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Abstract
We performed this updated systematic review and meta-analysis to evaluate anti-Müllerian hormone levels (AMH) in newborns
of mothers with polycystic ovary syndrome (PCOS) compared with healthy controls. A search of the literature was conducted in
the PubMed,MEDLINE, EMBASE, Cochrane Library, CBM, CNKI,WANFANG, and VIP for articles to assess AMH levels in
offspring of PCOS and non-PCOS mothers irrespective of language. These databases were searched from their inception to
December 7, 2020. The quality of studies was assessed using the Newcastle-Ottawa Scale (NOS) scoring system. Standardized
mean differences (SMDs) with 95% confidence intervals (CIs) were adopted to calculate the overall estimates with random-
effects models. A total of 6 studies with 846 participants were included. The pooled analysis found an increased AMH level in the
umbilical cord blood in newborns of PCOSmothers (SMD=0.62, 95% CI [0.28, 0.95]). Subgroup analyses revealed an elevation
of AMH concentrations in female neonates, neonates born to American and Asian PCOS mothers. In addition, higher AMH
levels were also found in studies diagnosed by the National Institute of Health (NIH) criteria, maternal clinical/biochemical
hyperandrogenism, or maternal body mass index (BMI) >30 kg/m2. Meta-regression analysis suggested that diagnostic criterion
contributed mostly to the high heterogeneity. We demonstrated that AMH levels in neonates born to PCOS mothers were
essentially higher, which indicates that AMH may act as an enigmatic role in the pathogenesis of PCOS which inhibits
folliculogenesis in the fetal stage.
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Polycystic ovary syndrome (PCOS) is a common metabolic
and endocrine disorder that affects about 8 to 13% females in
their reproductive lifespan according to criteria used [1]. It is
characterized by ovulatory dysfunction, androgen excess (pri-
marily ovarian but also adrenal in origin), and the appearance

of polycystic ovaries on ultrasound [2]. The etiology and path-
ogenesis of the syndrome are recognized as multifactorial and
heterogeneous; previous studies demonstrated that the first-
degree female relatives of individuals with PCOS were more
often diagnosed with PCOS compared with non-PCOS
daughters in their puberty and sexual maturity [3, 4]. Recent
evidence was indicative of the disturbances of steroid (espe-
cially exposure to hyperandrogenism) during intrauterine life
which had been implicated in the origin of PCOS and might
modify the reproductive and metabolic function of offspring
[5, 6].

Anti-Müllerian hormone (AMH) is a member of the
transforming growth factor (TGFβ) superfamily and is clini-
cally used as a marker for evaluating ovarian reserve [7]. As a
reflection of the increased stock of the preantral and small
antral follicles, serum AMH levels were found significantly
2–4 folds ascended in PCOS individuals and were positively
associated with total testosterone levels and free androgen
index levels [8, 9]. Previous studies reported that peripubertal
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daughters of PCOS women exhibited higher levels of AMH,
validating that the follicular alterations that appeared in adult
PCOS might happen early during development [10, 11].
Moreover, a slice of studies exhibited that pregnant women
with PCOS had higher serum AMH levels during the early
trimester and at delivery, compared with healthy controls [12,
13]. Experimental studies in monkeys, sheep, and rodent an-
imals supported the hypothesis of exposure to excessive ste-
roid, or AMH might develop PCOS-like phenotypes in the
offspring [14, 15]. Quite a few research provided evidence
of a critical window of susceptibility during differentiation
of organs and systems that could “program” ovary in the fe-
male during fetus period and, subsequently, lead to PCOS [16,
17].

Although numerous animal studies laid the foundations of
this developmental hypothesis for PCOS etiology [18, 19],
however, this theory was doubted in human for many years,
and insufficient observational human studies were conducted
with controversial results. The latest meta-analysis concluded
that fetal cord blood testosterone and dehydroepiandrosterone
(DHEA) levels were not related to PCOS, while the andro-
stenedione (ADION) levels were tended to be reduced in new-
borns of PCOS mothers [20], which was opposite to the pres-
ent hypothesis. It could be explained that maternal testoster-
one might be bound by sex hormone-binding globulin
(SHBG) and then quickly degraded and converted by the pla-
centa’s high levels of aromatase into estradiol. This mecha-
nism has greatly contributed to protecting the fetus from a
hyperandrogenic state [21].

Furthermore, there was little evidence substantiating a re-
lationship between the exposure to maternally derived andro-
gens and subsequent alteration of ovarian functions during
reproductive life [13, 22–26]. Only a few studies with limited
sample size had previously compared cord blood characteris-
tics of offspring of PCOSmothers, generating conflicting out-
comes. Several investigations reported a higher AMH in the
neonates born to PCOS mothers than to control mothers
[23–26], while the others reported no difference between these
two groups [13, 22]. By evaluating the AMH levels of new-
borns, the present meta-analysis and systematic review was
constructed to find potential evidence of influence by the in-
trauterine environment. Our research was registered on
PROSPERO under the number CRD42021231717.

Materials and Methods

Inclusion Criteria of Studies

Studies were included if they met all following criteria: (1)
observational studies that were published in peer-reviewed
journals irrespective of language; (2) studies reported data of
pregnant individuals diagnosed as PCOS (according to the

Rotterdam criteria [27] or the National Institutes of Health
(NIH) criteria [28]); and (3) studies provided hormonal means
and standard deviations (SDs) or sufficient data to calculate
them. Studies were excluded if they (1) were letters, case
reports, editorials, animal experiments, or conference ab-
stracts; (2) included individuals of twin or multiple pregnan-
cies; and (3) included individuals with ovarian surgery histo-
ry, ovarian radiotherapy, systemic chemotherapy, severe preg-
nancy complications, or immune diseases.

Search Strategies

A search of the literature to the end of to December 7, 2020,
was conducted in the PubMed, MEDLINE, EMBASE,
Cochrane Library, CBM, CNKI, WANFANG, and VIP for
articles to assess AMH levels in newborns of mothers with
PCOS in comparison with healthy controls. The search terms
were included as follows: (polycystic ovary syndrome [Mesh]
or PCOS) and (adult offspring [Mesh] or newborn or child of
impaired parents [Mesh] or infant or fetus or neonate) and
(AMH or anti-Müllerian hormone). The reference lists of re-
trieved publications and relevant reviews were manually
searched to identify any missing relevant articles.

Study Selection and Data Extraction

Two review authors (S.Z. and D.L.) independently screened
the title and abstract and selected the articles. Full texts were
retrieved for further assessment. The characteristics of includ-
ed studies were extracted according to Cochrane guidelines by
2 authors (S.Z. and D.L.). Discrepancies were noted and re-
solved by discussing with the third author (L.X.).

Quality Assessment

The quality of selected studies was assessed using the
Newcastle-Ottawa Scale (NOS) scoring system [29].
According to the quality score assessment, the total score
ranged from 0 to 9. Studies with a score of 7 or above were
considered high-quality, and studies with a score of 4 or below
were considered low-quality. Studies with a score between 4
and 7 were considered medium-quality. Evaluation of evi-
dence quality (high-quality, medium-quality, or low-quality)
was determined by 2 review authors (S.Z. and D.L.) indepen-
dently, with differences resolved by the discussion (S.Z., D.L.,
and L.X.)

Data Synthesis and Statistical Analysis

Hormone levels were described as mean ± standard deviation
(SD) in most studies while extracted as median and range in
one study and extracted as median and interquartile range in
another study; means and SDs were estimated by the method
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provided by Wan et al [30] and Luo et al [31]. Standardized
mean differences (SMDs) with 95% confidence intervals
(CIs) were adopted to calculate the overall estimates.
Heterogeneity across studies was quantified using the Q-
statistic and inconsistency index (I2). When I2 > 50%, hetero-
geneity was considered severe; when 25% <I2 <50%, hetero-
geneity was considered moderate; and when I2 < 25%, hetero-
geneity was considered low. In case of severe heterogeneity, a
random-effects model was used.

Due to the fact that results revealed statistically notable
heterogeneity, subgroup analyses were performed where
available to investigate the potential source of inconsistencies
(e.g., gender, geographical region, diagnostic criterion, mea-
sure method, birth weight, maternal androgen, maternal
fasting insulin, and maternal body mass index (BMI)). Birth
weight was categorized into two groups: a normal birth weight
(NBW) group (birth weight <4000g) and a macrosomia group
(birth weight >4000g). Maternal androgen was categorized
into two groups: a hyperandrogenic group which presented
clinical/biochemical hyperandrogenism and a normal andro-
genic group which presented no above characteristics. The
cutoff value of maternal BMI was 30 kg/m2 according to the
World Health Organization (WHO) criteria [32] as most stud-
ies included in our meta-analysis were based in the Americas
and Europe.

When considerable heterogeneity was still presented after
subgroup analyses, meta-regression analysis was conducted to
further investigate the source of heterogeneity. Funnel plots of
the outcomes enrolled the most studies to detect publication
bias, and Egger’s test was also used to assess the publication
bias of selected studies. Sensitivity analysis was performed
where appropriate to determine the robustness of the results.
Two-sided p < 0.05 was considered to be of statistically sig-
nificance. All analyses were carried out in Review Manager
software (Version 5.3; Copenhagen: The Nordic Cochrane
Centre, The Cochrane Collaboration, 2014) and STATA soft-
ware (Version 13.0; Stata Corporation, College Station, TX).

Results

Study Selection

A total of 105 citations were identified in electronic databases
after removing duplications. Of these, 94 studies were exclud-
ed after screening by title and abstract. Five studies were ex-
cluded for reasons after screening the full texts: 1 study was a
review, 2 studies reported no AMH outcomes, and 2 studies
were lack of extractable data. Finally, 6 papers including 3
case-control studies, 2 prospective cohort studies, and 1
cross-sectional study were included in this review [13,
22–26]. The selection process was documented with a

flowchart of Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (Fig. 1).

Characteristics of Included Studies

The details of the included clinical studies were listed in
Table 1. A total of 292 newborns of PCOS mothers and 574
newborns of healthy controls were reported. Three studies
[23–25] were conducted in the Americas, 2 studies [13, 22]
were conducted in Europe, and 1 study [26] was based in
Asia. Most studies reportedmaternal testosterone levels, while
only two studies reported maternal fasting insulin levels [23,
25]. Since most studies obtained the samples from mixed um-
bilical cord blood, results of Detti et al [24] from umbilical
arterial and venous cord blood separately were synthesized.
Most studies reported AMH levels in female and male off-
spring separately except for one study, which did not mention
the gender of newborns [23]. Mean age of mothers and gesta-
tional age at birth between the PCOS group and control group
were comparable in all studies as reported.

Methodological Quality Assessment of Included
Studies

The Newcastle-Ottawa Scale (NOS) was used to fulfill meth-
odological quality assessment (Table 2). The scores ranged
from 7 to 9 stars, and all studies were considered high-quality.
Nevertheless, some limitations can be found in some re-
searches. First, the history of hospital controls was not elabo-
rated in one study [13]. Secondly, there was no reliable med-
ical of patients provided in one prospective cohort study [26],
in which the control group was recruited from another re-
source of population that is different from the case group. In
addition, another observational study [24] recruited hospital
controls instead of community controls while a reliable expo-
sure record was absent. One thing worth being mentioned is
that all studies provided superior comparability of cases and
controls on the basis of the design and analysis. As the hor-
mone levels were measured in neonates with PCOS mothers
and healthy mothers, no data was missing, and the non-
response rates were considered 0.

Association of Maternal PCOS and AMH Levels in
Neonates

All 6 observational studies reported AMH levels in neonates.
A meta-analysis based on the random-effects model of these 6
studies showed a noteworthy rise of the AMH level in neo-
nates of PCOS mothers compared with control groups of
healthy mothers, with an overall SMD =0.62, 95% CI (0.28,
0.95), Q test p-value <0.0001, and I2 = 74%, suggesting het-
erogeneity among these studies (Fig. 2).
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The subgroup analyses were conducted based on fatal gen-
der, geographical region, diagnostic criterion, measure meth-
od, birth weight, maternal androgen, and maternal BMI
(Table 3). Pooled analyses demonstrated higher AMH levels
in female offspring (SMD = 0.64; 95% CI = [0.14, 1.14]).
Increased AMH levels were also observed in offspring of
American (SMD = 0.81; 95% CI = [0.47, 1.16]) and Asian
(SMD = 1.12; 95% CI = [0.79, 1.46]), PCOS mothers diag-
nosed by the NIH criteria (SMD =0.97; 95%CI = [0.74,
1.21]), hyperandrogenistic mothers (SMD =0.66; 95%
CI = [0.205, 1.114]), and maternal BMI > 30 kg/m2

(SMD=0.78; 95% CI = [0.39, 1.17]), irrespective of measure-
ment method or birth weight. However, no statistically notable
discrepancy was observed in AMH levels between PCOS
mothers’ neonates and healthy mothers’ neonates in the sub-
group of male neonates (SMD =0.60; 95% CI = [−0.11,
1.31]), groups of European mothers (SMD =0.08; 95%
CI = [−0.14, 0.30]), diagnosed by the Rotterdam criteria
(SMD=0.08; 95% CI = [−0.14, 0.30]), and with a maternal
BMI <30 kg/m2 (SMD=0.22; 95% CI = [−0.09, 0.54]).

Meta-regression

Meta-regression was conducted to investigate potential het-
erogeneity sources. Gender, geographical region, diagnostic
criterion, measure method, birth weight, maternal androgen,
and maternal BMI were used as predefined factors (Table 4).

Diagnostic criterion contributed crucially to the heterogeneity
(p=0.001). The REML estimate of between-study variance
decreased from 0.21 to 0 when we put diagnostic criterion into
univariate meta-regression.

Sensitivity Analysis and Publication Bias

Sensitivity analysis showed that the study of Kollmann et al [13]
made a remarkable contribution to the high heterogeneity (Fig.
3). By comprehensively scanning the research, an unmatched
excessive number of control group and the wide range of
AMH concentration might lead to the discrepancy. After exclud-
ing the study, I2 decreased from 74 to 19%with a constant result
(SMD=0.85; 95% CI = [0.60, 1.09]). The funnel plot of the
outcomes was constructed to detect the possibility of publication
bias (Fig. 4); upon visual inspection, funnel plot was not relative-
ly symmetric and suggested a little risk of publication bias.
Considering that the number of articles included is limited,
Egger’s test was performed to assess the publication bias (Fig.
5). The p-value for the Egger’s test was p=0.553, suggesting no
potential publication bias in involved studies.

Discussion

Our results demonstrated that, compared with neonates of
healthy mothers, AMH levels significantly grown in neonates

Fig. 1 PRISMA flow diagram
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of PCOS mothers. After deleting Kollmann’s research, the I2

decreased to 19% while results remained stable. Subgroup
analyses according to predefined factors including neonatal
gender, geographical region, measurement method, birth
weight, diagnostic criterion, maternal androgen, and maternal
BMI suggested that higher AMH levels were observed female
neonates and neonates born to American and Asian PCOS
patients, diagnosed by the NIH criteria, with maternal

hyperandrogenism or maternal BMI >30 kg/m2. This meta-
analysis supported the hypothesis that maternal intrauterine
environment disorders the ovarian function of the fetus and
contributes to the elevation of AMH levels in umbilical cord
blood, which promotes the development of PCOS during in-
fancy. To our knowledge, this is the first meta-analysis eval-
uating the connection between maternal PCOS and AMH
concentrations in neonates.

Fig. 2 Forest plot

Table 3 Meta-analyses of
subgroups Subgroups Number of study Result Heterogeneity

SMD (95% CI) p I2 (%) p value

Gender

Female 5 0.64 (0.14,1.14) 0.01 74 0.004

male 4 0.60 (−0.11,1.31) 0.10 84 <0.0002

Region

Americas 4 0.81 (0.47, 1.16) <0.0001 0 0.61

Europe 4 0.08 (−0.14, 0.30) 0.49 0 0.51

Asia 2 1.12 (0.79, 1.46) <0.0001 0 0.94

Diagnostic criteria

Rotterdam 4 0.08 (−0.14, 0.30) 0.49 0 0.51

NIH 6 0.97 (0.74, 1.21) <0.0001 0 0.63

Maternal androgen

High 4 0.66 (0.205, 1.114) 0.004 29 0.238

Normal 4 0.30 (−0.087, 0.695) 0.127 66 0.031

Method

ELISA 7 0.54 (0.11, 0.96) 0.01 81 <0.0001

Other 3 0.78 (0.39,1.17) 0.0001 0 0.43

Birth weight

Macrosomia 2 0.72 (0.29, 1.15) 0.001 0 0.48

NBW 4 0.64 (0.20, 1.08) 0.004 24 0.27

Maternal BMI

<30 5 0.22 (−0.09, 0.54) 0.16 45 0.12

>30 3 0.78 (0.39, 1.17) 0.0001 0 0.43

SMD standardized mean difference,CI confidence interval, p p values of SMD, I2 the value of I-squared statistics,
p value p values of heterogeneity chi-squared, NIH National Institutes of Health, ELISA enzyme-linked immune-
sorbent assay, NBW normal birth weight, BMI body mass index
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Currently, prenatal excess androgen exposure was shown
to formulate alterations in AMH expression in preantral and
antral follicles and at least in part mediate abnormal
folliculogenesis [33]. Regarding AMH concentrations, con-
troversy existed between observational studies for a long time.
Our study synthesized all of these results and resolved the
controversy by drawing a conclusion that increased AMH
levels which were positively associated with maternal PCOS
condition and maternal hyperandrogenism.

As generally considered, umbilical cord blood characteris-
tics reflected maternal, placental, and fetal conditions, which
might therefore represent potential disturbance of the intra-
uterine environment. In our meta-analysis, only two eligible
studies reported maternal AMH levels [13, 24]. Interestingly,
although higher AMH levels were revealed in PCOS mothers
compared with healthy mothers in these two studies, there was
no statistical discrepancy in AMH concentrations between
female offspring of PCOS and non-PCOS mothers, which
suggested that the AMH concentrations in umbilical cord
blood might differ from that in maternal serum. Since peptide

hormones were virtually unable to pass the placenta to a cer-
tain extent, it can be assumed that no passage of AMH existed
from fetus to mother, similar to what occurs with insulin.
Limited to maternal AMH data in included studies, the result
should be treated with caution. It was universally acknowl-
edged that higher AMH concentrations were in accordance
with increased serum androgen [34]. It could be a possible
mechanism in PCOS pathogenesis that AMH methylation or
altered steroid receptor balance in the fetal ovary (granulosa
cells) due to rising androgens results inhibition of follicle
growth [35]. Reduced P450 aromatase and augmented
androgen-producing enzyme activity were found in the pla-
cental tissue of women with PCOS, which impaired the pla-
cental protective function of the fetus from maternal
hyperandrogenism and allowed the passage of testosterone
through the placenta [36]. Retrospective researches expected
that maternal testosterone might act on the fetal ovaries and
recruited more preantral follicles to produce higher AMH
levels when they become functional at around 36 weeks of
gestation. The unbalance of steroid hormone in PCOS

Table 4 Univariate meta-regression analysis for potential variables between studies

Studies I2 res (%) Adjusted R2 (%) Coefficient SE t p 95% CI

Birth weight 6 16.02 0 0.083 0.319 0.26 0.808 (−0.802, 0.968)
Infant gender 9 80.47 −17.68 0.049 0.394 0.12 0.905 (−0.883, 0.980)
Maternal androgen 8 54.10 17.17 −0.358 0.333 −1.08 0.323 (−1.172, 0.455)
Diagnostic criteria 10 0 100.00 −0.910 0.166 −5.50 0.001 (−1.292, −0.528)
Maternal BMI 8 36.69 60.02 −0.602 0.292 −2.06 0.085 (−1.317, 0.113)
Method 9 71.85 −12.37 −0.205 0.375 −0.55 0.602 (−1.090, 0.681)
Study region 10 76.65 −13.73 0.044 0.230 0.19 0.855 (−0.488, 0.575)

I2 res the value of I-squared statistics of residual error, R2 the value of R-squared statistics, SE standard error, t t value of t test, p p value of t test, CI
confidence interval, BMI body mass index

  0.23   0.49  0.33   0.66   0.83

 Caanen 2016 female

 Caanen 2016 male

 Crisosto 2012

 Detti 2019 female

 Detti 2019 male

 Kollmann 2019 female

 Kollmann 2019 male

 Sir−Petermann 2006 female

 Tadaion 2019 female

 Tadaion 2019 male

 Lower CI Limit  Estimate  Upper CI Limit
 Meta−analysis estimates, given named study is omittedFig. 3 Sensitivity analysis of the

included studies
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mothers also seemed to promote luteinizing hormone (LH)
release and inhibit follicle-stimulating hormone (FSH) action
on aromatase, adding to the hyperandrogenic environment of
adult PCOS patients [37].

Another intrauterine environmental factor that might con-
tribute to the elevation of AMH concentrations was increased
maternal fasting insulin accompanied with elevated BMI [38].
In our meta-analysis, maternal fasting insulin levels were only
detected in two studies, nevertheless, a consistent result that
mothers with higher fasting insulin were more likely to give
birth to neonates with an increase of AMH levels [23, 25].
This could be explained due to the abnormal effect of insulin
action on AMH secretion by granulosa cells as suggested by
Park et al in characters without PCOS [39]. Genetic factors
might also underlie AMH overexpression in PCOS. Kevenaar
et al. conducted a study by a genetic approach, which inves-
tigated the role of ALK2, a type I receptor for AMH/BMP
signaling. It was also found that genetic variation within
ACVR1 was associated with AMH levels and follicle

numbers in PCOS women, suggesting that ALK2 signaling
contributed to the disturbed folliculogenesis in PCOS patients
[40]. These factors might be potential explanations for the
correlation between maternal PCOS condition and elevated
AMH levels in umbilical cord blood independent of excessive
androgen, and it could be hypothesized that AMHmethylation
might represent another epigenetic alteration, related to a dis-
turbed environment in utero in PCOS patients.

According to our meta-regression result, the diagnostic cri-
terion was the main source that contributed to the high hetero-
geneity. The NIH criteria that were proposed in 1992 at a
National Institute of Health sponsored conference on PCOS
and revised in 2012 [41]. All studies included in this meta-
analysis used the NIH criteria referred to the version of 1992
in which both clinical/biochemical hyperandrogenism and
chronic anovulation were required for the diagnosis. A con-
sensus workshop group sponsored by the European Society of
Human Reproduction and Embryology and the American
Society for Reproductive Medicine (ESHRE/ASRM) pro-
posed a new criteria called the Rotterdam criteria in which at
least two of the following three criteria were mandatory:
oligo-anovulation, clinical/biochemical hyperandrogenism,
and polycystic ovarian morphology (PCOM) on ultrasonog-
raphy [27]. It was reported that overall prevalence rates of
PCOS according to the Rotterdam criteria (with multiple
sub-phenotypes) were twice as high as those according to
NIH criteria in a recent meta-analysis [1]. Different results
caused by these two criteria in our subgroup study also sup-
ported the consensus that the Rotterdam criteria were more
comprehensive while the NIH criteria were more strict and
specific. In addition, inconsistencies might also derive from
sample types and measurement methods as shown in sub-
group analyses.

As expected, AMH concentrations were notably higher in
the umbilical cord blood of males than in females. However,
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the levels in PCOS boys and non-PCOS boys were similar.
AMH had been proved effective during the period of sexual
differentiation. In the male fetus, AMH was secreted by
Sertoli cells of the testes from early fetal life, which remained
a high level and thus induced physiological involution of the
paramesonephric Müllerian ducts. Although the regression of
the paramesonephric Müllerian ducts was complicated early
in gestation, the production process of AMH by Sertoli cells
continued until adulthood [42]. In the female fetus, the AMH
was secreted by granulosa cells of the ovarian follicles from
36 weeks of gestation until menopause, whose expression
peak was in preantral follicles and small antral follicles.
However, the AMH was hardly produced in primordial folli-
cles [37]. It could partially illustrate the difference in AMH
concentrations between boys and girls. Furthermore, maternal
PCOS state accompanied with hyperandrogenism or high
AMH might have a more critical influence on ovaries than
the testes in offspring; thus, more studies were required to
verify the hypothesis.

There were quite a few superiorities in our systematic re-
view and meta-analysis. First, all eligible studies were of high
methodological quality according to the NOS scoring system,
which might enhance the statistical power. Second, the result
of sensitivity analysis confirmed the stability of observed dif-
ferences in AMH levels in neonates of PCOS patients com-
pared with controls. Finally, the result of Egger’s test indicat-
ed no obvious publication bias was detected.

However, important limitations must be carefully consid-
ered in our study. First, there was high heterogeneity between
included studies; although we analyzed potential source of
heterogeneity by sensitive analysis, subgroup analyses, and
meta-regression analysis, there might be some other factors
not considered which would affect the reliability of our con-
clusion. Second, the number of studies included was limited,
and results from a small sample size should be understood
with caution. Third, somemissing and unpublished data might
produce a certain degree of systemic bias and hospital-based
case-control studies which might be susceptible to selection
bias. Future researches with a large sample size investigating
maternal PCOS status’ influence on the fetus are needed.

Conclusion

In summary, the positive findings of this study suggested that
AMH levels in neonates born to PCOS mothers were notice-
ably higher than those in neonates born to healthy controls. At
present, AMH is a reliable biomarker of ovarian reserve and
also clinically used to assist in the diagnosis of PCOS. We
demonstrated that AMHmight play a critical part in the PCOS
pathogenesis which inhibits folliculogenesis in the fetal stage.
The conclusion we draw from the pooled analysis may bring

favorable repercussions to female reproductive health and pro-
pel the study of pathogenesis and etiology of PCOS.
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