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Abstract
We downloaded gene expression data, clinical data, and somatic mutation data of cervical squamous cell carcinoma (CSCC) 
patients from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Predictive lncRNAs 
were screened using univariate analysis and least absolute shrinkage and selection operator (LASSO) regression, and risk 
scores were calculated for each patient according to the expression levels of lncRNAs and regression coefficients to establish 
a risk model that could be a novel signature. We assessed the correlation between immune infiltration status, chemothera-
peutics sensitivity, immune checkpoint proteins (ICP), and the signature. Therefore, we selected 11 immune-related lncR-
NAs (WWC2,AS2, STXBP5.AS1, ERICH6.AS1, USP30.AS1, LINC02073, RBAKDN, IL21R.AS1, LINC02078, DLEU1, 
LINC00426, BOLA3.AS1) to construct the risk model. Patients who were in the high-risk group had a shorter survival time 
than those in the low-risk group (p < 0.001). Risk scores in the signature were negatively correlated with macrophage M1, 
macrophage M2, and T cell CD8 + ; what’s more, T cell CD8 + was higher in the low-risk group. The expression levels of 
ICP such as PD-L1, PD-1, CTLA-4, TIGIT, LAG-3, and TIM-3 were substantially higher in the low-risk group. For chemo-
therapeutic agents, high-risk scores were associated with higher half-inhibitory concentrations (IC50) of cisplatin. These 
findings suggested that the risk model can be a novel signature for predicting CSCC patients’ prognosis, and it also can be 
used to formulate clinical treatment plans for CSCC patients.
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Introduction

Cervical squamous cell carcinoma (CSCC) is the fourth 
dominant cause of cancer-related deaths in women world-
wide, accounting for 80–85% of all cervical cancer diagno-
ses [1, 2]. With human papillomavirus (HPV) vaccination 
and early-stage screening, the incidence rate of CSCC has 
decreased significantly. Surgery, radiotherapy, and chem-
otherapy have been commonly used for cervical cancer 
patients, but the 5-year survival rate is still not satisfac-
tory because of advanced stage, relapse, metastasis, and 
drug resistance [3–5]. Although the use of immunotherapy 
checkpoint inhibitors (ICIs) has been successful in the treat-
ment of various cancers [6], the development and appli-
cation of immunotherapy for CSCC patients are restricted 
because the positive response remains low [7]. Thus, it is 
crucial to provide CSCC with new therapeutic targets and to 
find novel biomarkers for its early diagnosis and prognosis.
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Long non-coding RNAs (lncRNAs) are a class of 
non-coding transcripts with sequences longer than 200 
nucleotides that can mediate post-transcriptional modifi-
cations [8, 9]. They play a key role in immune activation, 
cancer immunity, antigen presentation, and immune cell 
infltration [10, 11]. For example, lncRNA CamK-A was 
found to be highly expressed in various human cancers 
and could regulate  Ca2+-signaling-mediated tumor micro-
environment remodeling [12]. Also, in colorectal cancer 
cells, overexpression of HLA-F-AS1 could repress miR-
375 and promote the expression of PFN1, further part-
ing macrophages toward M2 phenotype and exacerbating 
tumorigenesis [13]. EGFR promoted immune escape of 
hepatocellular carcinoma cells and Treg cell differentia-
tion through specific binding to EGFR protein [14]. In 
addition to participating in the tumor microenvironment, 
lncRNAs can also affect the response to immunotherapy 
[15], which is rarely reported in CSCC patients.

In this study, we used the RNA sequencing data of 
CSCC patients in the Cancer Genome Atlas (TCGA) 

and Genotype-Tissue Expression (GTEx) database 
to identify immune-related lncRNA (irlncRNA) and 
established an 11-irlncRNA signature based on LASSO 
regression analysis. Subsequently, we explored the 
company between the signature of 11-irlncRNA and 
several disease characteristics in CSCC patients. Drug 
sensitivity analysis also was performed to improve 
drug therapy. Collectively, the present study may 
provide a strategy to predict prognosis and immune-
related therapeutic targets in CSCC patients.

Materials and Methods

Processing Data and Obtaining Immune‑Related 
lncRNAs

The gene expression data, clinical data, and somatic 
mutation data of CSCC patients were acquired from the 
TCGA index. The gene expression profiles of 10 normal 

Fig. 1  Flow chart of this study
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cervical tissues were obtained from the GTEx database. 
The GTF file from Ensembl was used to annotate and 
distinguish mRNAs and lncRNAs. Gene set enrichment 
analysis (GSEA) was applied to screen immune-related 

pathways; genes in these pathways were identified as 
immune genes. We used R software packages “limma” 
and “edgeR” to filter differentially expressed lncRNAs 
(DElncRNAs), with |log2FC|> 2 and FDR q value < 0.05. 

Fig. 2  Screen immune-related lncRNA to construct a risk model. a 
Heat map showing the expression of 224 DEirLncRNAs in CSCC 
tissues (n = 306) and normal cervical tissues (n = 13). b Forest map 
of univariate Cox analysis, green indicates protection factor, and red 

indicates risk factor. c Distribution of the LASSO coefficients for 11 
lncRNAs. d Partial likelihood deviation of the LASSO coefficient 
distribution. Vertical dashed lines indicate lambda. e Correlation 
chord diagram between 11 lncRNAs
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DElncRNAs with immune gene correlation coefficients 
greater than 0.5 and p value < 0.001 were selected as 
irlncRNAs.

Construction of Risk Model

We first used univariate Cox analysis to identify irlncR-
NAs that were significantly associated with overall survival 
of CSCC patients (p < 0.05). Immediately after, we used 
LASSO regression analysis to further screen the irlncRNAs 
with prognostic value [16]. The features were chosen based 
on the best penalty parameter λ. We used the coefficients 
obtained from LASSO to calculate the risk scores:

where Coefi is the coefficients and xi is the fragments 
per kilobase million (FPKM) value of each irlncRNA. We 
can calculate the risk scores of each patient according to 
this equation.

Validation of the Risk Model

The receiver operating characteristics (ROC) for 1, 3, and 
5 years of the model were calculated. The Akaike infor-
mation criterion (AIC) value of the ROC curve was evalu-
ated to select the maximum inflection point, which was 
considered to be the key point for distinguishing high-risk 
and low-risk groups. We used Kaplan–Meier analysis to 
explore the prognostic value based on the patient survival 
time; the survival curves were used for visualization of the 
model. The specific risk scores value of each sample in 
the model were visualized with R software. We performed 
principal component analysis (PCA) on all samples based 
on irlncRNAs, 224 DEirLncRNAs, immune genes, and 
whole gene expression profiles in the risk model, respec-
tively. The PCA results were compared to observe the dif-
ferences in the distribution of risk scores.

Pathways in Two Risk Groups

To figure out the significantly changed immunological 
pathways, we did a gene set enrichment analysis (GSEA) 

riskScore =

n
∑

i=1

Coefi ∗ xi

[17] for two risk groups. We selected significantly enriched 
pathways according to p value and FDR q value; they were 
less than 0.05 and 0.25, respectively.

Correlation Analysis of Risk Model 
with Clinicopathological Features

The relationship between the model and clinicopathologi-
cal features of CSCC patients was evaluated with a Chi-
square test. These features included age, grade, clinical 
stage, and TNM stage. Tumor mutational burden (TMB) 
and microsatellite instability (MSI) were also be analyzed. 
The risk score difference between the groups correspond-
ing to these clinicopathological characteristics was calcu-
lated with the Wilcoxon rank-sum test.

Immune Cell Infiltration Analysis

For the connection between risk and immune cell character-
istics, we calculated the amount of immune cell infiltration 
in TCGA cervical cancer samples. The immune cell data 
were mainly obtained from XCELL, TIMER, QUANTISEQ, 
MCPCOUNTER, EPIC, CIBERSORT, and CIBERSORT-
ABS. We used Spearman correlation analysis to evaluate 
the association between the risk scores and immune infil-
trating cells. According to the immune cell infiltration data 
in CIBERSORT, we assessed the interaction among these 
immune cells and also the correlation between 11 irlncRNA 
and immune cells.

Exploring the Immunotherapeutic Treatment 
of the Risk Model

The Wilcoxon’s test was used to explore the differential 
expression of ICP (PD-L1, PD-1, CTLA-4, TIGIT, LAG-
3, and TIM-3) between two risk groups. Then we used the 
tumor immune dysfunction and exclusion algorithm (TIDE) 
to predict the possibility of immunotherapy response, which 
is a computational framework expanded for immunotherapy 
forecast, and its predictive function has been successfully 
verified [18].

Non‑negative Matrix Factorization

To assess if any clusters were present in the CSCC cohorts, 
molecular subtyping was used to perform non-negative 
matrix factorization (NMF). The best r value was chosen 
according to quality factors. These factors were the first r 
value at which the concord coefficient began to decline and 
the first value at which the residual sum of squares curve 
appeared to have an inflection point, as well as a direct 
visual inspection of the consensus matrix. The association 

Fig. 3  Validation of the risk model. a The 1-, 3-, and 5-year ROC 
of the risk model. b The maximum inflection point is the cut-off 
point obtained by the AIC. c Survival analysis of high- and low-
risk patients in CSCC. Patients with CSCC were divided into a 
low-risk group (n = 189) and a high-risk group (n = 115) accord-
ing to their AIC values. d Expression profile of 11 lncRNAs in the 
CSCC patients (n = 306). e Risk score distribution of CSCC patients 
(n = 306). f Survival status and survival time of CSCC patients 
(n = 306)

◂
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of two subtypes and risk groups was showed in Sankey 
diagram. We also explored the expression of immune cells 
and immune checkpoints proteins in two subtypes. PCA 
was performed with the R package ggplot2.

Exploration of Drug Therapy Targeting Risk Model

To determine if  the models we constructed could 
be used for  drug therapy in  CSCC pat ients ,  we 

calculated the half-maximal inhibitory concentra-
tion (IC50) of common chemotherapy drugs in the 
CSCC dataset. Anti-tumor drugs such as cisplatin, 
pacl i taxel ,  docetaxel ,  gemcitabine,  and vinorel-
bine were advocated for  the t reatment  of  CSCC 
patients. The IC50 difference between the two r isk 
groups was compared by Wilcoxon’s test.  Results 
were plotted with R packages “pRRophetic” and 
“ggplot2.”

Fig. 4  Principal component analysis between the high- and low-risk groups. Principal component analysis based on a lncRNAs in risk model, b 
224 DEirlncRNA, c immune genes, and d whole gene expression profiles
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Establishing a Predictive Nomogram

A nomogram combined various factors, and a calibration 
curve evaluated whether the predicted survival was con-
sistent with certain survival in the nomogram. Calibra-
tion curves and AUC-ROC were also used to appraise the 
predictive ability of the prognostic model, and the clinical 
efficacy of the nomogram was evaluated with the decision 
curve analysis (DCA) (Fig. 1).

Result

Construction and Validation of the Risk Assessment 
Model

Data analysis of TCGA and GTEx databases produced 
1,081 DElncRNAs, of which 224 were DEirlncRNAs 
(Fig. 2a), and 11 of those were related to prognosis in 

CSCC samples. These 11 DEirlncRNAs were subjected to 
univariate analysis (Fig. 2b) and LASSO regression analy-
sis (Fig. 2c, d), and a risk signature including these 11 
DEirlncRNAs was constructed. Eleven DEirlncRNAs were 
dominated by moderate or weak correlations, suggesting 
that they might play a role in similar biological processes 
(Fig. 2e). The risk scores for each patient were computed 
using the following:

The AUC-ROC of the risk model for OS was 0.801, 
0.846, and 0.847 at 1, 3, and 5 years (Fig. 3a), respec-
tively. Using the AIC value (Fig. 3b), we selected the 
maximum inflection point as the demarcation cut-off 

Risk scores = WWC2.AS2 ∗ 0.223 + STXBP5. AS1 ∗ 0.274 + ERICH6.AS1 ∗

− 0.182 + USP30.AS1 ∗ (− 0.055) + LINC02073 ∗ (− 0.043)

+ RBAKDN ∗ 0.385 + I L21R.AS1 ∗ (− 0.099)

+ LINC02078 ∗ (− 0.245) + DLEU1 ∗ 0 .236

+ LINC00426 ∗ (− 0.049) + BOLA3.AS1 ∗ 0.150.

Table 1  Top 10 pathway enriched in the low-risk group

Name ES NES NOM p value FDR q value

KEGG_AUTOIMMUNE_THYROID_DISEASE  − 0.78236496  − 2.1533732 0 0
KEGG_PRIMARY_IMMUNODEFICIENCY  − 0.82993656  − 2.0816772 0 3.00E-04
KEGG_CELL_ADHESION_MOLECULES_CAMS  − 0.6021577  − 2.0348785 0 0.001877939
KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_

IGA_PRODUCTION
 − 0.75884634  − 2.038879 0 0.001890281

KEGG_ALLOGRAFT_REJECTION  − 0.8792095  − 2.0443735 0 0.002214069
KEGG_TYPE_I_DIABETES_MELLITUS  − 0.78216136  − 2.002412 0 0.003311558
KEGG_ASTHMA  − 0.76662517  − 1.9769996 0.001908397 0.005337439
KEGG_HEMATOPOIETIC_CELL_LINEAGE  − 0.6412886  − 1.9576701 0.002024292 0.005633736
KEGG_VIRAL_MYOCARDITIS  − 0.63541704  − 1.9355513 0.002024292 0.006129693

Fig. 5  Gene set enrichment 
analysis. GSEA showed a 
significant enrichment of 
immune-related pathways in the 
low-risk group
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Fig. 6  Correlation analyses of risk scores with clinicopathological 
characteristics of CSCC patients. a Heatmap and clinicopathologic 
features of high- and low-risk groups (< 0.001 = ***, < 0.01 = ** *, 
and < 0.05 = *). Chi-square test acted as the statistical significance 

test. b Relationship between the risk scores and clinical parameters. 
Wilcoxon rank-sum or Kruskal–Wallis rank-sum test acted as the sta-
tistical significance test

807Reproductive Sciences  (2022) 29:800–815



point of the 5-year ROC curve. Using this cut-off point, 
we obtained a high-risk group of 115 patients and a low-
risk group of 189 patients. As shown by Kaplan–Meier 
analysis, patients in the high-risk group lived for a 
shorter period of time than those in the low-risk group 
(Fig. 3c). Figure 3d depicted the distribution of risk lev-
els between the low-risk group and the high-risk group. 
Figure 3e showed the survival time of patients and the 
survival status in two risk groups, and Fig. 3f displayed 
the corresponding expression standards of the 11 irlncR-
NAs for each patient. This implied that the risk model 
had a high accuracy in predicting the prognosis of CSCC 
patients.

PCA Further Verifies the Grouping Ability of the Risk 
Model

Based on the expression profiles of 11 irlncRNAs in the risk 
model, 224 irLncRNA, immune genes, and whole genes, we 
used PCA to research the distribution patterns of the high-
risk and low-risk groups in the CSCC patients (Fig. 4a–d). 
While based on the 11 irLncRNA, these two groups were 
significantly different, indicating that the risk model was 
best for CSCC patients.

Immune‑Related Pathways of the Two Risk Groups

The results of GSEA (Table 1) suggested that three of the 
TOP 5 pathways enriched in the low-risk group were related 
to immunity, including autoimmune thyroiditis, primary 
immunodeficiency, and intestinal immune network (Fig. 5). 
This indicated that patients in the low-risk group had a better 
immune status.

Clinical Evaluation by the Risk Model

We investigated the relationship among risk signature, 
clinicopathological characteristics, and 11 DEirlncRNAs. 
T stage, N stage, and just were related to the risk group 
(Fig. 6a). Further, patients at T4 had higher risk scores than 
at T1 (Fig. 6e), whereas patients at stage IV had higher risk 
scores than at stage III (Fig. 6f). These results suggested 
that risk scores can be used to assess the degree of progres-
sion of CSCC, and that the higher the risk score, the more 
malignant the tumor.

Immune Landscape in CSCC Patients

The risk scores were negatively associated with mac-
rophages M1, macrophages M2, myeloid dendritic cell, 
and CD8 + T cells, whereas it was positively associ-
ated with macrophages M0 (Fig.  7a). Meanwhile, the 

difference analysis also showed CD8 + T cells were 
significantly higher in the group of low-risk, and mac-
rophages M0 were significantly higher in the group 
of high-risk (Fig. 7c). The proportion and infiltrating 
level of immune cells in 309 CSCC samples is shown in 
Fig. 7b, and CD4 + T cells made up the highest percent-
age (Fig. 7d). There was a weak or moderate correlation 
between 22 tumor immune cells (Fig. 7e). Two LncR-
NAs among the risk signature had better relationship 
with immune cells; they were LINC00426 and USP30.
AS1(|correlation coefficients|> 0.4) (Fig. 7f).

Six immune checkpoint proteins PD-L1, PD-1, 
CTLA-4, LAG-3, TIGIT, and TIM-3 were expressed 
highly in the low-risk group (Fig. 7g), suggesting that 
the immunosuppressive microenvironment led to a poor 
prognosis for low-risk patients. The prediction results 
of the TIDE algorithm showed that low-risk patients 
score higher than high-risk patients, which indicated 
that low-risk patients responded better to immunother-
apy (Fig. 7h).

CSCC Sample Cluster into Two Subtypes

CSCC tumors were classified into two clusters contain-
ing 64 and 242 members. (Fig. 8a). The two subtypes 
identified by the NMF algorithm were confirmed by PCA 
(Fig. 8b). Cluster 1 mainly contained patients with low-
risk scores, while the high-risk and low-risk patients in 
cluster2 were basically the same (Fig. 8c). This showed 
a good agreement in CSCC subtypes and risk groupings. 
PD-L1, PD-1, CTLA-4, LAG-3, TIGIT, and TIM-3 in 
cluster 1 had significantly higher expression than in clus-
ter 2 (Fig. 8d). Expression of immune cells like CD8 + T 
cells, macrophages M1, T cells follicular helper, T cells 
regulatory (Tregs), and Mast cells activated expressed was 
higher in cluster 2, whereas that of macrophages M0 was 
higher in cluster 1 (Fig. 8e).

The Significance of the Model in Clinical Treatment

Our study demonstrated that the low-risk group had a lower 
IC50 of cisplatin (p < 0.05) (Fig. 9), also implying that 
low-risk patients were more sensitive to cisplatin. This sug-
gested that the low-risk patients might be better suited for 
chemotherapy.

Construction and Assessment of Predictive 
Nomograms

A nomogram was constructed to predict the 1-, 3-, and 
5-year OS incidences (Fig. 10a). Calibration curves and 
ROC analyses showed good predictive performance of the 
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nomogram in predicting patient survival (Fig. 10b, c). The 
decision curve showed that the nomogram has good clini-
cal efficacy (Fig. 10d–f), suggesting that it can predict the 
survival of CSCC patients.

Discussion

It has been suggested that lncRNAs play a key role in the 
adjustment of the immune system and the tumor micro-
environment [10]. Immune-related lncRNAs are prog-
nostic markers of various types of cancer [18] linked to 
immune cell infiltration and are a potential target for can-
cer treatment [19]. lncRNA SNHG14 has been shown to 
be involved in the activation of the JAK-STAT pathway in 
cervical tumor cells [20]. In cervical cancer HeLa cells, 
the STAT3 binding sequence in the enhanced region of 
lncRNA MALAT1 proved to be the key to the activation 
of the MALAT1 promoter induced by IL-6 or STAT3 [21]. 
In the eleven immune-related lncRNAs of the risk model, 
STXBP5-AS1 targets miR-96-5p/PTEN axis to drive 
cervical cancer cell proliferation and invasion [22], and 
DLEU1 promotes cervical cancer cell proliferation and 
invasion via the miR-381/HOXA13 axis [23].

We used the AIC value to get the best cut-off point 
for the model fitting. The prognostic model performed 
better in distinguishing between risk groups of high and 
low. Patients with low-risk showed a favorable prognosis, 
which suggested that our model may be able to stratify 
risk. GSEA revealed that immune-related pathways were 
significantly enriched in the low-risk group. We also ana-
lyzed the tumor immune infiltration and efficacy of chemo-
therapy drugs in the treatment of CSCC, which determined 
that this model worked well. In this study, consensus 
clustering based on NMF was used to define CSCC sub-
types. The CSCC sample could be separated into two sub-
types with distinct molecular profiles with differences in 
immune cell infiltration and checkpoint-related biomark-
ers. A nomogram was established to show the exact agree-
ment between the observation rate and the predicted rate 
of 1-year, 3-year, and 5-year OS. The nomogram had bet-
ter prediction accuracy and higher clinical efficacy, which 
passed calibration curve and DCA verification.

The ability of immunotherapy depends on the immu-
nogenicity of the tumor microenvironment, so the under-
standing of the tumor microenvironment is the key to 
assessing the possibility of immunotherapy [24]. Immune 
cell infiltration can be a predictive biomarker of cancer 
immunotherapy [25]. Patients with more CD8 + T cell 
infiltration get a better response from pembrolizumab than 
those with less infiltration [26]. Macrophages suppressed 
T cell recruitment and regulated other aspects of tumor 
immunity; they can be regulators of tumor immunity and 
immunotherapy [27]. We used seven accepted methods to 
estimate the correlation between risk scores and immune 
cells; the methods include XCELL [28], QUANTISEQ 
[29], MCPcounter [30], EPIC [31], TIMER [32, 33], CIB-
ERSORT [34], and CIBERSORT-ABS [35]. By integrat-
ing analysis, our results revealed that the risk model was 
negatively associated with macrophages M1, macrophages 
M2, and CD8 + T cells, meanwhile CD8 + T cells were 
significantly higher in the low-risk group. We can support 
that patients in the low-risk group may be more suitable 
for immunotherapy.

Cancer cells activate inhibitory immune checkpoint 
pathways to prevent the occurrence of autoimmunity 
[36]; therefore, suppression of the immune checkpoint 
approach is a promising treatment. Evidence suggests 
that immunotherapy is a novel therapeutic strategy for 
the treatment of cervical cancer [37]. Anti–CTLA-4, 
anti-PD-1, and anti-PD-L1 therapies are possible treat-
ment options for cervical cancer, studies show [38–40]. 
Furthermore, in a well-defined clinical study of 115 cer-
vical cancer patients, PD-L1 was expressed in 19% of 
cervical tumors, and more than 50% of tumor-infiltrating 
CD8 + T cells were expressed PD-1 [41]. We explored 
the relationship between several common immune 
checkpoint proteins in the treatment of cervical cancer 
and risk models, showing that all six immune check-
points were higher in the group of low-risk. Thus, under 
this model, it suggested that patients with low-risk may 
benefit more from immunotherapy. The predictions of 
the TIDE algorithm indicated that patients with low-
risk subtypes had a better response to immunotherapy, 
which was consistent with the above-mentioned studies. 
Our risk model also showed that low-risk patients were 
more sensitive to cisplatin, a small-molecule platinum 
compound that treat recurrent cervical cancer effectively 
[42], so we can formulate chemotherapy regimens for 
low-risk patients.

In our risk model, the risk scores are related to the clini-
cal stage, and the risk scores of early cervical cancer are 
lower than that of the advanced stage. In summary, our 
findings support that early-stage patients may be better 
suited for immunotherapy and appropriate chemotherapy.

Fig. 7  Immune infiltrate landscape in CSCC patients and estima-
tion of immunosuppressed molecules by the risk model. a Correla-
tion between immune cells and risk scores, b relative proportion of 
immune cell infiltrates in CSCC patients, c content of 22 immune 
cells, d correlation matrix of immune cells, e comparison of the 
expression of immune infiltrating cells in low- and high-risk patients, 
f correlation of lncRNAs in risk model with immune cells, g differen-
tial expression of immune checkpoint proteins in the high- and low-
risk patients, h TIDE prediction difference in the high- and low-risk 
patients

◂
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Fig. 8  CSCC patients clustered into two subtypes based on risk 
mode. a Consensus clustering of CSCC samples by NMF. Correlation 
matrix heatmap subtypes and risk groups, d differential expression of 

immune checkpoint proteins in cluster1 and cluster2, e differences in 
the expression of immune cells between the two subtypes
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Fig. 9  Sensitivity of chemotherapy drugs in high- and low-risk groups. a cisplatin, b paclitaxel, c docetaxel, d gemcitabine, and e vinorelbine
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Conclusion

We identified 11 immune-related lncRNAs in cervical 
squamous cell carcinoma that were used to construct a 
prognostic signature. Then we compared the differences in 
immune checkpoints, clinicopathological characteristics, 
and drug treatments between the high-risk and low-risk 
groups. The results provide suggestions for the clinical 
treatment of cervical cancer, but the application of these 
results must be verified by a multicenter, large-sample 
clinical study.
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