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Abstract
In vitro spermatogenesis and xenotransplantation of the immature testicular tissues (ITT) are the experimental approaches 
that have been developed for creating seminiferous tubules-like functional structures in vitro and keeping the integrity of 
the ITTs in vivo, respectively. These strategies are rapidly developing in response to the growing prevalence of infertility in 
adolescent boys undergoing cancer treatment, by the logic that there is no sperm cryopreservation option for them. Recently, 
with the advances made in the field of tissue engineering and biomaterials, these methods have achieved promising results 
for fertility preservation. Due to the importance of extracellular matrix for the formation of vascular bed around the grafted 
ITTs and also the creation of spatial arrangements between Sertoli cells and germ cells, today it is clear that the scaffold 
plays a very important role in the success of these methods. Decellularized extracellular matrix (dECM) as a biocompatible, 
functionally graded, and biodegradable scaffold with having tissue-specific components and growth factors can support 
reorganization and physiologic processes of originated cells. This review discusses the common protocols for the tissue 
decellularization, sterilization, and hydrogel formation of the decellularized and lyophilized tissues as well as in vitro and 
in vivo studies on the use of the testis-derived dECM for testicular organoids.
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Introduction

Spermatogenesis is the process that takes place in the semi-
niferous tubules of the testis, by which sperm cells are pro-
duced from spermatogonial stem cells (SSCs) [1, 2]. This 
process starts at puberty and continues throughout adulthood 
[1]. The fertility of children undergoing chemotherapy or 
radiotherapy for pediatric cancers or preconditioning thera-
pies before bone marrow transplantation is severely reduced 
when they become adults [3]. Sperm cryopreservation is 
routinely used for post-pubertal patients, but in peripubertal 
boys who do not have any mature sperm, cryopreservation 
of immature testicular tissues(ITT) is the only alternative for 
preservation of fertility [4, 5]. This infertility is due to the 
loss of SSCs when exposed to cytotoxic agents. Therefore, to 

prevent prepubertal germ cell loss and subsequent infertility, 
cryopreservation of testicular tissues containing SSCs has 
been accepted as the gold standard protocol before onco-
logical treatments in some centers in Europe and the USA 
[3]. The approaches include in vitro spermatogenesis, SSC 
transplantation, and testicular tissue grafting have been fol-
lowed by researchers to restore male fertility in peripubertal 
boys using cryopreserved ITTs [6, 7]. Autotransplantation 
of frozen-thawed gonadal tissues has presented a significant 
option for restoration purposes as approved by over 100 live 
births worldwide using autotransplantation of the frozen-
thawed ovarian cortex [8]. Autotransplantation of gonadal 
tissues has commonly applied only in the cases where there 
is no risk of retransmission of cancer cells to the cured 
patient, such as patients undergoing bone marrow transplan-
tation for nonmalignant diseases like hemoglobinopathies 
[3]. Xenotransplantation of ITTs to nude mice, which is at a 
preclinical stage has presented another method suitable for 
those who suffer from malignant diseases [9–11]. However, 
further studies should be focused on the important loss of 
germ cells following transplantation due to hypoxia/reoxy-
genation injuries [10, 12, 13]. Different protocols based on 
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tissue engineering approaches have been followed to limit 
these events, such as ITTs encapsulation in fibrin hydrogel, 
alginate, or using a combination of hydrogel and growth fac-
tors like vascular growth factor [14–17]. On the other hand, 
the three-dimensional culture of testicular cells in vitro is 
another option for sperm production from testicular tissue 
samples [3]. Since in the structure of seminiferous tubules, 
germ cells are immersed in the cytoplasm of Sertoli cells, 
and both of these cells interact with the matrix and the cells 
around the seminiferous tubules, such a structure cannot be 
reconstructed with two-dimensional cultures [2]. Therefore, 
three-dimensional culture has become the main focus of the 
researches to investigate in vitro spermatogenesis using 
cryopreserved ITTs. Accordingly, encapsulation of testicu-
lar cells in 3D condition using synthetic or biologically-
derived matrices such as fibrin [18], matrigel [19], collagen 
[20], alginate [21], and agarose [22–25] has been studied 
to provide a condition that mimics the extracellular matrix 
(ECM). Today, the ECM derived from tissue decellulariza-
tion, considering its multiple functions has emerged as one 
of the biomaterials for tissue engineering [26]. This review 
summarizes the methods used to decellularize tissues and 
obtain ECM, as well as their use in testicular tissue engi-
neering (Fig. 1). Accordingly, a combination of the follow-
ing terms without time limitation was applied to search the 
articles performed on PubMed: [(tissue decellularization) 
(179) AND (fertility) AND (restoration OR preservation)] 
[12]. Scientific video protocols [6], reviews [26], guidelines 
[10], irrelevant articles [27], articles in languages other than 
English [10], and articles focusing on female fertility [7] 
were excluded.

Decellularization, Sterilization, and Gel 
Formation of ECM‑Derived Decellularized 
Tissues

To prevent immune reaction and inflammation, tissue-
derived material which are used for tissue engineering 
or transplantation should be decellularized. Therefore, 
chemical, enzymatic, physical decellularization methods 
have been developed to obtain dECM [28] (Fig. 2). These 
procedures can maintain the composition and architec-
ture of ECM, similar to the original tissue [28]. Quan-
tifying the DNA content of dECM is currently used as a 
significant tool to evaluate the effectiveness of these pro-
tocols in the removal of cellular debris [29]. Chemical 
agents which are used to solubilize cell membranes are 
detergents. One of the most common detergents used in 
decellularization processes is Triton X-100 targeting the 
lipid-lipid and lipid-protein interactions [30, 31]. It is very 
useful in cells removal, especially in those tissues where 
the key components of ECM are primarily proteins despite 

the limitation of that in decellularization of tissues with 
high content of glycosaminoglycans (GAGs) [32]. Sodium 
dodecyl sulfate (SDS) can also be used as a detergent with 
Triton but with more efficiency in solubilizing cell mem-
branes. The main side effects of using SDS are related to 
the degradation of proteins that will change their structure 
and function, therefore, it is necessary to limit the dura-
tion of using SDS in the decellularization protocols [33, 
34]. Enzymes are also applied in most decellularization 
protocols. Of course, the process of removing enzymes 
after the decellularization process, as well as the side 
effects that they can have on the structure and function 
of the tissue should not be ignored [35]. Trypsin attack-
ing the C-side bonds in arginine and lysine can be used 
along with a breaking agent of cell–matrix interactions 
such as EDTA [36]. Of note, changes in the structure of 
ECM due to the removal of proteins such as laminin, and 
removing GAGs have been observed in cases of prolonged 
exposure to trypsin–EDTA treatment [37, 38]. Pepsin is 
another enzyme used for long-term with low-concentra-
tion in decellularization protocols [39]. Exposing cells to 
osmotic pressure using hypoosmotic and hyperosmotic 
solutions can be an effective way to disintegrate cells. Of 
course, it should be noted that in this method, the cellular 
residues can still be attached to the extracellular matrix. 
Accordingly, this method can be used as a complemen-
tary method with detergents [40, 41]. Freeze-thawing of 
tissues is The most commonly used physical technique in 
eliminating cells. This is done by forming ice crystals and 
then disrupting the plasma membranes which makes it a 
useful method for tissues that have a loose extracellular 
matrix structure [41]. Finally, it needs to be mentioned that 
a combination of these methods should be used to opti-
mize decellularization, since, in a recent study, pre-frozen-
thawed pig testicular tissues were exposed to hypoosmotic 
and hyperosmotic solutions and detergents [42]. Today, for 
sterilization, physical and chemical protocols are used to 
remove pathogens from the extracellular matrix, especially 
when they are to be used in vivo. In using this method, 
exposure time, preservation of matrix structure, and 
pathogen removal efficiency should be considered [43]. 
Physical protocols can be divided into two categories: heat 
and irradiation techniques. The use of the heat method is 
limited because it causes changes in the structure of the 
protein, but the irradiation method with gamma rays or 
ultraviolet light is more efficient such that gamma rays are 
used as an optimal method for sterilizing medical products 
today. Liquid chemicals such as alcohol, peracetic acid, 
and aldehydes are included in the list of chemical meth-
ods for sterilizing extracellular matrix [44]. In addition 
to altering the structure of the protein, these substances 
can be toxic. Therefore, they should be removed as much 
as possible after sterilization [45, 46]. After sterilization, 
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the dECM is lyophilized for further application and then 
ground through a mixer mill. One of the methods of post-
processing of the dECM is gel formation. Gel formation 
of the dECM makes it is easily injected into the injury site 
and the matrix is formed based on the shape of the lesion 
[47]. In addition, it can include tissue-specific cells into 
the matrix in the laboratory and form three-dimensional 
structures, or it can be implanted inside the body [48]. 

To obtain the gel, the lyophilized and ground dECM is 
digested with an enzymatic agent, most often pepsin in an 
acidic condition (approximately Ph ~ 2) with continuous 
agitation from 24 to 48 h. Then, the pH and salt concen-
tration of the solution is adjusted to physiological state, 
which is an aqueous solution at 4 °C, but it becomes gel 
at 37 °C [49].

Fig. 1  The schematic diagram of the use of extracellular matrix for 
fertility preservation in adolescent boys suffering from cancer. The 
ECM resulting from tissue cellularization can be used in two ways: 

1 encapsulation of testicular cells in the decellularized extracellu-
lar matrix and 2 xenotransplantations of testicular tissue fragments 
embedded in the decellularized extracellular matrix
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Application of the dECM‑Derived Testis 
Tissues: In Vitro Spermatogenesis

One of the goals of researchers working in male infertility 
is to produce mature sperm from the clinic from testicular 
cell suspensions cultured in vitro, which can be applica-
ble in assisted reproductive techniques (reviewed in [50]). 
Today, due to the progress of medical treatments such as 
bone marrow transplantation for malignancy, hereditary 
and metabolic diseases, and infertility complications result-
ing from these treatments, methods of maintaining fertil-
ity using in vitro sperm maturation have received more and 
more attention [6, 51]. Tissue culture and two-dimensional 
culture of testicular cell suspension have been considered 
the primary methods used to produce in vitro mature sperm 
[52]. The two-dimensional culture contributed to the under-
standing of cellular and molecular mechanisms controlling 
the differentiation and proliferation of spermatogonia, but 
this method had low efficiency in spermatozoon cell produc-
tion [2]. Unlike two-dimensional culture, testicular tissue 
culture was most successful in producing sperm, eventually 
producing a live mouse offspring using assisted reproductive 
techniques [27, 53–55]. The tissue culture method showed 
that the unique arrangement of testicular cells is necessary 
to promote spermatogenesis in vitro; hence studies shifted to 
three-dimensional cultures and approaches such as scaffold-
free and scaffold-based cultures to configure testicular cells 

in vitro were considered [2, 56]. Scaffold-free approaches 
using methods such as hanging drops and cellular aggre-
gates showed less meiotic progression than scaffold-based 
approaches [57]. Hydrogel-based scaffolds have been used 
to reorganize testicular cells. Hydrogels are substances that 
can absorb large amounts of water, a feature that greatly 
facilitates the transport of nutrients, gasses, and cellular 
wastes [58]. In addition, they can provide mechanical sup-
port for the cells embedded in them [59]. Today, hydrogels 
are divided into synthetic and natural (Table 1). Synthetic 
hydrogels form a network with high mechanical strength but 
instead have less biological activity[60]. Natural hydrogels 
can have a protein or polysaccharide structure [61]. Natural 
hydrogels with a polysaccharide structure provide a more 
stable mechanical network over time for cultured cells but 
biologically lack binding ligands to react with the cells [62]. 
Studies have shown that testicular cells in a polysaccharide-
based natural hydrogel have produced many haploid cells 
from SSCs [21]. However, it should be noted that new prod-
ucts such as RGD peptide-binding alginate have been devel-
oped today that have enhanced the biological properties of 
alginate by binding the cell to RGD-ligand [63]. Therefore, 
the use of modified alginate to support spermatogenesis can 
be an exciting research goal. Hydrogels with protein struc-
tures such as collagen, hyaluronic acid, fibrin, and decellu-
larized native tissue-derived ECM have been used in in vitro 
spermatogenesis studies to create three-dimensional cultures 

Fig. 2  The schematic diagram of the methods used for tissue decellularization
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of testicular cells and have better results than three-dimen-
sional studies [64].

These types of hydrogels are biologically active and can 
interact with cells through a surface receptor and play an 
essential role in the spatial arrangement of the cells, but 
because of their protein structure, they are gradually affected 
by enzymes secreted by cells. They are digested or deformed 
gradually, resulting in a change in the original network struc-
ture, finally leading to a weak mechanical structure [20, 65]. 
Therefore, for long-term culture, using this type of hydro-
gels cannot be a good option. Today, for the stability of 
polymer filaments of the protein-based hydrogels, different 
chemical cross-linkers such as glutaraldehyde [66], EDC(1-
ethyl-3-(3-dimethyl aminopropyl) carbodiimide)-NHS(N-
hydroxysuccinimide) [67], and genipin [68] have been used, 
which create a covalent bond between the filaments and can 
help their stability and prevent their enzymatic digestion. 
Decellularized tissue-derived hydrogels are protein-based 
natural hydrogels that contain all the extracellular matrix 
components, such as hyaluronic acid, fibrin, laminin, col-
lagen, and glycosaminoglycans [48]. Due to having a variety 
of extracellular proteins, these types of hydrogels are closer 
to the physiological state [69]. Organoids today refer to the 
use of extracellular matrices such as hydrogels to form three-
dimensional structures in vitro, which can mimic many of 
the properties of the considered tissue [70]. In addition to 
having extracellular components, the tissue-derived matrix 
contains growth factors and tissue-specific cytokines that 
can control cell differentiation and proliferation [71, 72]. 
Today, testicular organoids have been used in studies as a 
tool to study the controlling mechanisms of germ cell niches 
and their role in infertility, the cytotoxic effects of drugs, 
and to produce fertilization-competent spermatozoa in vitro 
[64]. The testicular organoids are a combination of Sertoli, 
germ, and Leydig cells embedded in an extracellular matrix 
such as matrigel or testicular tissue-derived extracellular 
matrix to arrange the cells into structures such as seminifer-
ous tubules [73]. It is thought that the extracellular matrix 
of testicular tissue can be effective in rearranging testicular 

cell suspension. In this regard, the first study using culture of 
adult human testicular cells on fragments of the decellular-
ized testicular tissue was done and found that the scaffolds 
can help establish and maintain the spermatogonia niche. 
However, seminiferous tubules-like structures s were not 
formed [74]. Another study using cultured pig testicular sus-
pension on decellularized testicular slices found that these 
scaffolds could not reorganize testicular cells into tubule-like 
structures [71]. Reorganization of the immature rat testicular 
cells to a seminiferous tube-like arrangement was achieved 
using matrigel hydrogel [75], while another study found that 
such structures were not in the suspension of adult human 
testicular cells embedded in a testicular tissue-derived 
hydrogel [75]. Therefore, the determining factor in forming 
a true testicular organoid seems to be the maturation status 
of testicular cells, not the type of extracellular matrix. In 
order to determine the impact of the maturation status of 
testicular cells on the efficiency of testicular organoid for-
mation, the studies have been conducted using immature 
testicular cells and showed that immature testicular cells of 
humans, monkeys, and mice can form tubular-like structures 
[73]. Another factor that affects the formation of testicular 
organoids is the number of cells used for each organoid. The 
higher the cell concentration, the more testicular cord-like 
architectures appear [42, 57, 75, 76]. In addition to these 
factors, the effect of scaffold or matrix to support organoid 
formation is discussed [64]. Table 2 lists the studies that 
used natural or testicular matrix-derived hydrogels to form 
testicular organoids. Given the advantages of tissue-derived 
hydrogels, there are still very few studies comparing the 
effect of this type of hydrogel with other hydrogels such 
as matrigel on organoid formation. Therefore, according to 
the above, today, the testicular organoid is widely used in 
studies to investigate the pathogenesis and morphogenesis 
of testicular tissue, drug toxicity, and also as a tool to restore 
fertility (Table 2). In this regard, one of the components of 
organoids is scaffolding, which is used for this purpose from 
natural hydrogels such as collagen, matrigel, or hydrogels 
derived from testicular tissue [64]. Testicular tissue-derived 

Table 1  Classification of hydrogels into two categories: synthetic and natural

Type of hydrogel Examples Advantages Disadvantages

Synthetic hydrogels Polyvinyl alcohol (PVA), polyeth-
ylene glycol (PEG), and poly-
2-hydroxyethyl methacrylate 
(pHEMA)

High stability, the best supportive 
network

Biologically inactive and
lack of matrix-cell interaction

Polysaccharide-based natural 
hydrogels

Alginate, agarose, and chitosan High stability, biocompatible, and 
suitable mechanical properties

Lack of ligands for cell attachment 
and matrix-cell interaction

Protein-based natural hydrogels Collagen, hyaluronic acid, fibrin, 
and decellularized native tissue-
derived ECM

High biological activity, increase 
of matrix-cell interaction, and 
support of cellular reorganiza-
tion

Sensitive to degeneration and 
enzymatic digestion and low 
mechanical support and stability
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hydrogels can be prioritized due to their biological advan-
tages; accordingly, it seems that the use of this type of 
hydrogel will be more common in future studies.

Application of the dECM‑Derived Testis 
Tissues: Xenotransplantation of ITTs

Several studies have shown that complete spermatogenesis 
is obtained using grafting autologous transplantation and 
xenotransplantation of ITTs in other species, and even off-
springs have been achieved by these techniques [86–90]. 
Additionally, the success of the autotransplantation tech-
nique of frozen-thawed ovarian cortex has shown that it 
is a clinically efficient protocol since about 100 live births 
have been reported with this method [8]. However, to date, 
no complete spermatogenesis has been observed using 
xenotransplantation of human ITTs to nude mice. The 
failure of such a method has been attributed to the severe 
reduction in the number of germ cells and the poor integ-
rity of the seminiferous tubules [10, 91]. Various factors 
have been mentioned in connection with massive germ cells 
loss following transplantation of human ITTs to nude mice, 
including hypoxia injuries due to the lack of blood supply 
around the grafted tissues [12], the phylogenetic differences 
between species [92], and significant difference between 
host environment and that of donor tissue in terms of both 
endocrine and paracrine factors [93]. In a review of the lit-
erature, we find that methods such as tissue encapsulation in 
biomaterials [14, 94], growth factors administration such as 
vascular endothelial growth factor [14, 95, 96], and adding 

anti-apoptotic agents [13, 97, 98] to accelerate blood sup-
ply and maintain the survival of germ cells have yielded 
promising results. Biomaterials such as collagen, fibrin, and 
alginate, acting as a scaffold, improve the migration of host 
endothelial and fibroblast cells to the grafted area [14, 99]. 
The results of these studies suggest that tissue-derived extra-
cellular matrix with having substances such as laminin and 
fibronectin (essential components for building new blood 
vessels) is effective in creating a vascular substrate that leads 
to reduction of germ cell loss due to hypoxia. On the other 
hand, the dECM provides inhibitory signals of apoptosis by 
providing interaction with the grafted tissue cells. Despite 
these advantages, no studies have been reported on the use of 
the dECM in xenotransplantation of ITTs. This knowledge 
gap could be addressed in future studies.

Conclusion

Today, in US centers, nearly 74% of parents of boys under 
the age of 12, diagnosed with an oncological disease, want 
to receive the services of fertility preservation. Accordingly, 
freezing of ITTs is performed as a strategy to maintain fertil-
ity before starting cancer treatment in many infertility cent-
ers in Europe and the US. The existence of such testicular 
tissues banks has put a lot of pressure on researchers and 
clinicians in infertility centers to meet the expectations of 
parents who have been received fertility preservation pro-
cedures. The strategies we itemized for fertility restoration 
need to be updated by the new sciences especially tissue 
engineering. The testis-derived dECM has several benefits 

Table 2  Various applications of testicular organoid. ECM–Hydrogel: testicular tissue-driven extracellular matrix

Application Hydrogel Species Result

Studies of drug toxicity ECM–hydrogel
ECM–hydrogel
Matrigel

Human
Human
Monkey, mouse, and human

Organoid resistance to chemotherapeutic drugs were higher than 2D 
cultures [72]

Zika virus (ZIKV) was capable to infect organoid [77]
Level of autophagy increased in the organoids exposed to environmen-

tal toxins [73]
Studies of testicular 
physiology and
pathophysiology

Matrigel
Matrigel
ECM–hydrogel
Matrigel

Rat
Porcine
Human
Murine

IL-1α and TNFα inhibited organoid formation [75]
Inhibition of primary cilia resulted in impaired organoid formation [78]
Integration of fluorescent proteins (e.g., GFP or mCherry) in cell types 

to study the cellular organization [72]
The testicular endothelial cells plays an important role in the SSC 

niche.[79]
Restore fertility ECM–hydrogel

Methylcellulose
Soft agarose
Decellularized 
ECM scaffold
Matrigel

Porcine
Mouse
Rhesus monkey
Human
Mouse
Human
Rat

Assembling Sertoli cells (SCs) and germ cells (GCs) into seminiferous 
tubule-like structures [42]

Production of the morphologic spermatozoa [2]
Producing the haploid germ cells [80]
Development of meiotic and postmeiotic stages from spermatogonial 

cells [81]
Production of the morphologic spermatozoa [2, 82, 83]
Producing the haploid germ cells [84]
Producing the haploid germ cells [20, 85]
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such as growth factor, fibrous structure and cell attachment 
can regulate organization, differentiation, and survival of 
the testicular cells. The dECM can also be combined with 
other biomaterials or drugs to optimize techniques of in vitro 
spermatogenesis and xenotransplantation. In addition, prom-
ising results can be achieved in future studies when proteins 
existing in the extracellular matrix due to their active groups 
on their surface are conjugated with nanoparticles or nano-
capsules containing certain drugs or factors.

Abbreviations ITT: Immature testicular tissues; dECM: Decellularized 
extracellular matrix; SSCs: Spermatogonial stem cells; ECM: Extra-
cellular matrix; GAGs: Glycosaminoglycans; DTM: Decellularized 
testicular matrix
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