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Abstract
The objective of this research is to study the effects of TGF-β1 inhibition on endometrial receptivity and pregnancy outcomes in
mice with adenomyosis. Experiments were done using a mouse model of adenomyosis which took place in a hospital-affiliated
laboratory. The mouse model used for this research is ICR mouse. Adenomyosis was induced by oral gavage of tamoxifen
(TAM) from postnatal days (PNDs) 1 to 4 in ICR mice. Bilateral intrauterine injection of anti-TGF-β1-neutralizing antibody or
isotype IgG or PBS was performed at PND42. The mice were then either sacrificed or mated at PND64 followed by sacrificing at
gestational day (GD) 4 or proceeding to delivery. Implantation numbers, rate of dams with live birth, live birth numbers, survival
at 1 week old, and pup mortality rate after weaning were recorded. Collagen was demonstrated by Masson’s trichrome and Van
Gieson’s stains. Uterine expression of a receptivity marker, leukemia inhibitory factor (LIF), was examined by quantitative
reverse transcription-polymerase chain reaction (qRT-PCR), Western blot, and immunohistochemistry (IHC). Anti-TGF-β1
treatment increased the mean implantation numbers, fecundity rate, the rate of dams with live birth, pup survival rate at 1 week
old, and pup mortality rate after weaning. Collagen expression in uteri with adenomyosis was attenuated by anti-TGF-β1
treatment. Increased LIF expression by anti-TGF-β1 treatment was detected by qRT-PCR, Western blot, and IHC. The results
suggest that inhibition of TGF-β1 improves pregnancy outcomes by restoring endometrial receptivity in mice with adenomyosis.

Keywords Adenomyosis . Tamoxifen . Leukemia inhibitory factor . Endometrial receptivity . Transforming growth factor-β1

Introduction

Adenomyosis is defined as the invasion of endometrial glands
and stromal cells deeply into the myometrium and is estrogen-
dependent [1]. This disease is manifested by pelvic pain, dys-
menorrhea, and menorrhagia and usually results in
subfertility. Genetic factors and inflammation play critical

roles in the pathogenesis of adenomyosis [2]. Risk factors of
adenomyosis include multiparity, early menarche (< 10 years
old), short menstrual cycle (< 24 days), and oral contraceptive
usage [3]. Although adenomyosis is a hormone-dependent
disease; treatment by progestogens or GnRH agonist exhibits
limited effect [4]. The ineffectiveness of medical treatments
remains enigmatic.
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Adenomyosis is suggested to be associated with fibrosis
[5–7]. Slowly progressive epithelial-mesenchymal transition
(EMT), fibroblast-to-myofibroblast trans-differentiation
(FMT), and smooth muscle metaplasia (SMM) play important
roles in the development of fibrosis [5–7] and are observed in
murine adenomyosis [5, 8, 9]. Specifically, EMT is character-
ized by loss of epithelial cell polarity and cell-cell adhesion
[10] leading to the gain of migratory and invasive properties
by stromal cells [10]. Moreover, EMT is associated with
embryogenesis/organ development, tissue regeneration/organ
fibrosis, and cancer progression and metastasis [11].
Transforming growth factor-β (TGF-β), Wnt/β-catenin,
Notch1/Numb/Slug signaling pathway, and estrogen are all
involved in the activation of EMT [11, 12].

Anti-inflammatory TGF-β1 is the most abundant isoform
of the TGF-β family molecules secreted by various cells [13].
TGF-β1-Smad2/3-signaling pathway induces fibroblast pro-
liferation, extracellular matrix synthesis, EMT, FMT, and
resulting fibrosis [13–15]. High levels of TGF-β1 in uterine
lavage from patients with adenomyosis were observed [16].
Hyperstimulating uterus by TGF-β1 results in decreased re-
ceptivity in rats [17]. A mouse model provides evidence that
TGF-β1-induced EMT and FMT result in fibrosis, suggesting
their potential roles in the pathogenesis of adenomyosis [5].
Reduced blood flow caused by the high content of fibrotic
tissues in adenomyotic foci plays a potential role in impeding
the hormonal therapy of adenomyosis that ultimately leads to
hysterectomy [18]. Although decreased endometrial receptiv-
ity is observed in patients with intrauterine adhesion accom-
panied by fibrosis, direct evidence demonstrating the associa-
tion of uterine fibrosis and endometrial receptivity is lacking
[19]. Therefore, TGF-β1 represents a potential therapeutic
target for adenomyosis to reduce fibrosis and improve endo-
metrial receptivity.

Blastocyst implantation into a receptive endometrium dur-
ing the window of implantation (WOI) is critical for the main-
tenance of gestation [20]. In women with regular 28-day cy-
cles, the WOI occurs around days 21–24 of a menstrual cycle
[21], whereas it occurs between days 3 and 4 of gestation in
mice [22]. Leukemia inhibitory factor (LIF) is a glycoprotein
secreted by diverse cell types. LIF displays pleiotropic func-
tions, including regulating blastocyst growth [21], endometri-
al decidualization, trophoblast differentiation, and invasive-
ness as well as blastocyst apposition, adhesion, and attach-
ment to the pinopodes during implantation [23–25].
Endometrial receptivity is pivotal for blastocyst acceptance
and implantation when the endometrial epithelium acquires
a functional, but transient, ovarian steroid-dependent pheno-
type. Human blastocyst and endometrium both express LIF
receptor (LIFR) and gp130 [24]. Binding of LIF and LIFRβ/
gp130 leads to activation of the Janus kinase/signal transducer
and activator of transcription 3 (JAK/STAT3), mitogen-
activated protein kinase (MAPK), and phosphatidylinositol-3

phosphate kinase (PI3K) pathways [26, 27] that induce cell
differentiation, survival, and resulting self-renewal [27]. LIF
expression is increased from days 18 to 28 during a menstrual
cycle with a peak at day 20 in endometrial biopsies [28]. In
mice, LIF is specifically expressed in endometrial glands at
gestational day (GD) 4 [29]. In womenwith adenomyosis, LIF
was found in both glandular and stromal cells in the basal
layer of the endometrium [30]. Moreover, LIF expression is
decreased in infertile women during the WOI, compared with
fertile controls [31, 32]. Thus, LIF is used as a marker for
endometrial receptivity [33, 34].

Successful implantation depends on optimal endometrial
receptivity and trophoblast invasion. Defective implantation
causes infertility, miscarriage, intrauterine fetal growth restric-
tion, and preeclampsia. Therefore, improvement of endome-
trial receptivity has become critical in treating patients with
adenomyosis who desire to reproduce. This is the first study
that investigates whether TGF-β1 neutralization can improve
uterine receptivity and pregnancy outcomes in uteri with
adenomyosis using a mouse model.

Materials and Methods

Adenomyosis Mouse Model

The animal studies were conducted under E-Da Hospital
Institutional Animal Care and Use Committee approval (per-
mit number: IACUC-105024). Pregnant ICR mice (gestation-
al age around 15–16 days) were purchased from BioLASCO
Taiwan Co., Ltd. After delivery, each dam and its pups were
housed in the same cage under controlled conditions (24 °C,
12:12 light-dark cycle with lights on at 6:00 AM). Female
neonates were treated with 1 μg/g body weight of tamoxifen
(TAM) suspended in peanut oil/lecithin/condensed milk mix-
ture (2:0.2:3 v/v/v)/day or the same volume of solvent by oral
gavage from postnatal days (PNDs) 1 to 4 (Fig. 1) [35]. At
PND42, both uterine horns of TAM-treated mice were
injected with 10 μg of anti-mouse TGF-β1 antibody
(BioLegend, San Diego, CA, USA), isotype IgG (Novus,
Centennial, CO, USA), or 1x PBS, whereas the uterine horns
from solvent-treated mice were treated with isotype IgG or 1x
PBS only. The ideal dose of anti-TGF-β1 was determined by
a pilot dose-dependent study. All mice were mated at PND64
and the pregnancy outcomes were examined after delivery
(Fig. 1). Masson’s trichrome staining and Van Gieson’s stain-
ing were used to confirm fibrosis formation at PND64. Mice
receiving sham surgery were used as a surgical control.
Furthermore, the pregnancy outcomes include (1) implanta-
tion number (live delivery number at birth + miscarriage
counting after sacrificing dams following weaning); (2) fecun-
dity rate; (3) rate of dams with live birth; (4) live delivery
number; (5) pup survival number, survival rate at 1 week
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old, and mortality rate after weaning. All of the uteri were
harvested at GD4 for the evaluation of endometrial receptivity
by examining LIF expression (Fig. 1).

H & E Staining

Paraffin-embedded tissue sections (4 μm) were prepared and
placed on slides pre-coated with poly-L-lysine followed by
deparaffinization and rehydration. Then, the sections were
stained with hematoxylin and eosin. Finally, the slides were
cleared with xylene for 5 min × 2 before mounting with DPX
mounting medium (Electron Microscopy Science, Hatfield,
PA, USA) and examined under a BX43 light microscope
(Olympus, Tokyo, Japan).

Masson’s Trichrome Staining

After deparaffinization and rehydration, tissue sections were
incubated in Bouin’s solution (Sigma-Aldrich, St. Louis, MO,
USA) at 56 °C for 15 min. The slides were then stained by
Weigert’s iron hematoxylin, Biebrich scarlet-acid fuchsin, and
aniline blue solution following the manufacturer’s instructions
(Sigma-Aldrich). An Olympus BX43 light microscope was
used to capture images.

Van Gieson Staining

Mice uterine sections were stained by following the standard-
ized manufacturer’s instructions (Abcam, Cambridge, UK).
Slides were deparaffinized and rehydrated in distilled water.
The slides were incubated with an elastic stain working solu-
tion for 15 min. After washing, the slides were treated with a
differentiating solution for 1 min and washed for 3 min
followed by treating with sodium thiosulfate for 1 min. After
washing, the slides were stained with Van Gieson’s solution
for 3 min and rinsed in 95% ethanol × 2. Finally, the slides
were dehydrated with 10% ethanol and mounted with

Permount mounting medium (Leica Biosystems, Buffalo
Grove, IL, USA). The images were obtained by a BX43 light
microscope.

Quantitative Reverse Transcription Polymerase Chain
Reaction

Total RNA was extracted from the uteri using a total RNA
purification plus kit (Sigma-Aldrich). Reverse transcription
used SuperScript™ III First-Strand Synthesis System
(Invitrogen, Carlsbad, CA, USA). Specific primer sets for
mouse LIF (forward sequence: TCAACTGGCACAGC
TCAATGGC; reverse sequence: GGAAGTCTGTCATG
TTAGGCGC; product length: 677 bp) and GAPDH (forward
sequence: CATCACTGCCACCCAGAAGACTG; reverse
sequence: ATGCCAGTGAGCTTCCCGTTCAG; product
length: 153 bp) (ThermoFisher Scientific, Waltham, MA,
USA) measured mRNA levels using PowerUp SYBR Green
Master MIX based detection (Thermo Fisher Scientific) on a
StepOneplus™ real-time PCR system (Thermo Fisher
Scientific). Relative gene expression was analyzed according
to the 2−ΔΔCt method. All samples were assayed in triplicate
reactions. Melting curve analysis determined the specificity of
the amplified products and the absence of primer-dimer
formation.

Western Blot

Mouse uteri were homogenized in 100 μL of RIPA lysis buffer
(G-Bioscience, St. Louis, MO, USA) containing a protease
inhibitor cocktail (Abcam) (v/v 1:200). The supernatants were
collected after centrifugation (Hettich Co., Föhrenstr,
Tuttlingen, Germany) at 5000 rpm for 10 min followed by
12,500 rpm for 20 min at 4 °C. Protein concentrations were
determined using a Bradford protein assay (Bio-Rad, Hercules,
CA, USA). Twenty micrograms of whole-tissue lysate was
added to the sample-loading buffer (0.25 M Tris-HCl,

WeaningBirth 1 2 3 4

42

64

PND

Delivery

Pregnancy 
outcomes

GD4

LIF exp
Mating

Injection

TAM
A. Both Horns: PBS or IgG
B. Both Horns: α-TGF-β1

GD0
Tissue

Collection
Tissue

Collection

1 w/o

Fig. 1 Experimental design. Female neonates were treated with or
without 1 μg/g body weight of TAM from PNDs 1 to 4. At PND42, the
mice were injected with 1x PBS or isotype IgG or 10 μg of anti-mouse
TGF-β1 antibody into both uterine horns. The mice were mated at

PND64. Pregnancy outcomes at delivery, 1 week old (w/o), and after
weaning were recorded. In additional groups, the uteri were collected at
PND64 and GD4 to examine the formation of adenomyosis and implan-
tation, respectively
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pH 6.8, 10% sodium dodecyl sulfate (SDS), 25% β-
mercaptoethanol, 50% glycerol, and 0.25% bromophenol blue)
and denatured at 100 °C for 10 min. The proteins were sepa-
rated by 10% SDS-polyacrylamide gel electrophoresis and
transferred onto a polyvinylidene difluoride membrane (GE
Healthcare Bio-Sciences, Pittsburgh, PA, USA). The mem-
branes were blocked in 5% non-fat milk in PBST containing
NaCl, 136.9 mM; KCl, 2.68 mM; Na2HPO4·2H2O, 6.39 mM;
KH2PO4, 1.76 mM; and 0.5% Tween 20, pH 7.4 for 1 h at
room temperature. Subsequently, the membranes were washed
in PBST and incubated with anti-GAPDH (1:10,000 (v/v)) or -
LIF (1:100 (v/v)) antibody overnight at 4 °C. The membranes
were then washed in PBST for 15 min × 3 and incubated with a
secondary antibody (1:10,000, Jackson ImmunoResearch,
West Grove, PA, USA) for 1 h at room temperature. After
washing with PBST for 15 min × 3, chemiluminescent detec-
tion was performed using the chemiluminescent HRP substrate
(Millipore-Sigma). Autoradiography was done by a
BioSpectrum™ 500 Imaging System (UVP, Upland, CA,
USA). Densitometry generated by ImageJ v1.46 DIA software
(IHC Image Analysis Toolbox, National Institutes of Health,
WA, USA; https://imagej.nih.gov/ij/index.html) was used to
semi-quantify the protein expression. The protein abundance
was normalized to each corresponding GAPDH expression.

Immunohistochemistry

The rehydrated paraffin-embedded sections were immersed in
3% H2O2 in 100% methanol for 10 min followed by a 3-min
wash with 1x PBS × 3. Tissues were blocked with 0.5% bo-
vine serum albumin (BSA) for 30min and then incubated with
rat monoclonal anti-mouse LIF antibody (1:100 (v/v), Abcam)
for 2 h at room temperature. After washing, the slides were
treated with an HRP-conjugated secondary antibody for
40 min at room temperature. Replacement of primary anti-
body by isotype IgG was used as a negative control. The
immunoreactivity was displayed by 3,3′-diaminobenzidine
(DAB) chromogen (Leica Biosystems). Sections were lightly
counter-stained with hematoxylin for 20s, then, dehydrated in
a gradient of alcohol and xylene, and finally mounted with
Permount mounting medium (Leica Biosystems). The slides
were examined using an Olympus BX43 light microscope.

Statistics

The quantification of Masson’s trichrome staining, Van
Gieson’s staining, and IHC results was performed using
ImageJ v1.46 DIA software.

The Kolmogorov-Smirnov one-sample test first examined
the variance and normality of results. The statistical significance
of results with equal variance was then examined by Student’s t
test. Results with an unequal variance that passed or failed nor-
mality testing were evaluated by Student’s t test assuming

unequal variance or the Mann-Whitney rank-sum test, respec-
tively. P < 0.05 was considered statistically significant.

All statistical differences were analyzed using SigmaPlot
software 11.0 (Systat Software, San Jose, CA, USA).

Results

Collagen Expression Was Reduced by Anti-TGF-β1
Treatment

The collagen fibers reflecting the levels of fibrosis were de-
tected byMasson’s trichrome stain (Fig. 2a) and VanGieson’s
stain at PND64 (Fig. 3a). In Masson’s trichrome staining,
myometrial collagen expression was increased in the TAM-
treated mice receiving sham surgery (7.78 ± 0.59), PBS (8.82
± 0.71), or IgG (9.07 ± 0.86), compared with the control group
(sham: 0.90 ± 0.08; PBS: 0.88 ± 0.14; IgG: 0.81 ± 0.18).
Compared with PBS- (8.82 ± 0.71) or IgG-treated (9.07 ±
0.86) mice, anti-TGF-β1 reduced collagen expression (4.29
± 0.56) in mice treated with TAM (Fig. 2b). Consistently, in
Van Gieson’s staining, TAM treatment enhanced myometrial
collagen expression in mice receiving sham surgery (6.66 ±
0.52), PBS (6.20 ± 0.78), or IgG (7.25 ± 0.65), compared with
the control groups (sham: 1.26 ± 0.06; PBS: 1.30 ± 0.21; IgG:
1.37 ± 0.34). In TAM-treated mice, anti-TGF-β1 suppressed
collagen expression (2.60 ± 0.28), compared with the PBS-
treated mice (6.20 ± 0.78) or IgG-treated mice (7.25 ± 0.65)
(Fig. 3b).

Pregnancy Outcomes Were Improved by Anti-TGF-β1
Treatment in Adenomyotic Mice

Compared with control, TAM significantly decreased implan-
tation numbers in mice receiving either sham surgery (12.9 ±
0.81 vs. 3.80 ± 0.57) or IgG (11.5 ± 0.43 vs. 4.00 ± 0.58) or
PBS (11.7 ± 1.36 vs. 3.30 ± 0.88) treatment. Implantation
numbers in TAM-treated mice receiving either IgG (4.00 ±
0.58) or PBS treatment (3.33 ± 0.88) were significantly fewer
than those of the anti-TGF-β1-treated group (6.00 ± 0.44)
(Fig. 4a). Mice fed with solvent showed a 100% fecundity
rate in both sham surgery and PBS-treated groups.
Fecundity rates in mice receiving either sham surgery or IgG
or PBS treatment were significantly decreased by TAM treat-
ment (sham surgery: 100 ± 0.00% vs. 38.43 ± 3.24%; IgG:
100 ± 0.00% vs. 50.0 ± 0.00%; PBS: 100 ± 0.00% vs. 50.0 ±
0.00%). In the TAM-treated mice, anti-TGF-β1 treatment
(77.8 ± 11.11%) resulted in increased fecundity rate, com-
pared with either the IgG- or PBS-treated group (both were
50.0 ± 0.00%) (Fig. 4b). Compared with control dams receiv-
ing sham surgery or IgG or PBS treatment (all were 100.0 ±
0.00%), TAM treatment led to a decrease in the rate of dams
with live birth (sham: 22.69 ± 6.02%; IgG: 50.00 ± 0.00%;
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PBS: 50.00 ± 0.00%), which was elevated by anti-TGF-β1
treatment to 66.7 ± 0.00%. Moreover, PBS (50.00 ± 0.00%)
or IgG (50.00 ± 0.00%) also improved the rate of dams with
live birth in TAM-treated mice, compared with those receiv-
ing sham surgery (22.69 ± 6.02%) (Fig. 4c).

Live birth numbers per dam in TAM-treated mice with
sham surgery (2.44 ± 0.82) or PBS (3.00 ± 0.58) or IgG
(3.33 ± 0.67) treatment were significantly decreased, com-
pared with controls receiving either sham surgery (12.93 ±
0.81) or PBS (11.67 ± 1.36) or IgG (11.50 ± 0.43) treatment.
However, the live birth numbers were increased after anti-
TGF-β1 treatment (5.67 ± 0.42) (Fig. 5a). Pup survival num-
bers and rates at 1 week old in TAM-treated mice receiving
either PBS (number: 1.00 ± 0.58; rate: 33.33 ± 16.67%) or
IgG (number: 1.00 ± 0.58; rate: 25.00 ± 14.33%) treatment
were significantly lower than those of the control with either
PBS (number: 11.17 ± 1.25; rate: 96.06 ± 2.50%) or IgG
(number: 11.33 ± 0.56; rate: 98.33 ± 1.67%) treatment. After
anti-TGF-β1 treatment, both pup survival numbers (4.50 ±
0.56) and rates (66.84 ± 13.43%) were significantly increased
(Fig. 5b and c). Consistently, the pup mortality rate after
weaning in TAM-treated mice receiving either PBS (66.67
± 16.67%) or IgG (75.00 ± 14.43%) treatment was significant-
ly higher than that of controls receiving either PBS (3.94 ±
2.50%) or IgG (1.67 ± 1.67%) treatment. Anti-TGF-β1 treat-
ment significantly decreased the pup mortality rate to 21.55 ±
5.87% (Fig. 5d).

Endometrial Receptivity Marker Expression Was
Improved by Anti-TGF-β1

Compared with controls (0.94 ± 0.02), TAM treatment led to
lower uterine LIF mRNA expression (0.18 ± 0.03), whereas
anti-TGF-β1-treated uteri exhibited higher levels of LIF expres-
sion (0.55 ± 0.03) (Fig. 6a). Consistently, the Western blotting
analysis demonstrated that uterine LIF protein expression in
TAM-treated mice was suppressed (0.50 ± 0.02), compared
with controls (1.15 ± 0.12). After anti-TGF-β1 treatment, LIF
levels were increased to 0.87 ± 0.09 (Fig. 6b and c). Similarly,
immunostaining showed that LIF immunoreactivity in uteri
from TAM-treated mice (Fig. 7a and b) was 0.63-fold of that
in control mice (Fig. 7c). Compared with PBS and IgG treat-
ment in TAM-treated mice, anti-TGF-β1 treatment correspond-
ingly increased LIF immunoreactivity (Fig. 7a and b) by 1.36 ±
0.10-fold (Fig. 7d) and 1.56 ± 0.14-fold (Fig. 7e). LIF expres-
sion was primarily observed in the endometrium.

Discussion

Adenomyosis is a benign gynecologic disease with limited
knowledge about its pathogenesis. An increasing body of evi-
dence shows that adenomyosis causes subfertility by impeding
implantation [36, 37]. Implantation failure is thought to be as-
sociated with altered uterine peristalsis [38], defective
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decidualization [39], and decreased endometrial receptivity
[40]. Dysregulation of LIF, HOXA10, and integrins was shown
to play important roles in impaired endometrial receptivity in
adenomyosis [41–43]. Several studies demonstrated the nega-
tive effects of adenomyosis on reproduction, exemplified by
reducing pregnancy and live birth rates as well as increasing

miscarriage rates that perturb in vitro fertilization outcomes
[44]. The obstetric complications associated with adenomyosis
remain unclear. Several epidemiological studies showed an in-
creased risk of preterm birth and preterm premature rupture of
membranes in pregnancy complicated with adenomyosis [45,
46]. Adenomyosis was also implicated in impaired
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decidualization and placentation that result in placental insuffi-
ciency and compromise embryo development [47].

TGF-β1-induced EMT plays a critical role in the develop-
ment of adenomyosis and other fibrotic diseases [48–50].
EMT, FMT, and SMM were shown to result in fibrosis [7,
51]. In other animal studies and human trials, anti-TGF-β1
was tested in treating various fibrotic diseases, such as renal,
pulmonary, and cardiac fibrosis [52, 53]. Although the GnRH
agonist is currently used as a major treatment to improve en-
dometrial receptivity in patients with adenomyosis [41], such
limitations as treatment duration, side effects, and its systemic
administration, restrict its use. Furthermore, the effects of
cytoreductive surgery remain controversial [36, 54]. Thus,
an effective long-lasting therapy without systemic effects is
required to improve endometrial receptivity in patients with
adenomyosis. In the current study, anti-TGF-β1 reduced uter-
ine collagen expression, suggesting its role in the inhibition of
fibrosis in uteri with adenomyosis.

Implantation numbers, fecundity rate, rate of dams with live
birth, live birth numbers, neonatal survival at 1 week old, and
mortality rate after weaning were all significantly improved by
intrauterine injection of anti-TGF-β1. Intrauterine development
of fetuses and the well-being of neonates are highly dependent
upon adequate implantation and resulting placentation. Impaired
implantation has been documented to lead to abnormal prenatal
and postnatal fetal development [55, 56]. In this study, the fe-
cundity rate and implantation numbers were used to evaluate the
sustainability of implantation. The rate of dams with live birth,
live birth numbers, survival of 1-week-old pups, and mortality
rate after weaning were used to evaluate the well-being of post-
natal development, which had been programmed in utero. All of
these endpoints were improved by anti-TGF-β1 in mice with
adenomyosis. Although indirect, these observations indicate that
anti-TGF-β1 improves implantation and thereafter the pregnan-
cy outcomes in mice with adenomyosis. Unexpectedly, the rate
of dams with live birth in TAM-treated mice was also improved
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by PBS or IgG treatment. Since tubal flushing was shown to
improve the rate of women with live birth, the injection of PBS
or IgG may mimic the tubal flushing which resulted in an in-
creased rate of the dam with live birth [57].

To identify the potential mechanism(s) responsible for the
improvement of pregnancy outcomes, the uterine expression of
LIF, a molecular marker of endometrial receptivity during the
WOI [24], was assessed to determine the changes in endome-
trial receptivity. Endometrial LIF expression is increased in the
WOI and however is reduced in patients with either unex-
plained infertility or adenomyosis [58]. The concentration of
LIF in uterine lavage is significantly reduced in adenomyotic
patients, compared with normal women [43]. Since the WOI in
mice occurs aroundGD4 [59], this study collected uterine tissue
at GD4 for the evaluation of endometrial receptivity. LIF
mRNA and protein expression was significantly increased after
anti-TGF-β1 treatment in mouse uteri with adenomyosis. IHC
revealed endometrial LIF expression was elevated by anti-
TGF-β1 treatment, indicating the therapeutic effect of anti-
TGF-β1 on endometrial receptivity of uteri with adenomyosis.
Although whole uterine tissue was used for mRNA and protein
assays, based on the current IHC findings showing primary LIF
expression in the endometrium, consistent results are expected
if endometrium alone was used for these assays. Adenomyosis
in mouse uteri was induced by TAM treatment in the current
study. Clinically, adenomyosis is observed in patients taking
TAM [60]. However, the mechanisms responsible for
adenomyosis in the absence of predisposing factors remain un-
clear. Thus, further clinical studies are required to effectively
translate the results of this study demonstrating the effects of
anti-TGF-β1 on the compromised endometrial receptivity and
pregnancy outcomes to clinical practice.

In a study by Guo et al. [41], administering the GnRH
agonist by intraperitoneal injection at PND79 increased aver-
age litter size in TAM-treated mice. Nevertheless, no signifi-
cant difference was found in the rate of dams with delivery.
By comparison, the current study treated the mice with a sin-
gle dose of anti-TGF-β1 by local injection into both uterine
horns at PND42. The fecundity rate and the rate of dams with
live delivery in TAM-treated were improved by anti-TGF-β1
treatment, suggesting the effectiveness of TGF-β1 neutraliza-
tion in improving pregnancy outcomes in mice with
adenomyosis.

In summary, the current study demonstrates that inhibition
of TGF-β1 reduces fibrotic changes in the mouse uteri with
adenomyosis. Anti-TGF-β1 treatment improves pregnancy
outcomes potentially by restoring endometrial receptivity.
Although the relationship between endometrial receptivity
and uterine fibrosis remains unclear, our results reveal that
the progression of fibrosis, pregnancy outcomes, and endome-
trial receptivity are all improved after anti-TGF-β1 treatment.
Taken together, the current results provide a new insight in
establishing a novel strategy for the treatment of adenomyosis.
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