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Abstract
Taurine is a conditionally essential amino acid in fish nutrition. The present study addressed the practical application of exam-
ining published data on fish nutrition over the past 20 years, emphasizing the topic of taurine by using computational tools 
and their applications. According to the published articles, an increased linear growth of research occurred, with Japanese 
flounder being the most examined fish species. Dietary taurine supplementation has several beneficial effects in fish nutrition, 
such as survival, growth, feed utilization, protein and energy retention, intermediate metabolism, anti-oxidation, anti-stress, 
disease resistance, muscle texture and reproductive performance. Also, there are negative effects in some species. Dietary 
taurine exerted effects on several gene expressions and enzyme activities; these are important in taurine metabolism in fish. 
These genes and enzymes included taurine transporter (TauT), cysteine dioxygenase (CDO), cysteamine dioxygenase (ADO), 
cysteine sulfonate decarboxylase (CSD) and pretrypsinogen (Ptry). Plant protein-based diets with taurine supplementation 
are recommended because of the absence of taurine in plant protein.
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Introduction

As the world’s population increases, aquaculture plays an 
important role in meeting the high demand for fish prod-
ucts (Magalhães et al. 2019). Increasing demand, uncertain 
availability and the high price of fish meal lead to a drive 
to find alternative protein sources to reduce dependency 
on fish meal as the main protein source in aquafeeds. Plant 
proteins are formulated as the main fish meal substitutes in 

fish feed. However, there are some nutritional imbalances 
when dietary fish meal is replaced by plant protein source 
(Castillo and Gatlin 2015). Taurine is an amino acid that is 
abundant in fish meal, but limited in plant protein sources. 
Normally in fish, taurine is synthesized in liver. However, 
some fish species have a limited ability to synthesize taurine 
(Wei et al. 2018). Taurine has been identified as an essen-
tial amino acid in several fish species, notably in juvenile 
and larval stages (Salze and Davis 2015). As an example, 
taurine is an essential nutrient in Nile tilapia (Oreochromis 
niloticus) (Al-Feky et al. 2016a, b), Japanese flounder (Par-
alichthys olivaceus) (Han et al. 2014) and Senegalese sole 
(Solea senegalensis) (Pinto et al. 2010). Some fish species 
require dietary taurine supplementation due to a reduced 
ability to biosynthesize taurine inside their body (El-Sayed 
2013). Several studies have shown increased growth perfor-
mance and feed efficiency of fish fed low fish meal diet with 
taurine supplementation (Magalhães et al. 2019; Sampath 
et al. 2020; Zhang et al. 2018). Taurine and trimethyl tau-
rine (TMT) exert different effects on protein metabolism, 
although they have similar structures. In principle, they 
create hydrogen bonds with surface proton donor groups, 
which do not directly interact with proteins (Bruździak et al. 
2018). l-Cysteine is converted into taurine after the process 
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of oxidative enzymatic action in the biosynthesis process 
(Liu et al. 2017). Taurine synthesis is regulated mainly 
by taurine biosynthesis enzymes and taurine transporter 
(TauT). Enzymes involved in the oxidation process affect 
the efficiency of taurine synthesis from cysteine. TauT trans-
ports taurine from the cell plasma to mitochondria (Schuller-
Levis and Park 2003). Dietary sulfur-containing amino acids 
stimulated the taurine biosynthesis process in rainbow trout 
(Wang et al. 2016).

Several studies have shown the effects of taurine nutrition 
and deficiency. Dietary taurine supplementation resulted in 
increased total protein content and alkaline phosphatase 
activity in plasma, and glutathione reductase activity and 
heat-shock protein (HSP70) content in liver and reduced 
blood cell apoptosis (Tan et al. 2018). Also, taurine is an 
important nutrient in broodstock, larval and juvenile fish 
nutrition (Sarih et al. 2019). Moreover, taurine is involved 
in bile acid conjugation, cell membrane stabilization, 
osmoregulation and anti-inflammatory events (Moura et al. 
2018). In addition, it affects cell proliferation, and hence 
it has a direct correlation with muscle growth (Wang et al. 
2016; Wen et al. 2018). Taurine deficiency may cause a high 
requirement of vitamin C and vitamin E in marine fish larvae 
(Izquierdo et al. 2019). Taurine deficiency may lead to poor 
growth performance, green liver syndrome and psychologi-
cal abnormalities of fish fed with fish meal-free diets (Takagi 
et al. 2008). Moreover, there are many primary responses 
of fish that have been identified involving dietary taurine 
supplementation and include survival rate (Rotman et al. 
2017), growth performance (Poppi et al. 2018; Zhang et al. 
2018), feed utilization (Al-Feky et al. 2016b; Ferreira et al. 
2014; Peterson and Li 2018; Salze et al. 2018b; Satriyo et al. 
2017), body composition (Hernandez et al. 2018; Hoseini 
et al. 2017), whole body taurine (Hoseini et al. 2018; Salze 
et  al. 2018a; Stuart et  al. 2018), anti-oxidative capac-
ity (Abdel-Tawwab and Monier 2018; Zhang et al. 2018), 
immune response (Khaoian et al. 2014; Kim et al. 2017; 
Koven et al. 2016; López et al. 2015; Nguyen et al. 2015; 
Richard et al. 2017; Zhang et al. 2019), cellular and meta-
bolic responses (Feidantsis et al. 2014), hyperplasia muscle 
growth (Sampath et al. 2020), egg fertilization (Sarih et al. 
2019) and reproductive performance (Al-Feky et al. 2016a; 
Guimaraes et al. 2018). Taurine is a vital ingredient in fish 
nutrition, especially when feeding with plant protein-based 
diets. Fish meal is considered as the most adequate protein 
source in fish feed. However, plant protein-based feeds have 
been used in industry, but there are some limitations in 
nutritional content. Partial replacement of fish meal with 
taurine in fish feed can reduce feed cost as well as improve 
the growth performance in fish. So, taurine is an important 
nutrient in fish feed formulae, especially concerning carnivo-
rous fish (Zhang et al. 2019). The scientifically proven ben-
efits of dietary supplementation of taurine in fish nutrition 

research have been published mostly after 2000. Taurine has 
a wide range of benefits in fish nutrition. Moreover, the roles 
of taurine in different life and reproductive stages have not 
been widely investigated. The present study has focused on 
the roles of dietary taurine in fish nutrition by using a com-
prehensive analysis of 20 years of published research data. 
The study includes the optimum taurine supplementation 
level, optimum life stage to supplement the taurine in feed 
formulae, the fish species which have the most significant 
impact and the roles of the TauT gene in taurine synthe-
sis. Furthermore, the present study concludes the roles of 
taurine in different fish species, life stages, habitat, the pri-
mary protein source in feed, the inclusion of fish meal and 
the primary function of taurine. The nutritional importance 
of taurine in fish nutrition, and how it affects nutritional 
metabolism and functions of the fish are also investigated.

Methodology

In the present study, published data after the year 2000 relat-
ing to dietary taurine roles in fish nutrition were analyzed 
and visualized by using a computational literature mining 
model. Literature text mining techniques have been widely 
used in bioinformatics and biomedical research due to the 
high efficiency of literature capture in any specific topic. 
The present study collected research data from data mining 
and filtering by “rentrez”, R package according to the title of 
the article, fish species, life stages, taurine supplementation 
and primary response (Winter 2017). Then, the collected 
data were carefully summarized and tabulated for analysis 
and visualization. Genetic databases including the National 
Center for Biotechnology (NCBI) gene database were used 
to collect gene frequencies of the TauT gene in different 
fish species (Lamurias and Couto 2019). To calculate the 
optimum dietary supplementation level, all the taurine data 
were entered separately and tabulated. Tabulated data were 
filtered to make graphs and figures. The data were expressed 
as mean ± SEM (standard error of the mean) and analyzed 
by one-way analysis of variance (ANOVA) using SPSS 23.0. 
The number of times taurine supplementation used accord-
ing to fish species and taurine levels was visualized by using 
Tableau Desktop 2020.1. Articles were summarized accord-
ing to fish species, life stages, living environment of the fish, 
best-recommended taurine level, with or without fishmeal, 
the primary response and the main protein sources in the 
diet. Also, the synergic effects of different nutrients with 
taurine were studied.

Properties and biosynthesis of taurine

The full chemical name of taurine is 2-aminomethane sul-
fonic acid. It is converted from l-cysteine after the process 
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of oxidative enzymatic action in the biosynthesis processes 
in liver (Liu et al. 2017). In 1827, taurine was isolated ini-
tially by Leopold Gmelin and Friedrich Tiedemann (Seidel 
et al. 2018). It was originally found in bile acids of the ox 
(Bostaurus) and the name was derived from Taurus. As a 
sulfur-containing amino acid, taurine is highly abundant in 
most animal tissues, especially in marine animals. Plant and 
fungi contain very low concentrations (Sundararajan et al. 
2014). Taurine is commonly found in muscle, brain, liver 
and kidney, and it helps to develop the functions of skeletal 
muscles, cardiovascular and central nervous systems, and 
the retina (Onsri and Srisawat 2016). In fish, taurine is syn-
thesized in liver from methionine and cysteine. However, 
the ability of biosynthesis varies according to fish species. 
Also, it has been highlighted that taurine deficiency leads to 
certain inferior performance and physiological abnormali-
ties (Shen et al. 2018). Taurine is generally considered as an 
essential amino acid for fish. It is required in primary situ-
ations when production is decreasing due to deficiencies or 
lack of ability to synthesize taurine in liver (El-Sayed 2013).

Taurine affects proteins because it has the main abil-
ity of directly interacting via an amine (NH3

+) group 
(Bruździak et al. 2018). Taurine is involved in several 
metabolic pathways, such as methionine metabolism 
(Andersen et al. 2015), bile acid biosynthesis (Salze and 
Davis 2015), inner membrane transport (Luirink et al. 
2005) and sulfur metabolism (Liu et al. 1994). It has many 
functions, such as bile acid synthesis, cell volume regula-
tion, cytoprotection of the central nerve system and mod-
ulation of intracellular calcium (Ripps and Shen 2012). 
Normally, methionine-derived homocysteine is a sulfur 

source, and its condensation products with serine are 
converted into cysteine in animals. The major pathway of 
taurine biosynthesis includes several sequences of the oxi-
dation process. Cysteine is converted into cysteine sulfinic 
acid by cysteine dioxygenase (CDO), and then hypotaurine 
is produced by cysteine sulfinic acid by cysteine sulfonate 
decarboxylase (CSD) followed by hypotaurine dehydro-
genase and produce taurine (Fig. 1). CDO regulates the 
cysteine concentration, and CSD enzyme is the rate-limit-
ing step in taurine biosynthesis. CDO and CSD are the key 
enzymes in the taurine biosynthesis process in the liver 
(Wang et al. 2014). Moreover, a membrane transporter of 
taurine has a critical role for transport and recycling of 
taurine. However, regulation of taurine biosynthesis differs 
according to the fish species because of the key enzyme 
activities, especially CDO and CSD. Those enzyme activi-
ties depend on the osmotic conditions, ontogenetic stages, 
hormone status and diet formulation. Taurine biosynthesis 
is higher in rainbow trout than Japanese flounder (Wang 
et al. 2016). Taurine is synthesized through a transsulfura-
tion pathway by using aspartate aminotransferase by some 
freshwater fish species, such as rainbow trout and com-
mon carp (Guimaraes et al. 2018). However, the taurine 
biosynthesis pathway in fish is still poorly described in the 
literature (Salze and Davis 2015). The addition of taurine 
to zebrafish (Danio rerio) liver cells grown in taurine-free 
medium has little effect on transcription levels of the bio-
synthetic pathway genes for cysteine dioxygenase (CDO), 
cysteine sulfonate decarboxylase (CSAD) or cysteamine 
dioxygenase (ADO). In contrast, supplementation with 
taurine causes a 30% reduction in transcription levels of 

Fig. 1   Taurine biosynthesis 
pathway. (Source: KEGG 
pathway map-00430, Liu et al. 
2017). CDO cysteine dioxy-
genase type 1, CSD cysteine 
sulfonate decarboxylase, GLD 
glutamate decarboxylate, AED 
2-aminoethanethiol dioxygenase
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the taurine transporter, TauT. The importance of taurine 
to TauT gene expression in liver has been confirmed (Liu 
et al. 2017).

Low or absence of CSD activity in liver could lead to a 
lack or low capacity of taurine synthesis, especially in the 
juvenile stage of fish (Martins et al. 2018). Hepatic taurine 
concentration was marginally increased with the growth of 
rainbow trout. Furthermore, mRNA and CSD levels were 
dramatically increased with the growth of rainbow trout 
(Wang et al. 2015). Dietary sulfur amino acids, such as 
methionine and cysteine, stimulated taurine biosynthesis 
with increased hepatic CDO and liver taurine concentration, 
but not significantly affected the hepatic CSD activities in 
turbot (Psetta maxima) (Wang et al. 2014). Carnivorous fish 
have a lower capacity of taurine biosynthesis than herbivo-
rous fish. Supplementation of dietary taurine increases the 
utilization of plant protein in carnivorous fish (Zhang et al. 
2018). So, taurine improves the growth performance of sev-
eral carnivorous fish, including turbot (Scophthalmus maxi-
mus) (Liu et al. 2018; Wei et al. 2018; Zhang et al. 2019), 
red sea bream (Pagrus major) (Takagi et al. 2010), Japa-
nese flounder (P. olivaceus) (Kim et al. 2017) and yellowtail 
(Seriola quinqueradiata) (Khaoian et al. 2014; Nguyen et al. 
2015). Therefore, taurine is a vital nutrient for the above-
mentioned fish species especially in their rapid growth stage, 
where most CSD actions take place in the liver. So, all those 
properties are vitally important factors in fish nutrition.

Statistical analysis of research on fish taurine 
nutrition

According to the data set, more than 100 specific queries 
of the literature were tabulated. The research trend line was 
with R2 = 0.46, and P value = 0.0018. A linear trend model 
is computed for the sum of the number of records given 
published years. The literature number was significantly 
increased by the year (P < 0.05). The maximum number was 
recorded in the year 2018 with 18 records, and the mini-
mum number was recorded with one record in the year 2001, 
2002, 2009 and 2010, respectively. There was a trend line of 
significantly increasing number of articles in the special field 
of taurine supplementation and metabolism because of the 
increase of research, funding, high demand of seafood as a 
protein source, limitation and the high price of fishmeal, an 
increasing number of concerns on taurine, and the previous 
research motivations. Japanese flounder (P. olivaceus) was 
the most studied fish species, followed by red sea bream, 
yellowtail and turbot. The numerous positive effects with 
few negative effects of dietary taurine supplementation on 
growth and metabolism in fish were recorded (Table 1). Fur-
ther research is needed on certain fish and their different life 
stages to clarify the role of taurine and its nutritional value 
for other nutrient metabolism.

Growth performance

In most of the published studies, the positive effects of 
dietary taurine supplementation on the growth and feed uti-
lization of fish were found, especially for the fish fed with 
plant protein-based diets. These fish species include white 
seabream (Diplodus sargus) (Magalhães et al. 2019), turbot 
(Liu et al. 2018; Sampath et al. 2020; Wei et al. 2018; Zhang 
et al. 2019), rock bream (Oplegnathus fasciatus) (Ferreira 
et al. 2014), common carp (Cyprinus carpio) (Abdel-Taw-
wab and Monier 2017), snapper (Lutjanus colorado) (Her-
nandez et al. 2018), black carp (Mylopharyngodon piceus) 
(Zhang et al. 2018) and channel catfish (Peterson and Li 
2018). Furthermore, it was found that dietary methionine 
supplementation was inefficient in the plant-based diets to 
overcome the taurine deficiency for the growth performance 
of meagre (Argyrosomus regius). So, taurine supplementa-
tion is necessary for plant protein-based diets (Moura et al. 
2018).

However, the nonresponse or negative effects of dietary 
taurine supplementation on fish were also found in some 
previous studies. Growth and feed utilization of barramundi 
(Lates calcarifer) were not significantly affected by taurine 
supplementation of the plant-based diets with 1.5% of the 
final taurine content (Poppi et al. 2018). Also, Kato et al. 
(2014) found no significant difference in growth, survival, 
feed intake and feed efficiency of red sea bream fed with 
or without taurine-supplemented diet. No significant effects 
of dietary taurine supplementation on growth performance 
were found in some other fish species, such as grass carp 
(Yang et al. 2013) and yellowtail (Khaoian et al. 2014). Fur-
thermore, Hoseini et al. (2017) found negative effects on the 
growth performance of juvenile Persian sturgeon (Acipenser 
persicus) fed with taurine-supplemented diet compared to 
the controls without taurine supplementation. The similar 
negative results were found in Persian sturgeon (A. persicus) 
(Hoseini et al. 2017) and European sea bass (Dicentrarchus 
labrax) (Coutinho et al. 2017).

Based on the positive effects of dietary taurine sup-
plementation, the results of most research suggested that 
optimal dietary taurine content was between 0.5 and 1.5%, 
whereas 1% was the most recorded value (Fig. 2). Accord-
ing to the data set, the statistically optimal content of 
dietary taurine for the growth and metabolism of fish was 
0.91 ± 0.06% (the mean value) (Fig. 3). Among published 
articles, the juvenile stage was the most tested life stage of 
the fish. Some deviations from the statistically optimal die-
tary taurine content were observed because of the specific 
experimental conditions and different life stages of fish. So, 
even with the same fish species, the optimum taurine level 
has deviated according to the life stages, feed formula and 
the experimental conditions. Also, it has been suggested 
that optimum taurine level is a species-specific factor for 
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fish. Kim et al. (2017) suggested that dietary taurine content 
was 0.9–1.3% for Japanese flounder fed with a fishmeal-
based diet. Satriyo et al. (2017) suggested that a minimum 
level of 0.45% of taurine is required in the diet with washed 
fishmeal as a main protein source to normalize the physi-
ological conditions of juvenile totoaba, namely green liver, 
low gallbladder-somatic index (GBSI), low plasma total 
cholesterol, low lipid digestibility, low erythrocyte turnover 
and low visceral fat content. With most of the cases utiliz-
ing more content than the optimal level, dietary taurine has 
no or negative effects on fish (Hu et al. 2018b; Stuart et al. 
2018; Zheng et al. 2016). So, the current knowledge about 
the optimum dietary taurine levels is highly important for 
aquaculture as well as for future research. In any case, tau-
rine has shown species specific effects on fish nutrition. So, 
there were more positive effects as well as a few negative 
effects on certain fish species. Moreover, taurine is a critical 
nutrient for plant-based protein diets for fish when consider-
ing the growth performance.

Anti‑oxidative and immune effects

Taurine has anti-oxidative properties because of its effect on 
anti-oxidative enzymes and genes in the liver and intestine of 
fish (Coutinho et al. 2017). According to Zhang et al. (2018), 
anti-oxidative enzymes, including SOD and GSH-px, in 
juvenile black carp (M. piceus) were significantly increased 
by dietary taurine supplementation. The interactive effect 
of dietary taurine and glutamine gave significantly higher 
anti-oxidative capacity in Japanese flounder (Han et al. 
2014). Also, increasing dietary methionine with taurine 
increased activities of CAT and GPX in the liver of Euro-
pean sea bass (Dicentrarchus labrax). Activities of the CAT, 
T-SOD, and the total anti-oxidative capacity (T-AOC) in rice 
field eel (Monopterus albus) were significantly increased 
with increasing dietary taurine levels (Hu et al. 2018b). The 
activities of SOD and the content of glutathione in juvenile 
black carp (M. piceus) were increased by dietary taurine 
supplementation in low fish meal diet (Zhang et al. 2018). 
The same results were found in some other species, such as 
European sea bass (Feidantsis et al. 2014) and common carp 
(C. carpio) (Abdel-Tawwab and Monier 2017).

Juvenile yellow catfish (Pelteobagrus fulvidraco) fed 
with all-plant-based protein diet containing 1.09% of tau-
rine supplementation increased red blood cell, hemoglobin, 
total immunoglobulin, phagocytic index, respiratory burst 
and activities of SOD, GPX, CAT and lysozyme in blood (Li 
et al. 2016). However, when dietary fishmeal was replaced 
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effects on immune parameters in white seabream (D. sar-
gus) fed with both high and low fish meal diets (Magalhães 
et al. 2019). The same results were confirmed in Japanese 
flounder (P. olivaceus) (Han et al. 2014). Also, red seabream 
(P. major) fed low fish meal (22–36%) diets in low water 
temperatures (14.5 ± 1.95 °C) with 1% dietary supplementa-
tion had increased innate immunity compared with fish that 
received high levels of fish meal (45%). However, hema-
tological and biochemical parameters were not affected by 
taurine supplementation (Gunathilaka et al. 2019).

So, taurine improved the anti-oxidative properties of 
fish by optimizing the anti-oxidative and immune-related 
parameters, both at protein and gene levels in the liver and 
intestine. These parameters include anti-oxidative enzymes 
(e.g., CAT, SOD and GPX), hemoglobin and total immuno-
globulin levels.

Nutrient metabolism

Protein metabolism

Taurine has functional properties in mitochondrial protein 
synthesis by protecting mitochondria against excessive 

superoxide generation and enhancing the electron trans-
port chain activity (Chian et al. 2012). Moreover, protein 
synthesis is a key functional process in nutrition metabo-
lism in fish. TOR regulates the limiting step in protein syn-
thesis. The signaling pathway of the TOR gene expression 
was significantly increased in the liver of juvenile black 
carp (M. piceus) fed diets with taurine supplementation. 
However, the TOR gene expression levels in muscle were 
not significantly affected by dietary taurine (Zhang et al. 
2018).

Dietary taurine significantly increased the protease 
content in common carp (C. carpio) (Abdel-Tawwab and 
Monier 2017). The protein efficiency ratio was significantly 
improved by 1.2% of dietary taurine, and the whole-body 
protein content was not affected in juvenile European sea 
bass (Dicentrarchus labrax) (Martins et al. 2018). How-
ever, the whole-body protein content in cobia (Rachycen-
tron canadum) was increased with dietary taurine content 
(Watson et al. 2013). Also, grouper (Epinephelus coioides) 
fed dietary taurine improved amino acid uptake and protein 
synthesis by the actions of metabolic regulation in the pro-
tein synthesis pathway (Shen et al. 2019). So, taurine has 
improved the protein metabolism in fish by optimizing the 
mitochondrial protein synthesis and TOR gene expression.

Fig. 2   Sum of number of 
records broken down by 
recommended/required taurine 
concentration (%). Circle size 
and the color show sum of the 
number of records
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Glucose metabolism

The efficiency of carbohydrate metabolism in fish mainly 
depends on the enzyme activity, insulin receptors, rate of 
glucose transport and regulation efficiency of hepatic glu-
cose utilization. Dietary taurine supplementation increased 
the activity of intestinal amylase in turbot (Zhang et al. 
2019), common carp (Abdel-Tawwab and Monier 2017) 
and black carp (M. piceus) (Zhang et al. 2018). Synergic 
effects of dietary taurine and carbohydrates significantly 
decreased the gene expression of fructose-1, 6-bisphos-
phate and glycation end products in the plasma of turbot 
(Scophthalmus maximus) (Zhang et al. 2019). The gene 
expressions of liver glucokinase, phosphofructokinase, 
pyruvate kinase, glucose-6-phosphate dehydrogenase 
(G6PD), glycogen synthase (GS) and glucose transporter 
2 were significantly increased. Conversely, liver cytosolic 
phosphoenolpyruvate carboxykinase (cPEPCK) expression 

in turbot was significantly decreased with 1.2% of dietary 
taurine supplementation (Zhang et al. 2019). Dietary tau-
rine increased glucose phosphorylation and the activity of 
hepatic G6PD in totoaba (T. macdonaldi) fed soy protein 
concentrate-based diet. Meanwhile, it decreased the cata-
bolic enzyme activity of glucogenesis (Bañuelos-Vargas 
et al. 2014). Taurine has blood glucose reducing proper-
ties via interaction with the insulin receptors. It was found 
that dietary taurine supplementation decreased the plasma 
glucose levels in white seabream (D. sargus) (Magalhães 
et al. 2019). Moreover, dietary taurine supplementation 
increased the glucose tolerance ability of turbot (Zhang 
et al. 2019).

In a word, taurine improved the glucose metabolism by 
enhancing the activities and gene expression of enzymes, 
such as glucokinase, phosphofructokinase, pyruvate 
kinase, glucose-6-phosphate dehydrogenase, glycogen 
synthase and glucose transporter 2.

Fig. 3   Radar plot of tested taurine-supplemented percentage with fish species and their life stages. Highlighted circle is the mean value of tau-
rine% (0.91)
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Lipid metabolism

Bile acid has key roles in lipid metabolism. Taurine has a 
direct correlation with bile acid metabolism in fish liver. Bile 
salts are synthesized in liver as a derivative of cholesterol. 
Bile acids are secreted into the intestine to emulsify lipids, to 
increase the fat-soluble vitamin absorption and enhance die-
tary lipids (Magalhães et al. 2019). Soybean meal (SBM) is 
the main fishmeal replacement in most plant-based fish feed 
formulae. However, lack of taurine in SBM diets resulted in 
abnormalities of lipid digestion. Yellowtail (S. quinquera-
diata) fed an SBM-based diet with 0.15% of taurine content 
had significantly lower lipid digestibility than those fed a 
fishmeal-based diet with 0.24% of taurine content. At the 
same time, lipase activity in the anterior intestine, the lipid 
content in liver and muscle, and bile acid concentrations in 
the gall bladder and interior intestinal track were signifi-
cantly lower in the SBM group than in the FM group. The 
lipid digestion of yellowtail was significantly increased by 
the fishmeal-based diet than the SBM-based diet without 
dietary taurine supplementation. These results suggested 
that taurine has significant effects on lipid metabolism, 
lipid digestion and the lipid absorption in fish. Taurine sup-
plementation in SBM-based diet restored lipid digestibility, 
bile acid concentration and tissue lipid concentration of yel-
lowtail (Nguyen et al. 2015). Triglyceride and cholesterol 
levels in juvenile yellow catfish (Pelteobagrus fulvidraco) 
fed all-plant protein diets were significantly decreased with 
the increasing dietary taurine levels up to 2.55% (Li et al. 
2016). Also, meagre (A. regius) fed high plant protein diets 
with 1% taurine had significantly increased total bile acids 
in the plasma as well as the anterior intestine, total plasma 
cholesterol and triglycerides (Moura et al. 2019). Dietary 
taurine significantly reduced the liver lipid peroxidation 
in totoaba (Totoaba macdonaldi) (Bañuelos-Vargas et al. 
2014) and zebrafish (D. rerio) (Rosemberg et al. 2010). The 
whole-body lipid content in juvenile black carp (M. piceus) 
fed dietary taurine was significantly decreased (Zhang et al. 
2018). In addition, lipase activity in the intestine of juvenile 
black carp (M. piceus) and turbot (Scophthalmus maximus) 
was significantly increased with taurine supplementation in 
low fish meal diet (Zhang et al. 2018, 2019). Meanwhile, 
dietary taurine increased the lipid metabolism of grouper 
(Epinephelus coioides) by optimizing the lipid digestion 
and metabolic regulation (Shen et al. 2019). Thus, taurine 
has important roles in lipid metabolism in fish, including 
bile acid synthesis, lipid emulsification, lipid digestion and 
absorption, and body lipid deposition.

Reproductive and larval performances

Most of the published studies focus on juvenile fish, there are 
fewer data dealing with the broodstock and larvae. Taurine 

was determined as an essential nutrient in broodstock diets. 
For example, greater amberjack (Seriola dumerili) has mul-
tiple spawning patterns. Dietary taurine increased the ferti-
lization rate, fecundity, egg diameter, egg protein content, 
larger yolk sac volume and larval quality (Sarih et al. 2019). 
Yellowtail broodstock fed with dietary taurine had increased 
oocyte growth, spawning success and reduced egg abnor-
malities (Matsunari et al. 2006). Also, Nile tilapia brood-
stock had significantly higher spawning frequencies, total 
spawning, hatchability, number of spawnings per female and 
absolute fecundity with increasing dietary taurine content 
up to 1%. It was suggested that 0.8% of dietary taurine is 
required for optimum reproductive outputs of Nile tilapia 
broodstock (Al-Feky et al. 2016a). However, zebrafish fed 
with graded levels of dietary taurine from 0.02 to 1.37% 
were not significantly affected for reproduction with plant 
protein-based diet. Yet, it was recommended to have taurine 
in the broodstock diet of zebrafish to improve lipid utiliza-
tion and redox status (Guimaraes et al. 2018).

Abdel-Tawwab and Monier (2018) pointed out that 1.5% 
of dietary taurine significantly increased the growth, feed 
intake and activities of the intestinal amylase, lipase and 
protease of common carp larvae. Gilthead seabream larvae 
fed dietary vitamin E and C with taurine had significantly 
increased gene expression of osteocalcin (OC), but not cat-
alase (CAT), glutathione peroxidase (GPX) and superoxide 
dismutase (SOD) (Izquierdo et al. 2019). However, dietary 
taurine significantly affected the anti-oxidative capacity of 
common carp larvae by increasing the activities of SOD, 
CAT and GPX. Regarding gilthead seabream, 0.71% of 
dietary taurine significantly increased the growth of lar-
vae (Izquierdo et al. 2019). Up to 1% of dietary taurine 
significantly increased the growth and feed utilization of 
Nile tilapia larvae fed with the soybean meal-based diet. 
Meanwhile, body protein and body amino acid contents 
were significantly increased, whereas body moisture and 
ash levels were decreased. However, body lipid contents 
were not significantly affected by dietary taurine (Al-Feky 
et al. 2016b). Also, it was found that taurine significantly 
increased the survival, growth performance and taurine 
content in the body of yellow drum Nibea albiflora larvae 
(Xie et al. 2014). Taurine has antioxidant properties with 
a combination of vitamin C and E in the larval diet. It sig-
nificantly increased the growth of gilthead seabream larva 
fed with 0.71% of dietary taurine. Meanwhile, it reduced 
bone anomalies through up-regulating the osteocalcin 
gene expression, and down-regulating the anti-oxidative 
enzyme genes (Izquierdo et al. 2019). Taurine is a limit-
ing nutrient in the feed for California yellowtail (Seriola 
lalandi) larvae. However, dietary taurine supplementation 
had no significant effects on white seabass (Atractoscion 
nobilis) larvae (Rotman et al. 2017). Tongue sole (Cyno-
glossus semilaevis) postlarvae fed with dietary taurine had 
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significantly increased survival, growth, trypsin activity 
and gene expression of pretrypsinogen (Ptry). Excessive 
dietary taurine (2%) had negative effects on survival, 
growth and the enzyme activities (Zheng et al. 2016). 
However, even 12.2% of dietary taurine had no signifi-
cant negative effects on the growth, survival and feed con-
sumption rates of California yellowtail (Seriola dorsalis) 
postlarvae (Stuart et al. 2018). Certainly, more research is 
needed to evaluate the potential nutrient toxicity of ele-
vated dietary taurine concentrations for fish larvae.

Taurine transporter (TauT) gene expression

TauT is the key gene to transport taurine from intercellular 
plasma to cell plasma as well as cell plasma to mitochon-
dria (Schuller-Levis and Park 2003). Intracellular taurine 
accumulation is mainly controlled by TauT, which con-
tributes to taurine transportation in cells and the mito-
chondria in fish. Tau facilitates taurine synthesis in the 
liver by increasing the efficient transportation system in 
the cells. According to Schuller-Levis and Park (2003) 
and Liu et al. (2017), TauT contributes to mitochondrial 
taurine biosynthesis and membrane taurine transportation 
(Fig. 4). According to the NCBI nucleotide database, TauT 
gene sequences have more similarities between fish species 
(Fig. 5). It has been shown that there are similar sequences 
between fish species. So, taurine has optimized taurine 
transportation at the cellular level by affecting TauT gene 
expression.

Fig. 4   Mitochondrial taurine transportation biological pathway

Fig. 5   Circos plot of TauT mRNA sequences similarities between 
different fish species with NCBI GenBank accession no. (1). Scoph-
thalmus maximus: KT369001.1, (2) Oreochromis mossambicus: 
AB033497.1, (3) Solea senegalensis: HQ148721.1, (4) Siniperca 
chuatsi: KP689601.1, (5) Lateolabrax japonicas: JN897395.1, (6) 
Epinephelus coioides: KX226453.1
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Concluding remarks

A large number of publications suggest that fish growth is 
significantly increased, i.e., between 0.5 and 1.5%, with 
dietary taurine supplementation. The optimum growth 
performance may be obtained with dietary taurine supple-
mentation in the juvenile stage due to high growth-related 
metabolic functions. In addition, taurine increases the egg 
fertility of the brood stock and the survival rate of larvae. 
Dietary taurine supplementation mainly affected growth per-
formance, feed efficiency, muscle texture and composition, 
feeding behavior, metabolic functions (protein, lipids and 
carbohydrate), anti-oxidative capacity and immunity of fish. 
Moreover, plant based diets are recommended with taurine 
supplementation because of the lack of this compound in 
plant protein. However, taurine effects are species specific 
and dose dependent. Even in the same fish species, growth 
parameters are different according to the environmental con-
ditions, broodstock health, immunity and the presence of 
other nutrient combination in the fish diets. Further studies 
are highly recommended to identify the effects of taurine 
on different fish species, and their different life stages, espe-
cially the juvenile stage.
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