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Abstract
Let A and B be n × n positive semidefinite matrices, and let �, � ∈ (0, 1) such that 
� + � = 1 . Among other inequalities, it is shown that 

(a)	 If f is a non-negative concave function on [0,∞) , then 

 for j = 1,… , n.

(b)	 If f is a non-negative strictly increasing convex function on [0,∞) with f (0) = 0,  
then

 for j = 1,… , n. Here sj(X) denotes the largest jth singular value of the matrix 
X.
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√
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√
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1  Introduction

Let 𝕄n(ℂ) be the algebra of all n × n complex matrices. For a matrix A ∈ 𝕄n(ℂ) , 
let s1(A), s2(A),… , sn(A) denote the singular values of A (i.e., the eigenvalues of 
|A| = (A∗A)1∕2) arranged in decreasing order and repeated according to multiplicity.

A matrix A ∈ 𝕄n(ℂ) is called Hermitian if A = A∗. The notation A ≥ 0 (A > 0) is 
used to mean that A is positive semidefinite (positive definite). If A and B are Hermi-
tian and A − B is positive semidefinite, then we write A ≥ B.

A matrix T ∈ 𝕄n(ℂ) is called accretive-dissipative if in its Cartesian decom-
position, T = A + iB , the matrices A and B are positive semidefinite, where A =

ReT =
T+T∗

2
 and B =ImT =

T−T∗

2i
.

The spectral norm ||⋅|| is the norm defined on 𝕄n(ℂ) by ||A|| =max{ 
||Ax|| ∶ x ∈ ℂ

n, ||x|| = 1}. It is known (see, e.g., [2, p. 7]) that for every A ∈ 𝕄n(ℂ), 
we have

On 𝕄n(ℂ), a unitarily invariant norm |||⋅||| is a matrix norm that satisfies the invari-
ance property |||UAV||| = |||A||| for every A ∈ 𝕄n(ℂ) and for all unitary matrices 
U,V ∈ 𝕄n(ℂ).

If A is a Hermitian matrix with eigenvalues �1(A), �2(A),… , �n(A), arranged in 
decreasing order and repeated according to multiplicity, then the minimax principle 
(see, e.g., [2, p. 58 ]) says that

and if A is any matrix, then

If a and b are real numbers, then we have

Matrix versions of this elementary and fundamental inequality have been given in 
[6]. It has been shown (see [6, Theorem 1.1]) that for positive semidefinite matrices 
A,B ∈ 𝕄n(ℂ), we have

for j = 1,… , n, which is stronger than the inequality

||A|| = s1(A).

(1.1)
�j(A) = max

dimM=j
min

x ∈ M

‖x‖ = 1

⟨Ax, x⟩

(1.2)
sj(A) = max

dimM=j
min

x ∈ M

‖x‖ = 1

‖Ax‖.

(1.3)�a + b� ≤
√
2�a + ib�.

(1.4)sj(A + B) ≤
√
2sj(A + iB)

(1.5)���A + B��� ≤
√
2���A + iB���.
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Many important results for the singular values of accretive-dissipative matrices have 
been discussed by several mathematicians. Some of these results have found inter-
esting applications in physics and in the geometry of operator ideals. A useful ref-
erence for such results is the book [2]. Special results relating singular values and 
norms of T = A + iB with those of A and B may be found in [1, 5, 7, 8], and in other 
papers cited therein.

2 � A generalization of (1.4) and some related results

The aim of this section is to generalize the inequality (1.4). In order to do that, we 
start with the following two lemmas. The first lemma is a well-known result that 
can be proved by using the spectral theorem and Jensen’s inequality. The inequali-
ties in this lemma are of the Peierls-Bogoliubov type (see, e.g., [2, p. 281] or [10, 
p. 101–102]). The second lemma (see, e.g., [2, p.  291]) has an important role in our 
generalization of the inequality (1.4). Henceforth, we assume that every function is 
continuous.

Lemma 2.1  Let A ∈ 𝕄n(ℂ) be a positive semidefinite matrix and x ∈ ℂ
n be a unit 

vector. Then 

(a)	 ⟨f (A)x, x⟩ ≤ f (⟨Ax, x⟩) for every non-negative concave function f on [0,∞).

(b)	 f (⟨Ax, x⟩) ≤ ⟨f (A)x, x⟩ for every non-negative convex function f  on [0,∞).

Lemma 2.2  Let A ∈ 𝕄n(ℂ) be positive semidefinite and let f be a non-negative 
increasing function on [0,∞). Then

for j = 1,… , n.

Now, we have the following result.

Theorem  2.1  Let A,B ∈ 𝕄n(ℂ) be positive semidefinite matrices, and let 
�, � ∈ (0, 1) such that � + � = 1 . 

(a)	 If f is a non-negative concave function on [0,∞) , then 

 for j = 1,… , n.

(b)	 If f is a non-negative strictly increasing convex function on [0,∞) with f (0) = 0 , 
then 

sj(f (A)) = f (sj(A))

sj(�f (A) + �f (B)) ≤ sj

�
f

�√
2��A + i�B�

��
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 for j = 1,… , n.

Proof  (a) Let f be a non-negative concave function on [0,∞) . Then f is increasing on 
[0,∞) . For every unit vector x ∈ ℂ

n, we have

Consequently,

as required.
(b) Let f be a non-negative strictly increasing convex function on [0,∞) with 

f (0) = 0 . Then f −1 is a non-negative concave function on [0,∞) . So, applying part 
(a) to the function f −1, we have

for j = 1,… , n . In the inequality (2.2), replacing A and B by f (A) and f (B) , respec-
tively, we have

sj(f (�A + �B)) ≤
√
2sj(�f (A) + i�f (B))

(2.1)

⟨(�f (A) + �f (B))x, x⟩
=�⟨f (A)x, x⟩ + �⟨f (B)x, x⟩
≤�f (⟨Ax, x⟩) + �f (⟨Bx, x⟩) (by Lemma 2.1(a))

≤f (⟨(�A + �B)x, x⟩) (since f is concave)

≤f

�√
2�⟨(�A + i�B)x, x⟩�

�
(by the inequality (1.3))

≤f (
√
2‖(�A + i�B)x‖) (by the Cauchy-Schwarz inequality).

sj(�f (A) + �f (B)) = max
dimM=j

min

x ∈ M

‖x‖ = 1

⟨(�f (A) + �f (B))x, x⟩

(by the relation (1.1))

≤ max
dimM=j

min

x ∈ M

‖x‖ = 1

f (
√
2‖(�A + i�B)x‖)

(by the inequality (2.1))

=f ( max
dimM=j

min
√
2

x ∈ M

‖x‖ = 1

‖(�A + i�B)x‖) (since f is increasing)

=f

�
sj

�√
2��A + i�B�

��
(by the relation (1.2))

=sj

�
f

�√
2��A + i�B�

��
(by Lemma 2.2),

(2.2)
sj(�f

−1(A) + �f −1(B)) ≤sj(f
−1(

√
2��A + i�B�))

=f −1
�√

2sj(�A + i�B)

�
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for j = 1,… , n . Since f is increasing, we have

for j = 1,… , n , as required. 	�  ◻

To give our first application of Theorem 2.1, we need the following lemma, which 
has been given by Tao in [11].

Lemma 2.3  Let A,B,C ∈ 𝕄n(ℂ) such that X =

[
A B

B∗ C

]
 is positive semidefinite. Then 

2sj(B) ≤ sj(X) for j = 1,… , n.

Our first application of Theorem 2.1 can be stated as follows.

Corollary 2.1  Let A,B,C,D ∈ 𝕄n(ℂ) such that T =

[
A B

C D

]
 is accretive-dissipative. If 

f is a non-negative strictly increasing convex function on [0,∞) with f (0) = 0 , then

for j = 1,… , n.	�  ◻

Proof  In Theorem 2.1(b), letting A = ReT ,B = ImT  , and � = � =
1

2
 imply that

Since ReT  and ImT  are positive semidefinite and Im(1 + i)T = ReT + ImT  , then 
Im(1+i)T

2
 is positive semidefinite. It follows from Lemma 2.3 that

and so

(2.3)
sj(�A + �B) =sj

�
�f −1(f (A)) + �f −1(f (B))

�

≤f −1
�√

2sj(�f (A) + i�f (B))

�

sj(f (�A + �B)) =f
�
sj(�A + �B)

�

≤f

�
f −1

�√
2sj(�f (A) + i�f (B))

��
(by the inequality (2.3))

=
√
2sj(�f (A) + i�f (B))

sj

�
f

�
�(B − C∗) + i(B + C∗)�

2

��
≤

√
2sj

�
f (ReT) + if (ImT)

2

�

(2.4)

sj

�
f

�
Im(1 + i)T

2

��

=sj

�
f

�
ReT + ImT

2

��

≤

√
2sj

�
f (ReT) + if (ImT)

2

�
(by Theorem 2.1(b)).

sj

(
B + C∗

2
+

B − C∗

2i

)
≤ sj

(
Im(1 + i)T

2

)
,
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Now, the result follows from the inequalities (2.4) and (2.5).

Remark 2.1  It should be mentioned here that Tao’s inequality given in Lemma 2.3 
can be inferred from Corollary 2.1. This can be demonstrated as follows: Let 

A,B,C ∈ 𝕄n(ℂ) such that X =

[
A B

B∗ C

]
 is positive semidefinite. Applying Corollary 

2.1 to the accretive-dissipative matrix T = X + iX and letting f (t) = t , it follows, by 
direct computations, that 2sj(B) ≤ sj(X) for j = 1,… , n.

Another applications of Theorem 2.1 can be seen in the following corollary.

Corollary 2.2  Let A,B ∈ 𝕄n(ℂ) be positive semidefinite matrices, and let 
�, � ∈ (0, 1) such that � + � = 1 . Then

and

for j = 1,… , n. In particular,

and

for j = 1,… , n.

According to the inequalities (2.6), (2.7), and using the fact that unitarily 
invariant norms are increasing functions of singular values, we have the following 
result.

Corollary 2.3  Let A,B ∈ 𝕄n(ℂ) be positive semidefinite matrices. Then

and

for every unitarily invariant norm.

(2.5)sj

(
f

(
|(B − C∗) + i(B + C∗)|

2

))
≤ sj

(
f

(
Im(1 + i)T

2

))
.

sj(𝛼A
p + 𝛽Bp) ≤ 2p∕2s

p

j
(𝛼A + i𝛽B), 0 < p ≤ 1

s
p

j
(𝛼A + 𝛽B) ≤

√
2sj(𝛼A

p + i𝛽Bp), 1 ≤ p < ∞

(2.6)sj(A
p + Bp) ≤ 21−p∕2s

p

j
(A + iB), 0 < p ≤ 1

(2.7)s
p

j
(A + B) ≤ 2p−1∕2sj(A

p + iBp), 1 ≤ p < ∞

(2.8)
|||
|||
|||(A

p + Bp)1∕p
|||
|||
||| ≤ 21∕p−1∕2|||A + iB|||, 0 < p ≤ 1

(2.9)|||(A + B)p||| ≤ 2p−1∕2|||Ap + iBp|||, 1 ≤ p < ∞
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Remark 2.2  If we put p = 1 in the inequality (2.8) or ( 2.9), the inequality (1.5) will 
be obtained. So, the inequality (1.5) can be considered as a special case of the ine-
qualities (2.8) and (2.9).

Based on Theorem 2.1, we have the following corollary.

Corollary 2.4  Let A,B ∈ 𝕄n(ℂ) be positive semidefinite matrices, and let 
�, � ∈ (0, 1) such that � + � = 1 . 

(a)	 If f is a non-negative concave function on [0,∞) , then 

 for every unitarily invariant norm.
(b)	 If f is a non-negative strictly increasing convex function on [0,∞) with f (0) = 0 , 

then 

 for every unitarily invariant norm.

Now, we have the following lemma.

Lemma 2.4  Let a, b ∈ [0,∞), and let �, � ∈ (0, 1) such that � + � = 1.

(a)	 If f is a non-negative function on [0,∞) such that f (
√
t) is concave, then 

(b)	 If f is a non-negative function on [0,∞) such that f (
√
t) is convex with f (0) = 0 , 

then 

	�  ◻

Proof  We prove part (a), the proof of part (b) is similar.
Let g(t) = f (

√
t). Then g(t) is concave, and so

����f (A) + �f (B)��� ≤ ���
���
���f (

√
2��A + i�B�)���

���
���

���f (�A + �B)��� ≤
√
2����f (A) + i�f (B)���

�f (a) + �f (b) ≤ f (
���
√
�a + i

√
�b

���).

�f (a) + �f (b) ≥ f (
���
√
�a + i

√
�b

���).
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Corollary 2.5  Let a, b ∈ [0,∞) and �, � ∈ (0, 1) such that � + � = 1 . Then

and

Based on Lemma 2.4, we have the following result.

Theorem  2.2  Let A,B ∈ 𝕄n(ℂ) be positive semidefinite matrices, and let 
�, � ∈ (0, 1) such that � + � = 1.

(a)	 If f is a non-negative concave function on [0,∞) , then 

 for j = 1,… , n.

(b)	 If f is a non-negative strictly increasing convex function on [0,∞) with f (0) = 0 , 
then 

 for j = 1,… , n.

Proof  (a) Let x ∈ ℂ
n be a unit vector. Then

�f (a) + �f (b) =�g(a2) + �g(b2)

≤g(�a2 + �b2)

=g(
���
√
�a + i

√
�b

���
2

)

=f (
���
√
�a + i

√
�b

���).

𝛼ap + 𝛽bp ≤
���
√
𝛼a + i

√
𝛽b

���
p

for 0 < p ≤ 2

𝛼ap + 𝛽bp ≥
���
√
𝛼a + i

√
𝛽b

���
p

for 2 ≤ p < ∞.

(2.10)sj(�f (A) + �f (B)) ≤ sj

�
f

����
√
�A + i

√
�B

���
��

(2.11)sj(f (�A + �B)) ≤ sj

�√
�f (A) + i

√
�f (B)

�

(2.12)

⟨(�f (A) + �f (B))x, x⟩
=�⟨f (A)x, x⟩ + �⟨f (B)x, x⟩
≤�f (⟨Ax, x⟩) + �f (⟨Bx, x⟩) (by Lemma 2.1(a))

≤f (
���
√
�⟨Ax, x⟩ + i

√
�⟨Bx, x⟩���) (by Lemma 2.4(a))

=f

�����

�
(
√
�A + i

√
�B)x, x

�����

�

≤f

����(
√
�A + i

√
�B)x

���
�
.
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So, the inequality (2.10) follows from the inequality (2.12) by an argument similar 
to that used in the proof of Theorem 2.1(a).

(b) Let f be a non-negative strictly increasing convex function on [0,∞) with 
f (0) = 0 . Then f −1 is a non-negative concave function on [0,∞) . Now, the inequal-
ity (2.11) follows by applying part (a) to the function f −1 and then using an argu-
ment similar to that used in the proof of part (b) of Theorem 2.1. 	�  ◻

Based on Theorem 2.2, we have the following two corollaries.

Corollary 2.6  Let A,B ∈ 𝕄n(ℂ) be positive semidefinite matrices, and let 
�, � ∈ (0, 1) such that � + � = 1 . Then

and

for j = 1,… , n.

Corollary 2.7  Let A,B ∈ 𝕄n(ℂ) be positive semidefinite matrices, and let 
�, � ∈ (0, 1) such that � + � = 1 . 

(a)	 If f is a non-negative concave function on [0,∞) , then 

 for every unitarily invariant norm.
(b)	 If f is a non-negative strictly increasing convex function on [0,∞) with f (0) = 0 , 

then 

 for every unitarily invariant norm.

Now, we have the following result.

Theorem  2.3  Let A,B ∈ 𝕄n(ℂ) be positive semidefinite matrices, and let 
�, � ∈ (0, 1) such that �2 + �2 = 1. If f is a non-negative function on [0,∞) such that 
f 2 is concave, then

for j = 1,… , n.

sj(𝛼A
p + 𝛽Bp) ≤ s

p

j
(
√
𝛼A + i

√
𝛽B), 0 < p ≤ 2

s
p

j
(𝛼A + 𝛽B) ≤ sj

�√
𝛼Ap + i

√
𝛽Bp

�
, 2 ≤ p < ∞

����f (A) + �f (B)��� ≤
����
����
����
f

����
√
�A + i

√
�B

���
�����
����
����

���f (�A + �B)��� ≤ ���
���
���
√
�f (A) + i

√
�f (B)

���
���
���

sj(�f (A) + i�f (B)) ≤
√
2sj(f (�

2A + �2B))
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Proof  Let x ∈ ℂ
n be a unit vector. Then

So, the result follows from the inequality (2.13) by an argument similar to that used 
in the proof of Theorem 2.1(a). 	�  ◻

Based on Theorem 2.3, we have the following corollary.

Corollary 2.8  Let A,B ∈ 𝕄n(ℂ) be positive semidefinite matrices, and let 
�, � ∈ (0, 1) such that �2 + �2 = 1 . Then

for j = 1,… , n and 0 < p ≤ 1. In particular,

and

Proof  The inequality (2.14) follows directly from Theorem  2.3 by taking 
f (t) = tp∕2, 0 < p ≤ 1. Also, if we put �2 = �2 in the inequality (2.14), we obtain the 
inequality (2.15). The inequality (2.16) is a special case of the inequality (2.15) by 
taking p = 1, and replacing A and B by A2 and B2, respectively. 	�  ◻

In their investigation of singular value inequalities on the sector matrices, Drury and 
Lin [9] proved that if A,B ∈ 𝕄n(ℂ) are positive semidefinite matrices, then

(2.13)

�
��f (A) + i�f (B)�2x, x

�
=‖(�f (A)x + i�f (B)x‖2

≤(�‖f (A)x‖ + �‖f (B)x‖)2

≤2(�2‖f (A)x‖2 + �2‖f (B)x‖2)
=2(�2

�
f 2(A)x, x

�
+ �2

�
f 2(B)x, x

�
)

≤2(�2f 2(⟨Ax, x⟩) + �2f 2(⟨Bx, x⟩))
(by Lemma 2.1(a))

≤2f 2(
�
�2Ax, x

�
+
�
�2Bx, x

�
)

(since f 2 is concave on [0,∞))

=2f 2(
�
(�2A + �2B)x, x

�
)

≤2f 2(
���(�

2A + �2B)x
���).

(2.14)s2
j
(�Ap∕2 + i�Bp∕2) ≤ 2s

p

j
(�2A + �2B)

(2.15)s2
j
(Ap∕2 + iBp∕2) ≤ 22−ps

p

j
(A + B)

(2.16)sj(A + iB) ≤
√
2s

1∕2

j
(A2 + B2).

(2.17)sj(A + iB) ≤
√
2sj(A + B)
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for j = 1,… , n, which is closely related to our inequality (2.16). It should be men-
tioned here that for j = 1, which corresponds to the spectral norm ‖⋅‖, the inequality 
(2.16) is better than the inequality (2.17). In fact, it is known [4] that

for 0 < r ≤ 1. In particular, letting r = 1

2
 and replacing A, B by A2,B2 respectively, 

we have

For j > 1, we may have

as it can be demonstrated by considering A =

[
1 1

1 1

]
 and B =

[
1 0

0 0

]
. In this case, 

A + B =

[
2 1

1 1

]
 and A2 + B2 =

[
3 2

2 2

]
. Now, s2(A

2 + B2) =
5−

√
17

2
 and 

s2(A + B) =
3−

√
5

2
. So, we have s1∕2

2
(A2 + B2) > s2(A + B).

According to Theorem 2.3, we have the following two corollaries.

Corollary 2.9  Let A,B ∈ 𝕄n(ℂ) be positive semidefinite matrices, and let 
�, � ∈ (0, 1) such that �2 + �2 = 1. If f is a non-negative function on [0,∞) such that 
f 2 is concave, then

for every unitarily invariant norm.

Corollary 2.10  Let A,B ∈ 𝕄n(ℂ) be positive semidefinite matrices. Then, for every 
unitarily invariant norm, we have

for 0 < p ≤ 1. In particular,

Now, to give our next result, we need the following inequality, which follows 
from the arithmetic-geometric mean inequality for singular values [3].

Lemma 2.5  Let T ∈ 𝕄n(ℂ) . Then

for j = 1,… , n.

sr
1
(A + B) ≤ s1(A

r + Br)

s
1∕2

1
(A2 + B2) ≤ s1(A + B).

s
1∕2

j
(A2 + B2) > sj(A + B),

����f (A) + i�f (B)��� ≤
√
2
���
���
���f
�
�2A + �2B

����
���
���

|||
|||
|||A

p∕2 + iBp∕2|||
|||
||| ≤ 21−p∕2

|||
|||
|||(A + B)p∕2

|||
|||
|||

���A + iB��� ≤
√
2
���
���
���(A

2 + B2)1∕2
���
���
���.

2sj(T
2) ≤ sj(T

∗T + TT∗)
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Theorem 2.4  Let T ∈ 𝕄n(ℂ) with the Cartesian decomposition T = A + iB . Then

for j = 1,… , n and 2 ≤ p < ∞.

Proof  For every unit vector x ∈ ℂ
n, we have

It follows from the inequality (2.18) and the relation (1.1) that

for j = 1,… , n . Now, the result follows from Lemma 2.5 and the inequality (2.19). 	
� ◻

The following example shows that Theorem 2.4 is not true when 0 < p < 2.

Example 2.1  Consider A =

[
1 0

0 0

]
,B =

[
0 0

0 1

]
, and p = 1. Then A and B are positive 

semidefinite matrices with |A| + |B| =
[
1 0

0 1

]
 and T2 =

[
1 0

0 − 1

]
. Now, 

s2
1
(|A| + |B|) = s2

1
(T2) = 1. So, we have 

√
2s

1∕2

1
(T2) > s1(�A� + �B�).

According to Theorem 2.4, we have the following corollary.

Corollary 2.11  Let T ∈ 𝕄n(ℂ) with the Cartesian decomposition T = A + iB . Then, 
for every unitarily invariant norm, we have

and

for 2 ≤ p < ∞.

21−p∕2s
p∕2

j
(T2) ≤ sj(|A|p + |B|p)

(2.18)

⟨(T∗T + TT∗)x, x⟩ =2
��

A2x, x
�
+
�
B2x, x

��

=2
���

A2x, x
�
+
�
B2x, x

��p∕2�2∕p

≤2
�
2p∕2−1

��
A2x, x

�p∕2
+
�
B2x, x

�p∕2
��2∕p

≤22−2∕p(⟨�A�px, x⟩ + ⟨�B�px, x⟩)2∕p

(by Lemma 2.1(b))

=22−2∕p⟨(�A�p + �B�p)x, x⟩2∕p.

(2.19)sj(T
∗T + TT∗) ≤ 22−2∕ps

2∕p

j
(|A|p + |B|p)

|||T∗T + TT∗||| ≤ 22−2∕p
|||
|||
|||(|A|

p + |B|p)2∕p|||
|||
|||

|||
|||
|||T

2|||
|||
||| ≤ 21−2∕p

|||
|||
|||(|A|

p + |B|p)2∕p|||
|||
|||



1269Singular value inequalities involving convex and concave...	

3 � Some related results for A ≥ B ≥ 0

In this section, we give some results for positive semidefinite matrices A,  B with 
A ≥ B.

We start with the following result.

Theorem 3.1  Let A,B ∈ 𝕄n(ℂ) be positive semidefinite matrices such that A ≥ B . 
Then

for j = 1,… , n and 1 ≤ p < ∞.

Proof  Since f (t) = t1∕p is a matrix monotone function for 1 ≤ p < ∞ , we have 
A1∕p ≥ B1∕p.

For every unit vector x ∈ ℂ
n, we have

So, the result follows from the inequality (3.1) by an argument similar to that used in 
the proof of Theorem 2.1(a). 	�  ◻

The following example shows that Theorem 3.1 is not true without the assump-
tion A ≥ B.

Example 3.1  Consider A =

[
1 1

1 1

]
,B =

[
1 0

0 0

]
, and p = 1. Then A and B are positive 

semidefinite matrices with A ≱ B,A − B =

[
0 1

1 1

]
, and A + iB =

[
1 + i 1

1 1

]
. Now, 

s2
2
(A − B) =

3−
√
5

2
 and s2

2
(A + iB) =

5−
√
21

2
. So, we have s2(A − B) > s2(A + iB).

The following example shows that Theorem 3.1 is not true when 0 < p < 1.

Example 3.2  Consider A =

[
2 1

1 1

]
,B =

[
1 0

0 0

]
, and p = 1∕2. Then A and B are posi-

tive semidefinite matrices with A ≥ B,A2 − B2 =

[
4 3

3 2

]
, and A + iB =

[
2 + i 1

1 1

]
. 

Now, s2
2
(A2 − B2) = 19 −

√
360 and s2

2
(A + iB) = 30 −

√
896. So, we have 

s2(A
2 − B2) > s2

2
(A + iB).

According to Theorem 3.1, we have the following corollary.

s
p

j
(A1∕p − B1∕p) ≤ sj(A + iB)

(3.1)

�
(A1∕p − B1∕p)x, x

�p
=
��

A1∕px, x
�
−
�
B1∕px, x

��p

≤
�
A1∕px, x

�p
−
�
B1∕px, x

�p

≤
���
�
A1∕px, x

�p
+ i

�
B1∕px, x

�p���
≤�⟨Ax, x⟩ + i⟨Bx, x⟩� (by Lemma 2.1(b))

≤‖(A + iB)x‖.
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Corollary 3.1  Let A,B ∈ 𝕄n(ℂ) be positive semidefinite matrices such that A ≥ B . 
Then, for every unitarily invariant norm, we have

for 1 ≤ p < ∞.

Now, we need the following lemma to give our next result.

Lemma 3.1  Let a, b ∈ ℝ . Then

for 2 ≤ p < ∞, and

for 0 < p ≤ 2.

Proof  For a, b ∈ ℝ and 2 ≤ p < ∞, we have

which proves the inequality (3.2). Similarly, one can prove the inequality (3.3).

Theorem 3.2  Let A,B ∈ 𝕄n(ℂ) be positive semidefinite matrices such that A ≥ B . 
Then

for j = 1,… , n and 2 ≤ p < ∞.

Proof  For every unit vector x ∈ ℂ
n, we have

|||
|||
|||(A

1∕p − B1∕p)p
|||
|||
||| ≤ |||A + iB|||

(3.2)|a + ib|p ≤ 2p∕2−1(|a|p + |b|p)

(3.3)2p∕2−1(|a|p + |b|p) ≤ |a + ib|p

|a + ib|p =
(
|a + ib|2

)p∕2

=(|a|2 + |b|2)p∕2

≤2p∕2−1(|a|p + |b|p),

s
p

j
(A − B) ≤ 2p∕2−1sj(A

p + Bp)

(3.4)

⟨(A − B)x, x⟩p

=(⟨Ax, x⟩ − ⟨Bx, x⟩)p

≤�⟨(A + iB)x, x⟩�p

=�⟨Ax, x⟩ + i⟨Bx, x⟩�p

≤2p∕2−1
�
⟨Ax, x⟩p + ⟨Bx, x⟩p

�
(by the inequality (3.2))

≤2p∕2−1(⟨Apx, x⟩ + ⟨Bpx, x⟩) (by Lemma 2.1(b))

=2p∕2−1⟨(Ap + Bp)x, x⟩
≤2p∕2−1‖(Ap + Bp)x‖.
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So, the result follows from the inequality (3.4) by an argument similar to that used in 
the proof of Theorem 2.1(a). 	�  ◻

The following example shows that Theorem 3.2 is not true when 0 < p < 2.

Example 3.3  Consider A =

[
2 0

0 1

]
,B =

[
1 0

0 0

]
, and p = 1. Then A and B are positive 

semidefinite matrices with A ≥ B,A + B =

[
3 0

0 1

]
, and A − B =

[
1 0

0 1

]
. Now, 

s2
2
(A + B) = s2

2
(A − B) = 1. So, we have s2(A − B) > 2−1∕2s2(A + B).

According to Theorem 3.2, we have the following corollary.

Corollary 3.2  Let A,B ∈ 𝕄n(ℂ) be any positive semidefinite matrices such that 
A ≥ B. Then, for every unitarily invariant norm, we have

for 2 ≤ p < ∞.

4 � A result for T = A + iB when A > 0

In this section, we give a result for matrices with positive definite real parts based on 
the following two lemmas. The first lemma can be found in [2, p. 75] and the second 
one can be easily proved.

Lemma 4.1  Let A,B,X ∈ 𝕄n(ℂ). Then

for j = 1,… , n.

Lemma 4.2  Let X ∈ 𝕄n(ℂ) be Hermitian and let Y = I + iX . Then 

(a)	
 for j = 1,… , n and 0 < r ≤ 2.

(b)	
 for j = 1,… , n and 2 ≤ r < ∞.

The condition number of an invertible matrix A ∈ 𝕄n(ℂ) is defined by 
k(A) = ‖A‖��A−1�� . Based on Lemmas 4.1 and 4.2, we have the following result.

|||(A − B)p||| ≤ 2p∕2−1|||Ap + Bp|||

sj(AXB) ≤ ‖A‖‖B‖sj(X)

sr
j
(Y) ≤ 1 + sr

j
(X)

sr
j
(Y) ≤ 2r∕2−1(1 + sr

j
(X))
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Theorem 4.1  Let T ∈ 𝕄n(ℂ) with the Cartesian decomposition T = A + iB such that 
A is positive definite. Then

for j = 1,… , n and 0 < r ≤ 2.

Proof  Since T = A + iB, we have A−1∕2TA−1∕2 = I + iA−1∕2BA−1∕2. By part (a) of 
Lemma 4.2, we have

Now,

as required. 	�  ◻

Using an argument similar to that used in the proof of Theorem 4.1 , one can prove 
the following related result.

Theorem 4.2  Let T ∈ 𝕄n(ℂ) be with the Cartesian decomposition T = A + iB such 
that A is positive definite. Then

for j = 1,… , n and 2 ≤ r < ∞.

For a matrix A ∈ 𝕄n(ℂ) it is known that k(A) ≥ 1 . So, one might ask whether the 
following two inequalities hold:

for j = 1,… , n and 0 < r ≤ 2, and

for j = 1,… , n and 2 ≤ r < ∞. In fact, the following example shows that they are 
false for r = 2.

sr
j
(T) ≤ sr

1
(A) + kr(A)sr

j
(B)

(4.1)sr
j
(A−1∕2TA−1∕2) ≤ 1 + sr

j
(A−1∕2BA−1∕2).

sr
j
(T) =sr

j
(A1∕2A−1∕2TA−1∕2A1∕2)

≤‖A‖rsr
j
(A−1∕2TA−1∕2) (by Lemma 4.1)

≤‖A‖r(1 + sr
j
(A−1∕2BA−1∕2)) (by the inequality (4.1))

≤‖A‖r + ‖A‖r���A
−1���

r

sr
j
(B) (by Lemma 4.1)

=sr
1
(A) + kr(A)s2

j
(B),

sr
j
(T) ≤ 2r∕2−1(sr

1
(A) + kr(A)sr

j
(B))

sr
j
(T) ≤ sr

1
(A) + sr

j
(B)

sr
j
(T) ≤ 2r∕2−1(sr

1
(A) + sr

j
(B))
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Example 4.1  Consider A =

[
2 0

0 1

]
,B =

[
1 1

1 − 1

]
. Then A is a positive definite 

matrix with s2
1
(A) = 4 and B is a Hermitian matrix with s2

1
(B) = 2 . For T = A + iB, 

s2
1
(T) =

21−
√
425

2
 and s2

1
(T) =

9+
√
29

2
. So, we have s2

1
(T) > s2

1
(A) + s2

1
(B).
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