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Abstract
The aim of this paper is to generalize the Wigner Theorem to real normed spaces. A
normed space is said to have the Wigner Property if the Wigner Theorem holds for it.
We prove that every two-dimensional real normed space has the Wigner Property. We
also study the Wigner Property of real normed spaces of dimension at least three. It is
also shown that strictly convex real normed spaces possess the Wigner Property.

Keywords Isometry · Phase equivalence · Phase isometry · The Wigner Property ·
The Wigner Theorem

Mathematics Subject Classification 46B03 · 46B04

1 Introduction

The well-knownWigner Theorem, which plays an important role in quantummechan-
ics, states that any transformations of the states of a physical system which preserve
the transition probability associated to any pair of states are induced either by a unitary
or by an anti-unitary operator on the Hilbert space associated with the physical system
(see [5,23]). SinceWigner’s proofwas incomplete from themathematical point of view,
many papers have appeared to prove theWigner Theorem (see [4,10,12,14,18,19,21]).
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The Wigner Theorem describes those transformations of P1(H) (all rank-one pro-
jections on the Hilbert space H), which preserve the transition probability. Gehér
and Šemrl [11] described the surjective isometries on the Grassmann space Pn(H) of
all rank n projections with respect to the gap metric (n ∈ N), which generalize the
Wigner Theorem to the Grassmann space Pn(H). We would also like to draw the read-
ers’ attention to the very recent paper [16] in which the author establishes a Wigner’s
type theorem for linear operators which map projections of a fixed rank to projections
of other fixed rank.

Bargmann [3] proved theWigner Theorem which is very close toWigner’s original
statement.

Theorem 1 [3] Let (H, 〈·, ·〉) be an inner product space with dim(H) ≥ 2 and let
T : H → H satisfy the equality

|〈T (x), T (y)〉| = |〈x, y〉| (1)

for any x, y ∈ H. Then there exists an isometry or an anti-isometry A on H and a
phase function ε : H → C with |ε(x)| = 1 such that T (x) = ε(x)A(x) for any
x ∈ H. Moreover, if T is surjective and H is a Hilbert space, then A is a unitary or
an anti-unitary operator.

In connectionwith (1) let us draw the readers’ attention to rich references concerning
theWigner equation. In particular, in [6] the authors proved the existence of a solution
(satisfying some additional condition) to the equation

|〈I (x), I (y)〉| = |〈x, y〉|,

where I : M → N is a mapping between inner product modules M and N over
certain C∗-algebras.

It is natural to ask whether theWigner Theorem would still be true ifH is a normed
space. Unfortunately, there is no inner product in general normed spaces. However,
since in an inner product space, the Eq. (1) is equivalent to the equality

{‖T (x) + αT (y)‖ : |α| = 1} = {‖x + αy‖ : |α| = 1} (2)

for any x, y ∈ H, one can raise the following problem. We call an operator T between
two normed spaces a phase isometry if T satisfies the equality (2). If E and F are both
normed spaces over the fieldK, two mappings T1 : E → F and T2 : E → F are said
to be differ by a phase factor or to be phase equivalent if there exists ε : E → K with
|ε(x)| = 1 such that T1(x) = ε(x)T2(x) for any x ∈ E .

Problem 1 Let E and F be normed spaces over the field K and let T : E → F be a
surjective phase isometry. Is T phase equivalent to a linear isometry L from E to F?

Recall that in 1932, Mazur and Ulam [15] showed that any surjective isometry
between two real normed spaces is an affine map, that is it is a translation of a linear
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isometry. Bourgain [2] gave an example which shows that the complex version of the
Mazur–Ulam Theorem is not valid.

In this paper we are going to consider the above problem in the case when K = R.
Notice that by the Wigner Theorem, this problem is solved when both E and F are
real inner product spaces.

Now, we are going to recall the following

Definition 1 Let E be a real normed space. E is said to have the Wigner Property if
for any real normed space F , and any surjective phase isometry T : E → F , T is
phase equivalent to a linear isometry from E to F .

Recently, Tan and Huang [20] proved that smooth real normed spaces have the
Wigner Property. They also proved that some classical real Banach spaces, such as
L∞(�)-type space and an �1(�)-space for some index set�, have theWigner Property.

Let us briefly summarize the contents of this paper. In Sect. 2, we will study the
property of a surjective phase isometry between two real normed spaces and will give
some properties of a surjective phase isometry operator, which will be used in the
sequel. In Sect. 3, we will show that any two-dimensional real normed space has the
Wigner Property. Section 4 deals with the Wigner Property in real finite dimensional
normed spaces of dimension at least three. In particular, we will prove that any strictly
convex real normed space has the Wigner Property.

In this paper, we will use the standard notations. E∗ denotes the dual space of the
normed space E . SE and BE denote the unit sphere and the closed unit ball of the
normed space E , respectively. w∗ − exp(BE∗) denotes the set of w∗ exposed points of
the unit ball BE∗ while ext(BE∗) denotes the set of extremal points of that ball. sm(SE )

denotes the set of smooth points of the sphere SE . [x, y] := {λx+(1−λ)y : λ ∈ [0, 1]}
for any x, y ∈ E . Finally, by |A|wewill denote the cardinality of the set A and span{A}
will denote the linear subspace generated by the set A.

2 Preliminary results

In this section, we will study the general properties of surjective phase isometries
between two real normed spaces. Lemmas 1 and 2 were given by Tan and Huang in the
unpublished paper [20], so we include also their proofs for the readers’ convenience.

Lemma 1 [20] Let E and F be real normed spaces and let T : E → F be a phase
isometry. Then ‖T (x)‖ = ‖x‖ and T (−x) ∈ {T (x),−T (x)} for all x ∈ E. Moreover,
if T is surjective, then T is injective and T (−x) = −T (x) for all x ∈ E.

Proof Putting y = x in the equality (2) we see that T preserves the norm. Next, putting
y = −x in the equality (2), we get

{‖T (x) + T (−x)‖, ‖T (x) − T (−x)‖} = {2‖x‖, 0},

which implies that T (−x) ∈ {T (x),−T (x)}.
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Now, let T (x) = T (y) for some x, y ∈ E , x 
= y. Since ‖x‖ = ‖y‖ = ‖T (x)‖, it
follows that T (x) = T (y) 
= 0. Because T is surjective, there exists z ∈ E such that
T (z) = −T (x). Using the equality (2) for x, y, z, we obtain

{‖x + y‖, ‖x − y‖} = {‖T (x) + T (y)‖, ‖T (x) − T (y)‖} = {2‖x‖, 0},
{‖x + z‖, ‖x − z‖} = {‖T (x) + T (z)‖, ‖T (x) − T (z)‖} = {2‖x‖, 0}.

This yields y, z ∈ {x,−x}. If z = x , then T (x) = −T (x) = 0, which contradicts to
T (x) 
= 0, so we obtain z = −x . Now we will show that y = x . If not, we would get
y = −x = z and

T (x) = T (y) = T (z) = −T (x).

This leads to the contradiction that T (x) 
= 0. ��
Lemma 2 [20] Let E and F be real normed spaces and let T : E → F be a phase
isometry (that is not necessarily surjective). Then for every w∗ exposed point x∗ of
BE∗ , there exists a linear functional ϕ ∈ F∗ of the norm one such that x∗(x) ∈
{ϕ(T (x)),−ϕ(T (x))} for all x ∈ E.

Proof First, we will prove that if E = R, then there exists a linear functional ϕ ∈ F∗
of the norm one such that ϕ(T (t)) ∈ {t,−t} for all t ∈ R. For every positive integer
n, using the norm preserving property from Lemma 1, we have ‖T (n)‖ = n. The
Hahn-Banach theorem guarantees the existence of a linear functional ϕn ∈ SF∗ such
that ‖ϕn‖ = 1 and ϕn(T (n)) = n. For every t ∈ [−n, n], we get

2n = ϕn(T (n) − T (t)) + ϕn(T (n) + T (t))

≤ ‖T (n) − T (t)‖ + ‖T (n) + T (t)‖
= (n − t) + (n + t) = 2n,

or, alternatively,

{ϕn(T (n) − T (t)), ϕn(T (n) + T (t))}
= {‖T (n) − T (t)‖, ‖T (n) + T (t)‖}
= {n − t, n + t}.

Then ϕn(T (t)) ∈ {t,−t} for all t ∈ [−n, n]. It follows from Alaoglu’s theorem that
the sequence {ϕn} has a cluster point ϕ in view of the w∗ topology. This entails that
‖ϕ‖ ≤ 1 and ϕ(T (t)) ∈ {t,−t} for every t ∈ R. Clearly, ‖ϕ‖ = 1 and ϕ is the desired
mapping.

Now suppose that dim(E) > 1 and u ∈ SE is a smooth point such that x∗(u) = 1.
Let G : R → F be defined by G(t) = T (tu) for t ∈ R . Then G is a phase isometry.
By the proof above, there exists ϕ ∈ F∗ with ‖ϕ‖ = 1 such that

ϕ(T (tu)) = ϕ(G(t)) ∈ {t,−t}.
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Since u is a smooth point, it follows that x∗ is the only one supporting functional at
u. Therefore, for every x ∈ X ,

x∗(x) = lim
t→0+

‖u + t x‖ − ‖u‖
t

= lim
t→+∞(‖tu + x‖ − t).

From the Eq. (2), we get

{‖T (tu) + T (x)‖, ‖T (tu) − T (x)‖} = {‖tu + x‖, ‖tu − x‖}

for all t > 0 and x ∈ E . For a fixed nonzero vector x ∈ E , the set (0,+∞) will be
divided into four parts:

A1 := {t > 0 : ‖T (tu) + T (x)‖ = ‖tu − x‖,
‖T (tu) − T (x)‖ = ‖tu + x‖, ϕ(T (tu)) = t};

A2 := {t > 0 : ‖T (tu) + T (x)‖ = ‖tu + x‖,
‖T (tu) − T (x)‖ = ‖tu − x‖, ϕ(T (tu)) = t};

A3 := {t > 0 : ‖T (tu) + T (x)‖ = ‖tu − x‖,
‖T (tu) − T (x)‖ = ‖tu + x‖, ϕ(T (tu)) = −t};

A4 := {t > 0 : ‖T (tu) + T (x)‖ = ‖tu + x‖,
‖T (tu) − T (x)‖ = ‖tu − x‖, ϕ(T (tu)) = −t}.

Obviously, at least one of the sets {Ai : i = 1, 2, 3, 4} is unbounded. We shall prove
that if Ai is unbounded, then

x∗(x) = (−1)iϕ(T (x))

for all i = 1, 2, 3, 4. Without loss of generality we can assume that A1 is unbounded.
Then, for every t ∈ A1, we get

‖tu + x‖ − t = ‖T (tu) − T (x)‖ − t ≥ ϕ(T (tu) − T (x)) − t = −ϕ(T (x)),

‖tu − x‖ − t = ‖T (tu) + T (x)‖ − t ≥ ϕ(T (tu) + T (x)) − t = ϕ(T (x)).

Leting t → +∞ in the two inequalities above, we get

x∗(x) = −ϕ(T (x)).

This completes the proof. ��
Lemma 3 Let E and F be real normed spaces, T : E → F be a surjective phase
isometry. For all x, y ∈ E and a, b ∈ R, if T (x1) = aT (x) + bT (y), T (x2) =
aT (x) − bT (y) and T (x3) = aT (x) for some x1, x2, x3 ∈ E, then x∗(ax ± by) ∈
{±x∗(x1),±x∗(x2)} and x∗(ax) ∈ {±x∗(x3)}, for all x∗ ∈ w∗ − exp(BE∗).
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Proof ByLemma 2, for all x∗ ∈ w∗−exp(BE∗) there exists a linear functional ϕ ∈ F∗
of the norm one such that x∗(z) ∈ {ϕ(T (z)),−ϕ(T (z))} for all z ∈ E . Thus

x∗(ax ± by) ∈ {±ϕ(aT (x) + bT (y)),±ϕ(aT (x) − bT (y))}
= {±ϕ(T (x1)),±ϕ(T (x2))}
= {±x∗(x1),±x∗(x2)},

and

x∗(ax) = ax∗(x) ∈ {±aϕ(T (x))} = {±ϕ(aT (x))} = {±ϕ(T (x3))} = {±x∗(x3)}.

This completes the proof. ��
Lemma 4 Let E be a real normed space with dim(E) = 2. If |w∗ − exp(BE∗)| = 4,
then E is isometric to l(2)1 , that is R2 with the l1−norm.

Proof Let {x∗
1 , x

∗
2 ,−x∗

1 ,−x∗
2 } = w∗ − exp(BE∗). Since dim(E∗) = 2, the set

of w∗ exposed points of BE∗ is dense in the set of extreme points [ [17], p.167,
Th.18.6]. Thus ext(BE∗) = {x∗

1 , x
∗
2 ,−x∗

1 ,−x∗
2 }. By the Krein–Milman Theorem,

BE∗ = co{x∗
1 , x

∗
2 ,−x∗

1 ,−x∗
2 }. Therefore

‖x∗
1 + x∗

2‖ = ‖x∗
1 − x∗

2‖ = 2.

Define the linear operator V : E∗ → l(2)∞ , by V (x∗
1 ) = (1, 0) and V (x∗

2 ) = (0, 1),

where l(2)∞ is R2 with the l∞-norm. It is obvious that V is a linear isometry. Therefore
E is isometric to l(2)1 . ��

The following lemma is a simple case in dimension two of the fact that two linear
functionals are linearly dependent if and only if they have the same kernel space.

Lemma 5 Let E be a real normed space with dim(E) = 2, x, y be linearly indepen-
dent elements of E and x∗

1 , x
∗
2 ∈ SE∗ . If x∗

1 (x) = x∗
1 (y) and x∗

2 (x) = x∗
2 (y), then

x∗
1 = x∗

2 or x∗
1 = −x∗

2 .

Proof Since dim(E) = 2, x, y are linearly independent elements of E and x∗
1 (x−y) =

x∗
2 (x − y) = 0, it follows that ker(x∗

1 ) = ker(x∗
2 ), where ker(x

∗
i ) denotes the kernel

(null-space) of x∗
i for i = 1, 2. Thus there exists k ∈ R such that x∗

1 = kx∗
2 (see [13],

the corollary on p.5). Because x∗
1 , x

∗
2 ∈ SE∗ , we infer that k = 1 or k = −1. ��

Theorem 2 Let E and F be real normed spaces and let T : E → F be a surjective
phase isometry. If for any two linear independent elements x, y ∈ E, T (span{x, y}) ⊂
span{T (x), T (y)}, then T (t x) ∈ {tT (x),−tT (x)} for all x ∈ E and t ∈ R. Moreover,
T is phase equivalent to a homogeneous surjective phase isometry.

Proof By Lemma 1, we only have to show that T (t x) = tT (x) or T (t x) = −tT (x)
for all x ∈ SE and t > 0. If not, there would exist x0 ∈ SE and t0 > 0 such that
neither T (t0x0) = t0T (x0) nor T (t0x0) = −t0T (x0). Because T is surjective, there
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exists x1 ∈ E with ‖x1‖ = t0 such that T (x1) = t0T (x0). Since T is injective and
odd, it follows that neither x1 = t0x0 nor x1 = −t0x0, so x0 and x1 are linearly
independent. Let E0 = span{x0, x1}. By Lemma 3, we have x∗(t0x0) ∈ {±x∗(x1)}
for any x∗ ∈ w∗ − exp(BE∗

0
).

If |w∗−exp(BE∗
0
)| > 4, because dim(E0) = 2, by Lemma 5, there exists x∗

0 ∈ w∗−
exp(BE∗

0
) such that x∗

0 (t x0) /∈ {±x∗
0 (x1)}, which contradicts to the fact that x∗(t x) ∈

{±x∗(x1)} for any x∗ ∈ w∗ − exp(BE∗
0
).

If |w∗ − exp(BE∗
0
)| = 4, by Lemma 4, E0 is isometric to l(2)1 . Thus there exist

e1, e2 ∈ BE0 such that ‖e1 + e2‖ = ‖e1 − e2‖ = 2. Then

{‖T (e1) ± T (e2)‖} = {‖e1 ± e2‖} = {2}.

Firstly, assume that 0 < t0 ≤ 1. Since T (span{e1, e2}) ⊂ span{T (e1), T (e2)}, putting
T (t0e1) = aT (e1) + bT (e2), we obtain

t0 = ‖T (t0e1)‖ = ‖aT (e1) + bT (e2)‖ = |a| + |b|

and

{1 + |a| + |b|, |1 − |a| − |b||} = {1 + t0, |1 − t0|}
= {‖T (t0e1) ± T (e1)‖}
= {‖(aT (e1) + bT (e2)) ± T (e1)‖}
= {|1 + a| + |b|, |1 − a| + |b|}
= {1 + t0, |1 − |a| + |b||},

so we get b = 0. Thus T (t0e1) = t0T (e1) or T (t0e1) = −t0T (e1). Secondly, if t0 > 1,
then T (e0) ∈ {± 1

t0
T (t0e0)}, so T (t0e0) ∈ {±t0T (e0)}.

Without loss of generality, we assume that x0 = αe1 + βe2 with α > 0, β > 0
and α + β = 1. Let x1 = α1e1 + β1e2. Since for any x∗ ∈ w∗ − exp(BE∗

0
) we have

x∗(t0x0) ∈ {±x∗(x1)}, we may assume that α1 ≥ 0, β1 ≥ 0. Then

α1 + β1 = t0 and t0α − t0β = −α1 + β1. (3)

Since T (x1) = t0T (x0), we obtain

{‖T (x1) + t0T (e1)‖, ‖T (x1) − t0T (e1)‖}
= {t0‖T (x0) + T (e1)‖, t0‖T (x0) − T (e1)‖}
= {t0‖x0 + e1‖, t0‖x0 − e1‖}
= {t0(1 + α + β), t0(1 − α + β)}
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and

{‖T (x1) + t0T (e1)‖, ‖T (x1) − t0T (e1)‖}
= {‖T (x1) + T (t0e1)‖, ‖T (x1) − T (t0e1)‖}
= {‖x1 + t0e1‖, ‖x1 − t0e1‖}
= {t0 + α1 + β1, t0 − α1 + β1}.

By (4) and {t0(1+α +β), t0(1−α +β)} = {t0 +α1 +β1, t0 −α1 +β1}, we conclude
that t0(1−α+β) = t0−α1+β1. Hence α1 = t0α and β1 = t0β. that is x1 = t0x0 and
finally T (t0x0) = t0T (x0) or T (t0x0) = −t0T (x0). Thus T (t x) ∈ {tT (x),−tT (x)}
for all x ∈ E and t ∈ R.

To prove the last part of the theorem, by the axiom of choice, there is a set L such
that for every 0 
= x ∈ E there exists a unique element y ∈ E such that x = sy for
some s ∈ R. Define H : E → F by

H(x) = sT (y) for every x = sy ∈ E .

Then H is well defined, homogeneous and phase equivalent to T . ��
Next result shows that a surjective phase isometry preserves the strong convexity

of its domain.

Theorem 3 Let E and F be two real normed spaces, and let E be strictly convex. If
there exists a surjective phase isometry T : E → F, then F is also a strictly convex
real normed space.

Proof If F is not strictly convex, then there exist x, y ∈ SF such that [x, y] ⊂ SF .
Since T is surjective, there exist x ′, y′ ∈ SE such that T (x ′) = x and T (y′) = y.

Because T is a phase isometry, we have

{‖x ′ + y′‖, ‖x ′ − y′‖} = {‖T (x ′) + T (y′)‖, ‖T (x ′) − T (y′)‖}
= {‖x + y‖, ‖x − y‖} = {2, ‖x − y‖}.

Therefore [x ′, y′] ⊂ SE or [−x ′, y′] ⊂ SE , which contradicts to the strict convexity
of E . ��

3 Two-dimensional normed spaces with theWigner Property

In this section, we will show that any two-dimensional real normed spaces have the
Wigner Property. First, we recall some definitions and notations.

Definition 2 [8] Let E be a real normed space. For any x, y ∈ SE , x 
= −y, we define
the arc of x and y to be the set

A(x, y) =
{
z | z = λx + (1 − λ)y

‖λx + (1 − λ)y‖ , λ ∈ [0, 1]
}

.
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Freese et al. [8, Theorem 2.1, Theorem 2.2] gave the following important theorem
describing a certain property of a unit sphere of a two-dimensional real normed space.

Theorem 4 [8] Let E be a two-dimensional real normed space and let x, y be linearly
independent elements of SE . If z ∈ A(x, y) \ {x, y}, then ‖x − z‖ ≤ ‖x − y‖, and
either ‖z − x‖ < ‖y − x‖ or ‖y + x‖ < ‖z + x‖. Moreover, if w ∈ A(x, y) is such
that ‖x − z‖ = ‖x − w‖ and ‖y − z‖ = ‖y − w‖, then w = z.

Let E be a normed space. Suppose that x, y ∈ E . Then x is said to be isosceles
orthogonal to y, denoted by x⊥I y, if ‖x + y‖ = ‖x − y‖. Alonso [1] proved the
existence and uniqueness of an isosceles orthogonal element of a unit sphere to any
element of the unit sphere under consideration.

Lemma 6 [1] Let E be a two dimensional normed space, Suppose that x ∈ SE . Then
there exists a unique (up to the sign) element y ∈ SE such that x⊥I y.

Lemma 7 Let E and F be real normed spaces, dim(E) = 2 and let T : E → F be a
surjective phase isometry. Then dim(F) = 2.

Proof Suppose that dim(F) > 2. Fix an arbitrary element x ∈ SE , and set Ix := {y ∈
SE : y⊥I x} and IT (x) := {w ∈ SF : w⊥I T (x)}. Since T : E → F is a surjective
phase isometry, it follows that T (Ix ) = IT (x).

Since dim(E) = 2, by Lemma 6, we know that |Ix | = 2. Because dim(F) > 2, so
there exist x1, x2 ∈ SF such that {T (x), x1, x2} is a linearly independent set of F . For
any α ∈ [0, π), let Fα = span{T (x), (cosα)x1+(sinα)x2}. By Lemma 6, there exists
xα ∈ SFα ⊂ SF such that xα ∈ IT (x). Since SFα1

⋂
SFα2

= {T (x),−T (x)}, it follows
that xα1 
= xα2 , if α1 
= α2. Thus |IT (x)| = +∞, which contradicts to T (Ix ) = IT (x).

��
Theorem 5 Let E and F be real normed spaces, dim(E) = 2 and let T : E → F be
a surjective phase isometry. Then T is phase equivalent to a homogeneous surjective
phase isometry.

Proof By Lemma 7, we infer that dim(F) = 2. Using Theorem 2 we deduce that T is
phase equivalent to a homogeneous surjective phase isometry. ��
Theorem 6 Let E and F be real normed spaces, dim(E) = 2 and let T : E → F be a
surjective phase isometry. If there exist two linearly independent vectors x0, y0 ∈ SE
such that the following conditions holds for any a, b ∈ R:

(i) there are two real numbers α(a, b), β(a, b) with |α(a, b)| = |β(a, b)| = 1 such
that T (ax0 + by0) = α(a, b)T (ax0) + β(a, b)T (by0);

(ii) ‖ax0 + by0‖ ≥ max{a, b} for a ≥ 0 and b ≥ 0.

Then T is phase equivalent to a linear isometry.

Proof Since phase equivalence is an equivalence relationship between all surjective
phase isometries, by Theorem 5, we may assume that T is a homogeneous surjective
phase isometry.
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For every a, b ∈ R with ab 
= 0, since T is homogeneous, it follows that

T (ax0 + by0) = bT (
a

b
x0 + y0)

= b
[
α

(a
b
, 1

)
T

(a
b
x0

)
+ β

(a
b
, 1

)
T (y0)

]

= α
(a
b
, 1

)
T (ax0) + β

(a
b
, 1

)
T (by0).

Define a mapping L : E → F as follows:

L(ax0 + by0) =

⎧⎪⎪⎨
⎪⎪⎩

0, if a = 0 and b = 0,
α(a, 1)β(a, 1)T (ax0), if a 
= 0 and b = 0,
T (by0), if a = 0 and b 
= 0,
α( ab , 1)β( ab , 1)T (ax0) + T (by0), if a 
= 0 and b 
= 0.

It is obvious that L is a homogeneous phase isometry and it is phase equivalent to T .
Now, we will show that α(a, 1)β(a, 1) = α(1, 1)β(1, 1) for all a 
= 0.

Since a 
= 0 and

‖L(ax0 + y0) + L(ax0 − y0)‖ = |α(a, 1)β(a, 1) + α(−a, 1)

β(−a, 1)|‖T (ax0)‖ ∈ {|2a|, 2},

it follows that

α(a, 1)β(a, 1) = α(−a, 1)β(−a, 1).

If 0 < a < 1, because

{‖L(ax0 + y0) ± L(x0 + y0)‖} = {‖(a + 1)x0 + 2y0‖, 1 − a},

we get

|aα(a, 1)β(a, 1) − α(1, 1)β(1, 1)| = ‖L(ax0 + y0) − L(x0 + y0)‖
∈ {‖(a + 1)x0 + 2y0‖, 1 − a}.

Condition (ii) implies that

‖(a + 1)x0 + 2y0‖ ≥ 2 > a + 1 ≥ |aα(a, 1)β(a, 1) − α(1, 1)β(1, 1)|,

so

|aα(a, 1)β(a, 1) − α(1, 1)β(1, 1)| = 1 − a,

that is

α(a, 1)β(a, 1) = α(1, 1)β(1, 1) for all 0 < a < 1.



On normed spaces with the Wigner Property 533

If a > 1, because

{‖L(ax0 + ay0) ± L(ax0 + y0)‖} = {‖2ax0 + (a + 1)y0‖, a − 1},

we get

‖(α(1, 1)β(1, 1) + α(a, 1)β(a, 1))T (ax0) + (a + 1)T (y0)‖
∈ {‖2ax0 + (a + 1)y0‖, a − 1}.

The inequality ‖2ax0 + (a + 1)y0‖ ≥ 2a > a + 1 implies that

α(a, 1)β(a, 1) = α(1, 1)β(1, 1) for all a > 1.

The equation α(a, 1)β(a, 1) = α(1, 1)β(1, 1) for all a 
= 0, and the definition of L
show that

L(ax0 + by0) = L(ax0) + L(by0) (a, b ∈ R).

This means that L is a linear isometry from E onto F . The proof is complete. ��
Theorem 6 is important in the study of surjective phase isometry operators between

two dimensional real normed spaces. We will use it to show first that any two dimen-
sional strictly convex real normed space and next to show that any two dimensional
non-strictly convex real normed space has the Wigner Property.

Theorem 7 Let E be a two dimensional strictly convex real normed space and F be
a real normed space, and let T : E → F be a surjective phase isometry. Then T is
phase equivalent to a linear isometry.

Proof Since the set of smooth points of SE is dense in SE , we can choose x0, y0 ∈ SE
and 0 < λ0 < 1 such that ‖x0 − y0‖ < 1 and λ0x0+(1−λ0)y0

‖λ0x0+(1−λ0)y0‖ , x0, y0 are smooth

points of SE . Let z0 = λ0x0+(1−λ0)y0
‖λ0x0+(1−λ0)y0‖ . Then, by Theorem 4 we obtain ‖z0 − x0‖ ≤

‖x0 − y0‖ < 1 and ‖z0 − y0‖ ≤ ‖x0 − y0‖ < 1. Let x∗
0 , y

∗
0 , z

∗
0 ∈ SE∗ such that

x∗
0 (x0) = 1, y∗

0 (y0) = 1 and z∗0(z0) = 1. We have

x∗
0 (y0) = x∗

0 (x0) − x∗
0 (x0 − y0) ≥ 1 − ‖x0 − y0‖ > 0.

Similarly, we obtain y∗
0 (x0) > 0, z∗0(x0) > 0 and z∗0(y0) > 0. For any a > 0, b > 0,

we have

‖ax0 + by0‖ ≥ max{x∗
0 (ax0 + by0), y

∗
0 (ax0 + by0)} ≥ max{a, b}.

Let 0 < λ < 1. Since

{‖T (x0) + T (y0)‖, ‖T (x0) − T (y0)‖} = {‖x0 + y0‖, ‖x0 − y0‖},
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without loss of generality, we may assume that ‖T (x0) − T (y0)‖ = ‖x0 − y0‖. We
have

{‖T (λx0 + (1 − λ)y0) ± T (x0)‖} = {(1 − λ)‖x0 − y0‖, ‖(1 + λ)x0 + (1 − λ)y0‖}

and

{‖T (λx0 + (1 − λ)y0) ± T (y0)‖} = {λ‖x0 − y0‖, ‖λx0 + (2 − λ)y0‖}.

We assume that ‖T (λx0 + (1− λ)y0) + T (x0)‖ = (1− λ)‖x0 − y0‖; Other cases can
be discussed similarly. If

‖T (λx0 + (1 − λ)y0) − T (y0)‖ = λ‖x0 − y0‖,

then

‖x0 + y0‖ = ‖T (x0) + T (y0)‖
≤ ‖T (λx0 + (1 − λ)y0) + T (x0)‖ + ‖T (λx0 + (1 − λ)y0) − T (y0)‖
= ‖x0 − y0‖,

which contradicts to ‖x0 − y0‖ < ‖x0 + y0‖. Thus ‖T (λx0 + (1− λ)y0) + T (y0)‖ =
λ‖x0 − y0‖ and

‖x0 − y0‖ = ‖T (x0) − T (y0)‖
≤ ‖T (λx0 + (1 − λ)y0) + T (x0)‖ + ‖T (λx0 + (1 − λ)y0) + T (y0)‖
= ‖x0 − y0‖.

By Theorem 3, the normed space F is strictly convex, so we obtain T (λx0 + (1 −
λ)y0) = −λT (x0) − (1 − λ)T (y0).

Since T is surjective, let x1, x2 ∈ E such that T (x1) = λT (x0) + (1 − λ)T (y0)
and T (x2) = λT (x0) − (1 − λ)T (y0).

By Lemma 1, we have −x1 = λx0 + (1 − λ)y0. Since x∗(x) > 0 for all x∗ ∈
{x∗

0 , y
∗
0 , z

∗
0} and all x ∈ {x0, y0}. It is obvious that x∗(λx0 − (1 − λ)y0) /∈ {±x∗(x1)}

for all x∗ ∈ {x∗
0 , y

∗
0 , z

∗
0}. By Lemma 3, we infer that x∗(λx0−(1−λ)y0) ∈ {±x∗(x2)}.

Thus Lemma 5 shows that λx0 − (1 − λ)y0 ∈ {±x2}.
By Theorem 6, we infer that T is phase equivalent to a linear isometry. ��

Lemma 8 Let E be a two-dimensional non-strictly convex real normed space, T :
E → F be a surjective phase-isometry. If a segment [x, y] ⊂ SE , then for any
0 < λ < 1, there are two real numbers α(λ), β(λ) with |α(λ)| = |β(λ)| = 1 such
that T (λx + (1 − λ)y) = α(λ)λT (x) + β(λ)(1 − λ)T (y).

Proof For any 0 < λ < 1, because [x, y] ⊂ SE , by Lemma 1, we have ‖T (λx + (1−
λ)y)‖ = 1.
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If ‖x − y‖ < ‖x + y‖ = 2, since {‖T (x) ± T (y)‖} = {2, ‖x − y‖}, without loss
of generality, we may assume that ‖T (x) − T (y)‖ = ‖x − y‖. We have

{‖T (λx + (1 − λ)y) ± T (x)‖} = {(1 − λ)‖x − y‖, 2}.

Wewill consider the case ‖T (λx+(1−λ)y)+T (x)‖ = (1−λ)‖x− y‖, the other case
can be discussed similarly. If T (λx + (1 − λ)y) ∈ A(−T (x), T (y)), by Theorem 4,
we get

‖T (λx + (1 − λ)y) + T (y)‖ ≥ ‖ − T (x) + T (y)‖ > λ‖x − y‖.

Since

{‖T (λx + (1 − λ)y) ± T (y)‖} = {λ‖x − y‖, 2},

if ‖T (λx + (1 − λ)y) − T (y)‖ = λ‖x − y‖ , then

‖x + y‖ = ‖T (x) + T (y)‖
≤ ‖T (λx + (1 − λ)y) + T (x)‖ + ‖T (λx + (1 − λ)y) − T (y)‖
= ‖x − y‖,

which contradicts to ‖x − y‖ < ‖x + y‖. Thus T (λx + (1−λ)y) ∈ [−T (x),−T (y)]
and T (λx + (1 − λ)y) = −λT (x) − (1 − λ)T (y).

If ‖x − y‖ = ‖x + y‖ = 2, then ‖T (x) + T (y)‖ = ‖T (x) − T (y)‖ = 2. Without
loss of generality, we assume that ‖T (λx + (1 − λ)y) + T (x)‖ = 2(1 − λ) and
‖T (λx + (1 − λ)y) + T (y)‖ = 2λ. Then T (λx + (1 − λ)y) ∈ [−T (x),−T (y)] and
T (λx + (1 − λ)y) = −λT (x) − (1 − λ)T (y). This completes the proof. ��
Theorem 8 Let E be a two-dimensional non-strictly convex real normed space and F
be a real normed space, let T : E → F be a surjective phase isometry. Then T is a
phase equivalent to a linear isometry.

Proof We will divide the proof into two cases. Case one, if E is isometric to l(2)1 . Let
x0 = e1 = (1, 0) and y0 = e2 = (0, 1). Then, by Lemma 8 and Theorem 6, we infer
that T is a phase equivalent to a linear isometry.

Case two, if E is not isometric to l(2)1 , then there exist x∗
1 , x

∗
2 , x

∗
3 ∈ exp(BE∗) such

that x∗
i 
= ±x∗

j for i 
= j . Since E is non-strictly convex, there exist x0, y0 ∈ SE such
that [x0, y0] ⊂ SE∩sm(SE ) and ‖x0 − y0‖ < 1. x∗

i (x0) 
= 0, and x∗
i (y0) 
= 0 for

i = 1, 2, 3. For any 0 < λ < 1, Since T is surjective, let x1, x2 ∈ E be such that
T (x1) = λT (x0)+ (1−λ)T (y0) and T (x2) = λT (x0)− (1−λ)T (y0). By Lemma 8,
we get λx0 + (1 − λ)y0 ∈ {±x1,±x2}. Without loss of generality, we assume that
λx0 + (1 − λ)y0 ∈ {±x1}. Since x∗

i (x0) 
= 0 and x∗
i (y0) 
= 0, it follows that

x∗
i (λx0 − (1 − λ)y0) 
= ±x∗

i (λx0 + (1 − λ)y0)

for i = 1, 2, 3.
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Lemma 3 implies that x∗
i (λx0 − (1 − λ)y0) ∈ {±x∗

i (x2)}, for i = 1, 2, 3. By
Lemma 5, we obtain that λx0−(1−λ)y0 ∈ {±x2}. Then, by Lemma 8 and Theorem 6,
we infer that T is a phase equivalent to a linear isometry. This completes the proof. ��

Now, we can obtain the main result of this section using Theorems 7 and 8.

Theorem 9 If E is a two-dimensional real normed space, then E has the Wigner
Property.

4 Wigner Property on real Banach spaces of dimension at least three

In the proof of the Wigner Theorem from [22], Uhlhorn highlights the connection
between theWigner Theorem and the First Fundamental Theorem of projective geom-
etry. The First Fundamental Theorem of projective geometry says that an abstract
automorphism of the set of lines in vector spaces which preserves “incidence rela-
tions” must have a simple algebraic form (see [7]). In this section, we will show that
the First Fundamental Theorem of projective geometry also plays an important role
in the study of real normed spaces with the Wigner Property.

Let f be a mapping from a set X into a set Y and let D be a subset of 2X - the
power set of X . A mapping F : D → 2Y is said to be induced or generated by f
if for every M ∈ D, F(M) = { f (m) : m ∈ M}. As usual, this last set is also noted
f (M). If X is a real vector space, we denote the projectivised space (that is the
set of all one-deminsional subspaces) by P(X). The element of P(X) generated by
0 
= x ∈ X will be denoted by [x] := R · x .

Gehér [9, Theorem 3] proved the following special case of the First Fundamental
Theorem of projective geometry for real vector spaces, which will be used later.

Proposition 1 [9] Let E1 and E2 be two real vector spaces of dimensions at least
three. If g : P(E1) → P(E2) satisfies the following conditions:

(i) the range of g is not contained in a two-dimensional subspace of Y ;
(ii) 0 
= z ∈ span{x, y} (x 
= 0 
= y) implies g([z]) ⊂ span{g([x]), g([y])};
then there exists an injective linear transformation A : E1 → E2 inducing g.

Theorem 10 Let E and F be real normed spaces, dim(E) ≥ 3 and let T : E → F
be a surjective phase isometry. If for any two linearly independent elements x, y ∈ E,
T (span{x, y}) = span{T (x), T (y)}, then T is a phase equivalent to a linear isometry.

Proof Since T is a surjective phase isometry and T (span{x, y}) = span{T (x), T (y)},
by Lemmas 1, 7 and Theorem 9, we deduce that T is injective, T ([x]) = [T (x)]
and T (x + y) = αT (x) + βT (y) for any x, y ∈ E with |α| = |β| = 1. Hence
the function g : P(E) → P(F), g([x]) = T ([x]) is well defined. Similarly to the
proof of Lemma 7, we infer that the range of g is not contained in a two-dimensional
subspace of F . For any 0 
= z ∈ span{x, y} (x 
= 0 
= y), because T (span{x, y}) =
span{T (x), T (y)}, so by the definition of the function g, we deduce that g([z]) ⊂
span{g([x]), g([y])}.
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By Proposition 1, there exists an injective linear map A : E → F such that
g([x]) = [A(x)], that is [T (x)] = [A(x)] for every x ∈ E . Consequently, there exists
a function λ : E → R such that T (x) = λ(x)A(x) for every x ∈ X . Since T is
homogeneous, λ(t x) = λ(x) for every x ∈ E and 0 
= t ∈ R. Moreover, suppose that
x, y ∈ E are two linearly independent vectors. Let uswrite T (x+y) = αT (x)+βT (y)
for some real numbers α and β with |α| = |β| = 1. We immediately obtain

αλ(x)A(x) + βλ(y)A(y) = T (x + y) = λ(x + y)A(x) + λ(x + y)A(y),

so λ(x + y) = αλ(x) = βλ(y). As a consequence, |λ(x)| is a constant for any x ∈ E ,
which we denote by λ. Hence we can define a desired phase function ε : E → {−1, 1}
such that T = ελA. Thus T is phase equivalent to the linear isometry λA. ��

Using the above result we can prove the following

Theorem 11 Let E be a real strictly convex normed space. Then E has the Wigner
Property.

Proof If dim(E) = 2, then E has the Wigner Property by Theorem 9. Let us assume
that dim(E) ≥ 3, F is any real normed space and T : E → F is a surjective
phase isometry. We will show that T is a phase equivalent to a linear isometry. By
Theorem 10, we need only to prove that T (span{x, y}) = span{T (x), T (y)} for any
two linear independent elements x, y ∈ E .

Since E is a real strictly convex normed space, we can prove that T (t x) = tT (x)
or T (t x) = −tT (x) for any x ∈ E and t ∈ R in the same way as in the proof of
Theorem 2. For any two linear independent elements x, y ∈ E , let E0 = span{x, y}.
Then there exist x0, y0 ∈ SE0 such that ‖x0− y0‖ = ‖x0+ y0‖ and E0 = span{x0, y0}.
To show that T (span{x0, y0}) = span{T (x0), T (y0)}, we only have to show that for
any 0 < λ < 1, T (λx0 ± (1−λ)y0) = αλT (x0)+β(1−λ)T (y0)with |α| = |β| = 1.

Firstly, we will show that T (λx0 + (1 − λ)y0) = αλT (x0) + β(1 − λ)T (y0) with
|α| = |β| = 1. Since

{‖T (λx0 + (1 − λ)y0) ± T (x0)‖} = {(1 − λ)‖x0 − y0‖, ‖(1 + λ)x0 + (1 − λ)y0‖}

and

{‖T (λx0 + (1 − λ)y0) ± T (y0)‖} = {λ‖x0 − y0‖, ‖λx0 + (2 − λ)y0‖},

without loss of generality, we may assume that‖T (λx0 + (1 − λ)y0) + T (x0)‖ =
(1 − λ)‖x0 − y0‖ and ‖T (λx0 + (1 − λ)y0) − T (y0)‖ = λ‖x0 − y0‖. Then

‖T (x0) + T (y0)‖ ≤ ‖T (λx0 + (1 − λ)y0) + T (x0)‖
+‖T (λx0 + (1 − λ)y0) − T (y0)‖

= ‖x0 − y0‖
= ‖T (x0) + T (y0)‖.
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The last equality holds because ‖x0 + y0‖ = ‖x0 − y0‖ and

{‖T (x0) ± T (y0)‖} = {‖x0 + y0‖, ‖x0 − y0‖}.

ByTheorem3, F is a strictly convex normed space andwe get T (λx0+(1−λ)y0) =
−λT (x0) − (1 − λ)T (y0).

Similarly, we can prove that T (λx0 − (1 − λ)y0) = αλT (x0) + β(1 − λ)T (y0)
with |α| = |β| = 1. This completes the proof. ��

Since every inner product space is a strictly convex normed space, by Theorem 11,
one can easily get the following

Corollary 1 Let E be a real inner product space and F be a real normed space. Let
T : E → F be a surjective phase isometry. Then F is a real inner product space.

Theorem 12 Let E be a real normed space. If for any three different points x, y, z ∈ E
with ‖x‖ ∈ {‖y‖, ‖z‖} there exists x∗ ∈ w∗ − exp(BE∗

0
) such that x∗(x) /∈

{±x∗(y),±x∗(z)}, where E0 = span{x, y, z}, then E has the Wigner Property.

Proof Let F be any real normed space and T : E → F be a surjective phase isometry.
By Theorem 10, we need only to prove that for any two linearly independent elements
x, y ∈ E there exist α, β ∈ R with |α| = |β| = 1 such that T (x + y) = αT (x) +
βT (y). If not, there would exist x0, y0 ∈ E such that T (x0 + y0) /∈ {±(T (x0) +
T (y0)),±(T (x0) − T (y0))}. Since T is surjective, there exist x1, x2 ∈ E such that
T (x1) = T (x0) + T (y0) and T (x2) = T (x0) − T (y0). Because

{‖x1‖, ‖x2‖} = {‖T (x0) + T (y0)‖, ‖T (x0) − T (y0)‖} = {‖x0 + y0‖, ‖x0 − y0‖},

so ‖x0 + y0‖ ∈ {‖x1‖, ‖x2‖}. Then there exists x∗ ∈ w∗ − exp(BE∗
0
) such that

x∗(x0 + y0) /∈ {±x∗(x1),±x∗(x2)}, where E0 = span{x0 + y0, x1, x2}, which leads
to a contradiction by Lemma 3. This completes the proof. ��

It is obvious that the dimension of the subspace E0 in Theorem 12 is less or equal
to three. Thus a three-dimensional subspace plays a very important role in the study
of real normed spaces with the Wigner Property. Hence it seems to be natural to rise
the following two problems.

Problem 2 Does every real normed space have the Wigner Property if and only if its
every subspace of the dimension three has the Wigner Property?

Problem 3 Does every real normed space of the dimensional three has the Wigner
Property?
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