
Annals of Functional Analysis (2020) 11:271–284
https://doi.org/10.1007/s43034-019-00002-7

Tusi
Mathematical
Research
Group

ORIG INAL PAPER

A theorem of Brown–Halmos type for dual truncated
Toeplitz operators

Yuanqi Sang1 · Yueshi Qin2 · Xuanhao Ding3,4

Received: 26 March 2019 / Accepted: 18 July 2019 / Published online: 1 January 2020
© Tusi Mathematical Research Group (TMRG) 2019

Abstract
In this paper, we investigate commuting dual truncated Toeplitz operators on the
orthogonal complement of the model space K 2

u . Let f , g ∈ L∞, if two dual truncated
Toeplitz operators D f and Dg commute, we obtain similar conditions of Brown–
Halmos Theorem for Hardy-Toeplitz operators, that is, both f and g are analytic, or
both f and g are co-analytic, or a nontrivial linear combination of f and g is constant.
However, the first two conditions are not sufficient, one can easily construct two non-
commuting dual truncated Toeplitz operators with analytic or co-analytic symbols.
We prove that two bounded dual truncated Toeplitz operators D f and Dg commute
if and only if f , g, f̄ (u − λ) and ḡ(u − λ) all belong to H2 for some constant λ; or
f̄ , ḡ, f (u − λ) and g(u − λ) all belong to H2 for some constant λ; or a nontrivial
linear combination of f and g is constant.
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1 Introduction

Inspired by Sarason’s seminal paper [11], manywork in the study of truncated Toeplitz
operators has been done over the past ten years [1,2,6,8]. In particular, the study of
algebraic properties of Toeplitz operators is an active area of research [4,12]. This
paper aims to study the commutativity of two dual truncated Toeplitz operators, where
the dual truncated Toeplitz operator is a newly defined operator on a Hilbert space of
harmonic functions that closely relates to truncated Toeplitz operators.

We start by recalling a few basic definitions and facts. Let H2 be the classical Hardy
space of open unit diskD = {z ∈ C : |z| < 1} and L2 = L2(T) be the usual Lebesgue
space on the unit circle T = {z ∈ C : |z| = 1}. The space L∞ is the collection of
all essentially bounded measurable functions on T, the space H∞ consists of all the
functions that are analytic and bounded onD. Let P be the orthogonal projection from
L2 onto H2. One defines for f and g in L∞ the Toeplitz operator T f and dual Toeplitz
operator Sg on H2 and (H2)⊥, respectively, as the following:

T f x = P( f x), x ∈ H2,

Sg y = (I − P)(gy), y ∈ (H2)⊥.

To each non-constant inner function u and f ∈ L2, the truncated Toeplitz operator
A f is densely defined on model space K 2

u = H2 � uH2 by the formula

A f x = Pu( f x), x ∈ K 2
u .

Here Pu = P − MuPMū is the orthogonal projection from L2 onto K 2
u . Then we

define the dual truncated Toeplitz operator D f on the orthogonal complement of K 2
u

by:

D f y = (I − Pu)( f y), y ∈ (K 2
u )⊥.

Clearly, D∗
f = D f̄ and ‖D f ‖ = ‖ f ‖∞ [7, Property 2.1.].

Brown and Halmos [3, Theorem 9.] give a necessary and sufficient condition for
the commutativity of two Toeplitz operators. By anti-unitary equivalence [9] of T f

and S f̄ , means S f Sg = SgS f if and only if T f Tg = TgT f , one gets immediately that
S f and Sg are commuting if and only if either both f and g are analytic, or both f
and g are co-analytic, or a nontrivial linear combination of f and g is constant.

Such equivalent property does not hold for truncated Toeplitz operators and dual
truncated Toeplitz operators. It is easy to observe that two truncated Toeplitz operators
with analytic symbols commute. I. Chalendar and D. Timotin [4] have a general
criterion for the commutation of truncated Toeplitz operators. However, one can easily
construct twonon-commuting dual truncatedToeplitz operatorswith analytic symbols.

Example 1 Let u be an inner function with u(0) = 0. z and zu are analytic functions.
It is easy to check that DzDuz z̄ = zu and DuzDz z̄ = 0. Hence DzDuz �= DuzDz .
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It’s not hard to understand the above example if one sees that D f lives on (K 2
u )⊥ =

uH2 ⊕ zH2, a Hilbert space of harmonic functions, while A f is on K 2
u , a Hilbert

space of analytic functions. Also, D f behaves differently from the Toeplitz operators
on the harmonic Bergman space [5].

For the commuting problem of dual truncated Toeplitz operators, an interesting
aspect is that we only need to consider the dual truncated Toeplitz operators with
analytic symbols (see Theorem 2). Here, we turn this problem into amixed commuting
problemof threeHankel operators (H f̄ H

∗̄
u Hḡ = HḡH ∗̄

u H f̄ ) that still remains unsolved
in classic Hankel operator theory.

We can now state our main result.

Theorem 3 Let u be a nonconstant inner function and f , g ∈ L∞. Then

D f Dg = DgD f

if and only if one of the following cases holds:

1. f , g, f̄ (u − λ) and ḡ(u − λ) all belong to H2 for some constant λ,

2. f̄ , ḡ, f (u − λ) and g(u − λ) all belong to H2 for some constant λ,

3. a nontrivial linear combination of f and g is constant.

2 Necessary condition

For f and g in L2, let

f+ = P f , f− = P− f = (I − P) f .

Let A and B be bounded operators on a Hilbert space, then the commutator of A and
B is define as

[A, B] = AB − BA.

Define an operator V on L2 by

V f (w) = w f (w)

for f ∈ L2. It is easy to check that V is anti-unitary. The operator V satisfies the
following properties:

V 2 = I , V PV = I − P, VT f = S f̄ V . (1)

Let Kλ = 1
1−wλ̄

denote the reproducing kernel of H2 at λ and kλ =
√

1−|λ|2
1−wλ̄

denote

the normalized reproducing kernel of H2 at λ. Let us state the well-known result of
Brown and Halmos.
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Theorem 1 [3, Theorem 9.] (Brown-Halmos Theorem.) For ψ and ϕ in L∞. Then

TψTϕ = TϕTψ

if and only if at least one of the following holds:

1. both ψ and ϕ are analytic,
2. both ψ and ϕ are co-analytic,
3. a nontrivial linear combination of ψ and ϕ is constant.

If T f and Tg satisfy

Tz̄[T f , Tg]Tz = [T f , Tg],

it follows from [3, Theorem 6] and [13, Corollary 4.5] that T f and Tg commute. The
following lemma generalizes the above result for arbitrary inner function instead of
function z.

Lemma 1 Let u be a nonconstant inner function. On the Hardy space H2, for f , g ∈
L∞, if

[T f , Tg] = Tū[T f , Tg]Tu,

then either

1. both f and g are analytic, or
2. both f and g are co-analytic, or
3. a nontrivial linear combination of f and g is constant.

Proof Assume [T f , Tg] = Tū[T f , Tg]Tu, we have

T f Tg − TgT f = Tūn f Tung − TūngTun f

for each positive integer n. In [10, Lemma 2.1], Guo and Wang obtained Tūn → 0
(SOT), for F ∈ L2, P(ūn F) = P(ūn F+), thus

lim
n→∞ ‖P(ūn F)‖2 = 0,

and

‖(I − P)(unF)‖2 = ‖V PVunF‖2 = ‖V Pūn(V F)‖2 → 0, as n → ∞. (2)

Write

〈
Tūn f Tungkz, kz

〉 = 〈
P[ūn f P(ungkz)], kz

〉

= 〈
ūn f P(ungkz), kz

〉

= 〈
f gkz, kz

〉 − 〈
ūn f (I − P)(ungkz), kz

〉

= 〈
f gkz, kz

〉 − 〈
(I − P)(ungkz), u

n f̄ kz
〉
.
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Note that the Cauchy-Schwarz inequality yields

|〈(I − P)(ungkz), u
n f̄ kz〉| ≤ ||(I − P)(ungkz)||2|| f̄ kz ||2,

Using (2), we have

lim
n→∞〈Tūn f Tungkz, kz〉 = 〈 f gkz, kz〉.

Similarly,

lim
n→∞〈TūngTun f kz, kz〉 = 〈 f gkz, kz〉.

Hence

〈[T f , Tg]kz, kz〉 = 0.

Since Berezin transform is one-to-one, [T f , Tg] = 0. By Brown-Halmos Theorem
(see Theorem 1), it follows that either both f and g are all analytic, or f and g are all
co-analytic, or a nontrivial linear combination of f and g is constant. ��

Recall that the Hankel operator H f with symbol f ∈ L2 is densely defined by

H f x = (I − P)( f x), for x ∈ H2, (3)

and H∗
f is defined by

H∗
f y = P( f̄ y), for y ∈ [H2]⊥.

If M f is expressed as an operator matrix with respect to the decomposition L2 =
H2 ⊕ zH2, the result is of the form

M f =
(
T f H∗

f
H f S f

)

.

Since M f Mg = M fg, we have

T f g = T f Tg + H ∗̄
f
Hg; (4)

H fg = H f Tg + S f Hg. (5)

If g ∈ H∞, then Hg = 0, (5) becomes

H fg = H f Tg. (6)
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Similarly, if f ∈ H∞, (5) becomes

H fg = S f Hg. (7)

Define the unitary operator

U : L2(= H2 ⊕ zH2) → [K 2
u ]⊥(= uH2 ⊕ zH2)

by

U =
(
Mu 0
0 I

)
.

Clearly, U∗ maps [K 2
u ]⊥ to L2 and equals

U∗ =
(
Mū 0
0 I

)
.

Next lemma gives a matrix representation of Dφ. The representation is useful in
this paper and shows that the dual truncated Toeplitz operators on [K 2

u ]⊥ are closely
related to the Toeplitz operators and Hankel operators on H2.

Lemma 2 On L2 = H2 ⊕ zH2, φ ∈ L∞,

U∗DφU =
(

Tφ H∗
uφ̄

Huφ Sφ

)
. (8)

Proof If f1 is in H2, by the definition of Dφ we have

Dφu f1 = uPūφu f1 + (I − P)φu f1.

If f2 is in zH2, similarly we have that

Dφ f2 = uPūφ f2 + (I − P)φ f2.

Therefore for given [ f1, f2]T in H2 ⊕ zH2 the above calculation gives

U∗DφU

(
f1
f2

)
= U∗Dφ

(
u f1
f2

)

= U∗
(

uPūφu f1 + uPūφ f2
(I − P)φu f1 + (I − P)φ f2

)

=
(

Pūφu f1 + Pūφ f2
(I − P)φu f1 + (I − P)φ f2

)

=
(

Tφ H∗
uφ̄

Huφ Sφ

)(
f1
f2

)
.

��
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By Lemmas 1 and 2, we now obtain the necessary conditions similar to Theorem 1.
By Example 1, the conditions are not sufficient.

Theorem 2 Let f , g ∈ L∞. Assume D f Dg = DgD f , then either

1. both f and g are analytic, or
2. both f and g are co-analytic, or
3. a nontrivial linear combination of f and g is constant.

Proof Assume D f Dg = DgD f . by the matrix representation (8) , we have

U∗D f DgU =
(
T f Tg + H∗

u f̄
Hgu T f H∗

uḡ + H∗
u f̄

Sg
H f uTg + S f Hgu H f uH ∗̄

gu + S f Sg

)

and

U∗DgD f U =
(
TgT f + H∗

uḡ H f u TgH∗
u f̄

+ H∗
uḡ S f

HguT f + SgH f u HguH ∗̄
f u

+ SgS f

)

.

Hence,

T f Tg + H∗
u f̄

Hgu = TgT f + H∗
uḡ H f u .

By (4), we have

T f Tg − TgT f = Tū f Tug − TūgTu f .

By Lemma 1, then either both f and g are analytic, or f and g are co-analytic, or a
nontrivial linear combination of f and g is constant. ��

3 Necessary and sufficient condition

Since D∗
f = D f̄ , Theorem 2 shows that the study of commuting dual truncated

Toeplitz operators can be reduced to the following question.

Problem 1 For which bounded analytic functions f and g, D f Dg = DgD f ?

In the case of analytic symbols, we translate Problem 1 into solving an equation
about a Toeplitz operator and a Hankel operator.

Lemma 3 Let u be a nonconstant inner function and f , g ∈ H∞, the following state-
ments are equivalent.

1. D f Dg = DgD f holds on [K 2
u ]⊥;

2. D f̄ Dḡ = DḡD f̄ holds on [K 2
u ]⊥;

3. Hu f̄ Tḡ + S f̄ Huḡ = HuḡT f̄ + SḡHu f̄ (H2 → [H2]⊥);
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4. Hu f̄ Tḡ − H f̄ Tuḡ = HuḡT f̄ − HḡTu f̄ (H2 → [H2]⊥);
5. H f̄ H

∗̄
u Hḡ = HḡH ∗̄

u H f̄ (H2 → [H2]⊥);
Proof (1) ⇔ (2): Since D∗

f = D f̄ , it is clear that (1) is equivalent to (2).
(2) ⇔ (3): Assume f , g ∈ H∞, hence

U∗D f̄ DḡU =
(

T f̄ Tḡ 0
H f̄ uTḡ + S f̄ Hḡu S f̄ Sḡ

)

and

U∗DḡD f̄ U =
(

TḡT f̄ 0
HḡuT f̄ + SḡH f̄ u Sḡ S f̄

)

By Brown-Halmos Theorem (see Theorem 1), we have

T f̄ Tḡ = TḡT f̄ ,

S f̄ Sḡ = Sḡ S f̄ .

Hence

D f̄ Dḡ = DḡD f̄

if and only if

Hu f̄ Tḡ + S f̄ Huḡ = HuḡT f̄ + SḡHu f̄ .

(3) ⇔ (4): By (5), we have

S f̄ Huḡ = Hu f g − H f̄ Tuḡ

and

SḡHu f̄ = Hu f g − HḡTu f̄ ,

the result follows.
(4) ⇔ (5): Since (4) and (6),

Hu f̄ Tḡ − H f̄ Tuḡ = H f̄ TuTḡ − H f̄ Tuḡ

= H f̄ (TuTḡ − Tuḡ)

= −H f̄ H
∗̄
u Hḡ.

Similarly,

HuḡT f̄ − HḡTu f̄ = −HḡH
∗̄
u H f̄ .

��
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Example 2 Let u = θη, both θ and η are inner functions. For λ ∈ D,

Hθ̄ H
∗̄
u Hη̄kλ = Hθ̄ Pθη(I − P)η̄kλ

= Hθ̄ Pθkλ − Hθ̄ PθηP η̄kλ

= 0 − η(λ)Hθ̄ θηkλ = 0,

Similarly,

Hη̄H
∗̄
u Hθ̄kλ = 0.

Since by {kλ}λ∈D is dense in H2 and Lemma 3, we have Dθ Dη = DηDθ .

Lemma 4 Let f , g ∈ H∞ and f is not constant. Assume there exists a constant λ

such that (u − λ) f̄ ∈ H2, then D f Dg = DgD f implies that (u − λ)ḡ ∈ H2.

Proof Assume (u − λ) f̄ ∈ H2 and D f Dg = DgD f . By Lemma 3, we have
H f̄ H

∗̄
u Hḡ = HḡH ∗̄

u H f̄ . Also, H f̄ H
∗
u−λ

Hḡ = HḡH∗
u−λ

H f̄ , Note that

H(u−λ) f̄ ḡ = H f̄ T(u−λ)ḡ + S f̄ H(u−λ)ḡ = HḡT(u−λ) f̄ + SḡH(u−λ) f̄ .

An easy computation gives

H(u−λ) f̄ ḡ − H f̄ H
∗
u−λ

Hḡ = H f̄ T(u−λ)ḡ + S f̄ H(u−λ)ḡ − H f̄ H
∗
ū−λ̄

Hḡ

= H f̄ (T(u−λ)ḡ − H∗
u−λ

Hḡ) + S f̄ H(u−λ)ḡ

= H f̄ T(u−λ)Tḡ + S f̄ H(u−λ)ḡ

= H(u−λ) f̄ Tḡ + S f̄ H(u−λ)ḡ.

Similarly,

H(u−λ) f̄ ḡ − HḡH
∗
u−λ

H f̄ = H(u−λ)ḡT f̄ + SḡH(u−λ) f̄ .

Thus we have

H(u−λ) f̄ Tḡ + S f̄ H(u−λ)ḡ = H(u−λ)ḡT f̄ + SḡH(u−λ) f̄ . (9)

Since f̄ (u − λ) ∈ H2, H(u−λ) f̄ = 0, (9) becoms

S f̄ H(u−λ)ḡ = H(u−λ)ḡT f̄ .

Hence

S f̄ H(u−λ)ḡ1 = H(u−λ)ḡT f̄ 1.
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This implies that

( f̄ − f (0))P−(u − λ)ḡ = 0.

Since f is not constant, P−(u − λ)ḡ = 0. Hence (u − λ)ḡ ∈ H2. ��

Lemma 5 Let u be a nonconstant inner function and f , g ∈ H∞. Then

D f Dg = DgD f

if and only if one of the following cases holds:

1. f̄ (u − λ) and ḡ(u − λ) both belong to H2 for some constant λ.

2. a nontrivial linear combination of f and g is constant.

Proof Assume that f̄ (u − λ) and ḡ(u − λ) are both analytic for some constant λ. For
z ∈ D,

H f̄ H
∗
u Hḡkz = H f̄ H

∗
u−λ

Hḡkz

= H f̄ P(u − λ)[ḡ − g(z)]kz
= H f̄ (u − λ)[ḡ − g(z)]kz
= (I − P) f g(u − λ)kz .

Similarly,

HḡH
∗̄
u H f̄ kz = (I − P) f g(u − λ)kz .

Since by {kλ}λ∈D is dense in H2, H f̄ H
∗̄
u Hḡ = HḡH ∗̄

u H f̄ . Hence D f Dg = DgD f by
Lemma 3.

Conversely, by Lemma 3, D f Dg = DgD f implies that

H f̄ Tuḡ − Hu f̄ Tḡ = HḡTu f̄ − HuḡT f̄ .
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Easy calculations give

(
H f̄ (1 ⊗ 1)Tuḡ − Hu f̄ (1 ⊗ 1)Tḡ − Hḡ(1 ⊗ 1)Tu f̄ + Huḡ(1 ⊗ 1)T f̄

)
Tz

= H f̄ (I − TzTz̄)TuḡTz − Hu f̄ (I − TzTz̄)TḡTz − Hḡ(I − TzTz̄)Tu f̄ Tz

+ Huḡ(I − TzTz̄)T f̄ Tz

= H f̄ TuḡTz − H f̄ TzTz̄TuḡTz − Hu f̄ TḡTz + Hu f̄ TzTz̄TḡTz − HḡTu f̄ Tz

+ HḡTzTz̄Tu f̄ Tz + HuḡT f̄ Tz − HuḡTzTz̄T f̄ Tz

= H f̄ TuḡTz − H f̄ TzTuḡ − Hu f̄ TḡTz + Hu f̄ TzTḡ − HḡTu f̄ Tz + HḡTzTu f̄

+ HuḡT f̄ Tz − HuḡTzT f̄

= H f̄ TuḡTz − SzH f̄ Tuḡ − Hu f̄ TḡTz + SzHu f̄ Tḡ − HḡTu f̄ Tz + SzHḡTu f̄

+ HuḡT f̄ Tz − SzHuḡT f̄

= (H f̄ Tuḡ − Hu f̄ Tḡ − HḡTu f̄ + HuḡT f̄ )Tz

− Sz(H f̄ Tuḡ − Hu f̄ Tḡ − HḡTu f̄ + HuḡT f̄ )

= 0.

The first equality follows from 1⊗1 = I −TzTz̄, and the fourth equality follows from
(6) and (7).

Thus we have

(H f̄ 1) ⊗ (Tz̄ūg1) − (Hu f̄ 1) ⊗ (Tz̄g1) = (Hḡ1) ⊗ (Tz̄ū f 1) − (Huḡ1) ⊗ (Tz̄ f 1).
(10)

Since

Tz̄ūg1 = Pz̄ūg1 = PVuḡ = V P−uḡ = V Huḡ1,

Similarly,

Tz̄g1 = V Hḡ1,

Tz̄ū f 1 = V Hu f̄ 1,

Tz̄ f 1 = V H f̄ 1.

Now (10) becomes

(H f̄ 1) ⊗ (V Huḡ1) − (Hu f̄ 1) ⊗ (V Hḡ1) = (Hḡ1) ⊗ (V Hu f̄ 1) − (Huḡ1) ⊗ (V H f̄ 1).
(11)

Obviously, if f or g is constant, then condition (2) hold. Assume that neither of f and
g is constant.
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Case 1.
Assume that

{
H f̄ 1, Hu f̄ 1

}
is linearly dependent. Hence, there exist a complex

number λ such that

Hu f̄ 1 = λH f̄ 1.

So, f̄ (u−λ) ∈ H2. By Lemma 4, we have ḡ(u−λ) ∈ H2. Condition (1) would hold.
Case 2.

Assume that
{
H f̄ 1, Hu f̄ 1

}
is linearly independent. Then

{
Hḡ1, Huḡ1

}
is also

linearly independent. If
{
Hḡ1, Huḡ1

}
is linearly dependent, which contradicts to

Lemma 4. Since V is anti-unitary,
{
V Hḡ1, V Huḡ1

}
is linearly independent, by Gram-

Schmidt procedure, there exist a nonzero function x0 in span
{
V Hḡ1, V Huḡ1

}
such

that

〈V Huḡ1, x0〉 = 1,

〈V Hḡ1, x0〉 = 0.

Applying operator Eq. (11) to x0 gives

H f̄ 1 = 〈x0, V Hu f̄ 1〉Hḡ1 − 〈x0, V H f̄ 1〉Huḡ1.

Hence,

H f̄ 1 ∈ span
{
Hḡ1, Huḡ1

}
.

Similarly,

Hu f̄ 1 ∈ span
{
Hḡ1, Huḡ1

}
,

Hḡ1 ∈ span
{
H f̄ 1, Hu f̄ 1

}
,

Huḡ1 ∈ span
{
H f̄ 1, Hu f̄ 1

}
.

Therefore

span
{
Hḡ1, Huḡ1

} = span
{
H f̄ 1, Hu f̄ 1

}
,

there exist constants a11, a12, a21, a22 such that

H f̄ 1 = a11Hḡ1 + a12Huḡ1,

Hu f̄ 1 = a21Hḡ1 + a22Huḡ1.
(12)
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Replacing above formulas in (11) yields

(Hḡ1) ⊗ (a11V Huḡ1 − a21V Hḡ1 − V Hu f̄ 1)

= (Huḡ1) ⊗ (a12V Huḡ1 − a22V Hḡ1 + V H f̄ 1).

Since
{
Hḡ1, Huḡ1

}
is linearly independent,

V H f̄ 1 = −a12V Huḡ1 + a22V Hḡ1,

V Hu f̄ 1 = a11V Huḡ1 − a21V Hḡ1,

which simplifies to

H f̄ 1 = a22Hḡ1 − a12Huḡ1,

Hu f̄ 1 = −a21Hḡ1 + a11Huḡ1.
(13)

Combining (12) and (13) gives

a11 = a22,

a12 = −a12,

a21 = −a21.

Then, a12 = a21 = 0. Let a11 = a22 = c, we have H f̄ 1 = cHḡ1, and hence

f̄ − cḡ ∈ H∞.

Since f , g ∈ H∞, f̄ − cḡ is a constant, condition (2) would hold. ��
Corollary 1 If f , g ∈ K 2

u ∩ H∞, then D f Dg = DgD f .

Proof In fact, K 2
u = H2 ∩ uzH2 ⊆ H2 ∩ uH2. Since f , g ∈ K 2

u , there exist f1, g1 ∈
H2 such that f = u f̄1, g = uḡ1. Thus u f̄ = u(ū f1) = f1 ∈ H2 and uḡ = u(ūg1) =
g1 ∈ H2. Hence D f Dg = DgD f by Lemma 5. ��

Combining Theorem 2 and Lemma 3, we get our main result.

Theorem 3 Let u be a nonconstant inner function and f , g ∈ L∞.Then

D f Dg = DgD f

if and only if one of the following cases holds:

1. f , g, f̄ (u − λ) and ḡ(u − λ) all belong to H2 for some constant λ,

2. f̄ , ḡ, f (u − λ) and g(u − λ) all belong to H2 for some constant λ,

3. a nontrivial linear combination of f and g is constant.
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On classical Hardy space H2, assume that any nontrivial linear combination of
f and g is not constant, then T f Tg = TgT f implies that T f Tg = T f g . In general,
T f Tg = T f g does not implies that T f Tg = TgT f . But on Hilbert spaces of harmonic

functions (K 2
u )⊥ = uH2 ⊕ zH2, D f Dg = D fg implies that D f Dg = DgD f by the

following theorem. However, the converse is not true.

Theorem 4 [7, Theorem 4.7] Let f , g ∈ L∞ and u be a nonconstant inner function.
Then D f Dg = D fg if and only if one of the following cases holds:

1. f , g, f̄ (u − λ), ḡ(u − λ) and f̄ ḡ(u − λ) all belong to H2 for some constant λ.

2. f̄ , ḡ, f (u − λ), g(u − λ) and f g(u − λ) all belong to H2 for some constant λ.

3. either f or g is constant.

Example 3 Let u = θη, where θ and η are nonconstant inner functions. Let f =
u,g = θ . Since u f̄ = 1 ∈ H2 and uḡ = η ∈ H2, D f Dg = DgD f by Theorem 3.
But u f̄ ḡ = η̄ is not analytic, by the above theorem, we have D f Dg �= D fg .
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