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Abstract
Although it is well appreciated that ovarian stimulation protocols for in vitro fertilization (IVF) alter endometrial receptivity, the
precise cellular mechanisms are not known. To gain insights into potential mechanisms by which different ovarian stimulation
protocols alter the endometrium, we compared histologic and gene expression profiles of endometrium from women undergoing
conventional ovarian stimulation for IVF (C-IVF) with those undergoing minimal stimulation with clomiphene citrate (MS-IVF).
Sixteenwomen undergoingMS-IVF (n = 8) or C-IVF (n = 8) were recruited for endometrial biopsy at the time of oocyte retrieval.
Endometrial glands were large, tortuous, and secretory with C-IVF but small and undifferentiated with MS-IVF. Whereas RNA
sequencing did not reveal changes in estrogen receptor or its co-regulators or classic proliferation associated genes in MS-IVF,
together with immunohistochemistry, Wnt signaling was disrupted in endometrium fromMS-IVF cycles with significant upreg-
ulation of Wnt inhibitors. Secreted frizzled-related protein 1 (sFRP1) was increased fourfold (p < 0.01), and sFRP4 was upreg-
ulated sixfold (p < 0.01) relative to C-IVF. Further these proteins were localized to subepithelial endometrial stroma. These data
indicate that MS-IVF protocols with CC do not seem to impact endometrial estrogen signaling as much as would be expected
from the reported antiestrogenic properties of CC. Rather, the findings of this study highlight Wnt signaling as a major factor for
endometrial development during IVF cycles.
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Introduction

Induction of follicular maturation for in vitro fertilization
(IVF) is accomplished through administration of high-dose
gonadotropins with the intention of retrieving as many oo-
cytes as possible. In recent years however, milder ovarian-
stimulation protocols using a combination of oral agents (clo-
miphene citrate or aromatase inhibitors) and low-dose gonad-
otropins (≤150 IU/d) have been suggested to improve oocyte
quality in women considered to be poor responders, especially
those with diminished ovarian reserve (DOR) and advanced
reproductive age (ARA) 1. In general, the advantages of min-
imal stimulation IVF (MS-IVF) include elimination of ovarian
hyperstimulation syndrome and reduced gonadotropin con-
sumption and overall expense 2, 3. One of the employed MS-
IVF protocols utilizes the oral induction agent clomiphene
citrate (CC) with low doses of human menopausal gonadotro-
pins (hMG) 4.

Since CC is a selective estrogen receptor modulator
(SERM), it has variable agonistic-antagonistic effects on
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estrogen receptor (ER)-rich tissues including the hypothala-
mus, pituitary, ovary, and uterus. Classically, CC is believed to
be an endometrial antagonist and may negatively impact the
endometrium as suggested by a thinner endometrial stripe
observed by sonography 5–7. Recently, we reported that the
use of prolonged daily CC in an MS-IVF cycle thins the en-
domet r ium sign i f i can t ly even in the se t t ing of
supraphysiologic estrogen levels 8. Several biologic and treat-
ment variables differ among MS-IVF and C-IVF patients, in-
cluding age and AMH levels. Nevertheless, women undergo-
ing MS-IVF with CC develop normal endometrium in subse-
quent embryo transfer cycles 8, indicating that age and AMH
levels do not have a striking impact on the endometrium.
Studies using CC with or without gonadotropins confirm that
CC has a negative impact on the endometrial lining 5, 9–11. Yet,
there is little information regarding the cellular or molecular
processes by which CC affects endometrial differentiation and
development 12. Here, we tested the hypothesis that endome-
trial differentiation and gene expression are altered significant-
ly after MS-IVF (with CC) compared with C-IVF.

Materials and Methods

Patient Recruitment and Stimulation Protocols

This study was approved by the Institutional Review Board of
the University of Texas Southwestern Medical Center.
Endometrial tissues were obtained after written informed con-
sent from healthy women between 18 and 45 years of age
undergoing in vitro fertilization. Women who were pregnant
and had known uterine disease such as fibroids, adenomyosis,
or endometrial polyps, known history of coagulopathy, and
known or suspected cervico-vaginal or intrauterine infection
were excluded. Patients with expected poor ovarian response
per Bologna criteria 13 and/or ARA > 40 years old underwent
MS-IVF protocols. MS-IVF was comprised of daily CC until
day of trigger with hMG 150 international units (IU) starting
on the fifth day of stimulation every other day until trigger
with hCG and leuprolide acetate 2 mg. C-IVF involved daily
injection of high-dose recombinant follitropin-beta (> 200 IU,
Follistim, Merck) with added hMG (75–150 IU) on the day of
antagonist administration. In both stimulation protocols, a
gonadotropin-releasing hormone antagonist was administered
when the LH was >10 U/L to prevent premature ovulation or
luteinization. Frequent monitoring of follicles and endometrial
thickness was performed by transvaginal ultrasound. Dual
trigger with hCG (5000–10,000 units) and leuprolide acetate
2 mgwas used to induce final oocyte maturation when the two
leading follicle sizes reached > 17 mm in average diameter.
Patients undergoing C-IVF for elective oocyte cryopreserva-
tion or preimplantation genetic testing were recruited as con-
trols. All patients recruited for this study were those who

choose to undergo oocyte/embryo freezing for embryo trans-
fer in a later cycle.

Endometrial Tissue Collection

Endometrial tissue was collected after informed consent under
general anesthesia using an endometrial biopsy (suction) can-
nula (Pipet Curet, CooperSurgical) at the time of oocyte re-
trieval (36 h after hCG and leuprolide administration).
Endometrial tissue was either immediately snap frozen in liq-
uid nitrogen and stored at −80 C or fixed in 4%paraformalde-
hyde and stored in 70% ethanol until further analysis.

Histopathology and Histomorphology

Slides were prepared with hematoxylin and eosin (H&E)
staining. Endometrial histology was analyzed prospectively
by Noyes criteria by two blinded independent gynecologic
pathologists 14. For assessment of endometrial maturation,
the day of oocyte retrieval was considered the day of ovulation
(day 0). Histomorphologic analysis was performed using dig-
ital images captured by a Nikon E600 microscope with a
DXM1200C camera head, and calculations were made by
NIS-Elements advanced research software v 3.2. The average
of two nonoverlapping sections randomly chosen containing
only endometrium, and no luminal epithelium was calculated
per patient for each category. The number of glands per mm2

was calculated for each sample. To avoid over counting,
glands abutting the left and upper borders were not counted.
Gland volume fraction was determined by dividing the total
area of endometrial glands divided by the total area of the
image expressed as a percentage. Average maximum gland
diameter and average gland height were calculated per gland
and averaged.

RNA Sequencing Power Analysis

A priori power analysis was performed to determine the num-
ber of samples per group needed to detect a threefold change
in RNA gene expression. Using a mathematical equation de-
scribed by Hart et al. 15 where α = 0.05, β = 0.90, and σ = 0.4,
at least three samples were needed per group in order to detect
a threefold change. Although these samples were precisely
timed and hormonally controlled, potential biological varia-
tions could not be predicted. Sample size, therefore, was in-
creased to five per group.

mRNA Library Preparation and Bioinformatics
Analysis

RNA was obtained from endometrial tissue biopsy samples
using RNAqueous 4PCR total RNA Isolation Kit (Thermo
Fisher Scientific). Samples were run on the Agilent

896 Reprod. Sci. (2020) 27:895–904



Tapestation 4200 to determine the level of degradation, thus
ensuring that only high-quality RNAwas used (RIN Score 8
or higher). The Qubit fluorometer was used to determine the
concentration prior to starting library prep. 4 μg of total
DNase-treated RNA were then prepared using the TruSeq
Stranded mRNA Library Prep Kit from Illumina. Poly-A
RNA was purified and fragmented, before strand-specific
cDNA synthesis. cDNA was then A-tailed, and indexed
adapters were ligated. After ligation, samples were PCR am-
plified and purified with AmpureXP beads and then validated
again on the Agilent Tapestation 4200. Before normalization
and pooling, samples were quantified by Qubit and then run
on the Illumina NextSeq 500 using V2 reagents. Raw data
from machine was then de-multiplexed and converted to fastq
files using bcl2fastq (v2.17, Illumina). The fastq files were
checked for quality using fastqc (v0.11.2) and fastq_screen
(v0.4.4) and were quality trimmed using fastq-mcf (ea-utils/
1.1.2–806)16. Trimmed fastq files were mapped to hg19
(UCSC version from igenomes) using TopHat 17, duplicates
were marked using picard-tools (v1.127 https://broadinstitute.
github.io/picard/), read counts were generated using
featureCounts 18, and differential expression analysis was
performed using edgeR 19. Additional analysis was
performed with Ingenuity Pathway Analysis (IPA, Qiagen).

Immunofluorescence Staining

Paraffin-embedded endometrial samples were heated at 50°C
for 15 min. Samples were rehydrated sequentially with xylene
(mixed isomers), 100% ethanol, 90% ethanol, 75% ethanol,
and 50% ethanol, rinsed in deionized H20 and PBS × 2.
Antigen retrieval was performed with heated citrate buffer
and placed in water steamer for 30 min. After rinsing in
PBS, the samples were blocked with 10% donkey serum in
PBS for 1 h. Samples were incubated with anti-sFRP1
(Abcam, rabbit at 1:100) and anti-sFRP4 (Abcam, rabbit at
1:100) antibodies for 1 h at room temperature. After rinsing in
PBS, samples were then incubated with donkey anti-rabbit
secondary antibodies (1:1000) for 1 h at room temperature.
Following rewashing with PBS, slides were counterstained
with DAPI and mounted with Vectashield mounting medium
for fluorescence (Vector Laboratories). Samples were visual-
ized using the Nikon E600 confocal microscope. Tris-buffered
saline with 0.5% Tween 20 (TBST) was used as diluent and
wash buffer. Blocking steps, incubation of the primary and
secondary antibodies, and washing steps were performed on
a shaker. Antibodies were diluted in TBST containing 5%
nonfat dry milk.

Statistical Analysis

In addition to analysis of RNA sequencing datasets described
above, Student’s t-test was used to compare two independent

groups and ANOVA for multiple groups. Results are present-
ed as mean ± SEM or SD as indicated. For discrete variables,
Mann-Whitney rank sum testing was used. P values ≤ 0.05
were considered statistically significant.

Results

Patient Demographics and Stimulation Outcomes

Baseline demographics and laboratory characteristics are provid-
ed in Table 1. Sixteen patients were recruited (eight in each
protocol). As expected, women undergoing MS-IVF were older
and had lower anti-müllerian hormone levels (AMH). MS-IVF
protocols involved less gonadotropin units resulting in decreased
peak E2 levels compared with C-IVF. It should be emphasized,
however, that E2 levels were supraphysiologic even with MS-
IVF relative to the typical values of 250–300 pg/ml with normal
ovulation. Notably, endometrial thickness by sonography was
decreased in MS-IVF relative to C-IVF despite high E2 levels.
Prior studies indicate that decreased endometrial thickness in
women undergoing MS-IVF is due to the protocol and is not
related to other variables such as age or DOR or mean peak
estradiol levels 8. To confirm this observation, we report endo-
metrial thickness for five patients in each group with subsequent
frozen embryo transfer (FET) cycles available for review
(Table 1). Endometrial thickness was statistically different be-
tween groups as determined by one-way ANOVA (F (3, 12) =
12.81, p = <0.001). Tukey post hoc testing revealed that endo-
metrial thickness was significantly greater in C-IVF (12.23 ±
2.33 mm, p < 0.01), MS-IVF patients undergoing FET (9.46 ±
1.71 mm, p = <0.05) and C-IVF patients undergoing FET (9.46
± 1.71mm, p =<0.01) comparedwithMS-IVF stimulation cycle
(5.9 ± 1.49 mm). Importantly, endometrial thickness returned to
normal in cycles not affected by MS-IVF protocols. In the MS-
IVF group (n = 8), all patients had decreased ovarian reserve and
advanced reproductive age. One patient also had endometriosis.
Data from this individual did not differ in terms of histology,
gene expression, endometrial sFRP, or IHC. In the conventional
stimulation group, infertility was due to male factor (n = 4), tubal
factor (n = 1), and unexplained (n = 1), and two patients were
undergoing fertility preservation.

Histomorphometry

H&E staining of endometrial tissues revealed dramatic
changes between MS-IVF and C-IVF. After MS-IVF, small
undifferentiated glands were dispersed in a sea of polygo-
nal stromal cells. In contrast, large tortuous glands of se-
cretory epithelium were the major component of endome-
trium after C-IVF (Fig. 1). Two gynecologic pathologists
blinded to treatment groups agreed that the MS-IVF sam-
ples were early to mid-proliferative, and C-IVF biopsies
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were early secretory post-ovulatory days 1–3 per Noyes
criteria. Histomorphometric analysis revealed significant
differences between the two stimulation protocols with an
increased number of glands per cross-sectional area with

MS-IVF relative to C-IVF with decreased gland volume
(Fig. 1E). Further, gland diameter and epithelial height
were decreased significantly with MS-IVF suggesting de-
creased secretory differentiation (Fig. 1F, G).
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Fig. 1 H&E staining of endometrial tissues from women undergoing
MS-IVF (A, B) or C-IVF (C, D). After MS-IVF, stroma (str) appears
disrupted whereas glands (arrows) are small, straight, and
undifferentiated with no mitotic bodies (lowmagnification (20×), A, high
mag (40×), B). After C-IVF, tissue is defined as early secretory

endometrium (C, D) with enlarged tortuous glands, and epithelial sub-
nuclear vacuolization. (A, C) Scale bar= 100 μm; (B, D) scale bar =
50 μm. (E) Quantification of endometrial gland number and glandular
volume fraction. (F) Gland diameter and (G) epithelial height. Data
represent mean ± SD. *P < 0.05

Table 1 Patient demographics, stimulation, and subsequent cycle outcomes

MS-IVF
(n = 8)

C-IVF
(n = 8)

p MS-IVF
FET (n = 5)

C-IVF
FET (n = 5)

Age (y) 39.9 ± 3.7 34.5 ± 3.1 <0.01

BMI (kg/m2) 25.0 ± 5.3 24.7 ± 4.5 NS

AMH (ng/ml) 0.9 ± 1.1 3.7 ± 2.5 <0.01

Gonadotropins (units) 656 ± 198 3646 ± 3714 <0.01 0 0

Endometrial stripe (mm) 5.4 ± 1.4 10.5 ± 3.1 <0.01 9.5 ± 1.8δ 10.2 ± 2.7

Estradiol (pg/ml)* 851 ± 256 3107 ± 1318 <0.01 372 ± 178 376 ± 123

Progesterone (ng/ml)* 0.4 ± 0.2 1.2 ± 0.5 <0.01

Progesterone
(ng/ml)**

2.0 ± 0.7 9.7 ± 1.5 <0.01

Oocytes retrieved (n)** 3.5 [3, 4.75] 13 [7.5, 24.5] <0.01

Diagnosis DOR/ARA, 8
Endometriosis, 1

Male factor, 4
Tubal factor, 1
Unexplained, 1
Fertility preservation, 2

± SD

*E2 and P4 levels were obtained the day of hCG administration (35 h prior to endometrial biopsy)

**P4 level obtained the day of biopsy

***median [25,75%]
δ p < 0.01 compared with MS-IVF stimulation cycle
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Gene Expression Profiling of Endometrial Tissues

To determine the differences in endometrial gene expression
betweenMS-IVF and C-IVF on a global scale, RNA sequenc-
ing of whole tissue endometrial tissue was conducted.
Hierarchal clustering analysis and heat maps revealed that
MS-IVF and C-IVF profiles clustered with dramatic changes
in gene expression profiles (Fig. 2A and B, GEO accession
number to be provided after manuscript acceptance).
Specifically, 3.4% (723 of 20,764) genes were differentially
expressed defined as false discovery rate (FDR) ≤0.05_and
|log2 fold-change| ≥ 1.5.

Ingenuity pathway analysis revealed several molecular
pathways significantly different between MS-IVF and C-
IVF (Fig. 2C). Based on endometrial histology and the role
of estrogen-induced activation of estrogen receptor α in
endometrial glandular proliferation, we suspected that es-
trogen receptor signaling including ERα, co-regulators,
SRC-1, and CREB-BP, and NCOR, may be differentially
expressed between MS-IVF with CC and C-IVF.
Surprisingly, RNAseq did not reveal significant changes
in ER or its co-regulators. Further, classic proliferation-
associated genes in the endometrium such as cyclin A and
cMyc or antiproliferative genes such as p27Kip1 were not
differentially expressed between MS-IVF and C-IVF

protocols. Serum progesterone levels were increased mod-
estly in C-IVF (1.2 ng/ml) relative to MS-IVF (0.4 ng/ml,
Table 1). RNAseq analysis, however, revealed increased
progesterone receptor (PR) gene expression in MS-IVF
relative to C-IVF (602 ± 44.9 vs 230.6 ± 26.6 fragments
per kilobase of exon per million fragments mapped, p <
0.0001). Our RNAseq results indicated that IGF-1 mRNA
was similar in C-IVF and MS-IVF. IGFBP4 and IGFBP5,
but not other IGF binding proteins, were increased signif-
icantly (3.8- to 2.8-fold) in MS-IVF. Interestingly, expres-
sion of 17BHSD2 was increased eightfold in C-IVF, not in
CC-containing cycles (75.6 ± 11.6 vs 9.3 ± 4.4 FKPM).
MIR regulation of innate immunity was differentially
expressed between the two groups with downregulation
of JUN (4-fold) , FOS (18-fold) , pros taglandin-
endoperoxide synthase 2 (13-fold), and members of the
phospholipase A2 group 4 (11-fold) in MS-IVF.

Perhaps, one of the most interesting pathways differentially
expressed in endometrium from the two protocols was that of
WNT/β catenin signaling which is known to be involved in
endometrial proliferation. SeveralWNT inhibitory genes were
differentially expressed in minimal stimulation including
NOTUM (161.67 FC), WISE/SOST (36.93 FC), WIF-1
(18.46 FC), sFRP1 (15.06 FC), and sFRP4 (6.57 FC)
highlighted on the volcano plot (Fig. 2D). Highly expressed
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differentially regulated Wnt pathway regulators are listed in
Table 2.

Protein Analysis and Immunolocalization

RNAseq revealed significant upregulation of sFRP1 and
sFRP4 in endometrium from MS-IVF with transcripts for
sFRP4 more abundant than sFRP1 (Fig. 3A, D). To con-
firm differential expression of these secreted frizzled-
related proteins at the protein level, immunoblot analysis
was conducted with homogenates of endometrial tissues
from MS-IVF and C-IVF (Fig. 3B, E). In agreement with
RNAseq analysis (Fig. 3A, D), sFRP1 was increased sig-
nificantly in tissues from MS-IVF (fourfold, Fig. 3B, C).
Likewise, sFRP4 was increased sixfold in MS-IVF
(Fig. 3E, F).

Immunofluorescence was used to localize sFRPs in en-
dometrial tissue. sFRP1 was localized to the endometrial
stroma with notable accumulation directly underlying the
glands (Fig. 4A, Fig. 1A). The intensity of stromal sFRP1
was increased strikingly in tissues from MS-IVF relative to
C-IVF (Fig. 4A, C). sFRP4 also immunolocalized to stro-
mal cells with a more homogeneous distribution relative to
sFRP1 (Fig. 4B). With higher magnification, sFRP4 immu-
nofluorescence intensity was increased in the periphery of
the stromal cells, suggesting that this is likely secreted
protein or anchored to the cell membrane (Fig.1A).
Consistent with immunoblot analysis, sFRP4 staining in-
tensity was increased in stromal compartment from MS-
IVF relative to C-IVF (Fig. 4B, D). To confirm the lack
of sFRP expression in glandular epithelial cells, dual stain-
ing of sFRP1 and sFRP4 was conducted with that of pan-
cytokeratin (Fig. 4E, F). The results confirmed strong
subepithelial immunostaining of sFRP1 to be absent in
epithelial cells (Fig. 4E). Similarly, stromal cell sFRP4
was absent in cytokeratin-positive glands (Fig. 4F).

Discussion

Mild and minimal ovarian stimulation protocols are based on
the principle of optimal utilization of competent oocytes by
using less medication thereby decreasing risks of ovarian hy-
perstimulation and cost while assuring at least comparable
pregnancy outcomes as those of C-IVF 1. Whereas there is a
growing trend toward frozen embryo transfer in conventional
IVF due to embryo-endometrial desynchronization, there is
little evidence regarding endometrial development with mild
or minimal stimulation. Some postulate that minimal stimula-
tion may improve fresh transfer rates due to more physiologic
levels of hormones because a lower number of oocytes are
stimulated. However, there are many types of mild stimula-
tion, those that reduce the amount of gonadotropin (<150 IU)
and others that further decrease the amount of gonadotropin
by employing oral agents such as CC or aromatase inhibitors
(MS-IVF) 20. Here, we compared endometrial gene expres-
sion profiles in MS-IVF cycles using CC with those in cycles
using C-IVF.

Endometrial Thinning in MS-IVF

Based on the differences in demographics and laboratory pro-
files between the two groups of ovarian stimulation protocols
used in this study, there are several potential explanations for
abnormal histology and endometrial thinning observed inMS-
IVF. First, women undergoing MS-IVF are likely to be older
and have decreased ovarian reserve as indicated by decreased
levels of AMH. We rejected these variables as causes of en-
dometrial thinning because it is known that these women ex-
hibit normal endometrial histology in subsequent cycles with-
out gonadotropins and CC 8, and we confirmed that patients
enrolled in this study also generated normal endometrial thick-
ness in the absence of gonadotropins + CC. Although single-
agent aromatase inhibitors may decrease endometrial

Table 2 Differential expression of Wnt pathway regulators in endometrial tissues from MS-IVF and C-IVF protocols

GENE FKPM
MS-IVF

FKPM
C-IVF

Fold Change P Value FDR

sFRP1 790.6 ± 112.1 52.5 ± 9.1 15.06 6.93E-38 1.60E-34

sFRP4 4088.4 ± 35.9 622.4 ± 58.7 6.57 1.77E-30 1.67E-27

APCDD1 725.1 ± 142.1 202.1 ± 41.4 3.59 1.45E-07 4.88E-06

WNT4 63.6 ± 12.8 18.6 ± 1.7 3.42 1.59E-10 1.14E-08

AXIN2 78.5 ± 14.0 28.2 ± 4.1 2.78 3.12E-08 1.25E-06

WNT5A 229.5 ± 48.7 88.0 ± 14.5 2.61 3.03E-06 7.12E-05

WNT2 75.6 ± 28.8 38.0 ± 3.8 1.99 0.005273 0.03775

DKK3 71.6 ± 9.7 47.1 ± 6.4 1.52 0.01097 0.066601

FZD5 70.8 ± 5.5 118.6 ± 13.5 −1.60 0.000129 0.001784

Data represent mean ± SEM fragments per kilobase of exon per million fragments mapped, minimum expression of 50 FKPM, and FDR < 0.07
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thickness depending on dose and duration, MS-IVF with aro-
matase inhibitors does not cause a thin endometrial stripe de-
spite similar gonadotropin doses and E2 levels (26). Thus, it is
logical to deduce that CC is the predominant cause of endo-
metrial effects of MS-IVF used in this study.

CC, a mixture of estrogenic (zuclomiphene) and
antiestrogenic (enclomiphene) geometric isomers, has been
used for over 50 years for induction of ovulation. Although
CC has been termed an antiestrogen, it is a SERM, all of
which exert estrogenic or anti-estrogenic effects depending
on cell type, gene of interest, and presence or absence of other
cofactors or other transcription factors (such as PR) and E2
levels 21. As a member of the SERM family, its antiestrogenic
effects cause release of GnRH by the hypothalamus and sub-
sequent gonadotropins from the anterior pituitary. In 1981,
Kokko et al. suggested that CC exhibits antiestrogenic effects
on the endometrium through (i) competition with estrogen and
(ii) reduced number of ERs. This hypothesis was supported by
findings of Amita et al. in which CC inhibited recruitment of
steroid receptor coactivator-1 and thereby ERα transactivation
in human endometrial epithelial cells 12. Further, it has been
shown that CC induces ubiquitination and degradation of
ERα in Ishikawa cells 22. These limited investigations regard-
ing the effect of CC on the endometrial cells, therefore, sug-
gest that CC is a modest antagonist for E2-induced gene ex-
pression in human epithelial cells. It should be emphasized,

however, that the effects of CC on ER function in these studies
were rather modest and may not explain the profound loss of
epithelial differentiation and growth in endometrium from
CC-treated cycles, especially considering that levels of E2
were far above physiological levels. Other studies have shown
that E2-induced IGF-1 results in epithelial proliferation. Our
RNAseq results indicated that IGF-1 mRNAwas similar in C-
IVF and MS-IVF. IGFBP4 and IGFBP5, but not other IGF
binding proteins, were increased significantly (3.8- to 2.8-
fold) in MS-IVF which may indicate that CC induces
IGFBP4 and IGFBP 5 to attenuate IGF-1 action on glandular
epithelium. We also evaluated the possibility that the gene
encoding 17β-hydroxysteroid dehydrogenase 2 (17β-HSD2)
which converts E2 to estrone (E1) may be differentially
expressed in endometrium from the two groups.
Interestingly, expression of 17BHSD2 was increased 8-fold
in C-IVF, not in CC-containing cycles (75.6 ± 11.6 vs 9.3 ±
4.4 FKPM).

At first glance, it may seem that the modest increase in
progesterone levels in the C-IVF group may signal advanced
secretory changes in the endometrium. The issue, however, is
not a simple matter of serum progesterone levels (0.4 ng/ml in
MS-IVF vs 1.2 ng/ml in C-IVF), both of which are above the
Kd for PR (0.3–1 nM). Interestingly, sequencing data revealed
significant increases in PR gene expression in the MS-IVF
group (602 ± 44.8 compared with 230 ± 26.6, p < 0.0001)
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suggesting that progesterone effects may be more pronounced
with MS-IVF, not C-IVF. Since progesterone is known to
inhibit estrogen-induced proliferation of many ER-positive
cells, it is possible that progesterone effects were more pro-
nounced in MS-IVF. The “early secretory” phase interpreta-
tion by pathologists does not necessarily equal increased pro-
gesterone levels but may implicate increased PR complex for-
mation, increases in cofactor expression, or lack of inhibitors
or repressors. Both groups received GnRH antagonist prior to
hCG trigger to prevent premature ovulation and progesterone
release by the corpus luteum.

Taken together, the findings of this study do not support
striking direct effects of CC-MS-IVF on classic estrogen re-
ceptor signaling as much as would be expected based on its
antiestrogen properties. Rather, the results highlight Wnt sig-
naling as a major factor for endometrial development during
oocyte stimulation IVF protocols.

Wnt Signaling

WNT7a is a diffusible factor highly expressed in luminal en-
dometrial epithelial cells that initiates cell proliferation. WNT

proteins bind and act through cell surface receptors known as
frizzled 23–25. At the cell surface, Wnt/frizzled interactions
activate Disheveled leading to inactivation of glycogen syn-
thase kinase-3β by phosphorylation and nuclear localization
of β-catenin to regulate gene transcription 26. Secreted
frizzled-related proteins (sFRPs) antagonize Wnt signaling at
the receptor level 27, 28. Specifically, it has been shown that
overexpression of sFRP4 and treatment with recombinant
sFRP4 protein inhibited endometrial cancer cell growth
in vitro 29. It was intriguing, therefore, that stromal-derived
sFRP1 and sFRP4 were increased dramatically in endometri-
um from CC-treated cycles (six- to eightfold changes in tissue
sFRP4 mRNA and protein). The findings herein suggest that
at least some of the antiproliferative effects of CC on endo-
metrial glands may be due to increased expression of Wnt
inhibitors in the stroma that block Wnt-induced glandular
proliferation.

Summary and Limitations

Next-generation RNA sequencing analysis of precisely timed
endometrial tissues from MS-IVF and C-IVF discovered the
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potential role of CC in MS-IVF protocols in dysregulation of
endometrial glands through increased expression of Wnt in-
hibitors in endometrial stroma. The strengths of the study
include sequencing of precisely timed hormonally controlled
endometrial tissues with a number sufficient to demonstrate
highly significant results with no overlap by hierarchal cluster
analysis. The impact of the findings is limited because endo-
metrial biopsies were conducted at the time of egg retrieval
rather than the expected time of implantation, and all biopsies
were from patients with future plans for FET. Thus, pregnancy
outcomes cannot be deduced from this study. Endometrial
biopsies at the time of implantation add risk and burden to
patients. We suggest that endometrial development at the time
of egg retrieval has a significant impact on endometrial devel-
opment at the time of implantation. Although this investiga-
tion was focused on disruption of the Wnt pathway in endo-
metrium, MIF regulation of innate immunity was also differ-
entially expressed between the two groups. Work is ongoing
to address the significance of this finding. Nevertheless, re-
sults of this work highlight the complexities of CC-MS-IVF-
induced effects on the endometrium and involvement of Wnt
signaling that was previously unrecognized and may play a
crucial role in regulation of endometrial development in IVF
protocols. Since patient demographics differ among women
receiving MS-IVF compared with C-IVF, we cannot conclude
with certainty that MS-IVF with CC is the direct cause of
dysregulated Wnt signaling in the endometrium. The devel-
opment of normal endometrium in subsequent transfer cycles
inMS-IVFwith CC patients, however, suggests that this ovar-
ian stimulation protocol adversely affects the endometrium.
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