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Abstract
Climate change will impact coastal ecosystems, threatening subsistence fisheries including those in mangrove forests. Despite 
their global contributions and roles in nutrition and cultural identity, mangrove subsistence fisheries are poorly studied. Here, 
we offer a foundation for improving the management of mangrove subsistence fisheries to deal with the impending effects 
of climate change. This multidisciplinary review—drawing on organismal biology, ecology, fisheries, and social science—
focuses on the climate impacts relevant to mangrove ecosystems: heat waves, low-category, and high-category typhoons. 
First, we provide an overview of the mangroves, their harvestable stocks (fish, crustaceans, molluscs), and the fishers, offer-
ing an understanding of how they may be affected by relevant environmental variables; i.e., shifts in temperature, salinity, 
oxygen, flooding, and sediments. Then, we examine the potential effects of climate change on mangrove stocks and fishers, 
indicating the scope of impending changes. By combining the above information, we develop a simple model that forecasts 
the number of “fishing-days” lost by fishers due to climate change over the next decade (between 11 and 21 days will be lost 
per year per fisher). This indicates which aspects of climate change will have the greatest impacts on stocks and fishers. We 
found that high-category typhoons had more impacts than heat waves, which in turn had a greater impact than low-category 
typhoons). Finally, recognising gaps in our knowledge and understanding, we offer recommendations for approaches for 
future work to improve our predictions.

Keywords Climate change · Mangrove stocks · Flooding · Social impact · Subsistence fishers · Typhoons

Introduction

Climate change poses risks to coastal ecosystems (He and 
Silliman 2019), affecting subsistence fishers in rural areas 
(Montejo-Damian et al. 2022). These fisheries, contributing Special Topic: Fishery Science and Technology.
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50% to global marine catches and ~ 70% to human consump-
tion, play critical roles in nutrition and economics; further-
more, they foster community cohesion through a shared 
sense of identity and informal economies (FAO 2015; 
Khakzad and Griffith 2016). Despite their importance, sub-
sistence fisheries receive inadequate attention, particularly 
in the context of climate change (Islam and Berkes 2016). 
Here, we review the literature on one globally dispersed set 
of subsistence fisheries that has received little attention and 
will be undoubtedly affected by climate change—those in 
mangrove forests. Specifically, to address immediate issues, 
we focus mainly on impacts over the next decade. Our analy-
sis is multidisciplinary, drawing on the fields of organis-
mal biology, ecology, fisheries, climate science, and social 
science. Besides our proximal aim, which is to assess the 
impacts of climate change on mangrove subsistence fish-
ers, we see our efforts as a “proof of concept,” for applying 
multidisciplinary approaches to uncover priority actions for 
mitigating climate change damages.

To ensure an understanding of this complex topic, firstly 
we provide an overview of the mangroves, their harvestable 
stocks, and their fishers, using data directly from mangrove 
studies but also augmenting these with other estuarine data 
(Mangrove forests, their subsistence fisheries, and fishers). 
Then, we examine the potential effects of climate change on 
mangrove stocks and fishers, specifically indicating which 
aspects of climate change will have the greatest impacts and 
which are of less concern (Climate impacts on the mangrove 
subsistence stocks and fishers). Next, we apply our findings 
by combining the above information to develop a model that 
forecasts the “number of days lost” (as a currency of impact) 
by fishers due to climate change over the next decade; this 
allowed us to concentrate on first-order effects (An estimate 
of fishing-days lost due to climate impacts: a case study). 
The model, a synthesis of extensive research, significantly 
advances our understanding of the multifaceted impacts of 
climate change on mangrove subsistence fishers. By offering 
an empirical method to quantify direct effects, it provides a 
detailed view of their challenges and proves invaluable in 
translating research into practical climate impact insights. 
Finally, recognising gaps in our knowledge and understand-
ing, we offer recommendations for approaches now needed 
to ensure that mangrove subsistence fishers are prepared for 
the inevitable changes on the horizon (Outlook). This guid-
ance may ultimately apply to stakeholders and policymak-
ers. However, our main aim is, by making this first criti-
cal multidisciplinary evaluation, we can offer guidance for 
researchers on how they might conduct much needed studies 
to improve our understanding.

Mangrove forests, their subsistence 
fisheries, and fishers

In this section, we introduce the relevant biota in the man-
grove ecosystem: the mangrove forests, the main stocks, 
and the fishers. By providing this overview of their basic 
biology, we indicate, in general, how they may or may not 
be vulnerable to environmental change. Such a fundamen-
tal understanding of the “key players” is essential prior to 
appreciating how climate change will affect the mangrove 
subsistence fishers and their stocks. Then, we summarise our 
literature search on the ecophysiological limitations of key 
players in a later section: Climate impacts on the mangrove 
subsistence stocks and fishers.

Mangrove forests

Mangrove trees (5–50 m high) occur in tropical, estuarine 
waters with branched roots anchored in loose sediments 
(Kathiresan and Bingham 2001). As the trees can withstand 
salinity changes, extreme waves, strong winds, high tem-
peratures and muddy anaerobic soils, they are resilient to 
some of the effects of climate change (Alongi 2008). More-
over, mangroves grow rapidly, thriving where water sedi-
ment loads are 10–300 g/L, where shores accrete sediment 
at 0.5 cm/y to 1 cm/y, and where erosion occurs; these attrib-
utes should allow them to survive the predicted climate-
change induced changes in sea level (Ellison 1999). How-
ever, as indicated below, some aspects of climate change 
will affect them.

Of relevance to fishing, the submerged mangrove roots 
directly and indirectly provide habitats for harvestable stocks 
and nurseries for stocks where the adults live elsewhere, 
such as marketable pelagic fish (Bimrah et al. 2022). In addi-
tion, these forests bolster coastal ecosystems and subsistence 
fishing areas by mitigating the effects of waves and storm 
surges on both the biotic community and nearby fishers 
(Alongi 2015; Bimrah et al. 2022).

Mangroves are essential to over 4.1 million subsistence 
fishers worldwide, providing nearly 80 million tonnes of fish 
each year, valued at more than US $50,000 per hectare, and 
sustaining the economies of coastal communities in over 100 
countries and territories (Hutchinson et al. 2014; zu Ermgas-
sen et al. 2020). The fisheries, however, cannot be viewed 
as a single entity in terms of the effects of climate change, 
because the ecosystem hosts several functionally distinct, 
harvestable stocks (Table 1). In the following sections we 
examine these stocks and the resident fishers before address-
ing how climate change may affect them.
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Finfish

Globally, finfish (henceforth fish) provide nutritional and 
economic benefits to subsistence fishers, because they are 
rich in protein and essential micronutrients (FAO 2020). 
Fish are widely available, less expensive than most other 
protein sources, and can be caught passively or actively for 
personal consumption or market sale (Table 1). The man-
grove ecosystem supports a diverse range of fish caught by 
subsistence fishers (Table 1); understanding their functional 
diversity and how environmental factors may affect them is 
needed to evaluate the effects of climate change.

Fish, being ectothermic, adjust to ambient water tem-
perature and generally prefer oxygen-rich, sediment-free 
environments for efficient feedirefereng, predator evasion, 
and respiration (Helfman et al. 2009; Kjelland et al. 2015). 
Mangrove species are also typically euryhaline and eury-
thermal due to fluctuating temperatures and salinities in their 
estuarine habitats (Illari et al. 2022). Still, optimal condi-
tions (temperature, salinity, oxygen) dictate the spatial and 
temporal distribution and success of populations, so substan-
tial shifts in the environment may be detrimental (Madeira 
et al. 2012; Pankhurst and Munday 2011).

Some fish are resident spawners in mangrove estuaries, 
whereas others, either anadromous or catadromous, breed 
in marine or freshwater habitats, respectively (Potter et al. 
2013). Given their migratory patterns (Rulifson 1989), they 
may also return to their habitats when displaced; i.e., many 
possess homing behaviours (White and Brown 2013). When 
fish spawn, their eggs may float (pelagic) with the currents 
or sink (demersal) and attach to structures such as mangrove 
roots (Kunz 2004). These eggs develop into juveniles that 
either migrate to the mangrove forests, aided by ocean cur-
rents, or seek refuge immediately if they are permanent resi-
dents (Llopiz et al. 2014). The diversity of these breeding 
behaviours means that assessing the climate impacts on the 
survival and recruitment of mangrove fish is complex and 
often stock-specific. Below (Climate impacts on the man-
grove subsistence stocks and fishers), we do not attempt to 
address all stocks but rather recognise the wide breadth of 
behaviours and focus on the environmental pressures that 
might affect them, using at times non-mangrove (but tropi-
cal-estuarine) species as surrogates to indicate trends.

Crustaceans

Mud crabs, Scylla spp., and prawns, Penaeus spp., which are 
rich in protein and micronutrients, are by far the crustaceans 
most caught by mangrove subsistence fishers (Hutchinson 
et al. 2014; Susanto 2021). Although both stocks are eury-
thermal and euryhaline as adults (Motoh 1985; Pati et al. 
2023) and can move to avoid local fluctuations (e.g., in 
oxygen, Zheng et al. 2021), changes within the estuary will 

affect them, as discussed in more detail below in Climate 
impacts on the mangrove subsistence stocks and fishers. As 
with fish, here we simply introduce these stocks.

Mud crabs inhabit burrows among mangrove roots and 
adjacent sediments (Alberts-Hubatsch et  al. 2015). In 
addition, they spend some time on land, allowing them to 
escape environmental changes in the water (Pati et al. 2023). 
Crabs require little skill or equipment to collect, being typi-
cally caught by non-stationary gear (Table 1). These crabs 
share some characteristics with fish: both are ectothermic, 
catadromous, visual-feeders and rely on gills to respire 
(Alberts-Hubatsch et al. 2015). However, unlike fish, they 
are only semi-mobile, and do not exhibit homing behaviours 
(Alberts-Hubatsch et al. 2015). Mud crabs store their sperm 
and eggs until a suitable marine location to spawn is found, 
where they release fertilised eggs that develop and disperse 
by prevailing currents to new locations (Hewitt et al. 2023). 
As they mature, mud crabs return to the mangrove forests 
and inhabit brackish waters (Pati et al. 2023).

Penaeid prawns are favoured by subsistence fishers for 
their rapid growth and high nutritional content (Gillett 
2008). Much like fish, they are motile and are caught with 
a variety of stationary and non-stationary gear (Table 1). In 
addition, they share traits with mud crabs, being ectother-
mic, and relying on gills for respiration (Henry et al. 2012). 
Moreover, they do not exhibit homing behaviours; rather 
they spawn at sea where their eggs sink and then become 
planktonic larvae (Motoh 1985). These larvae then rely 
on ocean currents to settle in inshore and estuarine waters 
where they spend their juvenile to adult life before emigrat-
ing offshore to complete the cycle (Vance et al. 2002).

Molluscs (i.e., oysters)

Although other molluscs may occasionally be harvested, 
oysters (Crassostrea spp.) are the primary stocks harvested 
by mangrove subsistence fishers (Hutchinson et al. 2014). 
Oysters, like fish and crustaceans, have high nutritional 
value and are abundant along the coast (Negara et al. 2022), 
and as they are sessile, living on roots just below the surface, 
they are relatively easy to harvest, needing little gear to col-
lect (Table 1).

As filter feeders, oysters require clear water that supports 
growth of their phytoplankton prey (Dame 2012). Like fish 
and crustaceans, they are ectothermic, euryhaline, euryther-
mal, and need optimal conditions for them to thrive (Gosling 
2004). While they are capable of enduring long periods in 
freshwater, very low oxygen (0%–1% saturation) and salinity 
(< 3) may impact their recruitment and growth (Mclachla 
and Erasmus 1974; Rivera-Ingraham and Lignot 2017). 
However, if conditions (e.g., salinity, oxygen, sediments) 
become poor for short periods (< 24 h), oysters close their 
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shells and escape environmental change (Goncalves et al. 
2018).

Mangrove-associated oysters live their entire lives within 
these estuaries. The sessile adults produce gametes that are 
dispersed into the estuarine waters (Dame 2012), where the 
fertilized eggs settle and hatch into the planktonic stage, 
veliger larvae; juveniles then develop and attach to man-
grove roots (Gosling 2004). Therefore, unlike finfish and 
crustaceans, oysters will be affected only by changes within 
the estuary, as detailed in Climate impacts on the mangrove 
subsistence stocks and fishers.

Subsistence fishers, their homes, health, 
and technologies

Data on mangrove subsistence fishers are limited; however, 
extrapolation from knowledge of human physiology and 
reports from regions similar to mangrove forests, suggests 
that climate change will affect their housing, health, and 
fishing. Subsistence fishers are mostly poor, small-scale 
processors, and traders (Arthur et al. 2021). They live close 
to mangrove waters, usually in densely populated coastal 

areas with narrow roads, poorly shaded houses, and informal 
settlements (Fig. 1). Suboptimal housing conditions impact 
on their health, particularly in tropical regions where high 
temperatures (> 36 °C) and extreme weather events increase 
risks of stress, diseases, and mortality (Mora et al. 2022; 
Woodhead et al. 2018).

Aside from the above challenges, the living conditions 
of subsistence fishers limit their access to schools and other 
educational resources, resulting in most being illiterate 
(e.g., Bhuyan and Islam 2016—Bangladesh, Branch et al. 
2002—South Africa, Khatua 2022—India, Kinseng et al. 
2019—Indonesia, Knudsen 2016—Philippines). Conse-
quently, fishers tend to rely on traditional knowledge and 
beliefs (Adjei and Sika-Bright 2019; de Sousa et al. 2022) 
and local ecological knowledge (Hiwasaki et al. 2014). This 
illiteracy will affect many aspects of their lives, from their 
fishing schedules to their low-technology “artisanal” gear 
(Wekke and Cahaya 2015).

Often, subsistence fishers use traditional fishing gear 
and methods (Quinn 2009). Although traditional fishing 
may vary by region, here we detail those that are commonly 
used in the Philippines as they should be indicative of other 

Fig. 1  Examples of man-
grove subsistence fishers 
and their habitats, from the 
Philippines. A Area within 
the mangroves where fish-
ing occurs. B, C Houses 
close together, with narrow 
roads in a coastal area. 
D Shaded house within a 
mangrove forest, typi-
cally made of thin straws, 
bamboo, and dried coconut 
leaves
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areas (He et al. 2021; Monteclaro et al. 2017). There are 
two types of fishing gear used—stationary (Fig. 2) and non-
stationary (Fig. 3)—both of which are typically handmade 
from inexpensive and easily accessible materials, such as 
bamboo, plywood, nylon nets, pots, and sticks (Monteclaro 
et al. 2017). By its very nature such simple gear is fragile 
and subject to destruction by aspects of climate change (i.e., 
sunlight, winds, flooding), but it is also inexpensive and rela-
tively easy to replace, assuming the fishers have funds and 
resources to do so (Monteclaro et al. 2017).

Climate impacts on the mangrove 
subsistence stocks and fishers

In this section, we indicate initially that some climate 
impacts (henceforth, impacts) will have negligible effects 
on mangrove ecosystems (see Non-issues). Then, we 
briefly explore the potential long-term (decadal) impacts 
of Shifts in ocean current patterns. However, the focus of 
this review is on the immediate (within the next 10 years) 
effects of climate change. By assessing the ecophysiologi-
cal ranges of the key players (i.e., mangrove forests and 
stocks) in the mangrove ecosystem (Fig. 4), we recognise 

three main impacts that will have an immediate and pro-
nounced effect on mangrove ecosystems: heat waves, 
low-category typhoons, and high-category typhoons—
further justification, through examples, of our reasoning 
is presented in the following subsections. Then, using 
our overview of the stocks and fishers (Mangrove forests, 
their subsistence fisheries, and fishers; Box 1), for each 
impact we make predictions of the current, annual: (1) 
extent to which the stocks will be “adversely affected” 
(i.e., sub-lethally and lethally combined); (2) lethal effects 
on stocks; and (3) number of fishing-days lost by fishers. 
The first of these predictions explores the potential wider 
effects on fishers. We use the second two predictions in our 
penultimate section, An estimate of fishing-days lost due 
to climate-impacts: a case study, where lethal effects on 
stocks are converted to our common currency of “fishing-
days lost” (for an explanation of how “days lost” was cal-
culated see Box 1).

Non‑issues

Some aspects of climate change may be ignored when 
addressing their impacts on mangroves, their stocks, and 
their fishers. Firstly, mangrove forests provide a barrier to 

Fig. 2  Stationary or passive gear often used in tropical regions. A 
Barrier nets to catch daily migrating fish in mangrove areas. B Lift 
nets attract fish over the submerged net, which is hoisted by an impro-
vised pulley system. C Tidal trap with wings that guide prawns and 

fish to the codend for capture. D Filter nets that form a conical bag at 
the end and trap fish (for details on this gear see He et al. 2021; Mon-
teclaro et al. 2017; Sultana and Islam 2016)
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physical impacts, protecting the fishers as well as stocks such 
as fish and prawns that live amongst the inner margins and 
roots of mangroves, crabs that live in burrows, and oysters 
that are attached to the roots (Asari et al. 2021). Therefore, 
only extreme events—ones that will be exacerbated by cli-
mate change—require addressing. Mangrove forests grow 
and accrete sediments at rates that are sufficient to obviate 
the effects of sea level rise, estimated to be a maximum of 
10 mm per year (Krauss et al. 2013; McIvor et al. 2013). 
Likewise, high organic loads and biogeochemical cycling 
within the estuary increases water alkalinity, removing 
threats of ocean acidification (Sippo et al. 2016). In contrast, 
there are several climate impacts that will affect mangroves 
and their inhabitants; these are examined below.

Shifts in ocean current patterns

Here, we briefly examine wind-driven surface currents 
that span thousands of kilometres, rather than small-scale 
changes, such as typhoon-driven surges (these are dealt 
with below, under the section High-category typhoons). 

Such large-scale currents will be subject to long-term (dec-
adal) changes due to climate change (Harley et al. 2006; 
Wu et al. 2017) and will alter coastal currents, impacting 
mangroves ecosystems. For example, recent models indicate 
that rising temperatures could alter the direction and either 
weaken or strengthen currents (Peng et al. 2022; Vecchi and 
Soden 2007). However, as our focus is on changes in the 
next 10 years, these currents are not of direct concern to this 
review. Here, we simply recognise their importance and need 
for further study.

Changes in surface currents may have multiple effects. 
They may cause shifts in phytoplankton biomass and dis-
tributions; influence species life cycles (Falkowski 2012; 
Hays 2017); displace taxa with oceanic stages (i.e., larval, 
and juvenile fish, crabs, and prawns); and impede homing 
behaviours of fish (see Mangrove forests, their subsist-
ence fisheries, and fishers; van Gennip et al. 2017; Wil-
son et al. 2016). Unfortunately, there are not any studies 
on the direct effect of these currents on mangrove stocks. 
To illustrate the potential effects on coastal ecosystems, 
we examine some impacts of three example currents. The 

Fig. 3  Non-stationary 
or active gear in tropical 
regions. A Seine used to 
sieve the water column to 
catch fish. B Kawil baited 
and coiled on a wooden 
handle, catch fish and 
prawns. C Crab pot lures 
with bait and closes to trap 
crabs inside. D Gill nets 
set near the surface or at 
the bottom will trap fish. E 
Scoop nets are conical and 
hand-held to capture fish in 
shallow waters (for details 
on this gear see He et al. 
2021; Monteclaro et al. 
2017)
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weakened Kuroshio and North equatorial currents (i.e., in 
the North Pacific, Atlantic and Indian Oceans) reduced the 
likelihood of juvenile Japanese eels reaching their estua-
rine and freshwater nurseries by 40% (Chang et al. 2018, 
2019). Furthermore, increased currents, such as the East 
Australian current, are disrupting marine communities by 
introducing new populations to remote areas (Phillips et al. 
2022; Seebens et al. 2020). For example, the dispersion of 
green crabs in temperate regions has been associated with 
these intensified ocean currents, although explicit quan-
tification is not available (Young and Elliott 2019). The 
arrival of invasive species through such current changes 
may then have detrimental effects on native populations 
(Katsanevakis et al. 2014).

Again, while these current shifts clearly merit atten-
tion, we have excluded them from our analysis on fish-
ing-days lost (see An estimate of fishing-days lost due 

to climate-impacts: a case study) due to their long-term 
impacts and a lack of directly relevant data. However, we 
do return to shifts in currents in our final section (Out-
look), where we suggest how they might be explored.

Heat waves

There is virtually no information on the effect of heat waves 
on mangrove ecosystems, so this section relies on relevant 
data from comparable systems (Wetz and Yoskowitz 2013). 
Climate change driven atmospheric heat waves are predicted 
to increase in frequency, from two to six per year and in 
intensity reaching > 40 °C for more than five days (Perkins-
Kirkpatrick and Gibson 2017). These atmospheric heat 
waves tend to coincide with estuarine heat waves, which 
occur two to ten times per year (Tassone et al. 2022); we 
have assumed that similar frequencies and intensities will 
apply to mangrove estuaries, suggesting five heat waves 

Fig. 4  Environmental tolerance levels of mangrove stocks and inhab-
itants and the predicted shifts of these environmental attributes 
due to climate impacts. This is a quantitative summary of informa-
tion provided in the text, and the reader is directed to the references 
within the text for support. A Tolerance ranges for mangroves, stocks, 
and their fishers. Since there are few data for mangrove stocks, we 
only include the most commonly caught animals. Thresholds con-
ditions are presented as blue for optimal; orange for sub-lethal; and 
red for lethal effects. B Projected shifts in environmental events due 
to climate impacts. Bars represent the range of effects each climate 
impact has on environmental events. N/A indicates that the climate 

impact has no noticeable influence on the specific environmental 
event. *Most of the dissolved oxygen levels are similar for each fish 
category. Current studies lack specificity, with the majority focusing 
their assessment on either saltwater or freshwater species. Based on 
the migration patterns and habitats of fishes (anadromous and cata-
dromous), we have assumed that each category requires the same dis-
solved oxygen level (US EPA 2015). **Given that mangrove fish are 
found in both estuaries and freshwater, and that most sediment load 
studies focus on freshwater species, we have inferred that their limits 
are similar to those of freshwater species (Supplementary Table S2)
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per year in An estimate of fishing-days lost due to climate-
impacts: a case study (below).

The frequency and intensity of heat waves will increase 
due to climate change, historically evidenced by a 54% 
increase in the annual global heat wave count from 1925 to 
2016 (Oliver et al. 2018). Increase in heat waves over the 
next decade will, however, be site specific (Perkins-Kirk-
patrick and Gibson 2017). As an example, in our analysis 
(Box 1), using data from the Climate-Analytics Climate 
Impact Explorer (https:// clima te- impact- explo rer. clima 
teana lytics. org/ impac ts), we predicted a ~ 30% increase in 
the number of days affected by heat waves in the Philip-
pines over the next decade (Supplementary Table S9). Such 
increases threaten coastal ecosystems, e.g., kelp (Smale 
2019), seagrass beds (Serrano et al. 2021) and coral reefs 
(Hoegh-Guldberg et al. 2017). Already, over the last dec-
ade, 60% of global marine ecosystems have been degraded 
due to heat waves, with coral reef and seagrass ecosystems 
declining by 14% and 30%, respectively (Smale et al. 2019b; 
United Nations Environment Programme 2020, 2021). 
Although mangrove ecosystems are more heat-tolerant than 
coral reefs and sea grass beds they too will be affected (Li 
et al. 2022).

Mangrove stocks will respond differently to heat waves 
because of their biological diversity (see Mangrove forests, 
their subsistence fisheries, and fishers). However, all taxa 
face challenges from heat waves through three key environ-
mental factors: extreme temperatures, increased salinity, and 
reduced dissolved oxygen (Fig. 4A, B; Tassone et al. 2022; 
Vinagre et al. 2018). Heat waves will adversely affect (i.e., 
sub-lethally and lethally) ~ 10%–70% of fish and ~ 5%–90% 
of prawns, despite their eurythermal and euryhaline natures 
(Fig. 4A; Box 1, Supplementary Table S5). Elevated temper-
ature and salinity will also adversely affect crabs and oysters 
by ~ 10%–90% and 35%–80%, respectively (Fig. 4A; Box 1, 
Supplementary Table S5). For example, the 2013 Australian 
marine heat wave resulted in a 30%–40% loss of crustacean 
and mollusc populations (Chandrapavan et al. 2019; Roberts 
et al. 2019). Furthermore, although we lack quantification 
for mangroves, heat waves may stimulate growth of harmful 
phytoplankton, weakening fish and oyster immune systems, 
leaving them susceptible to microbial infection (Roberts 
et al. 2019). Much of the information above is from labora-
tory studies or discrete catastrophic events in the field that, 
although instructive, may not represent typical in situ losses 
of stocks. For our evaluation of the direct effects of heat 
waves on stocks, we used the available literature to con-
servatively estimate lethal losses (i.e., mortality) due to heat 
waves as follows: 0% for fish, 3% for crabs, 4% for prawns, 
and 5% for molluscs (for our reasoning behind these values 
see Box 1, Supplementary Table S6).

Heat waves will also affect the fishers. For example, ele-
vated temperatures lead to shallow estuarine waters drying 

up (Vinagre et al. 2018); this will indirectly affect fishers 
by increasing pollutant concentrations and stagnant waters, 
reducing potable water (Kubicz et al. 2021) and increas-
ing vector-borne illnesses, such as West Nile and dengue 
fever (Damtew et al. 2023; Paz 2015, Subsistence fishers, 
their homes, health, and technologies). There are also direct 
effects. Physically demanding, unshaded fishing and poorly 
constructed houses exposes fishers to dehydration and heat 
stroke (Kovats and Hajat 2008; Box  1, Supplementary 
Table S7), incapacitating ~ 20%–40% of fishers for 2–4 days 
(ILO 2019; Box 1, Supplementary Table S7). Furthermore, 
during heat waves, which last ~ 5–10 days, fishing ceases 
(ILO 2019; Perkins-Kirkpatrick and Gibson 2017). We have 
assessed the annual loss of fishing-days due to cessation 
of fishing and sickness to be 10 and 1.2 days, respectively 
(Box 1, Supplementary Tables S4, S7).

Low‑category typhoons

Low-category typhoons (category 1 and 2) are character-
ized by wind speeds of ~ 119–177 km/h and days where pre-
cipitation ranges from 100 to 500 mm (NHC-NOAA 2023; 
PAGASA 2021). These typhoons typically last 1 to 2 days 
and occur with a frequency of two to five times per year 
(Box 1, Supplementary Table S4). These typhoons lower 
salinity (~ 1–2), temperature (~ 1–2 °C), and dissolved oxy-
gen (~ 1–2 mg/L) (Cui et al. 2023; Liu et al. 2020; Miao 
et al. 2023). Historical data indicate a 13% decline in the 
annual frequency of low-category typhoons between 1900 
and 2000 (Chand et al. 2022). Extending this declining 
trend—which deviates from most other impacts of climate 
change—we have predicted a ~ 46% decrease in the num-
ber of days per year affected by low-category typhoons in 
the Philippines over the next decade (Box 1, Supplemen-
tary Table S9); the relevance of this decline is illustrated in 
our section, An estimate of fishing-days lost due to climate 
impacts: a case study.

Low-category typhoons have moderate effects on stocks, 
compared to high-category typhoons. Fish, prawns, and 
crabs tend to be resilient to the associated small changes in 
salinity and oxygen (Kültz 2015), both adversely affecting 
stocks by ~ 4–40%, whereas molluscs, are more vulnerable, 
with ~ 10%–50% being adversely affected (Box 1, Supple-
mentary Table S5; see also, Mangrove forests, their subsist-
ence fisheries, and fishers). Temperature change resulting 
from low-category typhoons are generally too small to have 
any effect on stocks, as motile taxa such as fish, prawns, and 
crabs move away, and oysters can withstand the changes 
(Box 1, Supplementary Tables S5, S6). The above estimates 
are from laboratory studies focusing on sublethal effects and 
may not reflect in situ conditions. Hence, we have relied 
on existing literature on comparable ecosystems to estimate 
lethal effects, predicting no fatalities for fish, prawns, and 

https://climate-impact-explorer.climateanalytics.org/impacts
https://climate-impact-explorer.climateanalytics.org/impacts
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crabs, and only a 1% loss of stocks for oysters during these 
brief events (Box 1, Supplementary Table S6).

Despite their short durations, low-category typhoons do 
impact fishers by causing illnesses such as diarrhoea, influ-
enza, and dengue fever; they also prevent fishing during the 
typhoon (see Subsistence fishers, their homes, health, and 
technologies; Sainsbury et al. 2018; Box 1, Supplementary 
Table S7). We have, therefore, predicted that low-category 
typhoons currently result in an annual loss of 14 and 6 fish-
ing-days due to fishing cessation and sickness, respectively 
(Box 1, Supplementary Tables S4, S7).

High‑category typhoons

Limited data exist on the effect of high-category typhoon 
(categories 3–5) on mangroves, necessitating estimations 
based on similar ecosystems. High-category typhoons 
exhibit wind speeds of > 177  km/h and precipitation 
of > 500 mm per day (NHC-NOAA 2023; PAGASA 2021). 
They currently last for 2–4 days and occur with a frequency 
of one to three per year, yielding severe impacts on man-
grove ecosystems (Krauss and Osland 2019; Supplemen-
tary Table S4). Climate change has quadrupled the num-
ber of high-category typhoons since the 1970s, intensified 
Southeast Asian typhoons by 12%–15% (Mei and Xie 2016), 
and increased the frequency of related flooding events by 
two–threefold (WMO 2021). As a site-specific example, 
based on local data associated with the Philippines, our cli-
mate impact model predicts a ~ 17% rise in the days affected 
by such typhoons over the next decade (Box 1, Supplemen-
tary Table S9).

High-category typhoons may harm mangrove stocks 
in several ways. They alter salinity (3–5) for ~ 5–12 days, 
stressing animals (Fig. 4A, B; Wada et al. 2014): mobile 
stocks (fish and prawns) will be adversely affected 
by ~ 10%–70%, and sedentary and sessile stocks (crabs and 
oysters) will be affected by 30%–80% (see Mangrove forests, 
their subsistence fisheries, and fishers; Box 1, Supplemen-
tary Table S5). High-category typhoons may also induce 
cold-shocks by lowering water temperatures by 6–12 °C, 
affecting tropical species (Fig. 4A, B; Doong et al. 2019). 
For example, a 12 °C drop stressed ~ 20% of coral and fresh-
water fish (Abram et al. 2017), and similar changes led to 
a ~ 50% and 90% decline in crustaceans and oysters, respec-
tively (Büttger et al. 2011; Ren et al. 2021). Furthermore, 
floodwaters laden with terrestrial pollutants (e.g., sewage), 
could depress oxygen levels (< 2–3 mg/L) for days or weeks, 
affecting ~ 5%–70% of mobile and ~ 25%–70% of stationary 
species (Fig. 4A, B; Hutchins et al. 2020; Manitcharoen 
et al. 2020; Box 1, Supplementary Table S5). High-category 
typhoons also increase sediment load (> 1 to 40 g/L) through 
both coastal and riverine flooding (Milliman and Kao 1996; 
Talbot et al. 2018), burying mangrove roots by ~ 10 cm 

and harming the trees and their stocks (Fig. 4A, B; Ellison 
1999; Supplementary Tables S2, S3). Increased sediments 
may adversely affect juvenile and adult fish and prawns 
by ~ 5%–40% and semi-mobile crabs and sessile molluscs 
by ~ 20%–90% (see Mangrove forests, their subsistence fish-
eries, and fishers; Box 1, Supplementary Table S5). Drawing 
on existing literature, we estimated lethal affects to be 3% 
for fish, 5% for crabs, 7% for prawns, and 10% for oysters 
(Box 1, Supplementary Table S6).

Also, high-category typhoons adversely affect subsistence 
fishers due to their previously outlined inherent vulnerabili-
ties (see Subsistence fishers, their homes, health, and tech-
nologies). Over the last decade, these typhoons have caused 
over 20,000 deaths within coastal communities, destroyed 
nine million homes, and incurred over US $10 billion in 
damages (Supplementary Table S1). Typhoon Haiyan exem-
plifies this, having destroyed ~ 70% of small-scale fishing 
gear in the Philippines due to wave action and prolonged 
water exposure (Monteclaro et al. 2018). These disasters also 
pose acute health risks. Stagnant floodwaters often overflow 
sanitation systems, contaminating both the environment and 
water sources of fishers (CDC 2019). Moreover, prolonged 
coastal submersion—up to 5–7 days—increases physical 
injuries and water- and vector-borne diseases (see Subsist-
ence fishers, their homes, health, and technologies; CDC 
2017; Lee et al. 2020; Box 1, Supplementary Table S7). 
For example, ~ 90% of the population exposed to typhoon 
Haiyan contracted diarrhoea (Ventura et al. 2015). Mental 
health issues, such as depression, anxiety, and PTSD are also 
prevalent among those exposed to high-category typhoons 
(Maknawa 2019); e.g., of those exposed to the Chinese 
typhoon Lekima ~ 50% reported PTSD (Zhen et al. 2021). 
Furthermore, high-category typhoons, lasting 3–4 days, halt 
fishing (see Subsistence fishers, their homes, health, and 
technologies; Supplementary Table S4). A synthesis of the 
above data including estimates of the frequency and dura-
tion of high-category typhoons suggests that currently 33 
and 8.3 fishing-days are annually lost from fishing cessation 
and sickness, respectively (for assumptions leading to these 
estimates see Box 1, Supplementary Tables S4, S7).

An estimate of fishing‑days lost due to climate 
impacts: a case study (for details see Box 1, 
Supplementary 2 and 3)

Climate change is increasingly disrupting global fisher-
ies, such as mangrove subsistence fisheries, with acute 
impacts on communities reliant on the stocks (Cheung 
et al. 2009). To provide advice for management, we have 
assessed which climate impacts will have the greatest 
effect on mangrove subsistence fishers, using data from 
the literature (primary and grey) and our own survey data 
from the Philippines (Supplementary 3, 4). Our methods 
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and analysis are fully explained in Box 1 and presented as 
an annotated Excel spreadsheet in Supplementary 2. Here 
we provide a brief overview of the analysis and its aims.

We focused on the three main climate impacts (hence-
forth, impacts) that will influence mangrove subsistence 
fishers (i.e., heat waves, low-category, and high-category 
typhoons), the environmental events (henceforth, events) 
that arise from them (i.e., changes in salinity, temperature, 
oxygen, flooding, and sediments), the stocks that the fish-
ers harvest (i.e., fish, crabs, prawns, and oysters), and the 
fishers themselves. For details on these impacts, events, 
stocks, and fishers see the above sections Mangrove for-
ests, their subsistence fisheries, and fishers and Climate 
impacts on the mangrove subsistence stocks and fishers.

We have used “fishing-days lost” as a common currency 
to assess the effects of the impacts (Box 1, Fig. 6). To do so, 
we first determined the current (baseline) number of the fish-
ing-days lost due to the three impacts; this was determined 
for each environmental event, independently on both stocks 
and fishers. By examining stocks and fishers separately, we 
were able to assess which of these two was affected most—
knowing this should help direct management to target miti-
gation. To focus on the imminent effects of climate change, 
we predicted the increase in fishing-days lost due to climate 
change over the next decade, based on RCP data (Represent-
ative Concentration Pathways; https:// clima te- impact- explo 
rer. clima teana lytics. org/ impac ts) and assessed three levels 
of predicted climate change: high-, low-, mid-estimates, as 
proposed by the RCP.

As with all models, ours simplifies complexity by exam-
ining what we argue are the main drivers, using the avail-
able data, and applying justifiable assumptions (see Box 1; 
Climate impacts on the mangrove subsistence stocks and 
fishers). In doing so, we offer insights into the potential loss 
of livelihood to mangrove subsistence fishers and indicate 
the relative, if not absolute, effects of climate change on 
the three main impacts on stocks and fishers (i.e., Fig. 5). 
Critically, our efforts reveal gaps in our knowledge that we 
discuss below (see Outlook).

Model results

We predicted the number of fishing-days lost over the next 
decade due to “expected” climate change induced shifts in 
the three impacts, i.e., heat waves, low-category, and high-
category typhoons (coloured bars, Fig. 5A). For heat waves 
and high-category typhoons there was an increase in the loss 
of fishing-days, whereas for low-category typhoons there 
was a decrease in the number of days lost—this decrease is 
because the number of low-category typhoons is predicted 
to decrease over the next decade, based on RCP data (Box 1, 
Supplementary Table S9). The increase in high-category 

typhoons led to more than twice the number of days lost due 
to the increase of heat waves. There were distinct differences 
in the days lost due to effects on stocks and fishers (orange vs 
blue bars, Fig. 5). The RCP predicted high- and low-estimate 
of climate change (black horizontal lines, Fig. 5A) provide a 
range for our predictions of the number of fishing-days lost.

Examining the three RCP climate-change scenarios in 
more detail (Fig. 5B) revealed that the mid-estimate of cli-
mate change resulted in an additional c. 11 lost days (stock 
and fisher effects combined), the high-estimate nearly dou-
bled this loss (~ 21 days), whereas the low-estimate indi-
cated no days lost (i.e., stock effects were negated by fisher 
effects). Finally, the effects on stocks and fishers (orange and 
blue bars, Fig. 5B) indicated a complex interaction between 
these two affected components, especially when viewed 
across both impacts and the three levels of possible climate 
change. For example, fisher-effects accounted for ~ 20% 
of stock-effects in the mid-estimate, while this increases 
to ~ 50% for the high-estimate.

Model evaluation and conclusions

Our analysis is not intended for immediate management 
decisions but does offer guidance and provides a frame-
work—a model—that can now be elaborated on and then 
may be useful for future decision making. That said, results 
from a post-analysis survey of fishers (n = 35) in our study 
area (Supplementary 3, 4) suggest reasonable agreement 
with our model parameter estimate of fishing-days per year 
(264 d) and our baseline estimates of days lost due to heat 
waves (10 d), low-category typhoons (14 d), and high-cate-
gory typhoons (33 d). For these, estimates by fishers were, 
respectively: 239 ± 24 d, 7 ± 2 d, 13 ± 6 d, 30 ± 6 d (± 
one standard deviation). These findings lend credence to the 
predictive accuracy of our model and support its continued 
development.

Our analysis (Fig. 5) indicates that between 11 and 21 
fishing-days may be lost due to climate-change induced 
increases in the three climate impacts (i.e., heat waves, low-
category, and high-category typhoons) in the next 10 years; 
i.e., a loss of 5 to 8% of their current fishing-days. This 
loss may seem small, but given that most subsistence fishers 
struggle to survive such a reduction in their ability to collect 
food may have consequences (Arthur et al. 2021). Further-
more, high-category typhoons had the greatest impact on 
fishing-days lost, so future analysis should likely focus on 
them, although heat waves and low-category typhoons must 
also be considered as they too contribute to the days lost 
(Fig. 5). Critically, our analysis indicated that there is inter-
action between all the factors examined: climate impacts, 
stocks and fishers, and climate change scenarios. These 

https://climate-impact-explorer.climateanalytics.org/impacts
https://climate-impact-explorer.climateanalytics.org/impacts
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interactions resulted in non-intuitive increases and decreases 
in the predicted fishing-days lost (Fig. 5).

Given these insights, we recommend further attention to 
each aspect of our analysis, including synergistic interac-
tions, to enhance our predictions of the impacts of climate 
change on mangrove subsistence fishers. In the following 
section, reflecting on both the above analysis and our entire 
review, we indicate the main gaps in our knowledge and 
understanding and how they might be filled.

Outlook

Evidence of the effects of climate change reveals its severe 
impacts on poor communities worldwide, particularly the 
subsistence fishery sector (Montejo-Damian et al 2022). Our 

review identified and quantified the climate impacts that will 
affect mangrove subsistence stocks and fishers over the next 
decade. We recognise three main climate impacts—heat 
waves, low-category typhoons, high-category typhoons—
that will directly alter the structure of the mangrove eco-
system, affecting the composition and distribution of stocks 
and the mangrove subsistence fishers. The consequences of 
predicted climate-change induced shifts in these impacts, 
on both stocks and fishers, will lead to a loss in fishing-days 
(Fig. 5). Critically, our analysis indicates that the effects on 
stocks and fishers must be examined independently to fully 
understand how fishing-days are lost. Furthermore, we rec-
ognised this loss of days may exacerbate the already vulnera-
ble situation of mangrove subsistence fishers and erode their 
cultural attachment to the mangrove environment (Maharja 
et al. 2023). This growing vulnerability underscores the 
necessity for comprehensive multidisciplinary research to 
understand and mitigate these effects.

We, therefore, argue that our multidisciplinary approach 
including models similar to ours, are required to aid manage-
ment. In this sense, our work serves as a proof of concept 
that demonstrates more generally the need for multidiscipli-
nary studies to inform climate change mitigation. However, 
we appreciate that our predictions, based on this first review 
of how mangrove subsistence fisheries will be affected by 
climate change, are limited by gaps in our knowledge and 
understanding—only through review could we recognise 
these gaps. We conclude this review by briefly identifying 
five areas that require assessment.

Improved estimates and parameterisation 
of harvested stocks

Better estimates of stocks are required to assess the status 
of fisheries and the impact of climate change. The data in 
Table 1 and Supplementary Table S6 are our best estimates 
of mangrove stocks and harvesting methods, but they are 
based on only a few detailed studies and a handful of global 
studies, with none directly assessing the effect of environ-
mental conditions from climate change events on mangrove 
stocks. Our ability to target taxa when conducting eco-
physiological assessments (e.g., Fig. 4A) is hampered by 
a lack of focused studies that detail stocks and their catch. 
Therefore, we suggest conducting focused assessments of 
stocks and their capture methods, factoring in the current 
climate impacts, due to extreme weather, and accounting 
for climate change projections. This could be achieved using 
methods such as those employed by CMFRI (2005), Coch-
ing et al. (2020), Samoilys and Carlos 2000, and Wolf and 
Neil (2010).

Fig. 5  Estimates of fishing-days lost as a result of changes in climate 
impacts (i.e., heat waves and both categories of typhoons) on stocks 
(orange bars) and fishers (blue bars). A Effect of changes in the three 
climate impacts, with coloured bars representing the “expected” 
RCP-based predictions for the three climate impacts, with the high- 
and low-predictions indicated by the horizontal black lines. B Com-
bined effects of all three changes due to climate impacts associated 
with each of the three RCP-based scenarios. The details of these 
effects, along with the calculations, data sources, and underlying 
assumptions, are provided in the main text (An estimate of loss of 
fishing-days on mangrove subsistence fishers: a case study) and Box 1
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Focused ecophysiological studies

Once we understand mangrove stocks better, ecophysiologi-
cal studies on the main species should be conducted. This 
is needed for two reasons: (1) to provide better estimates 
of lethal effects, enhancing the accuracy of our model, and 
(2) to gain appropriate estimates of sublethal effects, allow-
ing their inclusion in future, more complex iterations of the 
model. Furthermore, as high-category typhoons are the main 
impact affecting mangrove subsistence fisheries (Fig. 5), 
environmental parameters associated with high-category 
typhoons (Fig. 4b) should be prioritised, potentially by 
adapting techniques outlined by others: e.g., EPA (2007), 
Estuary Watch (2020), Klemm et al. (1993), Parsons et al. 
(1984), US EPA (2002), and Xiaoqing (2003).

Environmental impacts on mangrove ecosystems

Although the effects of high-category typhoon require atten-
tion (Fig. 5), the other main impacts on mangroves—heat 
waves and low-category typhoons—also need to be better 
understood (see above, Climate impacts on the mangrove 
subsistence stocks and fishers, Figs. 4B, 5). While extrapola-
tion from similar ecosystems provided some insights associ-
ated with the effects of all three impacts, field observations 
and modelling studies, particularly those recommended by 
the Estuary Watch (2020), the US EPA (2006), and Ver-
mont Agency of Natural Resources (2022), may now be 
used to quantify environmental changes in mangrove eco-
systems. Furthermore, as indicated above, we know virtually 

nothing about how shifts in global ocean circulation pat-
terns may affect the dispersal of mangrove stocks (Shifts in 
ocean current patterns). To address this gap, the methods 
and approaches presented in studies by Fox-Kemper et al. 
(2019), and Šachl et al. (2019) could offer valuable insights.

The fishers

As indicated in the section Climate impacts on the mangrove 
subsistence stocks and fishers, there is a dearth of data on 
the social and health/physiological effects of climate change 
on mangrove subsistence fishers. Furthermore, as our brief 
survey suggests (Supplement 3, 4) and others have argued 
(Hiwasaki et al. 2014; Monteclaro et al. 2018), understanding 
local fishing technology, the local knowledge that fishers pos-
sess, and the perception of fishers related to climate change is 
paramount to establishing educational methods that will aid 
in mitigating the effects of climate change; i.e., knowledge of 
the impacts will be virtually useless unless we can success-
fully implement adaptation mechanisms, at a grassroots level 
(Hoang et al. 2022). To this end, surveys and community field 
studies are required, e.g., using methods of Hiwasaki et al. 
(2014) and Savaris et al. (2021) to assess social impacts, using 
methods of Coppola et al. (2011) and Monteclaro et al. (2017) 
to assess fishing technologies, and using methods of Sansom 
et al. (2020) to assess health impacts.

Our study also considers the immediate effects of 
typhoons on the homes of subsistence fishing communities 
(Healey et al. 2023), highlighting the importance of improv-
ing on-land installations for community resilience. Future 

Fig. 6  Method used to model 
the annual fishing-days lost, 
per fisher, per climate impact. 
The green box incorporates the 
effects on stocks, and the blue 
box incorporates the effects on 
fishers; details of these effects 
are presented in the main text 
and this section. Calculations, 
data sources, and assumptions 
associated with panels 1 to 8 
(which represent the 8 rectan-
gles in this figure) are detailed 
in the text of this supplement. 
Stock-x represents one of 
the four stocks (fish, crabs, 
prawns, oysters). Impact-x rep-
resents one of the three main 
climate impacts (heat waves, 
low-category typhoons, high-
category typhoons). Gear-x 
represents the fishing gear 
associated with stock-x. Fish-
ing occurs 264 days per year 
(zu Ermgassen et al. 2020)
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research should assess the effectiveness of infrastructure 
improvements in reducing typhoon vulnerability and repair 
costs, crucial for climate change mitigation strategies. For 
guiding future studies, methods from Esteban et al. (2010), 
Fabianova and Estokova (2023), and Wan et al. (2022) can 
be used to assess housing damage from climate impacts.

Using “currencies” other than fishing‑days lost 
to assess impacts; i.e., changing our model output

Metrics other than fishing-days lost could be examined to 
assess the impacts of climate change on fishers. Here are 
three examples that might be pursued: (1) loss of income, 
both direct (market price for stocks) and indirect (gear and 
consumed stock); (2) reduction in catch per unit effort 
(CPUE), due to reduced stocks; and (3) loss of fishers from 
the community due to unsustainability of the fishing popu-
lation. Some resources that may offer direction for these 
further currencies are Appelman (2015) and Macusi et al. 
(2021) for CPUE analysis and Pulg (2023) for economic 
impact assessment.

Box 1: detailed model methods for the case study 
“An estimate of fishing‑days lost due to climate 
impacts”

To assess which climate impact (henceforth, impact) will 
have the greatest effect on mangrove subsistence fishers we 
have based our analysis on subsistence fishers from Zam-
bales in the Philippines (E 119° 57.648', N 15° 31.7132') 
and used data from the literature (primary and grey) and 
our own survey data from the Philippines (Supplemen-
tary 3, 4). Our analysis (Fig. 6) focuses on the three main 
impacts that will influence mangrove subsistence fisheries, 
the environmental events that arise from climate change, 
the stocks that the fishers harvest, and the fishers them-
selves. We have assumed that the relatively low frequency 
of the impacts (Supplementary Table S4) means they will 
not be concurrent in time and can, therefore, be treated as 
independent events (i.e., their effects are additive).

We have used “fishing-days lost” lost as a common 
currency to assess which impact has the greatest effect 
(Fig. 6). To determine the current number of the fishing-
days lost due to impacts we have relied on data related 
to: (1) current estimates of the impacts (see below, Base-
line annual estimates of climate impacts 2016–2022); (2) 
the loss of stocks due to each impact (see below, Stock: 
fishing-days lost, based on depletion of stocks due to cli-
mate impacts); and 3) the disruption to fishers and the 
destruction of gear due to each impact (see below, Fishers: 
fishing-days lost based on climate impacts on fishers and 
their gear). To predict the increase in lost fishing-days due 

to climate change over the next decade, we multiplied the 
baseline estimates of days lost by the predicted increase 
in impacts due to climate change in 2034 (see below, Esti-
mating the increase in days lost in 2034 for Zambales, 
Philippines). Finally, to make the analysis more robust, we 
assessed three levels of predicted climate change: high-, 
low-, and mid-estimates as predicted by RCP (see below, 
Estimating the increase in days lost in 2034 for Zambales, 
Philippines).

Details of the model follow (we have numbered the 
following sections so that they can be referred to in our 
annotated spreadsheet that describes the model, Supple-
mentary 2).

Baseline annual estimates of climate impacts 2016–2022 
(Fig. 6, Supplementary Table S4)

To estimate current (2023) impacts (Supplementary 
Table S4) we obtained: (1) baseline data (2016 to 2022) 
on low-category (1–2) and high-category (3–5) typhoons 
per year (PAGASA ARTC 2018 to 2023a) (PAGASA 2018, 
2019, 2020, 2023a) and (2) data on heat waves (Perkins-
Kirkpatrick and Gibson 2017; Tassone et al. 2022). Dis-
ruptions were based on impact intensity and duration, with 
high-categories (3–5) typhoons including 5 days of post-
typhoon flooding that would prevent fishing (CDC 2017).

Stocks: fishing‑days lost, based on depletion of stocks due 
to climate impacts (Fig. 6, panels 1–3)

Data in the literature tend to be presented as fractions of 
stock-losses due to impacts, and there are laboratory studies 
that indicate the lethal effect of environmental stressors on 
stocks; these have been reviewed in the main text (and are 
summarized in Supplementary Table S5). Although there 
are few data from field studies, it appears that the realized 
effects of these impacts in situ (i.e., in marine estuaries such 
as mangrove forests, coral reefs, seagrass beds) are substan-
tially lower than those observed in the laboratory, often 
close to an order of magnitude lower (cf. Supplementary 
Tables S5, S6). Below we summarised our arguments for the 
loss of stocks due to the impacts that would be observed in 
nature (these are also presented in Supplementary Table S6). 
These estimates were then used in the model to predict fish-
ing-days lost (Fig. 6).

For heat waves, fish typically show no mortality as they 
move to cooler areas (Liao 2007). Crabs exhibit ~ 3% mortal-
ity as they can escape heat waves by burrowing (Assan et al. 
2020). Prawns are less mobile than fish and exhibit ~ 4% 
mortality (Motoh 1985). Oysters which are not mobile 
experience ~ 5% mortality (Masanja et al. 2023; Yang et al. 
2016). The pressures exerted by low-category typhoons can 
also be avoided through escape and, therefore, the effects on 
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stocks parallel those of heat waves. As they are mobile, fish, 
crabs, and prawns will not be affected (Alberts-Hubatsch 
et al. 2015; Kunz 2004; Liao 2007; Motoh 1985). However, 
oysters will experience ~ 1% mortality (Gosling 2004). 
Finally, high-category typhoons pose greater threats than 
heat waves and low-category typhoons. Fish experience ~ 3% 
mortality due to high sediment loads (Bash et al. 2001). 
Crabs experience ~ 5% mortality from habitat damage and 
physiological stress (Birtwell 2000). Prawns and oysters 
experience ~ 7% and ~ 10% mortality, respectively, due to 
high sediment loads (Poirier et al. 2021).

We have assumed that the recovery time for each stock 
(i.e., the replenishment of stocks to the previously harvest-
able state), as a result of the cumulative effects of each 
impact over the year will be 1 year; e.g., if there are two 
heat waves each resulting in a loss of stocks, the time for 
the stock to recover will still be 1 year. In the Philippine 
context, our reasoning for this is as follows: (1) heat waves 
and low-category typhoons tend to occur close together, over 
1–2 months (PAGASA 2023b, c; Perkins-Kirkpatrick and 
Gibson 2017; Yin et al. 2022); (2) although high-category 
typhoons occur over ~ 5 months (PAGASA 2023c), we lack 
information on the timing of their occurrence; and (3) the 
time for stocks to recover from the impact varies, ranging 
around—or just below—1 year (Supplementary Table S6). 
Consequently, we have simplified the recovery time to 1 year 
for multiple events, which in some cases will underestimate 
the recovery time, but in others will overestimate it. Lacking 
data on the exact timing of events, this estimate of 1 year to 
recover seems a reasonable assumption.

For the estimates of stock-loss, we have not included any 
sublethal effects such as reduced growth and reproductive 
rates, shifts in behaviour, or detrimental ecological effects 
such as changes in distribution patterns (Dallas and Ross-
Gillespie 2015; Komoroske et al. 2016). This is because 
these effects cannot easily be translated to “fishing-days lost” 
(Hamel et al. 2023, see below), and there are insufficient 
data to adequately embed them into the model. We recognise 
that this assumption may lead to a minor underestimate of 
the loss of stocks (and hence days lost).

We have then assumed that mean stock-losses can be 
converted into fractions of fishing-days lost, assuming a 
linear relationship between catch and stock availability. For 
example, if heat waves reduce crab stocks by 3% (Supple-
mentary Table S6), we assume that fishers would exert the 
same effort as if there were no impact. However, 3% of these 
fishing-days would yield no catch, effectively becoming lost 
days. This may be an overestimate, as fishers could reduce 
effort in response to lower stocks, but we lack data to quan-
tify such behaviour.

We further refined our model to account for stock-specific 
fishing effort variability, by recognizing that the proportion 
of stocks caught by fishers is not equal (Fig. 6, panel 2). We 

have, therefore, weighted the fishing-days lost by an estimate 
of the proportion of different stocks caught by fishers (from 
Supplementary 3, 4: fish 47%; crabs 24%; prawns 10%; mol-
luscs 19%).

Finally, the number of fishing-days per year of 264 days 
(Fig. 6, panel 3) represents that of typical artisanal fishers 
(zu Ermgassen et al. 2020), and this is supported by inter-
views with local fishers (239 ± 24 d, Supplementary 3, 4); 
as impacts are determined over 1 year (365 days) the effect 
of annual impacts on fishing-days was corrected by recognis-
ing that 264/365 were affected. Furthermore, to determine 
the cumulative effects of impacts on lost fishing-days we 
have assumed that the effect of impacts (i.e., heat waves 
and typhoons) on stocks are discrete. For instance, if there 
were two heat waves each leading to a 3% reduction of a 
given stock, then the first event would reduce the number 
of fishing-days on that stock to 3% of 264 days = 256 days 
(assuming the linear relation between catch and effort, see 
above); then the next event would reduce the 256 days by 
3% = 248 days.

Fishers: fishing‑days lost based on climate impacts 
on fishers and their gear (Fig. 6, panels 4–7; Supplementary 
Tables S4, S7, S8)

During a climate impact, fishing was assumed to cease. The 
number of days lost (Fig. 6, panel 4) was obtained from the 
product of the frequency and duration of an impact (Sup-
plementary Table S4). In addition, the model accounted for 
“sick-days” caused by these impacts (Fig. 6, panel 5), apply-
ing only the greatest effect (bold values in Supplementary 
Table S7); i.e., only the illness requiring the longest recovery 
was considered (Sphere Association 2018), assuming con-
current illnesses did not result in synergistic increases in 
illness—this may be a conservative estimate. Sick-days were 
calculated as the product of the recovery-days for an illness 
and its likelihood of occurring, based on literature data (Sup-
plementary Table S7). Note that the days lost for each stock 
were additive (e.g., if heat waves resulted in 5 days lost in 
mollusc harvesting and 2 days lost in crustacean harvesting, 
this would yield a total of 7 fishing-days lost).

Climate impacts will also damage fishing gear (Fig. 6, 
panels 6, 7), which will be stock specific. Even when gear 
is not deployed during an impact, it is stored outside and 
subject to damage from the elements (Anon., pers.com.). We 
estimated the time to replace gear for fish, crabs, prawns, and 
oysters, the fraction of gear each fisher has for each stock 
(Supplementary Table S8; Supplementary 3, 4), and the 
travel time to buy the materials (Monteclaro et al. 2017). We 
have assumed that heat waves will damage 5% of the gear, 
low-category typhoons will damage 10%, and high-category 
typhoons will damage 50%; these estimates are based on 
expectations that gear will deteriorate due to heat and be 
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lost through winds and flooding (ICAR 2012; Monteclaro 
et al. 2017). The product of days to replace the gear and the 
fraction of gear owned by a fisher (summed over all stocks), 
provided the number of days lost (Supplementary Table S8).

Estimating the increase in days lost in 2034 for Zambales, 
Philippines (Fig. 6, panel 8; Supplementary Table S9)

The predicted change between 2023 (our baseline, see 
above) and 2034 was determined for each climate impact 
(heat waves, low-category typhoons, high-category 
typhoons). To do so, we used data from the Climate-Ana-
lytics Climate Impact Explorer (2023) (https:// clima te- 
impact- explo rer. clima teana lytics. org/ impac ts), specifically 
targeting projections for Zambales, Philippines. Data on the 
three climate impacts were not available. Consequently, we 
followed recommended practices: heat waves were consid-
ered to be days > 38 °C; low-category typhoons (1–2) were 
considered to be days with precipitation between 100 and 
250 mm; high-category typhoons (3–5) were considered 
to be days with precipitation > 250 mm (Mazdiyasni et al. 
2019; PAGASA 2021; Perkins-Kirkpatrick and Gibson 
2017; Tassone et al. 2022).

The fractional change in an impact (I) was calculated 
as: (I2034–I2023)/I2023. For a more robust assessment, we 
extended the analysis to include three scenarios provided 
by the RCP (Representative Concentration Pathways); for 
details of these see van Vuuren et al. (2011). The three sce-
narios were: RCP 2.6, a “low-estimate;” RCP 8.5, a “high-
estimate;” and RCP 4.5, a “mid-estimate” (Supplementary 
Table S9). This approach follows that of others (Pope et al. 
2021; Wang et al. 2019).

The number of lost days due to increases in impacts from 
2024 to 2034 was calculated as the product of the baseline 
days lost due to each impact (Fig. 6, panels 1–7) and the 
fractional change of that impact changing between 2024 to 
2034 (Supplementary Table S9; Fig. 6, panel 8). We also 
calculated the total days lost for each impact by summing 
the days lost for both stocks and fishers under each climate 
impact scenario (Supplementary 3).

We then compared the number of days lost due to each 
impact in the main text (Fig. 5). Our raw data and the associ-
ated calculations leading to Fig. 5 are available in the tables 
associated with this supplement and as an annotated Excel 
file (Supplementary 2).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42995- 024- 00231-3.
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