
Vol.:(0123456789)

Marine Life Science & Technology 
https://doi.org/10.1007/s42995-024-00222-4

RESEARCH PAPER

Deep learning‑based fishing ground prediction with multiple 
environmental factors

Mingyang Xie1 · Bin Liu1,2 · Xinjun Chen1,3,4,5

Received: 30 June 2023 / Accepted: 7 February 2024 
© Ocean University of China 2024

Abstract
Improving the accuracy of fishing ground prediction for oceanic economic species has always been one of the most con-
cerning issues in fisheries research. Recent studies have confirmed that deep learning has achieved superior results over 
traditional methods in the era of big data. However, the deep learning-based fishing ground prediction model with a single 
environment suffers from the problem that the area of the fishing ground is too large and not concentrated. In this study, we 
developed a deep learning-based fishing ground prediction model with multiple environmental factors using neon flying squid 
(Ommastrephes bartramii) in Northwest Pacific Ocean as an example. Based on the modified U-Net model, the approach 
involves the sea surface temperature, sea surface height, sea surface salinity, and chlorophyll a as inputs, and the center 
fishing ground as the output. The model is trained with data from July to November in 2002–2019, and tested with data of 
2020. We considered and compared five temporal scales (3, 6, 10, 15, and 30 days) and seven multiple environmental factor 
combinations. By comparing different cases, we found that the optimal temporal scale is 30 days, and the optimal multiple 
environmental factor combination contained SST and Chl a. The inclusion of multiple factors in the model greatly improved 
the concentration of the center fishing ground. The selection of a suitable combination of multiple environmental factors is 
beneficial to the precise spatial distribution of fishing grounds. This study deepens the understanding of the mechanism of 
environmental field influence on fishing grounds from the perspective of artificial intelligence and fishery science.

Keywords  Deep learning · Center fishing ground · Multiple environmental factors · Temporal scales · U-Net · 
Ommastrephes bartramii

Introduction

Fishing ground prediction represents a crucial subject 
within fishery research. Precisely forecasting the location 
of fishing grounds holds immense significance in enhancing 
fishing yield and conserving fuel (Chen 2022). The spatial 
distribution of oceanic economic species exhibits a close 
association with their habitat (Chen et al. 2023; Gao et al. 
2020; Huang et al. 2021). Prior studies have demonstrated 
that sea surface temperature (SST) exerts the greatest influ-
ence on fishing ground distribution (Alabia et al. 2016a). 
Alongside SST, other marine environmental factors, such 
as sea surface height (SSH), sea surface salinity (SSS), and 
chlorophyll a (Chl. a), display varying degrees of impact on 
fishing ground distribution (Alabia et al. 2015; Mustapha 
et al. 2009; Skogen et al. 2018). These marine environmen-
tal factors exhibit significant interannual variability, attrib-
utable to the influence of ocean climate. Consequently, a 
complex, dynamic, and integrated process of environmental 
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field changes emerges, leading to the formation of fishing 
grounds. Furthermore, a strong temporal and spatial correla-
tion exists among different environmental factors. With the 
continuous advancement of space technology, sensor tech-
nology, and fishing gear technology, ocean remote sensing 
and fisheries have entered the era of big data (Li et al. 2020). 
Traditional methods encounter considerable challenges in 
effectively mining valuable information and establishing 
reliable prediction models in the face of complex and mas-
sive data. In contrast, deep learning has emerged as an appli-
cation in ocean remote sensing and fisheries (Allken et al. 
2021; Kroodsma et al. 2018; Li et al 2020; Xie et al. 2024). 
Deep learning-based fishing ground prediction models have 
become a promising avenue of research.

Deep learning has achieved notable success in address-
ing the challenges of processing image big data in various 
domains (Landy et al. 2022; Reichstein et al. 2019). The 
issue of fishing ground prediction may be regarded as a spa-
tially correlated regression problem between the environ-
mental field and fishing ground distribution within a specific 
time period. The comprehensive environmental field can be 
seen as a combination of different-dimensional environmen-
tal fields. The U-Net model, a classic deep learning network 
model for image semantic segmentation, excels in handling 
multi-dimensional spatial features. By employing fully 
convolutional neural network layers, it may integrate shal-
low and deep features of images while accurately estimat-
ing pixel categories and preserving the original resolution 
scale as much as possible (Ronneberger et al. 2015). Cur-
rently, this network has demonstrated favorable outcomes in 
ocean remote sensing and fisheries, including environmental 
monitoring (Liu et al. 2019, 2022), environmental forecast-
ing (Zheng et al. 2020), and fishing ground prediction (Xie 
et al. 2024). In our previous research, we achieved real-time 
fishing ground prediction based on deep learning (Xie et al. 
2024). However, the deep learning fishing ground prediction 
model constructed solely using the sea surface temperature 
(SST) factor faced challenges, such as excessive center fish-
ing ground area and dispersed fishing ground distribution. 
To address this issue, we made improvements to the U-Net 
model by incorporating multiple environmental factors. 
We arranged sea surface height (SSH), sea surface salinity 
(SSS), and chlorophyll a (Chl a) in different channels of each 
input factor according to the temporal sequence. Addition-
ally, we designed various environmental factor combination 
cases to investigate the differences in model outcomes and 
the improvement in the concentration of fishing ground dis-
tribution. In this study, we selected the neon flying squid 
(Ommastrephes bartramii) in the northwestern Pacific 
Ocean as our research case.

Ommastrephes bartramii is an important economic 
cephalopod species in the northwestern Pacific Ocean. 
Since its development and utilization by China in 1993, 

the annual yield has remained stable between 60,000 and 
100,000 tons, making it a crucial target species for China's 
offshore fisheries (Chen et al. 2008). Among the oceanic 
environmental factors that affect pelagic economic species, 
SST is one of the most significant factors (Chande et al. 
2021). The spatial variation in Ommastrephes bartramii 
fishing grounds is highly susceptible to SST and exhibits 
considerable changes (Yu et al. 2019). Additionally, SSH, 
SSS, and Chl. a also influence the distribution of fishing 
grounds (Alabia et al. 2015; Yatsu et al. 2000), and these 
factors often interact in a comprehensive manner. There-
fore, in this study, we employed SST, SSH, SSS, and Chl. 
a as input factors and the distribution of center fishing 
grounds as the output factor of comprehensive environ-
mental conditions. We constructed five different temporal 
scales and seven combinations of multiple environmental 
factors using data from July to November spanning the 
years 2002–2019. We employed an improved U-Net model 
to build a real-time fishing ground prediction model for 
Ommastrephes bartramii and investigated the impact of 
different temporal scales and combinations of multiple 
environmental factors on the model's performance. We 
compared the results with previous studies that focused 
on single factors and analyzed the importance of environ-
mental factors during different time periods.

Materials and methods

Data

The commercial fisheries data were provided by the 
Chinese Squid-Jigging Technology Group at Shanghai 
Ocean University. The study area is the traditional fish-
ing ground of Ommastrephes bartramii in the Northwest 
Pacific Ocean, bounded by 36°N to 48°N and 145°E to 
165°E (Fig. 1). The fishery data comprise fishing dates 
and locations with longitude and latitude, the number of 
fishing vessels and the total catch recorded daily. The data 
collection spanned from July to November, covering the 
years 2002–2020.

The environmental data consisted of sea surface tem-
perature (SST), sea surface height (SSH), sea surface salin-
ity (SSS), and chlorophyll a (Chl. a). The SST data were 
obtained from the OceanWatch of the National Oceanic and 
Atmospheric Administration (NOAA, https://​ocean​watch.​
pifsc.​noaa.​gov/) with a spatial scale of 0.05°. The SSH, 
SSS and Chl. a data were obtained from the University of 
Hawaii (http://​apdrc.​soest.​hawaii.​edu/​data). The spatial scale 
for SSH and SSS data was 0.25°, whereas the Chl. a data 
were 4 km. The temporal scale for all environmental data 
was daily.

https://oceanwatch.pifsc.noaa.gov/
https://oceanwatch.pifsc.noaa.gov/
http://apdrc.soest.hawaii.edu/data
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Definition of the fishing ground

The previous study indicates a close correlation between the 
spatiotemporal distribution of Ommastrephes bartramii and 
changes in environmental factors, making use of the suit-
ability range of environmental factors as the basis for iden-
tifying fishing grounds (Yu et al. 2017). Even when there 
is little or no catch at a particular site in a given period, 
scientific research surveys are still conducted. Due to con-
straints, such as time, manpower, and fuel costs, however, 
data for distant water fisheries cannot be sampled and sur-
veyed at regular fishing grounds for each year, as is done 
with scientific research surveys. Information on the location 
and catch of sites in distant water fisheries is influenced by 
various factors, such as the maximum carrying capacity of 
fishing vessels, inter-fleet competition, and sea conditions. 
Therefore, distant water fisheries data, driven by commer-
cial and economic purposes, exhibit strong randomness and 
incompleteness, referred to as presence-only data (Lei 2016). 
This implies that recorded fishing sites indicate the presence 
of catches, but unrecorded fishing sites do not represent the 
absence of catches. This leads to significant interannual dif-
ferences in defining the suitability range of environmental 
factors for fishing grounds.

To address the presence-only issue, this study adopts the 
union of the suitability ranges of environmental factors for 
each year from 2002 to 2020 to represent the center fishing 
ground. To standardize the spatial and temporal scales of 
each environmental factor, the spatial scale was set at 0.25°, 
and temporal scales were set at five intervals of 3, 6, 10, 15, 
and 30 days. The previous study demonstrates that, at differ-
ent temporal scales for Ommastrephes bartramii, there are 

noticeable differences in the suitability range of environ-
mental factors (Yu et al. 2019). Therefore, different treat-
ments were applied when defining center fishing grounds, 
taking into account different periods. As an example, for a 
temporal scale of a 30-day period, SST range for each month 
(July, August, …, and November) is defined as the historical 
minimum and maximum values for all years from 2002 to 
2020. For a temporal scale of a 15-day period, SST range for 
each half month (1st half July, 2nd half July, …, and 2nd half 
November) is defined in the same way. Other environmental 
factors in different periods as above.

The resource abundance index, such as CPUE in the fish-
ing ground, exhibits a considerable degree of dispersion, 
with relatively concentrated high index values (Table 1). 
Utilizing this characteristic, we used the quartile method 
to classify fishing ground types based on the environmen-
tal factor range corresponding to the resource abundance 
index for each period (Song et al. 2022). The environmental 
factor range with index values exceeding the upper quar-
tile is defined as the center fishing ground, labeled as 1, 
whereas the remaining range is classified as the non-center 
fishing ground, labeled as 0. Since the distribution of fishing 
grounds is collectively influenced by each environmental 
factor, we defined the intersection of center fishing grounds 
under each individual environmental factor as the ultimate 
center fishing ground, whereas others are defined as non-
center fishing grounds.

Catch, effort, and catch per unit effort (CPUE) are com-
monly used as resource abundance indices in fishing grounds 
(Tian et al. 2009). Through analysis, we observed that catch 
exhibits statistically significant differences in cases with var-
ying temporal and spatial scales for each period (Table 1). 
Among the different indices, quartile analysis with catch 
proves to be more effective in defining the center fishing 
ground. Consequently, the catch index is selected as the 
resource abundance index.

Normalization and invalid value handling

To improve the fitting efficiency of the deep learning model, 
the environmental data are normalized to 0–1, and the cal-
culation formula is shown as follows:

Fig. 1   Distribution of Ommastrephes bartramii fishing ground in the 
Northwest Pacific Ocean

Table 1   Comparison of characteristics of different abundance indexes

Abundance index Catch/t Effort/vessel CPUE/(t/v)

Minimum value 0.001 1 0.001
Maximum value 1047 203 5.158
Magnitude difference 106 102 103
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where x is the normalized value of the sample, x
i
 is the origi-

nal value, and xmax and xmin are the maximum and minimum 
values of the samples, respectively. All invalid values are 
replaced with − 1.

Prediction model and case design

The fishing ground prediction model (Fig. 2) is based on the 
U-Net model (Ronneberger et al. 2015). The U-Net model uses 
a fully convolutional architecture and consists of two paths, 
encoding and decoding. The encoding path reduces the spatial 
size and extracts high-level feature information for accurate 
classification. It is composed of convolutions with rectified 
linear unit (ReLU) activation and max-pooling processes. The 
decoding path combines abstracted and high-resolution fea-
tures using a sequence of upsampling and concatenations. It 
is composed of upsampling processes and convolutions with 
ReLU activation. Pixel-level predictions are made in the final 
part of the network, enabling both classification and regres-
sion. As shown in Fig. 2, the model has three upsampling lay-
ers, three max-pooling layers, two dropout layers, and three 
skip connections. The max-pooling and convolution layers 
were applied with strides of 2 and 1, respectively. After pool-
ing, the sample size is reduced to 1/2 × 1/2, whereas the num-
ber of feature channels remains unchanged. The ReLU activa-
tion adds nonlinearity to the output of the convolutional layer 
and enhances the nonlinear characteristics of feature learn-
ing. The primary reason for using max pooling is that it may 
reduce the calculation amount, improve the receptive field of 
convolutions, achieve learned features of multiple scales, and 
increase the model’s robustness to noise and clutter. The pre-
experimental results showed severe overfitting of the model 
without specific processing. Therefore, we added the Spatial-
Dropout2D layer (Tompson et al. 2015), which is helpful for 
convolution layers, to the two and three levels of convolutions. 
The dropout rate of the SpatialDropout2D layer is set to 0.75 in 
this study. Since the model’s aim is binary classification, center 
fishing ground or not, the last convolutional layer uses sigmoid 
activation. For the same reason, the model’s loss function is 
binary cross-entropy (Lin et al. 2017).

To explore the differences in model performance resulting 
from different combinations of environmental factors, seven 
cases were designed (Table 2), each with five different tempo-
ral scales: 3 days, 6 days, 10 days, 15 days, and 30 days. Previ-
ous studies have confirmed that sea surface temperature (SST) 
is a crucial environmental factor for fishing ground prediction, 
so SST is included in all combination cases (Yatsu et al. 2000). 
The distribution maps of different environmental factors are 
sequentially stored in different channels and merged into a 

(1)x =
x
i
− xmin

xmax − xmin

,
single input factor, with the fishing ground distribution as the 
output factor. Taking the example of a 3-day temporal scale 
in Case 1, the image has a pixel size of 48 × 80, four channels, 
and a sample size of 900 (Fig. 2).

After the process of encoding and decoding, the size of the 
sample remains the same, and the image features are effec-
tively extracted. The model can make pixelwise predictions, 
from marine environmental factors to fishing grounds. Finally, 
we constructed this model to predict the fishing ground with 
multiple environmental factors.

Case implementation and evaluation

The overall accuracy (OA) is used to evaluate the quality of 
the model. OA refers to the proportion of correctly predicted 
pixels in all pixels. In addition, the precision, recall, and F1 
score of the prediction results are usually calculated to test 
the quality of the model. Precision denotes the proportion of 
correct predictions in all the predicted fishing ground pixels. 
Recall refers to the proportion of center fishing ground pixels 
that are correctly predicted. There is a trade-off relationship 
between precision and recall, so the F1 score is calculated to 
comprehensively consider the model’s performance, which is 
the harmonic mean of precision and recall. The metrics are 
calculated as follows:

where NTP (TP stands for true positive) is the number of cor-
rectly predicted center fishing ground pixels, NTN (TN stands 
for true negative) is the number of correctly predicted non-
center fishing ground pixels, NFP (FP stands for false posi-
tive) is the number of falsely predicted center fishing ground 
pixels, and NFN (FN stands for false negative) is the number 
of falsely predicted non-center fishing ground pixels.

We built the fishing ground prediction model with 
TensorFlow 2.4.1 in Python 3.7. The model is run on the 
NVIDIA GeForce RTX 2080 Ti graphics processing unit, 
and the operating system is Ubuntu. We take the environ-
mental factor data of 36°–48°N and 145°–165°E in the 
Northwest Pacific Ocean from 2002 to 2020 as the input, 
and make a one-to-one correspondence with the ground truth 

(2)

Overall accuracy ∶ OA =

NTP + NTN

NTP + NTN + NFP + NFN

× 100%

(3)Precision ∶ P =
NTP

NTP + NFP

(4)Recall ∶ R =
NTP

NTP + NFN

(5)F1 =
2PR

P + R
=

2NTP

2NTP + NFP + NFN

,
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of the center fishing ground. Then, a dataset with multiple 
temporal scales and environmental factor combinations is 
constructed. In this dataset, we select samples from 2002 to 
2019 as training samples. These training samples are ran-
domly divided into training and validation sets at a ratio 
of 4:1. The fishing ground prediction model is fit on the 
training set, and the optimal parameters for model fitting are 
selected with the validation set. Finally, the samples in 2020 
are selected as the testing set.

Fig. 2   Architecture of the fishing ground prediction model for multiple environmental factors (the example is used for Case 1 with a temporal 
scale of 3 days)

Table 2   Case design for multiple environmental factor combinations

*Indicates the factors included in the cases

Cases types SST SSH SSS Chl. a

Case 1 * * * *
Case 2 * * *
Case 3 * * *
Case 4 * * *
Case 5 * *
Case 6 * *
Case 7 * *
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Application effectiveness evaluation

Actual catch data usually consist of discrete sites containing 
high- and low-value information. The application effective-
ness of the model is evaluated by calculating the proportion 
of actual catch within the predicted center fishing ground. 
This is expressed as the catch coverage rate (CCR). Previ-
ous research has shown that models constructed solely using 
SST have good CCR, but the area proportion of the center 
fishing ground (APCFG) is too large, resulting in a lack of 
concentration in the predicted center fishing ground. There-
fore, we propose the application effect index of the fishing 
ground (AEIFG) to evaluate the application effectiveness of 
the prediction model, calculated as follows:

here, a higher CCR and a smaller APCFG result in a higher 
application effect index of the fishing ground (AEIFG). This 
indicates better application effectiveness of the prediction 
model.

AEIFG =
CCR

APCFG
;

Results

Model results and evaluation of different cases

From the loss curves of the training and validation sets of 
all models at different temporal scales (Fig. 3), all cases 
achieved a satisfactory fit within the 300-epoch limit. Fur-
thermore, the inclusion of regularization (two layers of Spa-
tialDropout2D) allows the models to delay the occurrence 
of overfitting as much as possible. Among all the cases, the 
minimum loss values on the training set ranged from 0.06 
to 0.26, whereas the minimum loss values on the validation 
set ranged from 0.09 to 0.27. The optimal accuracy on the 
validation set ranged from 88.43% to 96.37%, fluctuating 
between 87 and 92% after overfitting (Fig. 4).

To assess the performance of the fishing ground pre-
diction model with multiple environmental factors at 
different temporal scales, it was tested on the testing set 
using overall accuracy (OA) and F1 score as evaluation 
metrics. From the model performance evaluation (Fig. 5), 
the trends in OA and F1 scores were consistent among 
different environmental factor combination cases. There 
were significant differences in model performance among 
the different cases. Case 7 exhibited better performance 
across all temporal scales compared to other cases, with 
the 30-day temporal scale achieving the highest accuracy 

Fig. 3   Loss curves of the training and validation set of the fishing ground prediction model with multiple environmental factors at different tem-
poral scales
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of 88.74% and an F1 score of 0.8732. From the differences 
among the different cases, it may be observed that larger 
temporal scales correspond to better model performance, 
with the 15-day and 30-day temporal scale cases yielding 
favorable results. This trend aligns with the results of the 
fishing ground prediction model based on SST only. The 
variation in model performance is related to the fluctuation 

range of each environmental factor under different tempo-
ral scales.

Prediction performance of the best case

The best performance was observed in August, with an over-
all accuracy (OA) of 93.59% and an F1 score of 0.9407. 
Conversely, the poorest performance was observed in 
November, with an accuracy of 81.48% and an F1 score of 
0.7375 (Table 3). This result is consistent with the same time 
period of previous studies (Xie et al. 2024). The addition of 
Chl a resulted in a lower F1 score in November compared 
to previous research. This is reflected in the distribution of 
the center fishing ground (Fig. 6): the contour area of the 
center fishing ground still exhibits a latitudinal belt-shaped 
variation over different time periods. In the test results, the 
southern edge in the latitudinal direction remains relatively 
unchanged, whereas the northern edge shifts southward 
resulting in a decrease in the proportion of the center fishing 
ground area and a relatively narrower contour area.

Fig. 4   Overall accuracy curves of the training and validation set of the fishing ground prediction model with multiple environmental factors at 
different temporal scales

Fig. 5   Performance evaluation on the testing set of the fishing ground 
prediction model with multiple environmental factors at different 
temporal scales (OA: overall accuracy)
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Discussion

Application evaluation of fishing ground

The results obtained from the deep learning fishing ground 
prediction model reveal that the distribution of the center 
fishing ground is primarily in the form of continuous belt-
shaped areas. However, actual catch data consist usually of 
discrete sites containing high- and low-value information. 
By comparing the fishing ground predicted by the deep 
learning model on the 2020 test dataset with the actual 
catch data, the application effectiveness of the model may 
be evaluated. This application effectiveness is likely to 
be closer to the real-life conditions of fishing operations, 
thereby improving the success rate of fishing and signifi-
cantly reducing fuel costs.

Previous data have shown that the deep learning fish-
ing ground prediction model constructed using SST only 
achieved a good catch coverage rate (CCR). However, 
it had a high area proportion of center fishing ground 
(APCFG) resulting in a lower concentration level of the 
predicted center fishing ground. To address this, we 
introduced the application effect index of fishing ground 
(AEIFG), which represents the concentration level of the 
center fishing ground by calculating the ratio of CCR to 
APCFG. We aimed to enhance the application effectiveness 
of the model by selecting comprehensive environmental 
factor combinations with high AEIFG values while ensur-
ing minimal changes in CCR. Considering that the criti-
cal environmental factor combinations may vary across 
different temporal periods, we chose the most suitable 
comprehensive environmental factor combination case 
based on the AEIFG. The results (Table 4) showed that, 
except for the first half of July when no actual produc-
tion data were available, the largest error occurred in the 
first half of November, with a CCR of 89.66%. The low-
est concentration level of the center fishing ground was 
observed in the first half of August, with an APCFG of 
64.62% and an AEIFG of 1.54. By adding environmental 
factors, although the average CCR decreased by 0.97%, the 
average APCFG decreased significantly by 11.82%, whereas 
the average AEIFG increased by 0.55. The most significant 
improvement in the AEIFG was observed in the second 
half of September, which increased by 1.91. The results 
(Fig. 7) indicated that, during the second half of Septem-
ber, the actual catch data mainly concentrated in the 155°E 
to 165°E region of the center fishing ground. Moreover, 

Table 3   The testing results of the fishing ground prediction model 
with the best multiple environmental factor combination and temporal 
scale at each period

Period Overall accu-
racy (OA, %)

Precision Recall F1 score

July 92.84 0.9992 0.9021 0.9482
August 93.59 0.9740 0.9095 0.9407
September 88.23 0.9972 0.8257 0.9034
October 87.55 0.9644 0.7379 0.8361
November 81.48 0.8553 0.6483 0.7375
Mean ± 88.74 ± 0.9580 ± 0.8047 ± 0.8732 ±
Standard deviation 4.35 0.0531 0.0998 0.0786

Fig. 6   Visual evaluation of the performance of the center fish-
ing ground model in the best case (Jul, Aug, …, and Nov represent 
July, August, …, and November, respectively. In the ground truth, 
the center fishing ground and non-center fishing ground are shown 
in white and black, respectively. In the prediction, the correctly pre-

dicted center fishing ground and non-center fishing ground are shown 
in white and black, respectively; the falsely predicted center fishing 
ground and non-center fishing ground are shown in blue and red, 
respectively.)
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the comprehensive environmental factor analysis signifi-
cantly reduced the size of the center fishing ground west 
of 155°E, making it more concentrated. This period cor-
responds to the main fishing season of Ommastrephes 
bartramii when the catch is the largest. From the compre-
hensive environmental factor combination perspective, it 
includes all environmental factors. This indicates that the 
distribution of the center fishing ground during the main 
fishing season is primarily influenced by all environmen-
tal factors. In other temporal periods, the comprehensive 
environmental factor combination cases included different 
factors. All temporal periods contain Chl a except for the 
first half of September. This suggests that, apart from SST, 
Chl a is an important environmental factor. The impor-
tance of SSH and SSS is reflected in the different temporal 
periods from the beginning to the main fishing season.

The U-Net model, as one of the benchmark methods for 
deep learning pixel-level image classification, is character-
ized by its fully convolutional structure. It removes the last 
fully connected layer and uses upsampling layers to restore 
the image resolution. This makes the model more efficient 
and accurate in handling pixel-level image classification 
problems. Particularly, in this study, with the increase in 
environmental factors and the added complexity of the 
comprehensive environmental factors as output factors, the 
U-Net deep learning model proved to be effective. The con-
volutional layers in the U-Net model share weight and have 
local connections, which may reduce the complexity of the 
image feature extraction network. The U-Net model strikes 
a balance between exploring deep features for semantic clas-
sification and preserving high resolution, enabling better 
handling of pixel-level image classification tasks.

Regarding the definition of the center fishing ground, 
the distribution maps of each environmental factor's center 
fishing ground are overlayered. The regions that share the 
same center are defined as the center fishing ground of the 
comprehensive environment. This definition is more refined 
compared to solely using SST to define the center fishing 
ground. It involves making adjustments to the size of the 
fishing ground in the longitude direction, resulting in a more 
concentrated distribution of the center fishing ground. This 
refinement aims to improve the application effectiveness of 
the model.

Impact of multiple environmental factors on model 
performance

From the performance evaluation on the testing set of the 
fishing ground prediction model with multiple environmen-
tal factors at different temporal scales (Fig. 5), it may be 
observed that as the temporal scale increases, the model per-
formance improves for all cases. This change occurs gradu-
ally. Since the center fishing grounds are divided based on 
the range of environmental factors, when the temporal scale 
is smaller, the environmental factors fluctuate more intensely 
over the time series. Moreover, the range of comprehensive 
environmental factors under the superposition of these fac-
tors also exhibits more complex and intense fluctuations. 
Previous research has shown that in the performance of fish-
ing ground prediction models constructed using only SST, 
cases with temporal scales of 3 and 6 days have poorer per-
formance. In this study, Case 1, which includes all combi-
nations of environmental factors, had the lowest OA and F1 
scores at a temporal scale of 3 days, with values of 78.86% 
and 0.5249, respectively. The performance of Case 1 was 

Table 4   Comparison of the application evaluation of actual catch data on the testing set on the center fishing ground prediction model with 
single-factor and multi-factor combinations

Period Catch coverage rate (CCR, %) Area proportion of center fish-
ing ground (APCFG, %)

Application effect index of 
fishing ground (AEIFG)

Multi-factor combina-
tion case

Single factor Multiple factors Single factor Multiple factors Single factor Multiple factors

July (1st half) / / / / / / /
July (2nd half) 100.00 100.00 72.42 48.40 1.38 2.06 SST + SSH + Chl a
August (1st half) 99.40 98.44 64.62 61.91 1.54 1.59 SST + Chl a
August (2nd half) 97.93 96.78 50.74 44.29 1.93 2.19 SST + SSS + Chl a
September (1st half) 100.00 97.53 56.09 42.15 1.78 2.31 SST + SSH
September (2nd half) 100.00 98.15 65.36 28.57 1.53 3.44 SST + SSH + SSS + Chl 

a
October (1st half) 100.00 99.84 37.39 32.62 2.67 3.06 SST + Chl a
October (2nd half) 100.00 100.00 40.05 30.43 2.49 3.28 SST + Chl a
November (1st half) 89.66 87.48 44.06 37.68 2.03 2.32 SST + SSS + Chl a
November (2nd half) 100.00 100.00 49.60 47.91 2.01 2.08 SST + Chl a
Mean 98.55 97.57 53.37 41.55 1.93 2.48
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significantly lower than that constructed using only SST. 
This suggests that when the environmental field becomes 
more complex and fluctuations become more intense, fewer 
environmental factors lead to better model performance. 
From Case 2 to 7, the comprehensive environmental factor 
combination cases involve the removal of 1 or 2 environ-
mental factors. Compared to Case 1, these cases showed an 
improvement in model performance to some extent. Among 
them, Case 7, which includes SST and Chl a, exhibited the 
most significant improvement in model performance. The 
results at a temporal scale of 3 days were even better than 
the results of the models at a temporal scale of 30 days in 
other cases. From the perspective of the range of changes 
in each environmental factor (Fig. 8), the reasons might be 
that SST and Chl a exhibit more pronounced seasonal trends, 
and the coupling between the two factors is better in terms of 
temporal sequences. However, the addition of SSH or SSS 
factors reduces the compatibility between the environmental 
factors, resulting in a negative impact on the model's per-
formance. When the temporal scale is 15 days and 30 days, 
all combinations of comprehensive environmental factors 
perform well as the fluctuations in each environmental factor 
are relatively smooth, with OA above 79.00% and F1 scores 
above 0.7200. The optimal results are observed in the 30-day 
temporal scale of fishing ground prediction, indicating better 
compatibility in fisheries oceanography and deep learning at 

this temporal scale. In recent years, with the update of fish-
ing vessels and other fishing equipment in fisheries produc-
tion, a finer temporal scale is sometimes required. To strike 
a balance between model results and actual fisheries catch, 
it is possible to select a more refined temporal scale case 
within the acceptable range of model accuracy requirements.

Importance of each environmental factor 
on the fishing ground distribution

As a representative of short-lived species in the Northwest 
Pacific, the lifecycle of Ommastrephes bartramii spans 
approximately 1 year. Therefore, its life-history processes 
are highly sensitive to variations in the marine environment. 
During different periods, the population of Ommastrephes 
bartramii exhibits varying ranges of suitability to different 
environmental factors, and there are significant seasonal var-
iations (Yu et al. 2016). Due to the diverse temporal changes 
in each environmental factor, the optimal ranges of these 
factors for Ommastrephes bartramii also differ. Therefore, 
analyzing the temporal variations in each environmental fac-
tor in relation to the corresponding center fishing ground is 
crucial for understanding their importance in influencing the 
center fishing ground.

Sea surface temperature (SST) is the most crucial 
marine environmental factor affecting the fishing ground 

Fig. 7   Comparison of actual catch 
data superimposed onto the predicted 
results on single factor and the best 
AEIFG index multi-factor fishing 
ground prediction model (single and 
multiple indicate single-factor and 
multi-factor combination models, 
respectively. The predicted center 
fishing ground is illustrated in white, 
the predicted non-center fishing 
ground in black, and the actual catch 
data as colored dots.)
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distribution of pelagic economic species (Lajus et al. 2021; 
Suca et al. 2022). The suitable SST range for Ommastre-
phes bartramii exhibits significant seasonal variations each 
month (Chen 2006). Additionally, the distribution of the 
center fishing ground experiences significant interannual 
variations influenced by climate events, such as El Niño and 
La Niña (Alabia et al. 2016b; Yu et al. 2019). The center 
fishing ground is primarily characterized by a belt-shaped 
distribution with temporal variations in latitude and changes 
in area size. The gravity of the center fishing ground shifts 
northward and then southward, with the smallest area and 
highest concentration observed in October. This pattern cor-
responds strongly to the north–south displacement of SST 
isotherms, and the center fishing ground does not appear in 
regions with excessively low or high SST (Fig. 9A).

Sea surface height (SSH) contains information about 
ocean dynamics, including ocean currents, tides, water 
masses, and mesoscale eddies. They play a significant role 
in fishing grounds (Yatsu et al 2000). Eddy regions induce 
intense vertical movement of seawater, promoting mixing 
and exchange of nutrients between the upper and lower 
layers. This leads to an increase in marine plankton, which 
serves as food for fish, thus favoring the formation of fish-
ing grounds (Fan et al. 2009; Hardman-Mountford et al. 
2003). Previous studies have indicated that the center fish-
ing ground of Ommastrephes bartramii is mainly distrib-
uted along the edges of eddies, with a higher abundance of 
warm eddies compared to cold eddies (Zhang et al. 2022). 

Regarding the temporal variation in SSH distribution, sea-
sonal changes are not prominent. The maximum and mini-
mum values of SSH correspond to the centers of eddies, 
which are mostly non-center fishing grounds and exhibit a 
high degree of correlation. In the comprehensive environ-
mental factor model, the impact of SSH on the distribution 
of the center fishing ground is primarily to reduce the area 
of some eddy centers within the belt-shaped distribution 
established using the SST. This refinement enhances the 
precision of the fishing ground distribution (Fig. 9B).

Sea surface salinity (SSS) and chlorophyll a (Chl a) are 
important factors in the formation of primary producers, 
phytoplankton. They directly influence the structure and 
functionality of marine ecosystems, thus exerting a decisive 
impact on the formation of fishing grounds (Fan et al. 2009; 
Mustapha et al. 2009). Previous research has shown (Alabia 
et al. 2015) that the fishing ground distribution of Ommas-
trephes bartramii is on the warm side of the convergence 
zone between cold, low-salinity water and warm, high-salin-
ity water tongues within oceanic frontal regions. The results 
of this study (Fig. 9C) are consistent with previous research 
findings. The impact of SSS on the distribution of the center 
fishing ground is to reduce the area of the cold, low-salinity 
oceanic frontal region in the northwest direction. Unlike 
other environmental factors, Chl a has a large number of 
missing values. Previous data have shown that higher catch 
is associated with lower Chl a levels (Yu et al. 2017). There-
fore, the impact of Chl a on the distribution of the center 

Fig. 8   Variation in each environmental factor range in center fishing ground of Ommastrephes bartramii in different temporal cases
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fishing ground is minimal. When higher values of Chl a are 
present, it reduces the area of the center fishing ground in 
that region. However, this reduction in area is much smaller 
compared to other environmental factors (Fig. 9D). This may 
explain why the comprehensive environmental factor model 
including SST and Chl a performs the best. The inclusion of 
Chl a only provides minor adjustments to the model results 
based on the SST, resulting in results that are close to those 
of the single-factor SST model. However, in terms of the 
application evaluation of fishing grounds, Chl a is not more 
significant than other environmental factors.

Conclusions

In this study, we proposed a deep learning-based fishing 
ground prediction method with multiple environmental fac-
tors. Through the analysis of results from different temporal 
scales and environmental factor combinations, we found that 
the optimal temporal scale is 30 days, and the combination 
of factors includes SST and Chl a. The larger the temporal 
scale, the more stable and accurate the model performance. 
We introduced the application effect index of the fishing 
ground (AEIFG) to address the issue of excessive fishing 
ground area and low concentration when using single-factor 
prediction. By incorporating different environmental factor 
combinations in different temporal periods, we successfully 

Fig. 9   Variation in envi-
ronmental factors with 
corresponding center 
fishing ground monthly 
(A for SST, B for SSH, C 
for SSS, and D for Chl a)
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improved the application effectiveness of fishing ground pre-
diction and achieved more accurate results.

However, there are some limitations in the selection of 
environmental factors and the quality of data sources in this 
study. Future research could focus on selecting a greater 
number of more important and higher quality environmental 
factors, and optimizing the model's performance by incorpo-
rating oceanic climate events. Additionally, it is noteworthy 
that this study did not utilize the specific information and 
attributes of the Ommastrephes bartramii fishing ground in 
the Northwest Pacific Ocean. Therefore, the research method 
and approach proposed in this paper may be applied to other 
fishing grounds of species as well.
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