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Abstract
Spermatozoa should travel throughout the female reproductive tract to reach its ultimate goal, fertilization of the oocyte. At the
ejaculation moment, millions of sperm within a few milliliters of the ejaculate are deposited at the cranial segment of vagina and
make their journey to the fertilization site. This is done by means of various factors, such as sperm motility, the uterine and
fallopian tubes contractility, and the ciliary movement of the lining cells. During this migration, spermatozoa interact with the
female microenvironment both physically and molecularly. In this regard, the quality of the environmental conditions may affect
this interaction. Therefore, some alterations in women’s genital tract microenvironment, such as conditions that occur in female
reproductive disorders, may have detrimental effects on sperm reproductive function. In this review, human sperm migration
through the female tract is described, and the potential effects of different reproductive disorders at reproductive organs, such as
vagina, uterine cervix, uterus, fallopian tubes, and ovary on sperm survival and quality, are also argued. The understanding of
those conditions that may impair sperm fertility in the female genital tract can provide a more accurate diagnosis of the causes of
infertility in couples. This can ultimately lead to the discovery of effective treatment approaches.

Keywords Sperm quality . Female reproductive disorders . Vagina . Cervical mucus . Uterus . Fallopian tube . Polycystic ovary
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Introduction

Successful fertilization is a complex process whose prereq-
uisite is the entrance of maternal gamete (oocyte) into the
fallopian tube after ovulation. Moreover, in this process,
paternal gametes (sperm) should have the ability to migrate
throughout the female reproductive tract and reach the fer-
tilization site. In order to maximize the chance of sperm to

meet the egg, the journey of sperm through the female re-
productive tract is entirely regulated. During this journey,
the spermatozoa are propelled towards the oocyte by the
beating force of their flagellum and with the assistance of
muscle contractions, as well as the ciliary movements and
the fluid flow of the female tract [1]. From ejaculation to the
fertilization site, the female tract has various physical and
molecular interactions with sperm to keep sperm alive,
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facilitate their migration, and provide high-quality sperma-
tozoa for successful fertilization [2].

Evidence suggests that spermatozoa retain their fertility in
the female reproductive tract for about 5 days [3].
Spermatozoa are indeed the highly specialized cells with min-
imal organelles and cytoplasm; thus, they approximately lack
the transcription, translation, and cellular repair equipment
found in common somatic cells [4]. Hence, any alterations
in the female reproductive environment like anatomical or
molecular disorder, which may cause female infertility, can
have a direct influence on sperm quality and ultimately on
fertilization. In this paper, spermmigration through the female
reproductive tract was reviewed. In addition, various repro-
ductive disorders in the female genital tract and seminal fluid
that can interfere with sperm migration through the vagina,
cervix, cervical mucus, uterus, fallopian tubes, and ovary were
examined. In fact, it was aimed to learn more about the con-
ditions that may synergically affect the female fertility and
sperm quality and may be involved in the pathophysiology
of unexplained infertility.

Vagina

Vaginal pH

Vagina is an internal female reproductive organ that connects
the external genitalia (vulva) to the uterine cervix. Upon pu-
berty, the rising levels of estrogen induce the accumulation of
high amounts of glycogen in the multilayered stratified squa-
mous epithelial cells of the vagina. These cells are covered by
a mucosal layer and some cervicovaginal fluids [5, 6].
Glycogen is hydrolyzed by human α-amylase to maltose (di-
saccharide), maltotriose (trisaccharide), and α-dextrins (oligo-
saccharides), which are metabolized by lactobacillus species
to lactic acid [7, 8]. This metabolic process leads to acidic
vaginal pH. Some species of Lactobacillus also produce hy-
drogen peroxide (H2O2), bacteriocins [9], and presumably
biosurfactants [10], which are toxic to other microorganisms.
In combination with immunological responses, this acidic en-
vironment is considered a physical and biochemical barrier
against the overgrowth of bacteria and sperm cells [11].

Upon ejaculation, millions of sperm are inseminated at the
upper vaginal segment and undergo a long journey through
the female reproductive tract to reach the fertilization site [12].
It has been demonstrated that the optimal pH for sperm sur-
vival and function is between 7.5 and 8 and sperm motility
significantly decreases in PHs lower than 6 [13, 14]. Under
normal circumstances, vaginal pH is maintained between 3.8
and 4.2, which is toxic to sperm. Due to alkaline vaginal
secretions during sexual arousal and intercourse, along with
the alkaline components of semen obtained from the seminal
vesicle glands, the vaginal pH temporarily gets elevated from

4.3 to 7.2 in up to 8 s. This can protect spermatozoa against the
acidic environment [1, 15, 16].

Female-Related Factors Affecting Sperm Quality in
Vagina

Several factors can lead to the variability of vaginal pH and
consequently sperm quality by having an impact on lactoba-
cillus populations. These factors may include infections,
smoking, stress, pregnancy, menstruation, hormonal disor-
ders, aging, changes in estrogen levels during the lifespan,
cancer, and antibiotic consumption [17, 18]. Due to changes
in vaginal pH, defense mechanisms are diminished, and vagi-
na becomes more susceptible to infection. Infectious condi-
tions in vagina, such as trichomoniasis, bacterial vaginosis,
and cytolytic vaginosis alter the vaginal pH through the dis-
ruption of the lactobacillus microflora. This may affect sperm
motility and capacitation [19] or may even result in infertility
[20]. In this line, research findings have revealed that the
alkalization above 6.5 may increase the risk of vaginal infec-
tion [21, 22], and such infections can elevate the number of
leukocytes in vagina. Here, owing to the increasing trend of
sperm phagocytosis, sperm count is reduced [23]. Besides,
some studies have demonstrated that the rising vaginal acidity
has a negative effect on cervical mucus and sperm motility,
which results in infertility [24, 25]. Smoking is considered to
be another factor affecting the activity of lactobacilli. A study
carried out in 2014 showed that the proportion of vaginal
lactobacillus was lower in smokers than that in non-smokers.
These conditions probably arise from the anti-estrogenic ef-
fects of smoking and the presence of benzo[a]pyrene diol
epoxide in the secretions of smoking women [26].
Moreover, stressful conditions release the corticotrophin-
releasing hormone from the hypothalamus, which activates
the secretion of cortisol hormone from the adrenal cortex
[27]. Cortisol inhibits the accumulation of estrogen in vaginal
epithelial cells, and this contributes to a decreasing in the
population of lactobacillus. As a result, vaginal infection
may occur [28]. The elevated levels of estrogen during preg-
nancy also change the normal pH of vagina [29] by increasing
the accumulation of glycogen in vaginal epithelial cells [30]
and menstruation as the microbial diversity of vagina un-
dergoes some changes [26].

Male-Related Factors Affecting Sperm Quality in
Vagina

Semen is composed of two components, namely, sperm and
seminal plasma, which originate from testes, epididymis, and
accessory glands. Seminal plasma is a complex mixture of
several biochemical compounds, such as sugars, lipids, pro-
teins, metabolites, antioxidants, energy substrates, hormones,
cytokines, organic acids, polyamines, ions, and HCO3−/CO2
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[31, 32]. Thus, semen has a high buffering capacity, which is
referred to as a defense mechanism against endogenous fac-
tors like sperm fructolysis and exogenous factors like vaginal
acidic pH [33]. If semen is unable to raise the pH of vagina, it
can lead to sperm immobilization and death [33]. For exam-
ple, in such conditions as hypospermia where the volume of
semen is smaller than the normal ejaculation volume, the buff-
ering capacity of semen is unable to neutralize the vaginal
acidity. Furthermore, such pathological conditions as the con-
genital absence of seminal vesicles, or obstruction of one or
both ejaculatory ducts that cause the lack of alkaline secre-
tions, result in the acidification of the ejaculatory fluid [15,
34]. In addition, another factor that damages sperm after ejac-
ulation in vagina is semen hyperviscosity. The hypofunction
of prostate, infection, the high number of seminal leukocytes,
and oxidative stress may contribute to seminal hyperviscosity
[35]. As a result, spermatozoa are trapped in the very viscous
seminal coagulum, and, thereby, the normal sperm movement
in the female tract is prevented [35].

Figure 1 summarizes the female- and male-related factors
that may affect sperm quality in the female genital tract.

Cervix

Cervical Physiology and Function

Cervix is the lower part of uterus and connects the vaginal
lumen to the uterine cavity. Several hundred endocervical
glands secrete variable amounts of cervical mucus during the
women’s reproductive lifespan. Through mucus production,
the cervix protects sperm against the vaginal acidic environ-
ment and phagocytosis by leukocytes, filters out the abnormal
spermatozoa in motility or morphology [36], and creates an
appropriate environment for sperm storage, capacitation, and
migration into the uterus [12, 37, 38]. The cervical mucus acts
as a barrier against sperm migration; thus, the penetration of
sperm into the mucus depends on the seminal enzymes, exter-
nal forces (e.g., the cervix contractions) [39], the hydration
status of the mucus [40], and the number and motility of sper-
matozoa. The viscoelastic properties of human cervical mucus
throughout the menstrual cycle are influenced by ovarian ste-
roid hormones. This behavior of mucus plays an important
role in female fertility and the passage of sperm and is mea-
sured by microrheometry [41, 42]. Related studies have
shown that there is an inverse relationship between penetra-
bility and viscoelasticity of cervical mucus [41]. During the
periovulatory period, under the estrogen stimulation, cervix
secretes a hydrate (more than 96% water) and clear mucus
with low viscoelasticity [43]. This allows more sperm to pen-
etrate into the mucus [44]. After ovulation, progesterone pro-
vides a thick and viscous mucus in the cervix to prevent the
penetration of microorganisms and sperm into uterus [45–47].

Cervix generally acts as an effective factor in sperm selection;
for this reason, the adequate production of cervical mucus is
necessary to transfer sperm from vagina to the uterine cavity.
As a result, any problem in the structure and anatomy of cer-
vix or during the production and quality of mucus can impede
this process.

Female-Related Causes of Sperm Impairment in
Cervix

Anatomical and Organic Causes

One of the causes of sperm impairment in the cervix is the
structural/anatomical defect of cervix. Congenital anomalies
of the müllerian duct system that occurs during embryogene-
sis can disrupt any part of the müllerian ducts, such as
fallopian tubes, uterus, cervix, and the upper part of vagina
[48]. Although some of these disorders are diagnosed at birth,
others are not diagnosed until postpuberty. The range of dis-
orders varies from the agenesis or duplication of uterus, cer-
vix, and vagina to small uterine abnormalities [49]. Any dis-
order in each part of these areas may impair the sperm migra-
tion into the women’s reproductive tract, and, thereby, infer-
tility may arise [45]. Cervical stenosis, in which the
endocervical canal is partially or completely blocked, may
also prevent the normal fertility by impeding the passage of
sperm into the uterus [50]. Cervical stenosis may be congen-
ital or can be acquired by a scar created arising from infection
or surgical manipulations (e.g., colposcopy, cone biopsy, or
cryosurgery procedure). As a result, mucus productionmay be
disrupted owing to the removal of mucus-secreting cells lining
the endocervix and cervical crypts [51]. The less likely steno-
sis can possibly occur due to the obstructions produced by a
polyp, fibroid, or neoplasm [52]. Similarly, cervix may be
damaged due to interfering processes, such as dilation and
curettage (D&C) or instrument passage [53]. Besides, it has
been demonstrated that the intrauterine contact with diethyl-
stilbestrol (DES), a nonsteroidal estrogen that was widely
used during 1940–1971 to reduce pregnancy complications,
can induce cancer and various abnormalities in cervix and
uterus [52].

Cervical Mucus

Cervical mucus is a glycoprotein gel composed of an aqueous
phase and an insoluble mucin phase [54]. Mucins are the large
glycosylated polymers that are linked together by disulfide
bonds in order to form a complex network of interconnected
micelles, which can support the aqueous phase. The aqueous
phase consists of soluble proteins (e.g., albumin), trace metals
(e.g., iron), and some organic elements (e.g., fatty acid). The
protein content of cervical mucus is considered a proper index
for evaluating the sperm penetrability of mucus [41, 55]. The
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structure of the cervical mucus plays an important role in
female fertility. The increased viscosity of cervical mucus is
one of the most important barriers to the sperm passage.
Viscous mucus during the preovulatory phase is abnormal
and may be the result of an insufficient stimulation of estro-
gen, chronic cervicitis, or the abnormal function of mucin-
producing cells [37]. Abnormalities, such as severe
endocervicitis and acute inflammatory conditions, also have
an effect on mucus production and disrupt the sperm passage
with the increase of leukocytes, exogenous proteins, and bac-
terial toxins [37, 56, 57]. Additionally, abnormal acid (less
than pH 6) and alkaline (over pH 8.5) mucus of cervix can

also have detrimental effects on the sperm viability and mo-
tility [58]. Besides, the presence of antisperm antibodies like
IgA and IgG in the cervical mucus can impair the sperm pow-
er to penetrate into the cervical mucus. In this process, immu-
noglobulin A can prevent the progressive penetration of sperm
in the mucus, and immunoglobulin G also causes sperm death
[59]. In addition, cystic fibrosis is a genetic disorder that ad-
versely affects sperm penetration by changing the mucus qual-
ity. Cystic fibrosis is caused by mutations in the gene
encoding a cAMP-regulated chloride channel, the cystic fibro-
sis transmembrane conductance regulator (CFTR), affecting
the passage of sperm by producing a viscous and low-water

a  Female-related causes of sperm impairment in female genital tract

b  Male-related causes of sperm impairment in female genital tract

Fig. 1 Factors affecting sperm quality in female genital tract. a Female-related causes of sperm impairment in female genital tract. bMale-related causes
of sperm impairment in female genital tract
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cervical mucus [60–62]. Hormonal fluctuation in the repro-
ductive lifespan of a woman also affects the mucus secretion,
composition, and quality as well as the sperm penetration into
mucus [46, 57]. Hormonal dysfunction during the late follic-
ular phase is mainly caused by low estrogen production and
premature progesterone elevation. This dysfunction can make
the cervical mucus improper for sperm penetration, and, con-
sequently, it may lead to infertility [38].

Male-Related Causes of Sperm Impairment in Cervix

The progressive movement of sperm through the mucin net-
work depends on the size of the interstitial space between the
mucin micelles. Since the size of these spaces is smaller than
the head of the sperm, the sperm must have a progressive
motility to push their way through the mucus [63].
Therefore, any abnormality in sperm motility like astheno-
zoospermia can interfere with the movement of spermatozoa
through the mucus [12]. Moreover, oligozoospermia (low
concentration of spermatozoa), teratozoospermia (morpholog-
ically abnormal spermatozoa), and abnormal liquefaction are
correlated with sperm inability to penetrate into the cervical
mucus [37]. The presence of antisperm antibodies in the se-
men and on the sperm surface can also prevent sperm pene-
tration into the cervical mucus [64].

Other Factors

Somefactorschange theproductionorqualityofcervicalmu-
cus and, thereby, can havemultiple effects on spermpenetra-
tion. Numerous studies have shown that two common drugs,
namely, clomiphene citrate and propranolol, can be included
in this category. Several studies have reported that the use of
clomiphene citrate with the aim of improving ovulatory dys-
functionhasasignificantanti-estrogeniceffectonthecervical
mucus [65–68] and increases theviscosity andopacityofmu-
cus. Propranolol is another drug that is widely taken to treat
heart problems. It has been shown that propranolol brings
about sperm damage after oral administration due to a 4-fold
increase in the accumulation of the cervicovaginal mucus
compared to blood [69]. Propranolol accumulation can dis-
rupt sperm motility as it affects the production pathways of
glycolysis energy [70, 71]. Another factor is nicotine, and its
metabolite cotinine has been demonstrated to have an anti-
estrogenic effect. This can get accumulated in the cervical
mucus of smokingwoman [72–74].With regard to the effect
of nicotine on sperm, the results of an in vitro study suggested
that, when being placed at a concentration similar to the sem-
inalplasmaof smokers (70ng/ml),nicotinesuppresses sperm
progressive motility, reduces the percentage of viable sper-
matozoa, and increases the fragmentation of DNA in a dose-
dependent manner [75]. In the same way, an animal study
indicated that nicotine has a dose-dependent detrimental

effect on sperm parameters (e.g., reduced sperm viability,
motility, count, and normalmorphology) and fertility profile
inmale rats [76, 77].

Uterus

The uterine cavity is only a few centimeters in length (approx-
imately 3 cm). It is estimated that sperm can travel through it
in less than 10 min at the swimming speed of 5 mm/min [78].
In the uterus, spermatozoa move to the fallopian tube actively
with their progressive motility and passively with the peristal-
tic contractions of the uterine myometrium. It has been shown
that cranially directed contractions of uterine smooth muscle
exist in uterine ultrasound whose intensity increases during
the late follicular phase [64, 79]. There are several disorders
in the uterus that can affect the sperm quality by changing the
structure and anatomy or changing the uterus microenviron-
ment. Uterine abnormalities are often classified into congeni-
tal or acquired. Arcuate uterus, complete or partial uterine
septate, unicornuate or bicornuate uterus, uterine didelphys,
and müllerian duct atresia constitute the most common con-
genital uterine abnormalities. In the congenital malformations
of uterus, infertility is more likely to arise from the recurrent
pregnancy loss. Except for the agenesis of müllerian ducts
wherein uterus, fallopian tubes, cervix, and upper vaginal part
are absent, no data about the interfering migration of sperm
have been reported.

Acquired Disorders

Polyps

Endometrial polyps are a hyperplastic overgrowth of the endo-
metrium consisting of uterine glands, stroma, and blood vessels
that have been extruded into the uterine cavity. Aging generally
increases polyps. They are rare in women younger than 30 years
but are found in 5% of women aged 30–39 years and 10% of
women over 40 years of age. Besides, they are more likely to
occur in infertile women [80]. The frequency of polyps deter-
mined by hysteroscopy has been reported to be between 16.5 and
26.5% in patients with unexplained infertility and up to 46.7% in
endometriosis patients [81, 82]. A study conducted on 1000
women undergoing hysterectomy before IVF revealed that
32% of them had a polyp in their uterus [83]. However, polyps
may be considered to be a cause of infertility due to their me-
chanical interference with sperm and embryo transfer, implanta-
tion intervention, intrauterine inflammation, alteration uterine re-
ceptivity, and possibly the elevated production of inhibitory fac-
tors like glycodelin [84, 85]. Shokeir et al. reported that the
polyps located in the utero-tubal junction (UTJ) may lead to
the loss of ostium function and affect the sperm migration to
the fallopian tube [86, 87]. Research findings have shown that
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the surgical removal of UTJ polyps has a positive effect on
pregnancy results in ovulation induction and intrauterine insem-
ination (IUI) cycles [88]. Richlin et al. also reported that
glycodelin levels, the receptivity endometrial marker in plasma,
and uterine flushings increased in patients with polyps and
leiomyomas during the proliferative and preovulatory phase
compared to the control group [89]. It should be noted that
glycodelin is a glycoprotein with a very low level in the uterus
during the follicular and periovulatory phases and reaches its
peak 12 days after ovulation in order to prepare the uterus for
implantation [90]. It has been shown that it inhibits the binding of
spermwith oocyte zona pellucida and the activity of natural killer
cells in a dose-dependent manner [91, 92]. Therefore, its low
level around the time of ovulation contributes to successful fer-
tilization, whereas the elevated levels of glycodelin may disrupt
fertilization and implantation [93].

Fibroids

Uterine myomas, also known as fibroids, are the most com-
mon benign uterine smooth muscle tumors that originate from
the myometrium and are classified based on their location.
From among all the uterine neoplasms, leiomyoma has the
maximum interference with fertility [94]. Interfering mecha-
nisms with fertility in the presence of myoma are closely re-
lated to the number, size, and location of myoma. A systemic
review on this subject suggested that submucosal fibroids re-
duce pregnancy, implantation, ongoing pregnancy, and live
birth rate [95]. Fibroids are supposed to interfere with sperm
motility and fertility through a number of pathways, such as
the enlargement and deformation of the uterine cavity, as well
as the cervical displacement. Alterations in uterine contrac-
tions occur in the uterus with myoma due to changes in the
endometrial and myometrial blood supply. Similarly, the per-
sistence of menstrual efflux resulting from the deformity of
the uterine cavity may interfere with sperm transfer and im-
plantation [96, 97]. Moreover, inflammatory changes and im-
munological factors in the endometrium and secretions of the
uterus with myoma can engender the conditions that may
damage spermatozoa [94].

Adenomyosis

Adenomyosis is a benign nonneoplastic disorder of the uterus
that is caused by an invasion of the endometrium (glands and
stroma) into the myometrium. Despite the availability of con-
flicting evidence, adenomyosis appears to have a generally
negative effect on infertility and IVF results [98, 99].
Adenomyosis may change the normal peristaltic contractions
of the uterus by altering the structure and function of the
myometrium, and, thereby, the rapid and directed sperm trans-
fer gets disrupted [100]. The ultrastructure of uterine smooth
muscle cells (myocytes) in patients with adenomyosis is

different from that of the smooth muscle cells of normal uteri,
which probably influence the normal rhythmic myometrial
contractility [101]. The endometrium also shows an extensive
alteration in molecular expression levels among women with
adenomyosis. In this regard, it has been reported that the ex-
pression of the key endometrial receptivity gene (i.e., Hox-
A10) is reduced in the endometrial secretory phase of patients
with adenomyosis [102, 103]. Numerous studies have sug-
gested that alteration in the expression profile of inflammatory
markers, cytokines, and growth factors in the endometrium is
associated with infertility in adenomyosis. Patients with
adenomyosis often show the elevated levels of corticotropin-
releasing hormone [104], hypoxia-inducible factor 1α (HIF-
1α), IL-1β, IL-6, IL-8, IL-10, matrix metalloproteinase
MMP2 and MMP9, vascular endothelial growth factor
(VEGF) [97], β-catenin [105], L-selectin [106], and an ele-
vated number of NK cells and macrophages [107] in compar-
ison with normal fertile women. Also, some other factors,
including leukemia-inhibiting factor (LIF), LIF receptor α,
IL-11, integrin beta-3, and osteopontin, have been reported
to experience a decrease in women with adenomyosis [97,
108]. Therefore, the altered uterine microenvironment in the
presence of adenomyosis may interfere with the sperm quality
and motility. This claim has been reported in some in vitro
studies where the addition of IL-6 to sperm reduced the pro-
gressive motility in a dose-dependent manner [109, 110].

Intrauterine Adhesions

Intrauterine adhesions (IUAs) are defined as the formation of
fibrous strands inside the uterine cavity and/or cervix that cause
a partial or complete obstruction of the uterine cavity [111]. It is
believed that IUAs are caused by trauma to the uterine wall,
which induces some uterine wall adhesions during the wound
healing process [112, 113]. IUAs are known as Asherman's syn-
drome when they are associated with such symptoms as painful
cyclic hypomenorrhea, secondary amenorrhea, and infertility
[114]. A systematic meta-analysis review examining post-
miscarriage adhesions reported that 19.1% of women developed
IUAs after dilatation with blunt or suction curettage for miscar-
riage [115]. Adhesions are usually produced after postpartum
hemorrhage or endometrial infection resulting from uterine ma-
nipulation by dilation and aggressive curettage (D&C) [96]. The
possiblemechanism of infertility due to IUAs is not known, but it
may be related to interference with sperm and embryo transfer or
implantation resulting from the defective endometrial function
[111, 112, 116, 117].

Endometriosis

Endometriosis is a complex multifactorial disease character-
ized by the presence of endometrial glands and stromal cells
outside the endometrial environment [118]. These external
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tissues, called endometriotic lesions, can be found in the
fallopian tube, on the surface of the ovary, and on the surface
of the pelvic organs, which result in pain and infertility [119,
120]. It is estimated that 10–15% of women are affected by
endometriosis at the time of childbearing [120, 121]. About
50% of the patients with endometriosis appear to be subfertile
[122]. Studies have shown that women with endometriosis
have a lower fertility rate in assisted reproductive technology
(ART) outcomes [121–123] and even have a lower rate of
ART success in stage III/IV than patients with stage I/II
[121]. However, the rates of embryo cleavage, implantation,
and pregnancy were approximately similar in both groups
[123, 124]. The mechanism through which endometriosis
causes infertility in women is contingent upon the disease
stage. In general, some factors, such as anatomical distortion
of the fallopian tube and/or ovary, ovulatory dysfunction, al-
tered peritoneal microenvironment, deleterious effect on
sperm motility, decreased fertilization, and implantation, are
correlated with infertility in this disorder [125].

Numerous factors lead to the decline of sperm quality and
inability to fertilize oocytes in womenwith endometriosis. In this
domain, Mansour et al. observed that the peritoneal fluid of
women with endometriosis causes a significant increase in the
DNA damage of normal sperm, which is directly related to the
endometriosis stage and infertility duration [126]. They described
this observation as one of the mechanisms of infertility in endo-
metriosis. Recently, Sáez-Espinosa et al. cultured peritoneal fluid
of women with endometriosis with normal sperm and showed
that the long-term (48 h) culture of sperm with peritoneal fluid
had a negative effect on sperm motility, protein tyrosine phos-
phorylation, and relocation of glycocalyx sugars, while it had no
effect on the viability and acrosome reaction of spermatozoa
[127]. They explained that the high concentration of cytokines
in peritoneal fluid may reduce tyrosine phosphorylation and re-
sult in the decreased motility and capacitation. The correct redis-
tribution of sugars in the sperm plasma membrane is a major
requirement for spermatozoa capacitation. This feature has been
shown to be significantly impacted during the long-term (48 h)
culture of spermatozoa with the peritoneal fluid of endometriosis
patients [127].

Evidence suggests that these adverse effects of endometriosis
on sperm result from the changes occurring in the peritoneal fluid
microenvironment, which is directed towards an inflammatory
state. It has been reported that the levels of tumor necrosis factor
α (TNF-α), IL-1β, macrophage inhibitory factor (MIF), interleu-
kin-8, and interleukin-6 (IL-6) cytokines witness an increase in
the peritoneal fluid of endometriosis patients [128–130]. Yoshida
et al. showed that IL-6 and its soluble receptor, which are present
in the peritoneal fluid of endometriosis patients, reduce sperm
motility in a dose-dependent manner and are possibly in correla-
tion with GP130 [110]. TNF-α is a cytokine that is used as a
marker for the non-surgical diagnosis of endometriosis [131]. In
this light, Said et al. argued that TNF-α at pathophysiological

concentrations, similar to that present in endometriosis, reduce
the motility, plasma membrane integrity, and DNA damage of
spermatozoa [132]. In another study, they found that anti-
inflammatory drug infliximab could reverse the influence of
TNF-α on sperm [133]. Carli et al. also examined the dose-
dependent effect of cytokine MIF on normal sperm quality.
They showed that MIF at the pathophysiological concentration
levels had a negative effect on sperm capacitation and motility;
therefore, cytokineMIF has a role in endometriosis-related infer-
tility in women [134]. The results of a similar study revealed that
the elevated number of macrophages in the peritoneal fluid of
endometriosis women can result in the increase of phagocytosis
of healthy sperm and the decrease of their number and motility
[135]. Osborn et al. also found that the macrophages in infertile
womenwith endometriosis producemoreNO than that in normal
fertile women, which had adverse effects on embryo, sperm, and
implantation [136].

Autoimmunity also plays an important role in the patho-
physiology of endometriosis. It has been found that the levels
of endometrial autoantigen increase for both transferrin and
alpha 2-HS glycoprotein in the peritoneal fluid of women with
endometriosis [137, 138]. Mathur et al. added two transferrin
and alpha 2-H glycoprotein antibodies in various dilutions to
washed sperm and identified that both anti-transferrin and
anti-alpha 2-H glycoprotein reduce the survival and motility
of spermatozoa [137].

Moreover, the related data suggest that endometriosis can
interfere with utero-tubal sperm transport [139–141]. In this
regard, the results of in vitro experiments demonstrate that the
peritoneal fluid of endometriosis patients has a negative im-
pact on sperm binding to the zona pellucida of oocyte [142]. In
addition, a recent study done by Grande et al. [143] revealed
that endometriosis may play a role in reducing sperm quality.
In this study, the cervical mucus proteome of patients with
endometriosis was examined, and the results showed that the
expression profile of several proteins was altered compared to
the normal counterparts. The expression of six proteins also
increased where almost all of them had a key role in inflam-
mation. Nine proteins, including the ones relating to local
innate immunity and protection against oxidative stress,
showed a decreased expression. In addition, fifteen proteins,
including the ones involved in antimicrobial activities and
seminal plasma liquefaction proteins (i.e., human kallikreins
13 genes (KLK13)) were not detected in the cervical mucus of
endometriosis patients. It is argued that kallikreins are impor-
tant in controlling semen liquefaction and sperm motility.
Thus, the decreased expression of these proteins is likely to
contribute to sperm infertility [144].

Other Factors

It is claimed that there may be an association between cystic
fibrosis in women and the decreased sperm quality in the
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uterus. A study in the domain maintained that the co-culture
of sperm cells with endometrial cells treated with antisense
oligonucleotide against CFTR or with bicarbonate
secretion-defective cystic fibrosis epithelial cells reduced
the sperm capacitation and the ability to fertilize eggs.
This result confirmed the role of CFTR in controlling uter-
ine bicarbonate secretion and the presence of a link between
the defective CFTR and lower fertility levels in cystic fibro-
sis patients [145].

Fallopian Tubes

Fallopian tubes are approximately 10–12 cm long and connect
the uterine cavity to ovaries. They can be subdivided into four
parts, namely, intramural, isthmus, ampulla, and infundibu-
lum parts. After taking a long journey, only a few thousand
sperm finally reach the fallopian tubes [146], and the majority
of these sperm enter the tube which contains the ovulated
oocyte. The fallopian tube microenvironment plays an impor-
tant role in several primary processes of a successful pregnan-
cy, including sperm capacitation and transfer, capture and
transfer of oocyte, fertilization, and early embryonic develop-
ment [147]. In isthmus, spermatozoa get attached to the lining
epithelium and undergo the capacitation process under the
influence of tubular secretions. Isthmus is also considered a
sperm reservoir that releases only a limited number of sperm
at a time to prevent polyspermy by reducing the available
sperm for oocyte [148]. After the capacitation, spermatozoa
acquire a hyperactive movement and get detached from the
epithelium. Hyperactivation helps sperm overcome the bar-
riers, including the mucus of the isthmus, the corona radiata,
and the zona pellucida around the oocyte to reach the oocyte.
In some species (e.g., rabbits, cattle, pigs, and humans), the
UTJ is filled with a viscous mucus that may filter out patho-
gens and abnormal sperm cells in morphology and motility
[149, 150]. In this respect, isthmus is analogous to cervix. The
human spermatozoa must travel a long distance (3–5 cm) from
reservoir to the fertilization site [151]. The capacitated sperm
cells move this long way undergoing a combination of sperm
swimming and peristaltic contractions of the tube [1].
Moreover, the capacitated sperm movement is influenced by
thermotaxis (long-range) and chemotaxis (short-range) mech-
anisms. In thermotaxis, the thermotactically active spermato-
zoa acquire the ability to sense and respond to a temperature
gradient and change their swimming directions towards the
fertilization site (i.e., a warmer place) [152, 153]. Also, che-
motaxis is a mechanism wherein the capacitated-spermatozoa
have the capability of swimming up along with a concentra-
tion of chemoattractant gradient secreted by the oocyte and its
surrounding cumulus cells [154]. It seems that the ciliary mo-
tion of fallopian tube may also have some part in the transfer
of sperm since the co-culture of sperm with epithelial cells of

the fallopian tube increases the ciliary beat frequency (CBF)
[155]. Every factor that may disrupt the function of the
fallopian tube can lead to the incomplete transmission of gam-
etes, fertilization failure, and, ultimately, infertility.

Female-Related Cause of Sperm Impairment in
Fallopian Tubes

Themajor causes of tubal factor infertility can be referred to as
pelvic-peritoneal adhesions, tubal obstruction [156], infec-
tions, pelvic inflammatory disease (PID) mostly arising from
chlamydia [157], endometriosis [158], ectopic pregnancy
[159], abdomino-pelvic surgery, presence of polyps, and ma-
nipulation by intrauterine devices [160]. The tubal disease
may involve the proximal, distal, or entire tubal areas and is
responsible for about 25–30% of female infertility cases [161].
Both chlamydia and gonorrhea are among the most common
causes of sexually transmitted diseases and result in fallopian
tube infections and consequent infertility. About 40% of chla-
mydial infections cause PID, which is the most common cause
of tubal infertility and may involve several parts of tubes.
More than 50% of the cases suffer from this condition [162,
163]. PID may result in adhesions, scarring, obstruction, tubal
damage, ectopic pregnancy, and, consequently, infertility
[164]. If infections remain untreated, they can bring about
chronic salpingitis. In this case, the creating scar blocks the
tube and disrupts the normal activity of the tubular cells.
Endometriosis is another source of pelvic and peritoneal ad-
hesions that may interfere with the tubal function. Intraluminal
endometriosis may occasion the anatomical obstruction of the
lumen, and, thereby, the passage of sperm, oocyte, and em-
bryo is likely to get blocked. As a result of environmental
cytokines, sperm interactions with isthmus are reduced, and,
thereby, sperm pooling in this area is declined, as well.
Endometriosis has a negative influence on sperm attachment
to the epithelium of the oviduct [165]. Also, endometriosis can
change the CBF of the lining epithelial cells. In an in vitro
study, Lyons et al. examined the effect of peritoneal fluid in
six women with early stages of endometriosis on CBF of
fallopian tube epithelial cells. After 24 h of incubation, the
CBF was significantly reduced in contact with the endometri-
osis peritoneal fluid [166]. In addition, after abdomino-pelvic
surgery, pelvic adhesions and scarring may develop and re-
strict the movement of the ovaries and fallopian tubes where
the final result can be infertility. Uterine polyps, found in
approximately 11% of hysterectomy specimens, can also lead
to the temporary obstruction of the fallopian tube. In a study
on 323 women, hysteroscopy, conventional histology, and 4-
dimensional hysterosalpingo-contrast sonography (4D-
HyCoSy) were used to assess the relationship between endo-
metrial polyps and fallopian tube patency. The results showed
that the prevalence of endometrial polyps was significantly
higher in infertile patients with bilateral fallopian tube
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obstruction than that in patients with bilateral fallopian tube
patency (42.9% vs. 1.20%) [167]. Thus could create mechan-
ical obstruction depending on location and size. According to
animal studies, smoking may also be an effective factor in
tubal infertility. The culture of hamster infundibulum with
the smoke solution brought about a dose-dependent reduction
in CBF where the CBF was reversible after washing [168].
This group also showed that contact with the smoke solution
can disrupt the oocyte cumulus pick up rate and ciliary beat
frequency in a dose-dependent manner [169].

Male-Related Cause of Sperm Impairment in Fallopian
Tubes

The research data on animal studies suggested that there may
be a link between cystic fibrosis in men and the ability of
sperm to undergo capacitation. In one study, the addition of
a CFTR inhibitor to mouse sperm significantly reduced the
capacitation and the events associated with HCO3− in sperm
[170]. This result suggests that the CFTR gene plays an es-
sential role in the process of capacitation and regulation of the
entry of bicarbonate ions and subsequent events. The conduct
of more research is required to establish the role of this gene in
human infertility. In another study, the expression of the
CFTR gene in sperm of male three groups (20–40, 40–60,
and 60 years) was investigated. The results showed that the
CFTR expression decreased in the equatorial segment and
neck as an age-dependent manner. The reduction in the ex-
pression of CFTR is found to be associated with a decrease in
the forwardmotility and HCO3− sensitivity required for sperm
capacitation [171].

Ovary

Potential Role of Polycystic Ovary Syndrome in Sperm
Impairment

Polycystic Ovary Syndrome

Polycystic ovary syndrome (PCOS) is a common hormonal
disorder that affects 5–10% of women at the childbearing age;
besides, this disorder is associated with significant ovulatory
dysfunctions [172, 173]. PCOS is characterized by a variety of
signs and clinical and biochemical disorders, including ovu-
latory dysfunction, hyperandrogenism, hypertension, insulin
resistance, type 2 diabetes, visceral obesity, cardiovascular
disease, and infertility [174–177]. PCOS patients often show
an elevated number of impaired oocyte qualities. This is likely
to result in the decreased fertilization and implantation rate
and the increased miscarriage rate, which are possibly associ-
ated with abnormal paracrine and endocrine factors like hor-
mones, growth factors, and cytokines in the intra- and extra-

follicular microenvironment [178–180]. The direct effect of
PCOS on sperm quality in the female reproductive tract has
not been studied yet; therefore, it is felt necessary to study the
alterations of the female tract microenvironment in this path-
ologic disease that may affect the survival and quality of
spermatozoa.

Hormones and Growth Factors

Differential expressions in two pituitary gonadotropins, name-
ly, luteinizing hormone (LH) and follicle stimulating hormone
(FSH), have been reported in PCOS patients. It is noteworthy
that gonadotropins are fundamental to sexual development
and reproduction. Numerous studies have reported that
PCOS disorder is correlated with higher LH and lower FSH
serum levels as compared to the women with normal menstru-
al cycles [181–183]. Women with PCOS also elevated some
free circulating levels of androgens either due to the elevated
production of ovary or due to the inhibition of sex hormone-
binding globin synthesis by the liver [182, 184, 185]. Leptin is
a peptide hormone secreted by adipose tissue, and its presence
is essential for normal reproductive function. However, when
the level of this hormone increases, it can have detrimental
effects on the reproductive system. The high levels of leptin
were found in follicular fluid and serum among women with
PCOS, and they were directly associated with the reduced
ovarian stimulation and responsiveness, decreased oocyte
maturation, embryo quality, and pregnancy rate [186, 187].
Furthermore, the involvement of insulin resistance and com-
pensatory hyperinsulinemia has been reported in women with
PCOS. It has been also claimed that hyperinsulinemia is asso-
ciated with the decreased oocyte quality, fertilization, implan-
tation, and the increased rate of miscarriage [188–190]. In
addition, numerous researches have lent support to the claim
that the elevated serum and/or follicular fluid levels of some
growth factors include epithermal growth factor (EGF), fibro-
blast growth factor (FGF), insulin growth factor (IGI)-1,
brain-derived neurotrophic factor (BDNF), transforming
growth factor (TGF)-β family like anti-mullerian hormone
(AMH), and vascular endothelial growth factor (VEGF).
These factors are closely linked to the pathophysiology of
PCOS patients [191–196].

Cytokines

The results of related studies have revealed that the metabolic
signs and symptoms of PCOS can be associated with the pres-
ence of a chronic low-level inflammation state [197]. Kelly
et al. reported that PCOS women had higher levels of C-
reactive protein (CRP) than equal weight control women
[198]. Similarly, it has been shown that the levels of pro-
inflammatory IL-8 cytokine are significantly high in PCOS
women [199]. There are more lymphocytes and macrophages
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in the ovarian tissue of women with PCOS. This leads to the
secretion of inflammatory cytokines, such as TNF-α and IL-6.
Furthermore, the elevated levels of IL-1α and IL-1β [200] and
a reduced level of IL-17 were reported in the serum of PCOS
patients. Having evaluated the follicular fluid of PCOS wom-
en, Gallinelli et al. argued that the IL-12 levels in these women
decreased significantly and IL-13 in them increased signifi-
cantly compared to the women with a normal ovulation. In
addition, they concluded that the total number of follicular
fluid-activated T lymphocytes and the follicular fluid T
helper/T suppressor ratio in normal women were higher than
those in PCOS patients [201].

Other Factors

Another factor that experiences an increase in PCOS patients
is the oxidative stress resulting from the production of exces-
sive reactive oxygen species (ROS). In PCOS women, an
increase in ROS levels, along with a decrease in antioxidant
defense system, is directly related to poor oocyte quality, de-
creased fertilization, embryo quality, and success in clinical
pregnancy. Moreover, it is noteworthy that the elevated ho-
mocysteine concentrations in serum and follicular fluid, a
sulfur-containing amino acid, and the metabolite of essential
amino acid methionine are adversely correlated with oocytes
and embryo quality. These factors bring about a decreased
fertilization and pregnancy rate and an increased recurrent
spontaneous abortion in PCOS women [202–204].

Potential Relation of PCOS Pathophysiologic Condition
with Sperm Impairment

Various studies have been conducted on subfertile or infertile
men to determine the possible reasons for the decline of sperm
quality and the correlation of infertility with different factors.
It has been established that the elevated serum concentration
of TNF-α, interferon-gamma (IFN-γ), IL-2, IL-4, IL-6, IL-8,
and IL-21 cytokines are associated with the unexplained male
infertility [205]. One study in this context showed that TNF-α
and IL-6 levels have a significant correlation with the sperm
lipid membrane peroxidation level [206]. Additionally, it has
been demonstrated that sperm concentration and motility were
inversely linked with IL-18 levels [207]. Likewise, it has been
reported that testosterone concentrations in the semen of in-
fertile men (75 ± 11 pg/100 μL) was higher than that in the
semen of fertile men (29 ± 3 pg/100 μL). By the same token,
the data of an in vitro study suggested that the incubation of
semen with three different concentrations of testosterone (50,
150, and 300 pg) is associated with a dose-dependent reduc-
tion of sperm motility [208]. A case-controlled study also
showed that the high concentrations of leptin and insulin in
obese men can have detrimental effects on sperm parameters,
including low sperm concentration and vitality, reduced

mitochondrial membrane potential, and high DNA fragmen-
tation compared to non-obese men [209]. In another research,
male Wistar rats were fed with a high-fat diet, and, after sev-
eral weeks, an increase in obesity index and leptin came into
being. In this way, sperm quality was also reduced with a
decrease in motility as well as a decrease in their fertility
potential (178). Furthermore, an increase in ROS levels is
associated with decreased sperm motility and vitality, im-
paired sperm function and fertility, sperm DNA damage, and
male factor infertility [210–212]. In fact, it has a negative
effect on the formation of pronucleus, blastocyst formation,
and pregnancy rate after ICSI [210, 213]. Eventually, hyper-
homocysteinemia may affect male fertility by reducing the
morphology, concentration, and motility of sperm [214,
215]. These studies suggest that the pathophysiological con-
ditions that occur in the microenvironment of the female re-
productive tract among PCOS patients may affect sperm sur-
vival, motility, and fertility.

Conclusions

The pathophysiological conditions discussed in this review
were revealed to have the potential to alter the environment
of the female reproductive tract by changing the population of
immune cells, hormone and growth factors, inflammatory fac-
tors, and the gene expression or mechanical factors (e.g., ob-
struction). Thus, the sperm cells that pass through vagina,
cervical mucus, uterus, and fallopian tubes to reach oocytes
can also be affected by this inflammatory microenvironment.
Therefore, it is recommended that physicians should pay spe-
cial attention to the factors affecting sperm cells in the female
tract, such as the buffering capacity and PH of the vagina,
hormonal dysfunction and the quality of cervical mucus, the
presence of any disorders in the uterus like polyp or fibroids,
and disorders like endometriosis and PCOS. In addition, the
male medical history and semen analysis should be assigned
credit and taken into consideration. The evaluation of all the
factors interfering with the quality of oocytes, sperm, and
embryos in the female reproductive system could provide a
more detailed outlook to understand the exact cause of infer-
tility and find effective treatment approaches, such as laparo-
scopic surgery procedure or assisted reproduction technolo-
gies, such as intrauterine insemination (IUI), in vitro fertiliza-
tion (IVF), and intracytoplasmic sperm injection (ICSI).
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