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Abstract

A single-center retrospective study of G-band karyotyping and chromosomal microarray analysis (CMA) for the invasive
prenatal diagnosis of 6159 fetuses with ultrasound abnormalities was conducted. This study aimed to investigate the inci-
dence rates of chromosomal abnormalities and pregnancy outcomes and postpartum clinical manifestations by long-term
follow-up and to explore the correlation between different types of prenatal ultrasound abnormalities and pathogenic chro-
mosomal abnormalities. The overall incidence of pathogenic chromosomal aberrations in fetuses with ultrasound abnormali-
ties was 7.58% (467/6159), which comprised 41.7% (195/467) with chromosome number abnormalities, 57.6% (269/467)
with pathogenic copy-number variations (pCNVs), and 0.64% (3/467) with uniparental disomy (UPD). In addition, 1.72%
(106/6159) with likely pathogenic copy-number variations (IpCNVs) and 3.04% (187/6159) with variants of unknown sig-
nificance (VOUS) were detected by CMA. Ultrasound abnormalities were categorized into structural anomalies and soft
marker anomalies. The incidence rate of pathogenic and likely pathogenic chromosomal abnormalities was significantly
higher among fetuses with structural anomalies than soft markers (11.13% vs 7.59%, p < 0.01). We retrospectively analyzed
the prenatal genetic outcomes for a large cohort of fetuses with different types of ultrasound abnormalities. The present
study showed that the chromosomal abnormality rate and clinical outcomes of fetuses with different types of ultrasound
abnormalities varied greatly. Our data have important implications for prenatal genetic counseling for fetuses with different
types of ultrasound abnormalities.

Keywords Prenatal diagnosis - Ultrasound abnormalities - Copy number variations - Chromosomal microarray analysis -
Uniparental disomy

Introduction of technicians, an increasing number of ultrasound abnor-

malities are being detected, especially the abnormalities

Ultrasonic examination plays an important role in the dis-
covery and diagnosis of fetal abnormalities, including soft
markers and structural anomalies. Fetal structural abnormal-
ities are found in up to 3% of all pregnancies [1], and these
fetuses are at increased risk of chromosomal abnormalities.
In addition, with the increasing capabilities and experience
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in various soft markers. Soft marker abnormalities can be
easily detected by ultrasound examination during the sec-
ond trimester. Previous studies have shown that soft marker
abnormalities have a minor impact on fetal development and
usually resolve in the third trimester, but they are considered
a potential risk factor for chromosomal abnormalities [2, 3].
The incidence of chromosomal abnormalities varies among
fetuses with different types of ultrasound abnormalities. It
is particularly important to use suitable methods for genetic
prenatal diagnosis of ultrasound abnormalities in fetuses.
Assessment of genome-wide copy-number variations
(CNVs) is recommended as the first level of testing for the
cytogenetic assessment of these fetuses with ultrasound
abnormalities [4, 5]. Chromosomal microarray analysis
(CMA) is already widely utilized in invasive prenatal diag-
nostics for fetuses with ultrasound abnormalities, advanced
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maternal age, aberrant first trimester screening, and other
situations [6]. .CMA has been found to be useful to identify
prenatal clinically relevant CNVs. In addition to chromo-
somal aneuploidy and CNVs, CMA with single nucleotide
polymorphism (SNP) probes is also effective in detecting
uniparental disomy (UPD), loss of heterozygosity (LOH),
triploidy, and chimerism [7, 8]. Several previous studies
showed that the application of CMA is valuable for fetuses
with ultrasound abnormalities [9, 10], but focused on spe-
cific cases of pregnancy outcomes, and the sample sizes
were limited. The large-scale studies on the association
between chromosomal abnormality rates and ultrasound
abnormalities in different groups are still lacking. Therefore,
when encountering a certain type of ultrasound abnormality,
clinicians may experience difficulties in choosing the most
appropriate test. So further large sample studies are still nec-
essary to clarify the correlation between different types of
ultrasound abnormalities and chromosomal abnormalities,
and provide more data for clinicians.

The present study retrospectively investigated the clini-
cal ultrasound manifestations and outcomes of 6159 fetuses
with ultrasound abnormalities by CMA and karyotyping
with long-term follow-up. The present study further evalu-
ated the clinical application of CMA in the prenatal diagno-
sis of CNVs. In particular, the potential diagnostic rates of
CMA for different subgroups of ultrasound abnormalities
were also evaluated. In addition, subgroup analyses were
performed to better understand the genetic causes of ultra-
sound abnormalities and to make recommendations for pre-
natal genetic testing for each type of ultrasound abnormality.

Materials and Methods
Subjects

A total of 6159 fetuses with ultrasound abnormalities
detected by fetal ultrasound or echocardiography and that
underwent CMA and karyotyping were retrospectively
reviewed. Invasive prenatal diagnosis was performed
between January 2015 and December 2021 at the First Affil-
iated Hospital of the Fourth Military Medical University
(Shanxi Province, Northwest China). All parents received
prenatal counseling from a clinical geneticist about the risks
associated with an invasive prenatal diagnosis, the advan-
tages and limitations of CMA, and the risks of variants of
unknown significance (VOUS) and incidental findings. The
CMA results and following outcomes were analyzed: inci-
dence rates of chromosomal anomalies in different group
ultrasound abnormalities and the prognosis of fetuses.
All pregnant women routinely provide written informed
consents. In the present study, the amniotic fluid samples
of fetuses were collected at 18 to 35 weeks of gestation,

@ Springer

chorionic villus samples were collected from 26 fetuses at
11 to 13 weeks of gestation, and umbilical cord blood sam-
ples were collected from 22 fetuses at 24 to 28 weeks due to
oligohydramnios. The pregnancy outcomes were obtained
by telephone follow-up.

Karyotype Analysis

The amniotic fluid, chorionic villus, and umbilical cord
blood samples were cultured and karyotyped according to
standard cytogenetic protocols. The Giemsa-banding tech-
nique (450-550-band resolution) was used to analyze the
cultured amniocytes or lymphocytes.

Chromosomal Microarray Analysis (CMA)

A QIAamp DNA Blood Mini Kit (Qiagen, Venlo, the Neth-
erlands) was used to extract genomic DNA from amniotic
fluid, chorionic villus, and umbilical cord blood samples.
An Affymetrix CytoScan 750K array (Affymetrix, Santa
Clara, CA, USA) was used and the procedure was per-
formed according to the standard manufacturer’s protocol
as described in our previous publication [11]. The Chromo-
some Analysis Suite v4.2 software was used to analyze the
CEL files, based on data from the genome version GRCh37
(hg19). CNVs larger than 100 kb or those that affected more
than 50 contiguous probes were considered, and regions of
homozygosity larger than 10 Mb were analyzed.

Public databases such as DGV (http://www.ncbi.nlm.nih.
gov/dbvar/), ClinGen(https://search.clinicalgenome.org/kb/
gene-dosage), OMIM (http://www.ncbi.nlm.nih.gov/omim),
DECIPHER (http://decipher.sanger.ac.uk/), ISCA (https://
www.iscaconsortium.org/), UCSC (http://genome.ucsc.edu),
and PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) were
used for the interpretation of the results and to analyze gen-
otype-phenotype correlations. According to the American
College of Medical Genetics (ACMG) guidelines [12], the
CNVs were classified into five categories: pathogenic copy-
number variations (pCNVs), likely pathogenic copy-num-
ber variations (IpCNVs), benign, likely benign, and variants
of unknown significance (VOUS). In the present study, to
determine whether the pCNVs, IpCNVs and VOUS detected
by CMA are de novo or inherited, some parents were tested,
but benign and likely benign CN'Vs were not considered for
the present study.

Clinical Follow-up Assessments and Statistical
Analysis

Clinical follow-up assessments about the pregnancy out-
comes, the detail data on postnatal conditions, and prenatal
and postnatal development were performed regularly by
telephone from 6 months to 3 years. SPSS 24.0 statistical
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software was used for statistical analysis of the data. Com-
parisons between groups were conducted using the chi-
square test or the Fisher exact test. A p-value < 0.05 was
considered statistically significant in the tests.

Results
Study Subjects

CMA detection was performed on 9141 pregnancies during
the 7-year study period in our center. Among them, 6159
pregnant women underwent genetic CMA testing due to
ultrasound abnormalities. The detection rates of pCNVs,
IpCNVs, VOUS, and other findings in fetuses with different
subgroups of ultrasonographic structural anomalies and soft
markers are summarized in Tables 1 and 2.

Prevalence of Chromosomal Abnormalities

The overall incidence rate of pathogenic chromosomal
abnormalities in fetuses with ultrasound abnormalities was
7.58% (467/6159). Among these cases, 57.6% (269/467)
were with pCNVs, 41.7% (195/467) with numerical chro-
mosomal abnormalities, and 0.64% (3/467) with UPD.

The 195 fetuses with chromosomal number abnormalities
were comprised of 92 trisomy 21, forty-four trisomy 18,
five trisomy 13, 26 monosomy X, five XXX, seven XXY,

five XYY, ten mosaicisms (including one mosaic trisomy 8,
one mosaic trisomy 18, one mosaic trisomy 22, one mosaic
trisomy 16, one mosaic trisomy 21, and five mosaic sex
chromosome), and one triploid (69,XXX).

Two hundred sixty-nine (4.37%, 269/6159) cases with
pCNVs were detected. The fragment size of chromosomal
pCNVs detected ranged from 73 to 80.1 Mb. There were
190 (3.08%; 190/6159) with microdeletions, 46 (0.75%;
46/6159) with microduplications, and 33 (0.54%; 33/6159)
cases with both deletions and duplications. A total of 35
microdeletion or microduplication syndromes were found
in 187 cases, including 22q11.2 microdeletion syndrome,
22q11.2 microduplication syndrome, 1p36 microdeletion
syndrome, 15q11.2 microdeletion syndrome, 15q13.3
microdeletion syndrome, 16p11.2 microdeletion syn-
drome, 16p11.2 microduplication syndrome, 16p13.11
microdeletion syndrome, 17q12 microdeletion syndrome,
17q12 microduplication syndrome, 1q21.1 microdele-
tion syndrome, 1q21.1 microduplication syndrome, 1q44
deletion syndrome, 2q13 microdeletion syndrome, 3929
microdeletion syndrome, 6q25.1 microdeletion syndrome,
7q11.23 microduplication syndrome, 8p23.1 deletion
syndrome, 8p23.1 microduplication syndrome, alpha-
thalassemia/mental retardation syndrome, type 1, cri du
chat syndrome, hereditary stress susceptibility neurosis,
Jacobsen syndrome, KBG syndrome, Miller-Dieker syn-
drome, Pallister-Killian syndrome, Phelan-McDermid
syndrome, Smith-Magenis syndrome, tetrasomy 18p

Table 1 Summary of chromosomal aberrations among the 2982 fetuses with ultrasonographic structural anomalies

Category of anomaly

Microarray results (n (%))

Total Aneuploid pCNVs Others IpCNVs VOUS

Cardiovascular system Tetralogy of Fallot, interrupted aortic arch, 1795 38 (2.12%) 96 (5.35%) O 29 (1.62%) 52 (2.9%)
transposition of the great arteries, pulmonary
artery sling

Central nervous system Agenesis of corpus callosum, Dandy—Walker 173 0 19 (10.98%) 0O 4(231%) 10(5.78%)
malformation, pachygyria, cerebral dyspla-
sia, hydrocephalus

Genitourinary system  Enlarged polycystic and echogenic kidneys, 273 4(147%) 8(2.93%) 0 9(3.29%) 12 (4.39%)
hypospadias, common cloacal deformity

Skeletal system Shortened and bowing bone, dysplasia of 232 2(0.86%) 12(5.17%) O 3(1.29%) 3 (1.29%)
thoracic vertebra and ribs, hemivertebra,
scoliosis, syndactyly

Gastrointestinal system Esophago-tracheal fistula, mesenteric cyst, 84 1(1.19%) 3 (3.57%) 0 4.(4.76%) 3 (3.75%)
situs in vs

Respiratory system Dysplasia of right lung 86 1(1.16%) 2(2.33%) O 0 1(1.16%)

Facial Micrognathia, bilateral anophthalmia, unilat- 79 1(1.27%) 1(1.27%) 0 0 5(6.33%)
eral microphthalmia, depressed nasal bridge

Multiple Two or more ultrasonographic structural 260 51(19.62%) 36 (13.85%) 3 (1.15%)* 5 (1.92%) 9 (3.46%)
anomalies

Total 2982 98 (3.39%) 177(5.94%) 3 54 (1.81%) 95 (3.42%)

pCNVs pathogenic copy-number variants, [pCNVs likely pathogenic copy-number variants, VOUS variant of uncertain significance

4Two fetuses with uniparental disomy and one with triploid
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Table2 Summary of

. Category of anomaly
chromosomal aberrations

Microarray results (n (%))

among the 3177 fetuses with Total Aneuploid pCNVs Others IpCNVs VOuUS

ultrasonographic soft markers
NT/NF 275  39(14.18%) 6(2.18%) O 4(1.45%) 11 (4%)
Absent/hypoplastic nasal bone 182 7 (3.85%) 4(2.2%) 0 3(1.65%) 2(1.1%)
Mild ventriculomegaly 258  3(1.16%) 15(5.81%) O 702.71%) 8 (3.1%)
CPCs 266 7 (2.63%) 4(1.5%) 0 3(1.13%) 9 (3.38%)
Posterior cranial fossa 15 0 0 0 1(6.67%) 0
EICF 495  5(1.01%) 7(141%) 102%)* 8(1.61%) 19 (3.84%)
Echogenic bowel 104 2(1.92%) 1 (0.96%) 1(0.96%) 1(0.96%)
SUA 91 1(1.1%) 8(8.79%) O 2 (2.2%) 3(3.3%)
Mild pyelectasis 31 0 0 0 1(3.23%) 1(3.23%)
Polyhydramnios/oligohydramnios 148 1 (0.68%) 6(4.05%) O 2(1.35%) 7 (4.73%)
Subclavian artery vagus 107 O 1(0.99%) 0 2(1.87%) O
Cardiac soft markers 281 4 (1.42%) 9 (3.2%) 0 2(0.71%) 11 (3.91%)
FGR 51 0 23.92%) O 0 5(9.8%)
Multiple soft markers 615 24 (3.9%) 20 (3.25%) O 10 (1.63%) 19 (3.09%)
Others 258 3 (1.16%) 93B49%) O 6(2.33%) 2(0.78%)
Total 3177 96 (3.02%) 92(2.9%) 1 52 (1.64%) 98 (3.08%)

pCNVs pathogenic copy-number variants, [pCNVs likely pathogenic copy-number variants, VOUS variant
of uncertain significance, NT/NF nuchal translucency/nuchal fold, CPCs choroid plexus cysts, EICF echo-
genic intracardiac focus, SUA single umbilical artery, FGR fetal growth retardation

2One fetus with uniparental disomy

syndrome, Williams-Beuren syndrome, Wolf-Hirschhorn
syndrome, MECP2 duplication syndrome, and X-linked
ichthyosis. In the remaining cases, some rare CNVs such
as 21q22.12q22.3 microdeletion, 6q27 1 Mb microdeletion,
and 2p16.1p14 microduplication were included; the details
are summarized in Table 3.

In addition, 1.72% (106/6159) with IpCNVs and 3.04%
(187/6159) with VOUS were detected by CMA; the details
of IpCNVs are summarized in Table 4 and VOUS are sum-
marized in Supplementary table 1.

Subgroup Analysis of the Different Types
of Ultrasound Abnormalities

There were 2982 fetuses with ultrasonographic structural
anomalies, 9.32% (278/2982) with pathogenic chromo-
somal abnormalities including pCNVs, aneuploid, and UPD.
1.81% (54/2982) with IpCNVs and 3.42% (95/2982) with
VOUS were detected by CMA. Congenital heart diseases
(CHDs) were the most common ultrasound abnormali-
ties presented in 1795 fetuses; the detection rate of patho-
genic and likely pathogenic chromosomal abnormalities
for fetuses with CHDs was 7.47% (134/1795) and 1.62%
(29/1795) respectively. The incidence of pathogenic chro-
mosomal abnormalities for fetuses with skeletal and central
nervous system abnormalities was respectively 6.03% and
10.98%. Three thousand one hundred seventy-seven fetuses
with ultrasonographic soft markers, 5.95% (189/3171) with

@ Springer

pathogenic anomaly. 1.64% (52/3177) with IpCNVs, and
3.08% (98/3177) with VOUS were detected by CMA. The
detection rate of pathogenic and likely pathogenic chro-
mosomal abnormalities in fetuses with ultrasonographic
structural anomalies (332/2982, 11.13%) was significantly
higher than that in fetuses with ultrasonographic soft mark-
ers (241/3177,7.59%) (p < 0.001).

Clinical Follow-up Assessments

In the current study, the average telephone follow-up
time for these fetuses was 1 year, ranging from 3 months
to 3 years. Among 194 aneuploid fetuses, 183 underwent
termination of pregnancy, 2 were lost to follow-up, 9
were born without obvious clinical defects including six
with XXY, one with XXX, and two with 45,X. Among
269 fetuses with pCNVs, 205 underwent termination of
pregnancy, 24 were lost to follow-up, and 35 were born.
However, there were 5 fetuses who had postnatal death
and 8 fetuses showed developmental delay, hypotonia,
and feeding difficulties after birth, others without obvi-
ous clinical defects at follow-up. Among the 106 fetuses
of IpCNYV, 35 underwent termination of pregnancy, 12
were lost to follow-up, 53 were born apparently nor-
mal, 1 had postnatal death, and 5 showed developmental
delay after birth. Among 193 cases of VOUS, 33 under-
went termination of pregnancy due to the chromosomal
abnormalities, 40 were lost to follow-up, 111 were born
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Table 4 Characteristics of Ip>CNVs among the 6159 fetuses with ultrasonically abnormal

Number Ultrasound find-  pCNVs (GRCh37) Size of CNVs Copy number Karyo- Outcomes
ings typing
results
1 VR arr[GRCh37] 1.61 Mb Gain 46,XY TOP
2q11.1q11.2(96069545_97678612)x3
2 VSD arr[GRCh37] 1.43 Mb Gain 46, XY TOP
17q11.2(28997894_30425992)x3
3 CoA arr[GRCh37] 9.6 Mb Gain 46,XX TOP
2p25.1p24.2(9059161_18673642)x3
4 VSD UPD(8) UPD(8) UPD 46,XX Born, normal
5 VR arr[GRCh37] 1.8 Mb Gain 46, XY TOP
2q13q14.1(111371702_113142794)x3
6 VR arr[GRCh37] 442 kb Loss 46, XY Born, normal
7q35(146050361_146492864)x1
7 VSD arr[GRCh37] 478 kb Gain 46,XX Born, normal
15q11.2(22813068_23290813)x3
8 VSD arr[GRCh37] 478 kb Gain 46,XX Born, normal
15q11.2(22813068_23290813)x3
9 ARSA arr[GRCh37] 2.95 Mb Loss 46,XY TOP
1q43(237540615_240488993)x1
10 VSD arr[GRCh37] 1.35 Mb Gain 46,XX Born, normal
22q11.23(23652587_25002659)x3
11 VSD arr[GRCh37] 1p36. 1.43 Mb Gain 46, XX Loss to follow-up
33p36.32(2,208,464_3,641,595)x3
12 VSD arr[GRCh37] 343 kb Loss 46,XY Born, development
16p11.2(28,708,186_29,051,191)x1 delay
13 EICF arr[GRCh37] 518 kb Gain 46,XY Born, normal
15q11.2(22,770,421_23,288,350)x3
14 VSD arr[GRCh37] 518 kb Gain 46,XX Born, normal
15q11.2(22,770,421_23,288,350)x3
15 VSD arr[GRCh37] 456 kb Loss 46,XX Born, normal
3p26.3(688,613_1,144,815)x1
16 VSD, APVC, arr[GRCh37] 829 kb Loss 46, XY TOP
hooked hand 12q21.32(88,131,931_88,960,660)x1
17 SV, AA arrffGRCh37] 1q21 828 kb Gain 46,XY TOP
.1921.2(146,569,489_147,398,268)x3
18 VSD arr[GRCh37] 5q11 4.6 Mb Loss 46,XX TOP
.2q12.1(55,074,278_59,670,602)x 1
19 VR arr[GRCh37] 1.97 Mb Loss 46,XY Born, normal
7p14.3(32,947,709_34,917,263)x1
20 The inner diam- arr[GRCh37] 22q11. 1.29 Mb Loss 46,XX TOP
eter of the main 22q11.23(22,724,607_24,014,514)x1
pulmonary
artery widened
21 VSD arrffGRCh37] 1q21 105 Mb Mosaic loss 46, XY Born, normal
.1q44(143932350_249224684)%x2-3
22 VSD arr[GRCh37] 1.56 Mb Gain 46,XX TOP
19p13.3(364,936_1,922,093)x3
23 ARSA arr[GRCh37] 7 Mb Loss 46, XY TOP
16q21(57,666,355_64,669,301)x1
24 VR arr[GRCh37] 22q11. 2 Mb Gain 46,XY TOP
22q11.23(22,997,928_25,041,592)x3
25 PAS arr[GRCh37] 518 kb Gain 46,XY Born, normal
15q11.2(22,770,421_23,288,350)x3
26 Hydropericar- arr[GRCh37] 945 kb Gain 46,XX Born, normal

dium, tricuspid
regurgitation

16p13.11(15,338,152_16,282,869)x3
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Table 4 (continued)

Number Ultrasound find-  pCNVs (GRCh37) Size of CNVs Copy number Karyo- Outcomes
ings typing
results
27 VSD, DORY, arrffGRCh37] 13q33 11.1 Mb Mosaic gain 46,XY TOP
pulmonary valve  .1q34(103,971,638_115,107,733)x2_3  24.4 Mb
stenosis arr[GRCh37] 4q32
.3935.2(166,546,468_190,957,460)
x2 3
28 VSD arr[GRCh37] 3.72 Mb Gain 46,XY TOP
8p23.1(8102818_11822454)x3
29 Pulmonary valve  arr[GRCh37] 17p13.3(526_1311263)x1 1.31 Mb Loss 46,XX Born, normal
enlargement
30 Lateral ventriculo- arr[GRCh37] 526 kb Loss 46,XX Born, development
megaly 16p12.2(21405328_21931248)x1 delay
31 Lateral ventriculo- arr[GRCh37] 478 kb Gain 46,XX Born, normal
megaly 15q11.2(22813068_23290813)x3
32 Lateral ventriculo- arr[GRCh37] 518 kb Gain 46,XY Born, normal
megaly 15q11.2(22,770,421_23,288,350)x3
33 Lateral ventriculo- arrfGRCh37] 22q11. 2.04 Mb Gain 46, XY Born, normal
megaly 22q11.23(22,997,928_25,041,592)x3
34 Lateral ventriculo- arr[GRCh37] 396 kb Gain 46,XX Born, normal
megaly 7p22.1(5,367,121_5,764,090)x3
35 Lateral ventriculo- arr[GRCh37] 263 kb Loss 46,XY Born, normal
megaly 1925.1(174,394,236_174,657,340)x1
36 Lateral ventriculo- arr[ GRCh37] 518 kb Gain 46, XY Born, normal
megaly 15q11.2(22,770,421_23,288,350)x3
37 Choroid plexus arrfGRCh38] 798 kb Gain 46,XY TOP
cyst 15q11.2(22582283_23380638)x3
38 Choroid plexus arr[GRCh37] 1.17 Mb Gain 46, XY Born, normal
cyst 2p16.1(59,564,391_60,738,227)x3
39 Choroid plexus arr[GRCh37] 1.12 Mb Gain 46,XY Born, development
cyst 7p22.1(5,212,615_6,332,465)x3 delay
40 NT arr[GRCh37] 1.72 Mb Gain 46,XX Born, normal
2q13q14.1(111388620_113111856)x3
41 NF arr[GRCh37] 785 kb Loss 46, XY Born, normal
22q11.21(20312661_21464764)x1
42 NT arr[GRCh38] 798kb Gain 46,XY Born, normal
15q11.2(22582283_23380638)x3
43 NT arr[GRCh37] 518 kb Gain 46,XX Born, death
15q11.2(22,770,421_23,288,350)x3
44 EICF arr[GRCh37] 353 kb Loss 46, XY Loss to follow-up
8p23.2(3688710_4041995)x1
45 EICF arr[GRCh37] 518 kb Gain 46,XY Loss to follow-up
15q11.2(22770422_23288350)x3
46 EICF arr[GRCh37] 535 kb Loss 46, XY Born, normal
2p16.3(51039020_51574265)x1
47 EICF arr[GRCh37] 406 kb Loss 46,XX Loss to follow-up
22q11.21(21058888_21464764)x1
48 EICF arr[GRCh37] 518 kb Gain 46, XY Born, normal
15q11.2(22,770,421_23,288,350)x3
49 EICF arr[GRCh37] 801 kb Gain 46, XY Born, normal
16p13.11(15,481,747_16,282,869)x4
50 EICF arr[GRCh37] 518 kb Gain 46,XY TOP
15q11.2(22,770,421_23,288,350)x3
51 EICF arr[GRCh37] 520 kb Gain 46,XX Born, normal

15q11.2(22,770,421_23,290,788)x3
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Table 4 (continued)

Number Ultrasound find-  pCNVs (GRCh37) Size of CNVs Copy number Karyo- Outcomes
ings typing
results
52 Echogenic bowel  arr[GRCh37] 518 kb Gain 46,XX Born, normal
15q11.2(22,770,421_23,288,350)x3
53 Nasal bone dys- arr[GRCh37] 1.48 Mb Gain 46,XX Born, normal
plasia 16p13.11(15058823_16538596)x3
54 Nasal bone dys- arr[GRCh37] 882 kb Gain 46,XY Born, normal
plasia 9p24.2p24.1(4022149_4903904)x3
55 Nasal bone dys- arrfGRCh37] 8q21. 2.4 Mb Loss 46, XY TOP
plasia 11g21.12(76,270,643_78,666,602)x 1
56 SUA arr[GRCh37] 5.87 Mb Loss 46,XY Born, normal
8q11.23q12.1(53696145_59562664)
x1
57 SUA arr[GRCh37] 518 kb Gain 46,XX Born, normal
15q11.2(22,770,421_23,288,350)x3
58 Hydrocephalus arr[GRCh37] 518 kb Gain 46, XX TOP
15q11.2(22,770,421_23,288,350)x3
59 Cisterna magna arr[GRCh37] 972 kb Gain 46,XY TOP
widen 17q11.2(29,379,983_30,352,918)x3
60 Absent cavum arr[GRCh37] 213 kb Loss 46, XY Loss to follow-up
septum pel- 2p16.3(50730534_50943528)x1
lucidum
61 Cerebellar arr[GRCh38] 793 kb Gain 46,XY TOP
hemisphere 15q11.2(22582283_23375045)x3
dysplasia, renal
dysplasia
62 Hemivertebra arr[GRCh38] 10q11. 4.39 Mb Loss 46,XX TOP
22q11.23(45721102_50114612)x1
63 TOF, lateral ven-  arrfGRCh37] 642 kb Gain 46,XX TOP
triculomegaly, 12q13.12(49,244,956_49,887,003)x4
Orofacial clefts
64 VR, nasal bone arr[GRCh37] 3.22 Mb Gain 46,XX TOP
dysplasia 2p16.1p15(59457176_62680102)x3
65 ARSA, SUA, arr[GRCh37] 518 kb Gain 46,XX Born, normal
VSD 15q11.2(22,770,421_23,288,350)x3
66 SUA, PLSVC arr[GRCh37] 2.2 Mb Loss 46,XX Born, development
5q35.3(178,493,921_180,715,096)x1 delay
67 EICEF, ectopic kid- arrfGRCh37] 4q31 4.9 Mb Loss 46,XX Loss to follow-up
ney, arachnoid .3q32.1(153,328,608_158,214,998)x1
cyst
68 The left kidney arr[GRCh37] 408 kb Loss 46,XX Born, normal
cyst 16p13.3(6665697_7073999)x1
69 EICF, hydrone- arr[GRCh37] 1.46 Mb Gain 46,XY TOP
phrosis 17q21.31(42127391_43586368)x3
70 Dysplasia of the arr[GRCh37] 1.15 Mb Loss 46, XY Born, normal
left kidney 22q11.21(20312661_21464764)x1
71 Multicystic dys- arr[GRCh37] 511 kb Loss 46,XX TOP
plastic kidneys 16p12.2(21931248_22442007)x1
72 Multicystic dys-  arrfGRCh37] 6p24 2.89 Mb Loss 46,XX TOP
plastic kidneys; .3p24.2(8,105,101_10,992,444)x1
polydactyly
73 Multicystic dys-  arrfGRCh37] 332 kb Gain 46,XX Loss to follow-up
plastic kidneys 8q13.3(72195441_72527179)x4
74 Pyelectasis arr[GRCh37] 518 kb Gain 46, XY Loss to follow-up

15q11.2(22,770,421_23,288,350)x3
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Table 4 (continued)

Number Ultrasound find-  pCNVs (GRCh37) Size of CNVs Copy number Karyo- Outcomes
ings typing
results
75 Multicystic dys-  arrfGRCh37] 1.2 Mb Loss 46,XX TOP
plastic kidneys 1q21.2(148,585,323_149,792,200)x1
76 Lung cystic arr[GRCh37] 518 kb Gain 46,XX Born, normal
adenoma 15q11.2(22,770,421_23,288,350)x3
77 Pyelectasis arr[GRCh37] 600 kb Gain 46,XY Born, normal
16p11.2(29,591,326_30,191,848)x3
78 Lateral ventriculo- arr[GRCh37] 855 kb Gain 46, XY Born, normal
megaly, EICF 15q11.2(22770422_23625785)x3
79 SUA, polyhy- arr[GRCh37] 6.09 Mb Gain 46,XY TOP
dramnios 1q43q44(243135526_249224684)x3
80 Nasal bone dys- arr[GRCh38] 1.5 Mb Gain 46,XX Born, normal
plasia, EICF 1921.1(143966472_145470346)x3 1 Mb Loss
arr[GRCh38]
15q25.2q25.3(84242064_85247430)
x1
81 Choroid plexus arr[GRCh37] 10.9 Mb LOH 46, XY TOP
cyst ,EICF 1p33p32.2(47948618_58918842)x2 22.3 Mb
hmz 16.9 Mb
arr[GRCh37] 19.3 Mb
9q21.33q31.3(89673026_112008165)
x2 hmz
arrffGRCh37] 14q31
.3q32.33(88388547_105382003)x2
hmz
arr[GRCh37]
16p13.3p12.1(6479830_25784920)
x2 hmz
82 EICF, echogenic  arr[GRCh37] 524 kb Loss 46,XX Born, normal
bowel 2q13(110,876,775_111,400,720)x1
83 Absent nasal arr[GRCh37] Yql1.2 3.68 Mb Loss 46, XY TOP
bone, EICF 23q11.23(24,741,034_28,420,380)x0
84 EICF, SUA arr[GRCh37] 2.47 Mb Gain 46,XX Loss to follow-up
2p16.1p15(60,021,142_62,492,163)x3
85 SUA, ectopic arr[GRCh37] 518 kb Gain 46, XY Born, normal
kidney 15q11.2(22,770,421_23,288,350)x3
86 EICF, nasal bone  arr[GRCh37] 1.35 Mb Gain 46, XY Born, normal
dysplasia 22q11.23(23652518_25002659)x3
87 Polyhydramnios,  arrffGRCh37] Yq11.2 3.7 Mb Loss 46,XY Born, normal
Nasal bone 23q11.23(24,741,034_28,420,380)x0
dysplasia
88 Polyhydramnios arr[GRCh37] 478 kb Gain 46, XY Born, normal
15q11.2(22813068_23290813)x3
89 Polyhydramnios ~ arr[GRCh37] 518 kb Gain 46,XX Born, development
15q11.2(22,770,421_23,288,350)x3 delay
90 Bone bending arr[GRCh37] 518 kb Gain 46,XX TOP
15q11.2(22770422_23288350)x3
91 ARSA arr[GRCh37] 5.96 Mb Loss 46,XX TOP
16q13q21(56219551_62178737)x1
92 ARSA arr[GRCh37] 478 kb Gain 46,XX Born, normal
15q11.2(22813068_23290813)x3
93 The arch of the arr[GRCh37] 1.64 Mb Gain 46,XY Loss to follow-up
aorta has a small  16p13.11(14897402_16538596)x3
diameter
94 Ductus venosus arr[GRCh37] 478 kb Gain 46,XX Born, normal

absent

15q11.2(22813068_23290813)x3
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Table 4 (continued)

Number Ultrasound find-  pCNVs (GRCh37) Size of CNVs Copy number Karyo- Outcomes
ings typing
results
95 DA arr[GRCh37] 518 kb Gain 46,XX Loss to follow-up
15q11.2(22,770,421_23,288,350)x3
96 DA arr[GRCh37] 844 kb Gain 46,XX Loss to follow-up
19p13.3(4,332,379_5,176,361)x3
97 Posterior Cranial — arrf[GRCh37]10q11. 5.6 Mb Loss 46,XY Born, normal
Fossa 22q11.23(46,293,590_51,903,756)x1
98 Choledochus cyst  arr[GRCh37] 1.08 Mb Gain 46,XX TOP
16p13.3(3,922,380_4,999,985)x3
99 Dysplasia of rib arr[GRCh38] 1.06 Mb Gain 46, XY Born, normal
1921.1(145002039_146057702)x3
100 Diaphragmatic arr[GRCh37] 478 kb Gain 46,XX TOP
hernia 15q11.2(22813068_23290813)x3
101 EICF arrffGRCh37]9q33 5.04 Mb Mosaic loss 46,XY TOP
.3q34.11(128746809_133782954)
x1_2
102 Enhanced echo arr[GRCh37] 478 kb Gain 46,XY Born, normal
in both kidneys, 15q11.2(22813068_23290813)x3
PRUYV, Auricle
abnormal
103 Strephenopodia, arr[GRCh37] 518 kb Gain 46,XY Born, normal
EICF 15q11.2(22,770,421_23,288,350)x4
104 Seroperitoneum arr[GRCh37] 1.48 Mb Gain 46, XY Born, normal
16p13.11(15,058,820_16,538,596)x3
105 Battledore pla- arr[GRCh37] 16p13.3(85,880_364,183) 278 kb Loss 46,XX Born, normal
centa x1
106 Cyst of cord, arr[GRCh37] 1.65 Mb Gain 46,XX Born, normal
EICF 3q29(195,739,427_197,386,180)x3

pCNVs pathogenic copy-number variants, [pCNVs likely pathogenic copy-number variants, CNVs copy-number variants, TOP termination of
pregnancy, VR vascular ring, VSD ventricular septal defect, CoA coarctation of the aorta, ARSA aberrant right subclavian artery, APVC anoma-
lous pulmonary venous drainage, SV single ventricle, AA aortic atresia, PAS pulmonary artery stenosis, DORV double-outlet right ventricle, NT
nuchal translucency, NF nuchal fold, EICF echogenic intracardiac focus, SUA single umbilical artery, TOF tetralogy of Fallot, PLSVC persistent
left superior vena cava, DA duodenal atresia, PRUV persistent right umbilical vein

apparently normal, 5 showed developmental delay after
birth, and 4 had postnatal death. In the 5393 fetuses
with normal results, 41 died after birth, 651 underwent
termination of pregnancy, 5352 fetuses were apparently

Table 5 Clinical follow-up
assessment of fetuses with

different types of CMA results

after prenatal diagnosis

normal at birth, and 565 were lost to follow-up. In the
present study, the detail clinical follow-up evaluation for
different types of CMA results after prenatal diagnosis

are summarized in Table 5.

Different types of CMA results Total numbers Born TOP Lost to follow-up
Fetuses with aneuploid 194 9 (4.6%) 183 (94.3%) 2 (1.03%)
Fetuses with pCNVs 269 40 (14.9%) 205 (76.2%) 24 (8.92%)
UPD/Triploid 4 0 4 (100%) 0

Fetuses with ]pCNVs 106 59 (55.7%) 35 (33%) 12 (11.3%)
VOuUS 193 120 (62.2%) 33 (17.1%) 40 (20.7%)
Normal CMA results 5393 4177 (77.5%) 651 (12.1%) 565 (10.5%)
Total 6159 4405 (71.5%) 1111 (18%) 643 (10.4%)

Abbreviations: CMA chromosomal microarray analysis, TOP termination of pregnancy, pCNVs pathogenic
copy-number variants, [pCNVs likely pathogenic copy-number variants, VOUS variants of unknown signifi-

cance, UPD uniparental disomy
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Discussion

Most of the existing studies have focused on soft mark-
ers or structural anomalies, but large-scale studies are
lacking. Currently, limited data on the clinical outcomes
of pregnancies with specific types of ultrasound abnor-
malities are available. Previous studies have shown that
CMA detects 6 to 18.7% of chromosomal abnormalities
in fetuses with ultrasound abnormalities [9, 13] and may
identify 1.5 to 7.4% of pathogenic CNVs in fetuses with
ultrasound abnormalities and normal karyotypes [10,
14]. Our study indicated that the overall frequency of
pathogenic chromosomal abnormalities including ane-
uploidy and CNVs was 7.58% (467/6159); the rate of
CNVs with normal karyotype detected by CMA was
3.75% (231/6159), which was in accord with some
previous studies [15, 16]. The fetuses with ultrasono-
graphic structural anomalies (9.32%, 278/2982) were sig-
nificantly higher than fetuses with soft markers (5.95%,
189/3177). We report for the first time that the incidence
of chromosomal abnormalities in fetuses with ultra-
sound structural abnormalities was 9.32% (278/2982)
and ranged from 2.53 to 34.62% in groups with different
structural anomalies. The incidence of pathogenic chro-
mosomal abnormalities was highest among fetuses with
two or more ultrasound structural abnormalities (34.62%,
90/260). IpCNVs were 1.62% (29/1795). The incidence
of pathogenic chromosomal abnormalities among fetuses
with different structural anomalies is as follows: central
nervous system malformations were 10.98% (19/173),
congenital heart defects were 7.47% (134/1795), skel-
etal system malformations were 6.03% (14/232), gas-
trointestinal system malformations were 4.76% (4/84),
and genitourinary system malformations were 4.39%
(12/273). Our study findings are slightly different from
those of previous studies, in which cardiovascular sys-
tem, central nervous system, and musculoskeletal system
malformations were mostly associated with pathogenic
CNVs, but the incidence of chromosomal abnormali-
ties was not completely uniform among fetuses with the
same type of ultrasound abnormalities in different stud-
ies [17-19]; this may be caused by selection bias, dif-
ferent populational factors, and different sample sizes.
However, the incidence rate of pathogenic chromosomal
abnormalities among fetuses with respiratory system
and facial malformations was relatively low, with rates
of 3.49% (3/86) and 2.53% (2/79) respectively. Among
the fetuses with soft markers, the overall frequency of
pathogenic chromosomal abnormalities including aneu-
ploidy and CNVs was 5.95% (189/3177); aneuploidy was
3.02% (96/3177), which accounts for 51.06%; pCNVs
was 2.9% (92/3177), which accounts for 48.94%. The

@ Springer

incidence of chromosomal aneuploidy in fetuses with
ultrasonographic soft markers is high. The incidence
of pathogenic chromosomal abnormalities was highest
in fetuses with thickened nuchal fold (16.36%, 45/275),
aneuploidy accounts for 86.7% (39/45), and pCNVs
account for 13.3% (6/45). Hu et al.’s [2] previous study
also showed that the incidence of aneuploidy was high-
est in thickened nuchal fold fetuses compared with other
soft markers. The incidence of pathogenic chromosomal
abnormalities for fetuses with thickened nuchal trans-
lucency in our study was higher than that in Hu et al.’s
report, but the sample size is larger and more representa-
tive. Karyotype analysis can detect most abnormalities
in fetuses with nuchal translucency (NT) abnormalities,
but there was still 2.18% fetuses with pCNVs; CMA is
more meaningful. Our study indicated that the use of
CMA in prenatal diagnosis is necessary and can signifi-
cantly improve the detection rate of pathogenic CNVs.
In addition, for fetuses with an absent/hypoplastic nasal
bone, the incidence rate of aneuploidies and pCNVs
was 3.85% (7/182) and 2.2% (4/182) respectively, so the
incidence of aneuploidies especially trisomy 21 was also
higher in this group. Huang et al. [20] also showed a
strong correlation between chromosomal abnormalities
and fetal nasal bone hypoplasia. Excluding fetuses with
NT thickening and absent/hypoplastic nasal bones, the
incidence of pCNVs was high among fetuses with other
ultrasonographic soft marker abnormalities. For fetuses
with mild ventriculomegaly, the incidence rate of chro-
mosome aneuploidies and pCNVs was 1.16% (3/158)
and 5.81% (15/158) respectively, and the incidence of
pCNVs was significantly higher than that of aneuploi-
dies. Previous studies have reported that the incidence
of chromosomal abnormalities ranges from 5.7 to 12.1%
in different cohorts [21-24]. The overall incidence of
pathogenic chromosomal abnormalities was 6.98%, and
this difference may be attributed to selection bias. CMA
is a promising prenatal diagnosis tool that can provide
valuable data for accurately assessing fetal prognosis and
deciding whether to continue pregnancy during prenatal
clinical consultation.

In the present study, a total of 35 types of microde-
letion/microduplication syndromes were detected in 187
fetuses, such as 22q11.2 microdeletion syndrome, 1p36
microdeletion syndrome, 15q11.2 microdeletion syn-
drome, 3929 microdeletion syndrome, and Williams-
Beuren syndrome. The 22q11.2 microdeletion syndrome
was the most common chromosomal microdeletion syn-
drome, showing a wide phenotypic spectrum include
congenital heart disease, gastrointestinal symptoms, and
psychiatric illnesses and has an estimated incidence of
1/4000-6000 livebirths [25-27]. 22q11.2 microdeletion
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syndrome is closely related to congenital heart diseases
(CHDs), which prompts genetic counseling, especially for
complex heart abnormalities associated with other mal-
formations, for which it is suggested that CMA detection
be conducted to prevent the birth of children with birth
defects. High-resolution CMA allowing for the detection
of submicroscopic imbalances, except for the usual micro-
deletion syndromes, was also helpful to detect single-gene
diseases caused by deletions. In the present study, 7 male
fetuses with DMD gene deletion without any family his-
tory of dystrophinopathy were incidentally detected using
CMA, and karyotyping of the fetuses showed normal
46,XY. The deletion was further verified by denaturing
high-performance liquid chromatography, and parental
study revealed maternal inheritance or de novo inherit-
ance. The deletion or disruption of the DMD gene may
result in Duchenne muscular dystrophy (DMD) or Becker
muscular dystrophy (BMD). DMD seriously affects the
quality of life and survival of the patients and currently,
there is no effective treatment. Prenatal diagnosis is neces-
sary to provide accurate prognostic information for genetic
counseling and potential options for the family regarding
clinical management.

CMA exhibits a high efficiency for the diagnosis of fetal
chromosomal abnormalities and unavoidable and multiple
VOUS with unclear relevance to the detected clinical phe-
notypes [14]. The identification of VOUS during prenatal
diagnosis continues to be a challenging issue prenatally,
which may lead to difficulty in clinical genetic counseling
and stress for pregnant women and their families and even
result in excessive induction of labor. VOUS has been
identified in less than 5% of all prenatal samples [28, 29].
In the current study, a 1.72% prevalence rate of I]pCNVs
and a 3.04% prevalence rate of VOUS were detected in the
6159 fetuses, which was consistent with previous reports
[9, 30], but higher than those of a previous study [10].
These differences may be caused by different interpre-
tation biases and reporting standards. 15q11.2 duplica-
tion, including the BP1-BP2 region, encompasses four
highly conserved genes: TUBGCPS5, NIPAI, NIPA2, and
CYFIP1, which are the most common IpCNVs (31.1%,
33/106). CNVs involving this region present a major chal-
lenge in prenatal testing because they have been reported
in affected individuals with healthy family members of
affected probands. Most CNVs in this area are inherited
without significant clinical manifestations from parents.
The phenotypes associated with CN'Vs are known for their
variability, incomplete penetrance, and wide phenotypi-
cal spectrum, even among members of the same family
[31]. The microduplication of 15q11.2 had a low pene-
trance, but increased the risk of developmental delays and
mental retardation [32, 33]. CMA with SNP probes can
also detect loss of heterozygosity (LOH) and uniparental

disomy (UPD). Excluding clearly imprinted genes, the
clinical significance of LOH and UPD is unclear, and the
recessive disease-causing genes contained in the regions
increase the risk of hereditary diseases, making genetic
counseling difficult. Therefore, further studies are needed
to accurately assess fetuses with VOUS.

Conclusions

Fetuses with ultrasound abnormalities are at increased risk
of chromosomal abnormalities including CNVs and aneu-
ploidy. Our present study aimed to investigate the incidence
rates of chromosomal abnormalities and pregnancy outcome
and postpartum clinical manifestations by long-term follow-
up. Detection by CMA with SNP probes can be used as
an effective method for the prenatal genetic diagnosis of
fetal ultrasound abnormalities and can enhance the detection
rate of chromosomal abnormalities. Prenatal CMA should
be recommended for fetuses with ultrasound abnormalities.
The present study also provides important data including
the prevalence and distribution of chromosomal abnormali-
ties among fetuses with different types of ultrasound aber-
rations and pregnancy outcomes that may assist physicians
and geneticists in proper genetic counseling.
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