1’xn+l |xn’ ""x2)*

_ P15 X1 X wees X0) s (K15 X105 os X))
O X1 X, o X0), (XX, s X)),

= (xn+l’xn+l |X, Xn» "”x2)*'

0, XX 15 s X))y =

Consequently, condition (P2) is true for n + 1.
We pass to the verification of condition (P3). We have:

(x’ ylxn’ ""x2)* (X, xn+l |xn’ ""XZ)*
G 1o V1% s X0) e K1 X1 X5 s X)),

_ O, x|x,, ... Xp), (> VI, s X)),
(x’ Xt |xn’ "'?XZ)* (xn+l?xn+l |xn’ ""x2)>:<

G Y11 Xy s X0), =

= (0, X| X0 15 X5 o X0

because det A = det AT, for any square matrix A and (x, y|x,,, ..., X,), = (v, X|x,,, .., X;),,
Therefore, the (n + 1)-iterated 2-inner product satisfies condition (P3) for n + 1.
We pass now to condition (P4). Since we have:

(ax7 ylxm ...,X2)* ((ZX, Xn+l |xn’ ""XZ)*
15 Y15 s X))o (15 Xy X oo X2),

_ | aeylxg - xy), @l XX, X),
1> 1% s X0 (15 X1 [ X5 s X0,

(X, V12X 15 Xy s Xn)y =
= (X, Y|x,0 15X, o0 X0,

it follows that condition (P4) is proved for n + 1.
For (P5) for n + 1, the determinant (x + x’, y|x,, |, X, ..., X), can be expressed by a

determinant of second order, having on the first line the elements (x + x’, y|x,,, ..., X;)

ES
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and (x +x',x,,,, |x,, ..., X,),, respectively, and on the second line, elements which do
not depend on x and x’. Then, using by induction the additivity in the first argument
of the products above, and then the additivity of the determinant with regard to the
first line, it follows immediately that:

O+ X VX 15 Xps ees X0)se = 6 V|01 X wes X2) s F (S V1215 Xy e X)) -

O

Proposition 2.13 Let (X, (-,-)) be a real pre-Hilbert space. For x,y,x,,...,x, € X,
n>2and: t € R:

(tx, ty|txy, ..., 1x,), = 12 (6, Y]y, ..., X)), (2.6)
Proof For n = 2, (tx, ty|tx,), = t*(x, y|x,),. Then, it follows by mathematical induc-

tion. O

Remark 2.14 Theorem 2.12 allows us to furnish an example of weak n-inner product
which is not a n-inner product. For this, let X = R* endowed with the usual inner
product. Then, from Theorem 2.12, 3-iterated 2-inner product (-, -|-,-), : X* — Ris
a weak 3-inner product, but it is not a 3-inner product. Indeed, if axiom 12) would be
true for 3-iterated 2-inner product, then we must have:

(x, x|u,v), = (v,v|u,x),, for all x,u,veX. 2.7
However, if we choose x = (1,0,0), u = (1,1,1), v = (2, 1,2), we have:

(@, u)  (z,v)
(v, u)  (v,v)

(z,2) (z,0)
(v,2)  (v,0)

(x7x|u, 'U)* =

‘1 2 ‘1 2

2 9115 9 ’5 _1‘
- =lo1 2|7

1 513 5

9 15 9
and on the other hand:
w,v) (v, x)| [Kv,u) (v,x) 92152
(e, v) (x| [ u) (x,x) 21|11
(V7V|u’x)* = =
(u,v) (u,x)| |{u,u) {(u,x) 51/ 31
)y (x| [{xu) (x,x) 210 (11
53
1320 L
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Hence, relation (2.7) is not true. Consequently, axiom (I2) is not satisfied. Therefore,
3-iterated 2-inner product is not a 3-inner product.

3 Representation of the n-iterated 2-inner product in terms
of the standard k-inner products, (k < n)

In this section, we obtain a representation of the n-iterated 2-inner product, given
in Definition 2.11 in terms of the standard k-inner products k£ < n. For this, we use
Dodgson’s identity for determinants, [8, 9]. Historical notes about this identity, in
connection with Chio’s formula can be found in [1]. To express this identity, we
adopt the compact notation used by Eves [11]. If A = (4;;),; <, IS @ square matrix,
denote the determinant of A by |a, | ...a,,|and the sub-determinant involving rows
i1, ..., i; and columns jj,....j; by |a; ; ...a; ;| In [11]—Theorem 3.6.3, the fol-
lowing Dodgson-type identity (n > 3) is proved:

|al,l an—2,n—2| : |al,l an,nl
— layy oo @ygpg Gyl lary ooy gg @yl _ @3.D
layy o @Guppen Qupetl layy o Gyg g
For us, it is more convenient to use the following identity (n > 3):
|a2,2 an—l,n—ll . Ial,l an,nl
_|lay oy @yl @y oy gy @yl (3.2)
|a2,l an—l,n—Z an,n—ll |a2,2 "'an—l,n—l an,nl
For n = 3, one has:
lay; axsl lay, ay5l
Ay layy appazs| = 00 5t O RE ST 3.3
22 L172.273.3 layy as,l lay, assl (3.3)

Formula (3.2) can be easily obtained applying formula (3.1). Indeed, first note that:

-1
layy oo ap,l = D" ayy o @y, a0yl = lagy o.ay,, aq4l.

% Birkhauser
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Then, applying rule (3.1) for our new matrix, we find, using the notation & = (—1)""2

lazs oo Gpoy il - layy oo Gy, a4l
— layy oo @iy Gpnl |Gy oty
|Gy i Gyoy ey @yl |Gon oo @y g Gyl
— lazy - Gy oy Gyl 2£|a231 el g Gy | ‘
5|a1,2 cee Ay o p-1 an—l,nl 3 |‘1|,1 sy o2 an—l,n—ll
— layy oo @ygng Gpoy ol 1o oo @yg oy Gy
lazy o Guipen Gt lAan o Gy Gyl

Note that, conversely, from relation (3.2), one can deduce relation (3.1).
Let (X, (-, -)) be an inner product space. For x,y,z,v € X, from (3.2), for n = 3,
we deduce:

(x,y) (2| [{x,v) (x,2)
|yl Gl _ 1@ @Rl )

(6 ylv,2), = W yl2), vla),|
2 V1) AV VI Wy )| [(vv) (v,2)

(¥ (z.2)

(3 (52| [{62) (x,v)
(@y) (2| {z2) (zv)
= =(z,2)
(Y ()] |{z2) (v
my) (2| [{(v.2) (v,v)
(6, ) (x,v) (x,2)
(v, y) (v,v) (v, 2)
(.y) (V) (z.2)

(z,v) {2,2)

(%, ) (x,2) (x,v)
(z,y) (z.2) (z,Vv)
W, y) (v,2) (v,v)

=(z,2)

Hence, we obtained:
6y, 2), = (2, 2%, ¥y, 2). (3.4)

Also, using formula (3.2), for n = 4, and then formula (3.4) we obtain :
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(6y) (x,2) (xv) (x,w)
(Y (z2) (V) (zw)
vy (v,2) (v,v) (v,w)
(W, ) (w,2) (w,v) (w,w)
(6y) (x2) (x,w) (x,v)
(¥ (z2) (zw) (V)
(W, ) (w,2) (w,w) (w,v)
v,y (v,2) (v,w) (v,v)

(z.zlw)(z.2)?

(z.2) (zw)

=(z.2)’ (w,z) (w,w)

N. Minculete and R. Paltanea

(6, y) (x,2) (x,w)
(zy) (z2) (z&w)
(w,y) (w,z) (w,w)

=(z.2)?
(Zy) (z2) (zw)
(w,y) (w,z) (w,w)
m,y) (v2) (v,w)
(x,y) (xw) (x2)
(w,y) (w,w) (w,z)
(zy) (zw) (z.2)

m,y) (v,w) (v,2)
(w,y) (w,w) (w,2)
(zy) (zw) (z2)

(z,2)

(2,2)

x, ylw, 2), (x,v|w, 2),
W, yIw,2), (v, v|w, 2),

=(x, y|v, w, 2),.

Hence:

x5 y[v,w,2), = (2, zlw)(z, 2)* (x, y[v, w, 2).

(z, 2)(xylw, 2) (z,2)(x, v|w, 2)
(z 2V, ylw, 2) (z,2)(v,v|w,2)

(x,2) (x,w) (x,v)
(z,2) (zw) (z,v)

(w,2) (w,w) (w,v)

(z.2) (zw) (z,v)
(w,2) (w,w) (w,v)

(v.2) (v,w) (v,v)
(xv) (uw) (x,2)

(w,v) (w,w) (w,2)

(zv) (zw) (z.2)
w,v) (v,w) (v,2)

(w,v) {w,w) (w,z)

(zv) {zw) (z.2)

(z,2)

(2,2)

(3.5)

The results obtained in (3.4) and (3.5) can be generalized as it is shown in the next
theorem. We extend the definition of the standard weak n-inner product, for n = 1,

by the convention (x, y|x;, ..., X,) = (x,¥).

Theorem 3.1 Let (X, (-,-)) be an inner product space. For n > 2, consider the vec-

107 X, ¥, X5, ..., X, € X.. Then:

@YXy, s x0) = E - (Y%, e, X))y

where E, = 1and:
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n—1

E, = [[Gexln i), (0> 3). (3.7)
k=2

Proof For n = 2, the theorem is immediate, since (x,y|x,), = (x,y|x,) and E, = 1.
For n = 3, the theorem follows from relation (3.4), for the choice v = x5 and z = x,.
Then, E; = (z,z). For n > 4, we prove by induction. Suppose the theorem true for
n > 3 and let us prove it for n + 1. Using the hypothesis of induction, we get:

(€Y B S IR € A5 APRY b SN SO N
(xn+l’y|xn7 7x2)* (xn+l’xn+1 Ixn’ ’x2)*
E (x,y1x,, ..., %)  E (X, 1%, ..., %)
By (X1 YXs o X0) Ep(Xy s X X o5 %)
X, ¥1%, .0, X0) X 1%, - Xy)
K> VX0 s XY (1 Xt X -5 X0)

Y|y 1 Xy e s X))y =

=(E,)’

(3.8)
We transform all the four elements from the above determinant. Each of them is a
determinant of order n. First, in the following determinant, changing the order of
the last n — 1 lines and then changing the order of the last n — 1 columns, we obtain
successively:

(xy) (x) .. (6x)
ey, o xy) = <xn;y> ( n’:xn> <x,,,:x2>

(xz's)’> <x2’.xn> <x2:x2>
(y) (6x,) o (x)

=(_1)w (x2:,y) <x2,:xn) (x2,2x2> 3.9)

('xn"y> ('xn’.xn> . ('xn’.x2>

(y) (%x) ... (xx,)
_ (xz.s)’> (xz,.xz) <x2’.‘xn> )
<'xn.’y> <xn:x2> . <xn’.'xn>

Next, for the second determinant, we change the order of all the n columns and then
we change the order of the last n — 1 lines; we obtain:
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X x50 (6x) o (6x)
<x’xn+l xn,...,xz) = <x”’)f"+l> <xn’:xn> <xn’:x2>
(%5 X,11) (X2, %,) v (X2, %)
(x,x) (6x3) o (XX,,0)
[l G Gt
: P (3.10)
<x2*x2> <x2’x3> <x2’xn+1>
<x’x2> <x7x3> (x,an)
= (=)’ (xz,.xz) <x21x3) (xz,;.an) ,

<xn’xn+1> <Xn,X3> <xn’xn+1>

since i=bn | (=Dn=D) _ (n—1)>.

Similar operations there can be made for the third determinant. We change the
order of all the n lines and then we change the order of the last n — 1 columns, and
we get:

(xn+1,y) <xn+l’xn> (xn+1,x2)
(xn+1,)’|xm 7x2> — <-xn"y> <xn"-xn> <xn’.x2>
(2, y) X2 x,) oo (X2, %)
(. 3) (X X,) o (X0.%0)
_ (_1)(”‘% (3,3)  (X:2,) - (X3,%)
: oo (3.11)
<‘xn+1’y> (xn+1"xn> <‘xn+1’x2>
(0, ) (xx) .. (x,x,)
_ (_1)(n—1)2 (3,5)  (x3,%) ... {x3,X,)
<xn+1’y> <xn+l’x2> <‘xn+1"xn>
Finally, applying formula (I2), we have:
(1> X1 [Xs -5 X)) = (09, X X35 o0 X))
(%2, %) (X, X3) oo (X Xpyq)
(X3, %) (x3,x3) oo (X3, X,0) . (3.12)

(1o X2) K15 X3) wov (Xppps g1

Consider the matrix:
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(Ly)  (nx) o (X))
A= <xz")’> <xzix2> <x2’).cn+l>
<xn-i:1’y> <xn+;’x2> <xn+1’.xn+1>

Denote the elements of A by a;;, 1 <i,j <n+ 1. Using the notation given in the
beginning of the section, we have [A| = |a; | ayy ... @y pqq]

From (3.9), one has (x, y|x,, ..., X;) = |a; ; a5, ... a,,]|

From (3.10), one has (X, X, X, ..., X,) = (=D V|a;5 ay5 ... dypl
From (3.11), one has (x,,, 1, y|x,, ..., %) = (=D YV a, | as, ... a,,,l
From (3.12), one has (x,, 1, X, 1 |X,: ... s X2) = |ay5 A33 .. Gy )

Then, applying formula (3.2) for n + 1 instead of n, we arrive to:

X, y|x,, 05 %) (X, X1 X0 - X0)
(xn+1’)’|xn,-..,x2> <xn+l’xn+l|xn?“'?x2> (3.13)
=layy ayy oo Gupypirl gy azs ooay,l.

If we change the order of the last n lines and of the last n columns in |Al, the deter-
minant does not change, that is:

|a1,1 ayp e an+1,n+1| = |a1,1 Qi1 A --- a2’2|,
However:
Yy (X)) e (X))
a1 Aupin1 4 a22| = <xn+1’y> <xn+l’xn+l> <xn+l’x2>
5 n S nn *°* X : . ... S
(X3, ¥) (X9 Xp1) oo (X9, Xp)
=<x’y|xn+1’xn,-~.,)€2>.
Therefore:

layy arp oo Guyg gyl = (6 Y1115 Xy o5 X0) (3.14)

Also, if we change the order of the lines and columns in determinant
lay, az3 ... a,,l, the value does not change. Hence:

lay, azs .. ay,l =la,, ay_y g - aysl
However:
<‘xn’xn> <xn’xn—l> <xn"x2>
an’n an—l,n—l 612,2| — (xn—§9xn> (‘xn—l’:‘xn—1> '.'.' ('xn—%’x2>
(s %,)  (XsX0m) e (X0 0)
=X, X [ X015 -0 5 X0).
Therefore:
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|a2,2 a3,3 an,nl = <xn’xn|xn—l’ ,)C2>. (315)
From relations (3.13), (3.14), and (3.15), we conclude that:

X Y1%,0 e, Xp) X, X 1%, oo X0)
Ko 1 V1% s X0 ) (Xt X1 X oo, 20) (3.16)

= (0 Y15 X -5 X)X X [ X5 -5 22)
Replacing in (3.8), we obtain:
2
(x’ylxn+l’xn’ ’XZ)* = (En) <x’y|xn+l’xn’ ’x2><xn’xn|xn—l’ ’x2>'
Since (E,)*(x,, X,|X_1» -+ » X2) = E,,.y, it results, finally, that:

O Y15 X o X0) = B 6 VX 15 X -5 X2).

4 Several applications of the n iterated 2-inner product

1. Let X = (X, (-,-)) be an inner product space. Let x,w,z € X. From Definition
2.11, we deduce:

(x, x|w, 2),, =(x, x[2), (W, w|2), — (x, w|2),. (W, x[2),
4.1
— ezl w2l - el @b

Relation (4.1) can be written as:
e xlw, 2), =Xl w11z + 2(w, 2)(z %) (x, w) — [|x]|*(w, 2)? “2)
— WPz x) = Izl e w)D 1zl '

Since (x, x|w,z), > 0, then we obtain the inequality from Lupu and Schwarz [19]
given by the following:

Il (w, 2)* + Iwll* (220> + 1zl G w)? < Dl 2l + 2¢w, 2){z, ) (x w).

4.3)
2. Formula (3.4) can be written in the form:
(xy) (xw) (x,z)
1w, 2), = (5 ylw, DIzl = [(w,y) (wow) (w,2)] - Izl (4.4)
(zy) (Zw) (z.2)

Therefore, for||z|| # 1, we have (x, y|w, 2), # {(x, y|w, z). Also, since in the case x =y,
the determinant in (4.4) is the Gram’s determinant I"(x, w, z), from relation (4.4), we
can deduce:
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(@, x|w, 2), = Tx, w,2) - ||zI|*. 4.5)
Since, also (x, x|z, w), = I'(x,z,w) - |[w]|?> and T'(x, w, z) = ['(x, z, w), it results:
@ xlz W) llzll* = (xxlw, 2, Iwll. (4.6)

3. From Theorem 3.1 for n = 4, we find that the 4 iterated 2-inner product can be
given in the following way:

(6y) (x,2) (xw) (x,v)
(Y (z2) (zw) (V)
(w,y) (w,2) (w,w) (w,v) (C%))
v,y (v,2) (v,w) (v,v)

2 4
=<X,y|V, W’ Z>|IW|Z” ”Z” .

2 4
6, ylv, w, 2), =l[lwlzl| ||zl

From relation (4.7), for x = y, we deduce:
(. x|y, w,2), =T, v, w,2) - IwlzlPllz1%, (4.8)

where I'(x, v, w, 7) is the Gram’s determinant.
In [4], Cho, Mati¢, and Pecari¢ used Gram’s determinant of the vectors
X1, %y, ..., X; With respect to the vector z by:

(xp,x112) (x5 2002) o (0 2)

(%2, %1 [2) (X0, 222) o {2, % |2)

F(-x]3x29-"’xklz) = (4.9)

(XX 12) (e xa12) e (X Xl 2)
We consider the following determinant, which can be rewritten using formula (3.3):

(xylz)y (xwlz) (x,v|z)
(w,ylz) (w,wlz) (w,v|z)
wylz) (v,wlz) (v,vlz)
1
(w,wlz)
!
— (w,wlz)

(4.10)

[ ¥1,20, 01,20, = vl 2,02 51w,2),
Y[, w, 2),.

From relations (4.7) and (4.10), we find the following identity:

(x,ylz) (xwlz) (x,v]z)
(w,ylz) (w,wl|z) (w,v|z)
wylzy (viwlz) (v,vl|z)

= (x, ylv,w, 2)llzll%, 4.11)

which implies the relation:

C(x, w,v|z) = T, w, v)|lz]|*. (4.12)
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4. Let x, y, e, w be vectors in the inner product space X, over the field of real num-
bers and the vectors {e, x, y} being linearly independent, such that:

ax+by+ce=w,

where a, b, c € R.
We want to study the problem of determining the scalars a, b, c. Using the
inner product and its properties, we deduce:

alx,x) + b(y,x) + c{e,x) = (w,x)

a(x,y) +b(y,y) + c{e,y) = (w,y) (4.13)
alx,e) + b{y,e) + c(e,e) = (w,e).

Therefore, we have to solve this system with three equations and three unknowns
a,b,c € R. The matrix of the system is:

(x,x) (y,x) (e, x)
A=1{x,y) (y.y) (&N ].
(x,e) (y.e) (e, e)

From formula (4.4), we find:

detA =T'(x,y,e) = #(x,xly, e),.
e

From P1), (x, x|y, e), is zero if and only if the vectors x, y, e are linearly depend-
ent. However, the vectors {e,x,y} are linearly independent; therefore, we have
(x, x|y, e), > 0. Using the Cramer method, we find that:

iy, eylve  llelPovelry),
(x,xly,e),’ (x,xly.e),’ IylI2(x, x|y, e),

In the particular case, when ||e|| = 1, we obtain:

_(wxly,e), . (wylx,e),

B (‘x"xly’e)* ’ B (‘x"xly’ e)* ’

c={(w,e) —a{x,e) —b(y,e).

5. Next, we will make a correlation of the previous calculations with the coefficients
that appear in the case of a multiple linear regression model.

A process is called multiple linear regression, when we have more than one
independent variable [12]. For a general linear model for two independent varia-

X
bles V. and W and a dependent variable Z, Z = aV + bW + ¢, where V = < ! ;

W= ({) . Z= <1> with probabilities P(V = x,) = £, P(W = y,) = 1,
n/ 1<ign n/ 1<i<n n n

P(Z=1z)=—,foranyi= 1,n.
n
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We can describe the underlying relationship between z; and x;, y; involving error
terme; by €; = z; — ax; — by, — c.
If we take S(a,b,c) =Y € = X" (z; — ax; — by; — ¢)*, then we have to find

i=1"i
min S(a, b, c). Using the Lagrange method, we obtain:

a,b,ceR
n n n
ain+b2yi+nc:2zi,
i=1 i=1 i=1
n

n n n
2 -
ain +b2xiy,- +02xi = le-z,-,
i=1 i=1 i=1

i=1
a) xyi+b Yy +c Y y=) vz
i=1 i=1 i=1 i=1
By simple calculations, we deduce:
4 _ Var(W)Cov(V, Z) — Cov(V, W)Cov(W, Z)
Var(V)Var(W) — Cov*(V, W)
b _ Var(V)Cov(W, Z) — Cov(V, W)Cov(V, Z)
Var(V)Var(W) — Cov*(V, W)
¢ =E(Z) — aE(V) — bE(W).

Now, we take the vector space X =R (-,-). For
X=(X],X0, s %)y ¥ = V15 Va5 s ¥)s 2= (245205 ---»Z,,), WE have:

XYYy =x1y; + X0, + o x5, Ix]| = \/xf + x% + ..+ 22,
n n n n
2
XiYi Z %~ Z XiZi Z Y
=1 1 i=1

(x5 ¥12), = (6 y)z.2) — (6, 2)(z.y) =
i=1 i i=

and

n n n 2
lIxlzll = 4| D12 Y 22 - (Zm) :
i=1

i=1 i=1

If ezﬁ, where u=(1,1,...,1) € R", then the average of vector x is

X 1 n .
U, = <m e> =~ >, X;, and we have:

L|eH= liﬁ_(l ix)z.
el n i T\

2
Therefore, in (R”, (-, -}), we define the variance of a vector x by var(x) :=

The standard deviation o(x) of x € R" is defined by o(x) := y/var(x), so we

deduce that o(x) = H ”f—l” |eH. Since, using the standard 2-inner product, we have:
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(Grwaw). =22 (G 22) (G 2)

i=1 i=1 i=1

it is easy to define the covariance of two vectors x and y by:

cov(x,y) := <ﬂ n| )

It is easy to see that, we obtain:

_ Var(y)cov(x, z) — cov(x, y)cov(y, 2)
"~ Var(x)Var(y) — cov2(x, y)
_ Var(x)cov(y, z) — cov(y, x)cov(x, 2)

Var(x)Var(y) — covZ(x, y)
c=p, —ap, —bpu,.
We observe that, by the vector method, we obtain the same coefficients as by the

Lagrange method.
6. In [24], the Chebyshev functional is defined by:

T.(x.y) = lzlI*(x. y) — (x,2)(3. 2).

for all x,y € X, where z € X is a given nonzero vector.

It is easy to see that if the standard 2-inner product (-, -|-) is defined by the inner
product (-, -), then we have T, (x,y) = (x,y|2), = (x,y]2).

Therefore, we generalize this Chebyshev functional to the following functional:

.....

o, ) 1= (Y1, ),

which we will call n-Chebyshev functional, so:

..... xz(x y) =T, ],.A.,xz(x’y)Txn_],.“,xz(xn’xn)
(4.14)
_Txn,l ..... xz(x’xn)Txn,l ..... xz(xn’y)’

for all x,y € X, where x,, ..., x,, € X are given nonzero vectors.
In a particular case, when n = 3, we have:

T, (x,y) = (x,y|lw,2), = (x,y2), (W, wlz,) — (x, w|2), (W, y|2),;
so, we have:

T, .(x,x) =(x, x|w, 2), = (x, x[2), (W, w|2), — (x, w[2). (W, x]2),
=|lxlzl*wlzll> = (x, wlz)?
=(llxl w211 + 2¢w, 2)(z. x)(x w) — [lxl1*(w, 2)°

= Iwll*(z x)* = Nzl wyllzll>.

% Birkhauser



Weak n-inner product spaces Page210f22 22

Therefore, the Cauchy—Schwarz inequality in terms of the n-Chebyshev functional
becomes:

1T, L@WP<T, 0T, (.. (4.15)

5 Conclusions

In this paper, we exemplified the weak n-inner product only by the weak n iter-
ated 2-inner product. This particular case of weak n-inner product does not exhaust
all the possibilities of particular cases. The weak n-inner product is clearly more
general then the n-inner product, and consequently, it offers more possibilities. An
important connection is between the vector method and the Lagrange method given
above. In the future, we will determine a formula for multiple regression for n inde-
pendent variables.
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