

Singular value inequalities involving convex and concave functions of positive semidefnite matrices

Fadi Alrimawi¹ · Omar Hirzallah2 · Fuad Kittaneh3

Received: 6 May 2020 / Accepted: 16 June 2020 / Published online: 16 July 2020 © Tusi Mathematical Research Group (TMRG) 2020

Abstract

Let *A* and *B* be $n \times n$ positive semidefinite matrices, and let $\alpha, \beta \in (0, 1)$ such that $\alpha + \beta = 1$. Among other inequalities, it is shown that

(a) If *f* is a non-negative concave function on $[0, \infty)$, then

$$
s_j(\alpha f(A)+\beta f(B))\leq s_j(f(\sqrt{2}|\alpha A+i\beta B|))
$$

for $j = 1, ..., n$.

(b) If *f* is a non-negative strictly increasing convex function on $[0, \infty)$ with $f(0) = 0$, *then*

$$
s_j(f(\alpha A + \beta B)) \le \sqrt{2} s_j(\alpha f(A) + i\beta f(B))
$$

for $j = 1, ..., n$. Here $s_i(X)$ denotes the largest *j*th singular value of the matrix *X*.

Keywords Accretive-dissipative matrix · Positive semidefnite matrix · Singular value \cdot Unitarily invariant norm \cdot Convex function \cdot Concave function \cdot Inequality

Mathematics Subject Classifcation 15A18 · 15A42 · 15A60 · 47A30

Communicated by Yuki Seo.

 \boxtimes Fuad Kittaneh fkitt@ju.edu.jo

> Fadi Alrimawi f.rimawi@ammanu.edu.jo

Omar Hirzallah o.hirzal@hu.edu.jo

¹ Department of Basic Sciences, Al-Ahliyyah Amman University, Amman, Jordan

² Department of Mathematics, The Hashemite University, Zarqa, Jordan

³ Department of Mathematics, The University of Jordan, Amman, Jordan

1 Introduction

Let $M_n(\mathbb{C})$ be the algebra of all $n \times n$ complex matrices. For a matrix $A \in M_n(\mathbb{C})$, let $s_1(A), s_2(A), \ldots, s_n(A)$ denote the singular values of *A* (i.e., the eigenvalues of $|A| = (A^*A)^{1/2}$ arranged in decreasing order and repeated according to multiplicity.

A matrix $A \in M_n(\mathbb{C})$ is called Hermitian if $A = A^*$. The notation $A \ge 0$ ($A > 0$) is used to mean that *A* is positive semidefnite (positive defnite). If *A* and *B* are Hermitian and $A - B$ is positive semidefinite, then we write $A \geq B$.

A matrix $T \in M_n(\mathbb{C})$ is called accretive-dissipative if in its Cartesian decomposition, $T = A + iB$, the matrices A and B are positive semidefinite, where $A =$ $\text{Re}T = \frac{T + T^*}{2}$ and $B = \text{Im}T = \frac{T - T^*}{2i}$.

The spectral norm $||\cdot||$ is the norm defined on $\mathbb{M}_n(\mathbb{C})$ by $||A|| = max\{$ $||Ax|| : x \in \mathbb{C}^n$, $||x|| = 1$. It is known (see, e.g., [[2,](#page-16-0) p. 7]) that for every $A \in \mathbb{M}_n(\mathbb{C})$, we have

$$
||A|| = s_1(A).
$$

On *M_n*(*ℂ*), a unitarily invariant norm |||⋅||| is a matrix norm that satisfies the invariance property $|||UAV||| = |||A|||$ for every $A \in M_n(\mathbb{C})$ and for all unitary matrices $U, V \in M_n(\mathbb{C}).$

If *A* is a Hermitian matrix with eigenvalues $\lambda_1(A), \lambda_2(A), \ldots, \lambda_n(A)$, arranged in decreasing order and repeated according to multiplicity, then the minimax principle (see, e.g., $[2, p. 58]$ $[2, p. 58]$ $[2, p. 58]$) says that

$$
\lambda_j(A) = \max_{\text{dim} M = j} \min_{\begin{array}{l} x \in M \\ \|x\| = 1 \end{array}} \langle Ax, x \rangle \tag{1.1}
$$

and if *A* is any matrix, then

$$
s_j(A) = \max_{\dim M = j} \min_{\substack{x \in M \\ ||x|| = 1}} \|Ax\|.
$$
 (1.2)

If *a* and *b* are real numbers, then we have

$$
|a+b| \le \sqrt{2}|a+ib|.
$$
 (1.3)

Matrix versions of this elementary and fundamental inequality have been given in [\[6](#page-16-1)]. It has been shown (see [\[6](#page-16-1), Theorem 1.1]) that for positive semidefnite matrices $A, B \in M_n(\mathbb{C})$, we have

$$
s_j(A+B) \le \sqrt{2}s_j(A+iB) \tag{1.4}
$$

for $j = 1, ..., n$, which is stronger than the inequality

$$
|||A + B||| \le \sqrt{2}|||A + iB|||.
$$
 (1.5)

Many important results for the singular values of accretive-dissipative matrices have been discussed by several mathematicians. Some of these results have found interesting applications in physics and in the geometry of operator ideals. A useful reference for such results is the book [[2\]](#page-16-0). Special results relating singular values and norms of $T = A + iB$ with those of A and B may be found in [[1,](#page-16-2) [5,](#page-16-3) [7,](#page-16-4) [8](#page-16-5)], and in other papers cited therein.

2 A generalization of [\(1.4](#page-1-0)) and some related results

The aim of this section is to generalize the inequality (1.4) (1.4) . In order to do that, we start with the following two lemmas. The frst lemma is a well-known result that can be proved by using the spectral theorem and Jensen's inequality. The inequalities in this lemma are of the Peierls-Bogoliubov type (see, e.g., [\[2](#page-16-0), p. 281] or [[10,](#page-16-6) p. 101–102]). The second lemma (see, e.g., [\[2](#page-16-0), p. 291]) has an important role in our generalization of the inequality [\(1.4\)](#page-1-0). Henceforth, we assume that every function is continuous.

Lemma 2.1 *Let* $A \in M_n(\mathbb{C})$ *be a positive semidefinite matrix and* $x \in \mathbb{C}^n$ *be a unit vector*. *Then*

- (a) $\langle f(A)x, x \rangle \leq f(\langle Ax, x \rangle)$ for every non-negative concave function f on [0, ∞).
- (b) $f(\langle Ax, x \rangle) \leq \langle f(A)x, x \rangle$ for every non-negative convex function f on [0, ∞).

Lemma 2.2 *Let* $A \in M_n(\mathbb{C})$ *be positive semidefinite and let f be a non-negative increasing function on* [0, ∞). *Then*

$$
s_j(f(A)) = f(s_j(A))
$$

for $j = 1, ..., n$.

Now, we have the following result.

Theorem 2.1 *Let* $A, B \in M_n(\mathbb{C})$ *be positive semidefinite matrices, and let* $\alpha, \beta \in (0, 1)$ *such that* $\alpha + \beta = 1$.

(a) *If f is a non-negative concave function on* $[0, \infty)$ *, then*

$$
s_j(\alpha f(A) + \beta f(B)) \le s_j\bigg(f\bigg(\sqrt{2}|\alpha A + i\beta B|\bigg)\bigg)
$$

for $j = 1, ..., n$.

(b) If f is a non-negative strictly increasing convex function on $[0, \infty)$ with $f(0) = 0$, *then*

$$
s_j(f(\alpha A + \beta B)) \le \sqrt{2}s_j(\alpha f(A) + i\beta f(B))
$$

for $j = 1, ..., n$.

Proof (a) Let *f* be a non-negative concave function on [0, ∞). Then *f* is increasing on $[0, \infty)$. For every unit vector $x \in \mathbb{C}^n$, we have

$$
\langle (\alpha f(A) + \beta f(B))x, x \rangle
$$

=\alpha \langle f(A)x, x \rangle + \beta \langle f(B)x, x \rangle
≤\alpha f(\langle Ax, x \rangle) + \beta f(\langle Bx, x \rangle) \text{ (by Lemma 2.1(a))}
≤f(\langle (\alpha A + \beta B)x, x \rangle) \text{ (since } f \text{ is concave}) \text{ (2.1)}
≤f(\sqrt{2}|\langle (\alpha A + i\beta B)x, x \rangle|) \text{ (by the inequality (1.3))}
≤f(\sqrt{2}||(\alpha A + i\beta B)x||) \text{ (by the Cauchy-Schwarz inequality).}

Consequently,

$$
s_j(\alpha f(A) + \beta f(B)) = \max_{\dim M = j} \min_{\substack{x \in M \\ \|x\| = 1}} \langle (\alpha f(A) + \beta f(B))x, x \rangle
$$

(by the relation (1.1))

$$
\leq \max_{\text{dim} M = j} \min_{\substack{x \in M \\ \|x\| = 1}} f(\sqrt{2} \| (\alpha A + i\beta B)x \|)
$$

(by the inequality
$$
(2.1)
$$

$$
= f(\max_{\text{dim}M=j} \min \sqrt{2} ||(\alpha A + i\beta B)x||) \text{ (since } f \text{ is increasing)}
$$

\n
$$
x \in M
$$

\n
$$
||x|| = 1
$$

\n
$$
= f\left(s_j\left(\sqrt{2}|\alpha A + i\beta B|\right)\right) \text{ (by the relation (1.2))}
$$

\n
$$
= s_j\left(f\left(\sqrt{2}|\alpha A + i\beta B|\right)\right) \text{ (by Lemma 2.2),}
$$

as required.

(b) Let *f* be a non-negative strictly increasing convex function on $[0, \infty)$ with $f(0) = 0$. Then f^{-1} is a non-negative concave function on [0, ∞). So, applying part (a) to the function f^{-1} , we have

$$
s_j(\alpha f^{-1}(A) + \beta f^{-1}(B)) \le s_j(f^{-1}(\sqrt{2}|\alpha A + i\beta B|))
$$

= $f^{-1}(\sqrt{2}s_j(\alpha A + i\beta B))$ (2.2)

for $j = 1, ..., n$. In the inequality [\(2.2\)](#page-3-0), replacing *A* and *B* by $f(A)$ and $f(B)$, respectively, we have

$$
s_j(\alpha A + \beta B) = s_j(\alpha f^{-1}(f(A)) + \beta f^{-1}(f(B)))
$$

$$
\leq f^{-1}(\sqrt{2} s_j(\alpha f(A) + i\beta f(B)))
$$
 (2.3)

for $j = 1, \ldots, n$. Since f is increasing, we have

$$
s_j(f(\alpha A + \beta B)) = f(s_j(\alpha A + \beta B))
$$

\n
$$
\leq f(f^{-1}(\sqrt{2s_j(\alpha f(A) + i\beta f(B)}))
$$
 (by the inequality (2.3))
\n
$$
= \sqrt{2s_j(\alpha f(A) + i\beta f(B))}
$$

for $j = 1, \ldots, n$, as required.

To give our frst application of Theorem [2.1,](#page-2-0) we need the following lemma, which has been given by Tao in [\[11](#page-16-7)].

Lemma 2.3 *Let* $A, B, C \in M_n(\mathbb{C})$ *such that* $X =$ [*A B B*[∗] *C*] *is positive semidefnite*. *Then* $2s_j(B) \leq s_j(X)$ for $j = 1, ..., n$.

Our frst application of Theorem [2.1](#page-2-0) can be stated as follows.

Corollary 2.1 *Let* $A, B, C, D \in M_n(\mathbb{C})$ *such that* $T =$ $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ *is accretive-dissipative. If f* is a non-negative strictly increasing convex function on $[0, \infty)$ with $f(0) = 0$, then

$$
s_j\bigg(f\bigg(\frac{|(B-C^*)+i(B+C^*)|}{2}\bigg)\bigg) \leq \sqrt{2}s_j\bigg(\frac{f(\text{Re}T)+if(\text{Im}T)}{2}\bigg)
$$

 f *or* $i = 1, \ldots, n$.

Proof In Theorem [2.1\(](#page-2-0)b), letting $A = \text{Re}T, B = \text{Im}T$, and $\alpha = \beta = \frac{1}{2}$ imply that

$$
s_j\left(f\left(\frac{\text{Im}(1+i)T}{2}\right)\right)
$$

=s_j\left(f\left(\frac{\text{Re}T+\text{Im}T}{2}\right)\right) (2.4)

$$
\leq \sqrt{2}s_j\left(\frac{f(\text{Re}T)+if(\text{Im}T)}{2}\right) \text{ (by Theorem 2.1(b))}.
$$

Since Re*T* and Im*T* are positive semidefinite and Im $(1 + i)T = \text{Re}T + \text{Im}T$, then $\frac{\text{Im}(1+i)T}{2}$ is positive semidefinite. It follows from Lemma [2.3](#page-4-0) that

$$
s_j\left(\frac{B+C^*}{2}+\frac{B-C^*}{2i}\right)\leq s_j\left(\frac{\operatorname{Im}(1+i)T}{2}\right),
$$

and so

$$
s_j\left(f\left(\frac{|(B-C^*)+i(B+C^*)|}{2}\right)\right) \leq s_j\left(f\left(\frac{\text{Im}(1+i)T}{2}\right)\right). \tag{2.5}
$$

Now, the result follows from the inequalities (2.4) and (2.5) (2.5) (2.5) .

Remark 2.1 It should be mentioned here that Tao's inequality given in Lemma [2.3](#page-4-0) can be inferred from Corollary [2.1.](#page-4-2) This can be demonstrated as follows: Let $A, B, C \in M_n(\mathbb{C})$ such that $X =$ [*A B B*[∗] *C*] is positive semidefnite. Applying Corollary [2.1](#page-4-2) to the accretive-dissipative matrix $\overline{T} = X + iX$ and letting $f(t) = t$, it follows, by direct computations, that $2s_j(B) \leq s_j(X)$ for $j = 1, ..., n$.

Another applications of Theorem [2.1](#page-2-0) can be seen in the following corollary.

Corollary 2.2 *Let* $A, B \in M_n(\mathbb{C})$ *be positive semidefinite matrices, and let* $\alpha, \beta \in (0, 1)$ *such that* $\alpha + \beta = 1$ *. Then*

$$
s_j(\alpha A^p + \beta B^p) \le 2^{p/2} s_j^p(\alpha A + i\beta B), \quad 0 < p \le 1
$$

and

$$
s_j^p(\alpha A + \beta B) \le \sqrt{2}s_j(\alpha A^p + i\beta B^p), \quad 1 \le p < \infty
$$

for $j = 1, \ldots, n$ *. In particular,*

$$
s_j(A^p + B^p) \le 2^{1 - p/2} s_j^p(A + iB), \quad 0 < p \le 1 \tag{2.6}
$$

and

$$
s_j^p(A+B) \le 2^{p-1/2} s_j(A^p + iB^p), \quad 1 \le p < \infty
$$
 (2.7)

for $j = 1, ..., n$.

According to the inequalities ([2.6\)](#page-5-1), [\(2.7](#page-5-2)), and using the fact that unitarily invariant norms are increasing functions of singular values, we have the following result.

Corollary 2.3 *Let* $A, B \in M_n(\mathbb{C})$ *be positive semidefinite matrices. Then*

$$
\left| \left| \left| (A^p + B^p)^{1/p} \right| \right| \right| \le 2^{1/p - 1/2} |||A + iB|||, 0 < p \le 1 \tag{2.8}
$$

and

$$
|||(A+B)^p||| \le 2^{p-1/2}|||A^p + iB^p|||, 1 \le p < \infty
$$
\n(2.9)

for every unitarily invariant norm.

Remark 2.2 If we put $p = 1$ in the inequality ([2.8](#page-5-3)) or ([2.9](#page-5-4)), the inequality [\(1.5\)](#page-1-1) will be obtained. So, the inequality (1.5) can be considered as a special case of the inequalities (2.8) (2.8) (2.8) and (2.9) .

Based on Theorem [2.1](#page-2-0), we have the following corollary.

Corollary 2.4 *Let* $A, B \in \mathbb{M}_n(\mathbb{C})$ *be positive semidefinite matrices, and let* $\alpha, \beta \in (0, 1)$ *such that* $\alpha + \beta = 1$.

(a) *If f is a non-negative concave function on* $[0, \infty)$ *, then*

$$
|||\alpha f(A) + \beta f(B)||| \le |||f(\sqrt{2}|\alpha A + i\beta B|)||
$$

for every unitarily invariant norm.

(b) If f is a non-negative strictly increasing convex function on $[0, \infty)$ with $f(0) = 0$, *then*

$$
|||f(\alpha A + \beta B)||| \le \sqrt{2}|||\alpha f(A) + i\beta f(B)|||
$$

for every unitarily invariant norm.

Now, we have the following lemma.

Lemma 2.4 *Let a, b* \in [0, ∞)*, and let* α *,* β \in (0, 1) *such that* $\alpha + \beta = 1$.

(a) *If f is a non-negative function on* $[0, \infty)$ *such that* $f(\sqrt{t})$ *is concave, then*

$$
\alpha f(a) + \beta f(b) \le f(\left| \sqrt{\alpha}a + i\sqrt{\beta}b \right|).
$$

(b) *If f is a non-negative function on* $[0, \infty)$ *such that* $f(\sqrt{t})$ *is convex with* $f(0) = 0$, *then*

$$
\alpha f(a) + \beta f(b) \ge f(\left| \sqrt{\alpha}a + i\sqrt{\beta}b \right|).
$$

◻

Proof We prove part (a), the proof of part (b) is similar. Let $g(t) = f(\sqrt{t})$. Then $g(t)$ is concave, and so

$$
\alpha f(a) + \beta f(b) = \alpha g(a^2) + \beta g(b^2)
$$

\n
$$
\leq g(\alpha a^2 + \beta b^2)
$$

\n
$$
= g(\left| \sqrt{\alpha a} + i\sqrt{\beta b} \right|^2)
$$

\n
$$
= f(\left| \sqrt{\alpha a} + i\sqrt{\beta b} \right|).
$$

Corollary 2.5 *Let* $a, b \in [0, \infty)$ *and* $\alpha, \beta \in (0, 1)$ *such that* $\alpha + \beta = 1$ *. Then*

$$
\alpha a^p + \beta b^p \le \left| \sqrt{\alpha a} + i \sqrt{\beta b} \right|^p \text{ for } 0 < p \le 2
$$

and

$$
\alpha a^p + \beta b^p \ge \left| \sqrt{\alpha a} + i \sqrt{\beta b} \right|^p \text{ for } 2 \le p < \infty.
$$

Based on Lemma [2.4,](#page-6-0) we have the following result.

Theorem 2.2 *Let* $A, B \in M_n(\mathbb{C})$ *be positive semidefinite matrices, and let* $\alpha, \beta \in (0, 1)$ *such that* $\alpha + \beta = 1$.

(a) *If f is a non-negative concave function on* $[0, \infty)$ *, then*

$$
s_j(\alpha f(A) + \beta f(B)) \le s_j\left(f\left(\left|\sqrt{\alpha}A + i\sqrt{\beta}B\right|\right)\right) \tag{2.10}
$$

for $j = 1, ..., n$.

(b) If f is a non-negative strictly increasing convex function on $[0, \infty)$ with $f(0) = 0$, *then*

$$
s_j(f(\alpha A + \beta B)) \le s_j\left(\sqrt{\alpha}f(A) + i\sqrt{\beta}f(B)\right) \tag{2.11}
$$

for $j = 1, ..., n$.

Proof (a) Let $x \in \mathbb{C}^n$ be a unit vector. Then

$$
\langle (\alpha f(A) + \beta f(B))x, x \rangle
$$

= $\alpha \langle f(A)x, x \rangle + \beta \langle f(B)x, x \rangle$
 $\leq \alpha f(\langle Ax, x \rangle) + \beta f(\langle Bx, x \rangle)$ (by Lemma 2.1(a))
 $\leq f(\left| \sqrt{\alpha} \langle Ax, x \rangle + i \sqrt{\beta} \langle Bx, x \rangle \right|)$ (by Lemma 2.4(a))
 $= f(\left| \left\langle (\sqrt{\alpha}A + i \sqrt{\beta}B)x, x \rangle \right| \right)$
 $\leq f(\left| \left| (\sqrt{\alpha}A + i \sqrt{\beta}B)x \right| \right|).$ (2.12)

So, the inequality [\(2.10\)](#page-7-0) follows from the inequality [\(2.12\)](#page-7-1) by an argument similar to that used in the proof of Theorem $2.1(a)$.

(b) Let *f* be a non-negative strictly increasing convex function on $[0, \infty)$ with $f(0) = 0$. Then f^{-1} is a non-negative concave function on [0, ∞). Now, the inequal-ity [\(2.11\)](#page-7-2) follows by applying part (a) to the function f^{-1} and then using an argu-ment similar to that used in the proof of part (b) of Theorem [2.1.](#page-2-0) \square

Based on Theorem [2.2,](#page-7-3) we have the following two corollaries.

Corollary 2.6 *Let* $A, B \in M$ _n(\mathbb{C}) *be positive semidefinite matrices, and let* $\alpha, \beta \in (0, 1)$ *such that* $\alpha + \beta = 1$ *. Then*

$$
s_j(\alpha A^p + \beta B^p) \le s_j^p(\sqrt{\alpha}A + i\sqrt{\beta}B), 0 < p \le 2
$$

and

$$
s_j^p(\alpha A + \beta B) \le s_j\left(\sqrt{\alpha}A^p + i\sqrt{\beta}B^p\right), 2 \le p < \infty
$$

for $j = 1, ..., n$.

Corollary 2.7 *Let* $A, B \in M_n(\mathbb{C})$ *be positive semidefinite matrices, and let* $\alpha, \beta \in (0, 1)$ *such that* $\alpha + \beta = 1$.

(a) *If f is a non-negative concave function on* $[0, \infty)$ *, then*

$$
|||\alpha f(A) + \beta f(B)||| \le ||\left| f\left(\left| \sqrt{\alpha} A + i \sqrt{\beta} B \right| \right) \right| \right||
$$

for every unitarily invariant norm.

(b) If f is a non-negative strictly increasing convex function on $[0, \infty)$ with $f(0) = 0$, *then*

$$
|||f(\alpha A + \beta B)||| \le |||\sqrt{\alpha}f(A) + i\sqrt{\beta}f(B)||||
$$

for every unitarily invariant norm.

Now, we have the following result.

Theorem 2.3 *Let* $A, B \in M_m(\mathbb{C})$ *be positive semidefinite matrices, and let* $\alpha, \beta \in (0, 1)$ such that $\alpha^2 + \beta^2 = 1$. If f is a non-negative function on [0, ∞) such that *f* 2 *is concave*, *then*

$$
s_j(\alpha f(A)+i\beta f(B))\leq \sqrt{2}s_j(f(\alpha^2A+\beta^2B))
$$

for $j = 1, ..., n$.

Proof Let $x \in \mathbb{C}^n$ be a unit vector. Then

$$
\langle |\alpha f(A) + i\beta f(B)|^2 x, x \rangle = ||(\alpha f(A)x + i\beta f(B)x||^2
$$

\n
$$
\leq (\alpha ||f(A)x|| + \beta ||f(B)x||)^2
$$

\n
$$
\leq 2(\alpha^2 ||f(A)x||^2 + \beta^2 ||f(B)x||^2)
$$

\n
$$
= 2(\alpha^2 \langle f^2(A)x, x \rangle + \beta^2 \langle f^2(B)x, x \rangle)
$$

\n
$$
\leq 2(\alpha^2 f^2(\langle Ax, x \rangle) + \beta^2 f^2(\langle Bx, x \rangle))
$$

\n(by Lemma 2.1(a))
\n
$$
\leq 2f^2(\langle \alpha^2 Ax, x \rangle + \langle \beta^2 Bx, x \rangle)
$$

\n(since f^2 is concave on [0, ∞))
\n
$$
= 2f^2(\langle (\alpha^2 A + \beta^2 B)x, x \rangle)
$$

\n
$$
\leq 2f^2(||\alpha^2 A + \beta^2 B)x||).
$$

So, the result follows from the inequality (2.13) by an argument similar to that used in the proof of Theorem [2.1](#page-2-0)(a). \Box

Based on Theorem [2.3](#page-8-0), we have the following corollary.

Corollary 2.8 *Let* $A, B \in \mathbb{M}_n(\mathbb{C})$ *be positive semidefinite matrices, and let* $\alpha, \beta \in (0, 1)$ *such that* $\alpha^2 + \beta^2 = 1$ *. Then*

$$
s_j^2(\alpha A^{p/2} + i\beta B^{p/2}) \le 2s_j^p(\alpha^2 A + \beta^2 B)
$$
 (2.14)

for $j = 1, \ldots, n$ *and* $0 < p \leq 1$ *. In particular,*

$$
s_j^2 (A^{p/2} + iB^{p/2}) \le 2^{2-p} s_j^p (A + B)
$$
\n(2.15)

and

$$
s_j(A + iB) \le \sqrt{2}s_j^{1/2}(A^2 + B^2). \tag{2.16}
$$

Proof The inequality [\(2.14\)](#page-9-1) follows directly from Theorem [2.3](#page-8-0) by taking $f(t) = t^{p/2}, 0 < p \le 1$. Also, if we put $\alpha^2 = \beta^2$ in the inequality [\(2.14\)](#page-9-1), we obtain the inequality (2.15) . The inequality (2.16) (2.16) (2.16) is a special case of the inequality (2.15) (2.15) (2.15) by taking $p = 1$, and replacing A and B by A^2 and B^2 , respectively.

In their investigation of singular value inequalities on the sector matrices, Drury and Lin [\[9\]](#page-16-8) proved that if $A, B \in M_n(\mathbb{C})$ are positive semidefinite matrices, then

$$
s_j(A + iB) \le \sqrt{2}s_j(A + B) \tag{2.17}
$$

for $j = 1, \ldots, n$, which is closely related to our inequality ([2.16](#page-9-3)). It should be mentioned here that for $j = 1$, which corresponds to the spectral norm $\lVert \cdot \rVert$, the inequality (2.16) is better than the inequality (2.17) . In fact, it is known [[4\]](#page-16-9) that

$$
s_1^r(A+B) \le s_1(A^r + B^r)
$$

for $0 < r \le 1$. In particular, letting $r = \frac{1}{2}$ and replacing *A*, *B* by A^2 , B^2 respectively, we have

$$
s_1^{1/2}(A^2 + B^2) \le s_1(A + B).
$$

For $j > 1$, we may have

$$
s_j^{1/2}(A^2 + B^2) > s_j(A + B),
$$

as it can be demonstrated by considering $A =$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B =$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. In this case,

$$
A + B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \text{ and } A^2 + B^2 = \begin{bmatrix} 3 & 2 \\ 2 & 2 \end{bmatrix}. \text{ Now, } s_2(A^2 + B^2) = \frac{5 - \sqrt{17}}{2} \text{ and }
$$

\n
$$
s_2(A + B) = \frac{3 - \sqrt{5}}{2}. \text{ So, we have } s_2^{1/2}(A^2 + B^2) > s_2(A + B).
$$

According to Theorem [2.3,](#page-8-0) we have the following two corollaries.

Corollary 2.9 *Let* $A, B \in \mathbb{M}_n(\mathbb{C})$ *be positive semidefinite matrices, and let* $\alpha, \beta \in (0, 1)$ such that $\alpha^2 + \beta^2 = 1$. If f is a non-negative function on [0, ∞) such that *f* 2 *is concave*, *then*

$$
|||\alpha f(A) + i\beta f(B)||| \le \sqrt{2} ||f(\alpha^2 A + \beta^2 B)||
$$

for every unitarily invariant norm.

Corollary 2.10 *Let* $A, B \in M_n(\mathbb{C})$ *be positive semidefinite matrices. Then, for every unitarily invariant norm*, *we have*

$$
||||A^{p/2} + iB^{p/2}|||| \le 2^{1-p/2}||||(A + B)^{p/2}||||
$$

for $0 < p \leq 1$ *. In particular,*

$$
|||A + iB||| \le \sqrt{2} ||| (A^2 + B^2)^{1/2} |||.
$$

Now, to give our next result, we need the following inequality, which follows from the arithmetic-geometric mean inequality for singular values [[3\]](#page-16-10).

Lemma 2.5 *Let* $T \in M_n(\mathbb{C})$. *Then*

$$
2s_j(T^2) \le s_j(T^*T + TT^*)
$$

for $j = 1, ..., n$.

Theorem 2.4 *Let* $T \in M_n(\mathbb{C})$ *with the Cartesian decomposition* $T = A + iB$ *. Then*

$$
2^{1-p/2} s_j^{p/2}(T^2) \leq s_j(|A|^p + |B|^p)
$$

for $j = 1, \ldots, n$ *and* $2 \leq p \leq \infty$.

Proof For every unit vector $x \in \mathbb{C}^n$, we have

$$
\langle (T^*T + TT^*)x, x \rangle = 2(\langle A^2x, x \rangle + \langle B^2x, x \rangle)
$$

\n
$$
= 2((\langle A^2x, x \rangle + \langle B^2x, x \rangle)^{p/2})^{2/p}
$$

\n
$$
\leq 2(2^{p/2-1}(\langle A^2x, x \rangle^{p/2} + \langle B^2x, x \rangle^{p/2}))^{2/p}
$$

\n
$$
\leq 2^{2-2/p}((|A|^p x, x) + \langle |B|^p x, x \rangle)^{2/p}
$$

\n(by Lemma 2.1(b))
\n
$$
= 2^{2-2/p}\langle (|A|^p + |B|^p)x, x \rangle^{2/p}.
$$
 (by Lemma 2.1(b))

It follows from the inequality (2.18) (2.18) (2.18) and the relation (1.1) that

$$
s_j(T^*T + TT^*) \le 2^{2-2/p} s_j^{2/p} (|A|^p + |B|^p)
$$
\n(2.19)

for $j = 1, ..., n$. Now, the result follows from Lemma [2.5](#page-10-0) and the inequality ([2.19](#page-11-1)). ◻

The following example shows that Theorem [2.4](#page-11-2) is not true when $0 < p < 2$.

Example 2.1 Consider $A =$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $B =$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, and $p = 1$. Then *A* and *B* are positive semidefinite matrices with $|A| + |B|$ = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $T^2 =$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $0 - 1$ $\overline{1}$. Now, $s_1^2(|A| + |B|) = s_1^2(T^2) = 1$. So, we have $\sqrt{2s_1^{1/2}(T^2)} > s_1(|A| + |B|)$.

According to Theorem [2.4,](#page-11-2) we have the following corollary.

Corollary 2.11 *Let* $T \in M_n(\mathbb{C})$ *with the Cartesian decomposition* $T = A + iB$ *. Then, for every unitarily invariant norm*, *we have*

$$
|||T^*T + TT^*||| \le 2^{2-2/p} ||| (|A|^p + |B|^p)^{2/p} |||
$$

and

$$
\left|\left|\left|T^2\right|\right|\right| \leq 2^{1-2/p} \left|\left|\left|\left(|A|^p + |B|^p\right)^{2/p}\right|\right|\right|
$$

for $2 \leq p < \infty$.

B Birkhäuser

3 Some related results for $A \geq B \geq 0$

In this section, we give some results for positive semidefnite matrices *A*, *B* with $A \geq B$.

We start with the following result.

Theorem 3.1 *Let* $A, B \in M_n(\mathbb{C})$ *be positive semidefinite matrices such that* $A \geq B$. *Then*

$$
s_j^p (A^{1/p} - B^{1/p}) \le s_j (A + iB)
$$

for $j = 1, \ldots, n$ *and* $1 \leq p < \infty$.

Proof Since $f(t) = t^{1/p}$ is a matrix monotone function for $1 \le p < \infty$, we have $A^{1/p} > B^{1/p}$.

For every unit vector $x \in \mathbb{C}^n$, we have

$$
\langle (A^{1/p} - B^{1/p})x, x \rangle^{p} = (\langle A^{1/p}x, x \rangle - \langle B^{1/p}x, x \rangle)^{p}
$$

\n
$$
\leq \langle A^{1/p}x, x \rangle^{p} - \langle B^{1/p}x, x \rangle^{p}
$$

\n
$$
\leq |\langle A^{1/p}x, x \rangle^{p} + i \langle B^{1/p}x, x \rangle^{p}|
$$

\n
$$
\leq |\langle Ax, x \rangle + i \langle Bx, x \rangle| \text{ (by Lemma 2.1(b))}
$$

\n
$$
\leq ||(A + iB)x||.
$$
 (3.1)

So, the result follows from the inequality (3.1) (3.1) (3.1) by an argument similar to that used in the proof of Theorem [2.1\(](#page-2-0)a). \Box

The following example shows that Theorem [3.1](#page-12-1) is not true without the assumption $A \geq B$.

Example 3.1 Consider $A =$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $B =$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, and $p = 1$. Then *A* and *B* are positive semidefinite matrices with $A \not\geq B$, $A - B =$ $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, and $A + iB =$ $\begin{bmatrix} 1+i & 1 \\ 1 & 1 \end{bmatrix}$. Now, $s_2^2(A-B) = \frac{3-\sqrt{5}}{2}$ and $s_2^2(A+iB) = \frac{5-\sqrt{21}}{2}$. So, we have $s_2(A-B) > s_2(A+iB)$.

The following example shows that Theorem [3.1](#page-12-1) is not true when $0 < p < 1$.

Example 3.2 Consider $A =$ $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$, $B =$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, and $p = 1/2$. Then *A* and *B* are positive semidefinite matrices with $A \geq B$, $A^2 - B^2 =$ $\begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix}$, and $A + iB =$ $\begin{bmatrix} 2+i & 1 \\ 1 & 1 \end{bmatrix}$. Now, $s_2^2(A^2 - B^2) = 19 - \sqrt{360}$ and $s_2^2(A + iB) = 30 - \sqrt{896}$. So, we have $s_2(A^2 - \bar{B}^2) > s_2^2(A + iB).$

According to Theorem [3.1](#page-12-1), we have the following corollary.

Corollary 3.1 *Let* $A, B \in M_n(\mathbb{C})$ *be positive semidefinite matrices such that* $A \geq B$. *Then*, *for every unitarily invariant norm*, *we have*

$$
\left| \left| \left| (A^{1/p} - B^{1/p})^p \right| \right| \right| \le |||A + iB|||
$$

for $1 \leq p < \infty$.

Now, we need the following lemma to give our next result.

Lemma 3.1 *Let a*, *b* ∈ ℝ. *Then*

$$
|a+ib|^p \le 2^{p/2-1}(|a|^p + |b|^p)
$$
\n(3.2)

for $2 \leq p < \infty$ *, and*

$$
2^{p/2-1}(|a|^p + |b|^p) \le |a + ib|^p \tag{3.3}
$$

for $0 < p \le 2$.

Proof For $a, b \in \mathbb{R}$ and $2 \le p < \infty$, we have

$$
|a+ib|^p = (|a+ib|^2)^{p/2}
$$

= $(|a|^2 + |b|^2)^{p/2}$
 $\leq 2^{p/2-1} (|a|^p + |b|^p),$

which proves the inequality (3.2) (3.2) (3.2) . Similarly, one can prove the inequality (3.3) (3.3) (3.3) .

Theorem 3.2 *Let* $A, B \in M_n(\mathbb{C})$ *be positive semidefinite matrices such that* $A \geq B$. *Then*

$$
s_j^p(A - B) \le 2^{p/2 - 1} s_j (A^p + B^p)
$$

for $j = 1, \ldots, n$ *and* $2 \leq p \leq \infty$.

Proof For every unit vector $x \in \mathbb{C}^n$, we have

$$
\langle (A - B)x, x \rangle^{p}
$$

= $(\langle Ax, x \rangle - \langle Bx, x \rangle)^{p}$
 $\leq | \langle (A + iB)x, x \rangle |^{p}$
= $|\langle Ax, x \rangle + i \langle Bx, x \rangle |^{p}$
 $\leq 2^{p/2-1} (\langle Ax, x \rangle^{p} + \langle Bx, x \rangle^{p})$ (by the inequality (3.2))
 $\leq 2^{p/2-1} (\langle A^{p}x, x \rangle + \langle B^{p}x, x \rangle)$ (by Lemma 2.1(b))
= $2^{p/2-1} \langle (A^{p} + B^{p})x, x \rangle$
 $\leq 2^{p/2-1} ||(A^{p} + B^{p})x||$.

So, the result follows from the inequality ([3.4](#page-13-2)) by an argument similar to that used in the proof of Theorem [2.1\(](#page-2-0)a). \Box

The following example shows that Theorem [3.2](#page-13-3) is not true when $0 < p < 2$.

Example 3.3 Consider $A =$ $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$, $B =$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, and $p = 1$. Then *A* and *B* are positive semidefinite matrices with $A \geq B$, $A + B =$ $\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$, and $A - B =$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Now, $s_2^2(A + B) = s_2^2(A - B) = 1$. So, we have $s_2(A - B) > 2^{-1/2} s_2(A + B)$.

According to Theorem [3.2](#page-13-3), we have the following corollary.

Corollary 3.2 *Let* $A, B \in \mathbb{M}_{n}(\mathbb{C})$ *be any positive semidefinite matrices such that* $A \geq B$. Then, for every unitarily invariant norm, we have

$$
|||(A - B)^p||| \le 2^{p/2 - 1}|||A^p + B^p|||
$$

for $2 \leq p < \infty$.

4 A result for $T = A + iB$ when $A > 0$

In this section, we give a result for matrices with positive defnite real parts based on the following two lemmas. The frst lemma can be found in [\[2](#page-16-0), p. 75] and the second one can be easily proved.

Lemma 4.1 *Let* $A, B, X \in M_n(\mathbb{C})$. *Then*

$$
s_j(AXB) \leq ||A|| ||B|| s_j(X)
$$

for $i = 1, ..., n$.

Lemma 4.2 *Let* $X \in M_n(\mathbb{C})$ *be Hermitian and let* $Y = I + iX$ *. Then*

\n- (a)
$$
s_j^r(Y) \leq 1 + s_j^r(X)
$$
\n- (b) $s_j^r(Y) \leq 2^{r/2-1}(1 + s_j^r(X))$
\n- (c) $s_j^r(Y) \leq 2^{r/2-1}(1 + s_j^r(X))$
\n- (d) for $j = 1, \ldots, n$ and $2 \leq r < \infty$.
\n

The condition number of an invertible matrix $A \in M_n(\mathbb{C})$ is defined by $k(A) = ||A|| ||A^{-1}||$. Based on Lemmas [4.1](#page-14-0) and [4.2,](#page-14-1) we have the following result.

Theorem 4.1 *Let* $T \in M_n(\mathbb{C})$ *with the Cartesian decomposition* $T = A + iB$ *such that A is positive defnite*. *Then*

$$
s_j^r(T) \le s_1^r(A) + k^r(A)s_j^r(B)
$$

for $j = 1, ..., n$ *and* $0 < r \le 2$.

Proof Since $T = A + iB$, we have $A^{-1/2}TA^{-1/2} = I + iA^{-1/2}BA^{-1/2}$. By part (a) of Lemma [4.2,](#page-14-1) we have

$$
s_j^r(A^{-1/2}TA^{-1/2}) \le 1 + s_j^r(A^{-1/2}BA^{-1/2}).\tag{4.1}
$$

Now,

$$
s_j^r(T) = s_j^r(A^{1/2}A^{-1/2}TA^{-1/2}A^{1/2})
$$

\n
$$
\leq ||A||^r s_j^r(A^{-1/2}TA^{-1/2}) \text{ (by Lemma 4.1)}
$$

\n
$$
\leq ||A||^r (1 + s_j^r(A^{-1/2}BA^{-1/2})) \text{ (by the inequality (4.1))}
$$

\n
$$
\leq ||A||^r + ||A||^r ||A^{-1}||^r s_j^r(B) \text{ (by Lemma 4.1)}
$$

\n
$$
= s_1^r(A) + k^r(A)s_j^2(B),
$$

as required. \Box

Using an argument similar to that used in the proof of Theorem [4.1](#page-15-0) , one can prove the following related result.

Theorem 4.2 *Let* $T \in M_n(\mathbb{C})$ *be with the Cartesian decomposition* $T = A + iB$ *such that A is positive defnite*. *Then*

$$
s_j^r(T) \le 2^{r/2 - 1} (s_1^r(A) + k^r(A)s_j^r(B))
$$

for $j = 1, \ldots, n$ *and* $2 \le r < \infty$.

For a matrix $A \in M_n(\mathbb{C})$ it is known that $k(A) \geq 1$. So, one might ask whether the following two inequalities hold:

$$
s_j^r(T) \le s_1^r(A) + s_j^r(B)
$$

for $j = 1, ..., n$ and $0 < r \le 2$, and

$$
s_j^r(T) \le 2^{r/2 - 1}(s_1^r(A) + s_j^r(B))
$$

for $j = 1, ..., n$ and $2 \le r < \infty$. In fact, the following example shows that they are false for $r = 2$.

Example 4.1 Consider *A* = $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$, $B =$ $\begin{bmatrix} 1 & 1 \end{bmatrix}$ $1 - 1$] . Then *A* is a positive defnite matrix with $s_1^2(A) = 4$ and *B* is a Hermitian matrix with $s_1^2(B) = 2$. For $T = A + iB$, $s_1^2(T) = \frac{21-\sqrt{425}}{2}$ and $s_1^2(T) = \frac{9+\sqrt{29}}{2}$. So, we have $s_1^2(T) > s_1^2(A) + s_1^2(B)$.

References

- 1. Ando, T., Bhatia, R.: Eigenvalue inequalities associated with the Cartesian decomposition. Linear Multilinear Algebra **22**, 133–147 (1987)
- 2. Bhatia, R.: Matrix Analysis. Springer, New York (1997)
- 3. Bhatia, R., Kittaneh, F.: On the singular values of a product of operators. SIAM J. Matrix Anal. Appl. **11**, 272–277 (1990)
- 4. Bhatia, R., Kittaneh, F.: Norm inequalities for positive operators. Lett. Math. Phys. **43**, 225–231 (1998)
- 5. Bhatia, R., Kittaneh, F.: Cartesian decompositions and Schatten norms. Linear Algebra Appl. **318**, 109–116 (2000)
- 6. Bhatia, R., Kittaneh, F.: The singular values of *A* + *B* and *A* + *iB*. Linear Algebra Appl. **431**, 1502– 1508 (2009)
- 7. Bhatia, R., Zhan, X.: Compact operators whose real and imaginary parts are positive. Proc. Am. Math. Soc. **129**, 2277–2281 (2001)
- 8. Bhatia, R., Zhan, X.: Norm inequalities for operators with positive real part. J. Oper. Theory **50**, 67–76 (2003)
- 9. Drury, S., Lin, M.: Singular value inequalities for matrices with numerical range in a sector. Oper. Matrix. **4**, 1143–1148 (2014)
- 10. Simon, B.: Trace ideals and their applications. Cambridge University Press, Cambridge (1979)
- 11. Tao, Y.: More results on singular value inequalities of matrices. Linear Algebra Appl. **416**, 724–729 (2006)