
Vol:.(1234567890)

Marine Life Science & Technology (2020) 2:194–202
https://doi.org/10.1007/s42995-020-00031-5

1 3

RESEARCH PAPER

Optimization of urease production by Bacillus halodurans PO15: 
a mangrove bacterium from Poovar mangroves, India

Vinod Kumar Nathan1,2 · Jasna Vijayan1 · Ammini Parvathi1

Received: 16 September 2019 / Accepted: 1 February 2020 / Published online: 15 April 2020 
© Ocean University of China 2020

Abstract
Mangrove ecosystems are one of the most versatile habitats for microorganisms with a high potential for producing a vari-
ety of extracellular hydrolytic enzymes. In this study, bacteria with urease activity, enzymes that catalyze the hydrolysis of 
urea into carbon dioxide and ammonia, were isolated from mangrove sediments of Poovar (Trivandrum, India). Bacillus 
halodurans, strain PO15, isolated in this study with high urease (UA) activity (28 U/ml) was subjected to optimization 
using a Box-Behnken experimental design. Incubation variables included incubation period, pH, inoculation percentage 
and temperature. Significant factors identified based on the model were incubation period, pH, incubation temperature, and 
inoculum percentage; variations in these produced a tenfold increase in UA activity (295.80 U/ml). The specific activity of 
the purified UA enzyme was 62.34 U/mg and was found to be thermostable (active up to 60 °C). UA of B. halodurans PO15 
has potential for microbial-induced biomineralization with a reduction of free Ca2+ to about 82.8% ± 0.17%. The microbial-
induced calcium precipitation (MICP) using the UA enzyme will potentially be beneficial in the process of biomineralization 
as well as for a variety of industrial applications.
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Introduction

Microorganisms play a major role in ecosystem engineer-
ing through several biogeochemical process (Graham et al. 
2016). These processes are mostly driven by microbial 
enzymes. Microbial enzymes have been well studied for 
their industrial applications, and environment management. 
Urease, secreted by bacteria, is one such enzyme that has 
numerous applications. Urease is extensively used as a diag-
nostic tool in the detection of urea in blood (Smith et al. 
1993), in alcoholic beverages to remove urea, biosensors for 

detection of heavy metal ions, and biocalcification (Sarda 
et al. 2009). Microbial ureases can induce calcite precipita-
tion through reaction of urea and free calcium ions, a func-
tion that has applications in civil and geotechnical engineer-
ing for enhancing the strength and stiffness properties of soil 
through the process of biomineralization (Anitha et al. 2018; 
Bibi et al. 2018; Cheng and Cord-Ruwisch 2013; Ivanov and 
Chu 2008).

Urease (EC 3.5.1.15) is a nickel-containing enzyme 
which catalyzes the formation of carbon dioxide and 
ammonia from urea (Cheng and Cord-Ruwisch 2013) 
resulting in an increase in pH in the surrounding media 
(Mora and Arioli 2014). Urease-producing microorgan-
isms are relevant to human microbiota, which hydrolyses 
urea (Chen and Burne 2003; Morou-Bermudez and Burne 
2000; Wegmann et al. 2013; Yatsunenko et al. 2012). The 
production of urease enzyme by ureolytic bacteria in soil 
may be influenced by a variety of factors. It is induced 
in the presence of urea and inhibited in the presence of 
ammonia and nitrogen compounds (Mobley et al. 1995). 
Several studies have reported the isolation of indigenous 
ureolytic bacteria, using enrichment cultures from soil, 
ground water and cement samples (Achal and Pan 2011; 
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Burbank et al. 2012; Elmanama et al. 2013; Hammes et al. 
2003; Rivadeneyra et al. 1993). Urease has been identified 
as a virulence factor for several microbial pathogens (Mora 
and Arioli 2014). Its role in microbial infections was well 
established through studies on Helicobacter pylori (Mora 
and Arioli 2014). The urease activity of microorganisms, 
such as Proteus mirabilis and Staphylococcus saprophyti-
cus, plays a vital role in urinary tract infections through 
struvite–carbonate–apatite urinary stone formation. Based 
on the urease properties on formation of carbonate apatite 
stones, this enzyme has an application in environmental 
engineering. In addition to the above, urease enzyme also 
has many medical applications, including use as new drug 
targets.

Despite their application in the fields of biomedical and 
environmental engineering, the production conditions of the 
urease enzyme remain poorly understood. Previous stud-
ies have been limited to one-factor optimization (Bakhtiari 
et al. 2006; El-Bessoumy et al. 2009) and have not con-
cluded suitable production parameters for enhancing ure-
ase activity. For industrial applications, it is important to 
determine the optimal conditions for enzyme production. 
Traditionally, factorial methods were used in kinetic stud-
ies on microbially induced carbon precipitation (MICP) but 
this method is costly and time-consuming. Methods such 
as response surface methodology (RSM) in the form of the 
Box-Behnken experimental design were used to determine 
the optimum levels of key conditions as determined by 
Plackett–Burman design (PBD) (Box and Behnken 1960; 
Plackett and Burnam 1946). This method could overcome 
the challenges of the conventional optimization techniques, 
which are laborious and result in unreliable and inaccurate 
results. These statistical techniques could help in designing 

experiments, building models, evaluating the interactive 
effects of variables, and determining optimum conditions 
(Shivam et al. 2009). RSM is widely used in bioprocessing 
technology for optimization of fermentation media (Desai 
2008; Rishad et al. 2016; Sunitha et al. 1999). In a study 
by Khodadadi and Bilsel (2015), a central composite face-
centered (CCF) design was used to fit a second-order model 
to evaluate microbial urease efficacy in the biocementation 
process. Optimum conditions of enzyme-specific rate and 
urea hydrolysis were found to be significant. RSM or sta-
tistical modelling has been employed in the optimization of 
several enzymes, due to their reliability (Ameri et al. 2019; 
Nathan et al. 2018; Raza et al. 2019; Vijayaraghavan and 
Vincent 2014). This approach resulted in greater enzyme 
production of the microbial strains and are essential for any 
industrial applications. In this paper, we focus on a urease-
producing bacterium, Bacillus halodurans PO15, isolated 
from mangrove sediment. We used statistical models for 
optimizing urease production at different incubation peri-
ods, pH, inoculation percentage and incubation tempera-
tures, to achieve maximum enzyme activity. The biomin-
eralization ability of the urease was also evaluated. This is 
the first report of urease optimization through statistical 
models.

Results and discussion

Screening of urease‑producing bacteria

Fifty-two bacterial cultures were isolated from Poovar 
mangrove ecosystem sediment samples. Of these, 21 iso-
lates gave urease positive results on urease agar. These 

Fig. 1   Representation of urease 
production using Bacillus 
halodurans isolate PO15 based 
on Box-Behnken experimental 
design
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bacterial strains were inoculated into urease broth and 
urease production was quantified, based on a spectro-
photometric assay. The urease activity of these isolates 
ranged from 1.8 to 28 U/ml. The bacterial isolate with 
the highest activity was selected for the further experi-
ments. The strains with high urease activity were iden-
tified as B. halodurans through 16S rRNA ribotyping. 
The urease-producing bacteria is ubiquitous in natural 
environments. However, other common urease-producing 
strains reported here, Helicobacter pylori, Proteus vul-
garis, Staphylococcus aureus, and Pseudomonas aerugi-
nosa, etc., are pathogenic or opportunistic pathogens to 
humans (Stabnikov et al. 2013). Additionally, many other 
bacterial strains that are used in microbial-induced cal-
cium precipitation (MICP) with urease production Bacil-
lus sp. VS1 and Bacillus sp. were reported (El-Bessoumy 
et al. 2009; Stabnikov et al. 2013). VUK5 has been exten-
sively used in MICP studies (Stabnikov et al. 2013). In 
biocementation studies, spore-forming strains of urease-
producing bacteria, were found to be more compatible to 
environments with high salt concentrations (Bachmeier 
et al. 2002; Stabnikov et al. 2013). For this reason, the 
optimization experiment in the present study was con-
ducted for the B. halodurans, isolate PO15 alone. The 
major concern for environmental applications is the selec-
tion of an avirulent bacterial that has no adverse effect on 
humans or animals. Though many high urease-producing 
bacteria have been reported, they are mostly associated 
with human pathogenesis and cannot be used for any 
in situ environmental applications. In the present study, 
the mangrove bacterium, B. halodurans strain PO15, has 
no reported virulence and so could be employed in the 
optimization analysis.

Statistical optimization for urease production

In the present study, the most promising urease-producing 
isolate (B. halodurans, isolate PO15) was selected, based 
on urease activity. Figure 1 presents a schematic represen-
tation of urease production in the B. halodurans isolate 
P015, based on Box-Behnken experimental design. Initial 
urease activity of B. halodurans isolate PO15 was about 
28 U/ml. This value was quite higher than the activity 
reported for Bacillus thuringiensis N2, a marine bacterium 
(3.53 U/ml) (El-Bessoumy et al. 2009). To determine the 
effect of different factors on urease production, culture 
conditions were optimized using a Box-Behnken experi-
mental design. A maximum urease activity of 295.80 U/
ml, a tenfold increase from initial activity, was achieved 
using the design (Table 1). Significant factors identified, 

Table 1   Optimization of urease production using Bacillus halodurans 
isolate PO15 based on Box-Behnken experimental design

Run Actual Val Predicted Val

1 234.05 242.13
2 258.91 239.63
3 202.08 208.55
4 225.25 205.97
5 234.05 242.13
6 209.50 177.22
7 231.50 250.97
8 234.05 242.13
9 234.05 242.13
10 234.05 242.13
11 234.05 242.13
12 234.05 242.13
13 234.05 242.13
14 234.05 242.13
15 241.41 211.13
16 234.05 242.13
17 234.05 242.13
18 248.50 267.97
19 300.66 268.38
20 234.05 242.13
21 267.25 284.72
22 234.05 242.13
23 234.05 242.13
24 298.58 279.30
25 220.75 238.22
26 248.58 266.05
27 176.83 196.30
28 233.83 253.30
29 204.75 211.22
30 262.91 243.63
31 253.41 223.13
32 316.66 284.38
33 234.05 242.13
34 289.25 295.72
35 268.75 238.47
36 234.05 242.13
37 326.08 295.80
38 234.05 242.13
39 234.05 242.13
40 234.05 242.13
41 162.08 179.55
42 270.83 238.55
43 246.58 253.05
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based on the model, were the incubation period, pH, incu-
bation temperature, and inoculum percentage. Though 
aeration was reported as a major factor in enzyme pro-
duction, for urease production, oxygen concentration has 
no role except in MICP (Bakhtiari et al. 2006). The design 
predicted from the experiment was found to be significant 
(R2 value of 0.9961). Equation 1 represents the quadratic 
model regression equation describing the predicted model. 
Khodadadi and Bilsel (2015) reported that the conditions 
favouring the urease production of S. pasteurii, the amount 
of urea hydrolyzed, and the rate of hydrolysis all inhibited 
bacterial cell growth and the specific hydrolysis rate of 
urea and vice versa. However, in this study, a better urease 
production using B. halodurans PO15 was achieved. How-
ever, it is difficult to draw a comparison with other studies 
as most of them reported on the urea hydrolysis rate rather 
than urease production.

The fitted model is represented as Eq. 1

The interaction between the various medium compo-
nents and factors for achieving maximum urease production 
are shown in contour plots (Fig. 2). From the interaction 
between the variables, it was found that the pH of the pro-
duction medium is a critical factor for urease production. 

(1)

UA activity (U∕ml)

= 355.315 + 80.2708 × Incubation Period

+ (−35.8631) × pH + (− 7.31012)

× Temperature + 7.14286 × Inoculum %

+ 0.125 × Incubation period

× pH + (− 1.7125) × Incubation period

× Temperature + (−4.75) × Incubation period

× Inoculum % + 1.25 × pH × Temperature

+ (−2.64286) × pH × Inoculum %

+ 0.921429 × Temperature × Inoculum %.

Fig. 2   Contour plot showing 
response of variable influenc-
ing urease production using 
Bacillus halodurans isolate 
PO15 based on Box-Behnken 
experimental design. The 
interaction between variables 
are shown: a incubation period 
vs. pH; b incubation period 
vs. temperature; c incubation 
period vs. inoculum (%); d 
pH vs. temperature; e pH vs. 
inoculum (%); f temperature vs. 
inoculum (%)
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When the medium pH vs. incubation period was tested, 
maximum urease activity of ~ 140 U/ml was achieved on the 
6th day of incubation. For temperature vs. incubation period, 
urease activity reached a maximum after the 5th day only. 
Inoculum percentage vs incubation period achieved a maxi-
mum activity of 167 U/ml after 5 days. This suggests that 
a minimum of 5 days of incubation with a pH 5–7 is ideal 
for urease production, irrespective of all tested inoculum 
percentages and incubation temperatures. In another study 
on urease optimization of A. niger PTCC 5011, using con-
ventional one-factor method, a maximum activity of 2.44 
U/ml was obtained (Bakhtiari et al. 2006). Significant fac-
tors identified, based on the model, were incubation period, 
pH, incubation temperature, and inoculum percentage. The 
production of the enzyme depended on process variables 
such as nutrients, pH, temperature, incubation period, inocu-
lum level and inducer concentration (Sharma et al. 2009). 
Optimization of medium by the classical methods involved 
changing one independent variable (i.e., nutrient, pH, tem-
perature) while keeping all other variables constant. How-
ever, one-factor optimization is extremely time-consuming, 
expensive for a large number of variables (Okyay and Rod-
rigues 2014) and often results in wrong conclusions. Use 
of statistical-based approaches, such as response surface 
methodology (RSM), could overcome the limitations of the 
single-factor optimization process. Also, the RSM-based 
approach requires fewer trials to calculate the different vari-
ables and their interactions, compared to other optimization 
methods (Managamuri et al. 2017; Peng et al. 2018).

Except for the orthogonal array design-based approach for 
urease production using A. niger (Bakhtiari et al. 2006) and 
response surface methodology (RSM) (Khan et al. 2019), 
there are no statistical optimization-based reports available 
for other bacteria. This is the first report on the statistical 
optimization of urease production of B. halodurans. From 
the ANOVA results, the model F value of 6.65 and the P 
values < 0.005 indicate that the model was significant (Sup-
plementary Table S1). The statistical model was validated 
through detection of 295 U/ml urease activity with opti-
mized factors. Recently, El-Bessoumy et al. (2009) reported 
extracellular urease production from B. thuringiensis N2, 
however, the enzyme activity was very low.

Purification and characterization of UA

A specific activity of 62.34 U/mg was observed for puri-
fied urease with 5.6-purification fold and a yield of 87%. 
The specific activity of the isolate PO15 was higher than 
those derived from Aspergillus creatinolyticus (32.74 U/
mg), Lactobacillus reuteri (13.0 U/mg) (Kakimoto et al. 
1989), A. niger (0.325 U/mg) (Smith et al. 1993), and R. 
oryzae (0.18 U/mg) (Geweely 2006). Based on the LB 
plot, a Vmax of 333.33 mmol L−1 mg−1 min−1 with Km 

values of 1.7 mmol/L was observed for UA. The LB plot 
showing the enzyme kinetics is shown in Fig. 3a. The UA 
enzyme was tested for its thermostability and was found to 
be stable up to 60 °C (Fig. 3b). In another study, the fungal 
urease of Aspergillus exhibited maximum production and 
urease activity at 35 °C and the least activity was at 50 °C 
(Khan et al. 2019). Others reported 35 °C and 40 °C as 
the optimum temperature for urease activity (Danial et al. 
2015; Fathima and Jayalakshmi 2012). In this study, how-
ever, a maximum urease activity at 35 °C was observed, 
the enzyme had no significant decrease in urease activ-
ity even at 60 °C. This clearly validates the thermostable 
property of the urease enzyme.

Similarly, the optimal pH for maximum urease activity 
was found to be pH 7 (Fig. 3c). There was an increase in 
urease activity with an increase of pH from 3.0–9.0 (Khan 
et al. 2019). Some bacterial ureases exhibited high activity 
in alkaline conditions (pH of 9.0) (Phang et al. 2018), while 
some had maximum urease activity at pH 8 (Danial et al. 
2015; Mirbod et al. 2002). Two fungal isolates of the genus 
Aspergillus had an optimum pH of 8.0 and 8.5 (Kappaun 
et al. 2018). In general, the fungal urease had their maxi-
mum activity in the basic medium, while bacterial urease 
tended to be more variable (Khan et al. 2019). The higher 
thermostability favours the application of UA in a variety 
of industrial and environmental engineering applications.

Urease‑mediated calcium precipitation

To understand the rate at which CO2 is trapped as carbon-
ates, a calcium carbonate precipitation study was carried 
out. The relative reduction of free calcium in the media is 
shown in Fig. 3d. B. halodurans PO15 was able to achieve 
a reduction of (82.8 ± 0.17)% free Ca2+. Maximum reduc-
tion was observed after 48 h incubation. For the bioreme-
diation of CO2, the microbial biomineralization ability is of 
great importance (Silva-Castro et al. 2015). Application of 
urease derived from Sporosarcina pasteurii for processes 
of biomineralization and co-precipitation of CaCO3 was 
reported by Whiffin et al. (2007) and Al-Thawadi (2011). 
This process of urease-aided CaCO3 mineralization has a 
great potential in environmental engineering applications 
as well as for remediation and cementation in in situ condi-
tions (Krajewska 2018). Bibi et al. (2018) reported indig-
enous Bacillus bacteria with biomineralization capability 
that could enhance soil stabilization isolated from Qatari 
soil. A similar report observed that B. licheniformis was 
able to precipitate calcium carbonate by ureolysis (Helmi 
et al. 2016). This precipitation process uses carbonate ions 
released during urea hydrolysis and a pH shift to highly alka-
line condition. It was found that the ureolytic property of 
Bacillus sp. is high with respect to any other genus and that 
this might be due to their physiological ability to adapt to 
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stressed conditions (Helmi et al. 2016). Moreover, this also 
facilitates bioremediation of toxic metals and radionuclides 
through solid-phase capture (Fujita et al. 2000).

Conclusion

This is the first report on the statistical optimization of extra-
cellular urease production using a mangrove bacterium. A 
maximum urease activity of 295 U/ml was achieved by B. 
halodurans PO15 strain during statistical optimization. 
There was a tenfold increase in enzyme activity and the 
purified enzyme exhibited a high specific activity of 62.34 
U/mg. The thermostable urease was active up to 60 °C and 
exhibited maximum activity at pH 7. UA of B. halodurans 
PO15 has potential for microbial-induced biomineralization 
with a reduction of free Ca2+ to about (82.8 ± 0.17)%. The 
microbial-induced calcium precipitation (MICP) using the 
UA enzyme could be useful in many environmental engi-
neering applications and this opens up new avenues for 
simultaneous carbon mitigation and biomineralization.

Materials and methods

Isolation and screening of urease‑producing 
bacteria

Five sediment samples were collected from different loca-
tions of the Poovar mangrove system (N. Lat. 8°18′32′′ to 
8°18′6′′ and E. Long. 77°4′32′′ to 77°5′14′′), located in 
southern Kerala, India. The samples were collected using 
sterile cylindrical PVC cores with a diameter of 10 cm. The 
samples were stored in iceboxes and transported to the labo-
ratory. Upon reaching the laboratory, the samples were seri-
ally diluted up to 10–6 in physiological saline (0.85% NaCl) 
and plated onto nutrient agar (NA) (Hi Media, Mumbai, 
India) supplemented with 5% NaCl (Sigma Aldrich, USA) 
for the isolation of distinct bacterial colonies. Isolated bacte-
rial colonies were subjected to urease enzyme screening on 
Urea agar base agar plates. The colour change of media from 
orange–yellow to deep pink indicated urease production.

Bacterial culture

A positive bacterial strain with high urease enzyme activity 
was isolated. The strain was identified as B. halodurans, 
strain PO15, based on the 16S rRNA ribotyping (Refer 
Nathan et al. 2018 for details of isolation and characteriza-
tion). In this study, B. halodurans, strain PO15 was used for 

Fig. 3   Characterization of UA 
enzyme from B. halodurans 
isolate PO15 and evaluation of 
its biomineralization ability. 
(a) LB plot showing enzyme 
kinetics; (b) enzyme activity 
at different temperature; (c) 
enzyme activity at different pH; 
(d) Relative reduction of free 
Ca2+ in the media using urease 
enzyme produced by the Bacil-
lus halodurans isolate PO15 
[values expressed as mean ± S.D 
of triplicate experiment]



200	 Marine Life Science & Technology (2020) 2:194–202

1 3

statistical optimization. The bacterium was grown in nutrient 
broth with 5% NaCl and incubated at 37 °C for 24 h. The 
culture was centrifuged at 10,000 r/min at 4 °C for 10 min 
to obtain crude urease enzyme.

Urease activity

The urease activity was determined by spectrophotometric 
assay based on the Nesslerization reaction. Briefly, 1.7 ml 
10 mmol/L urea was mixed with 0.2 ml of 0.05 mol/L 
Tris—HCl (pH 7.0) and 20 µl of the urease. The mix-
ture was incubated at 37 ˚C for 10 min and the reaction 
was stopped by adding 1.5 mol/L Trichloro acetic acid 
(TCA) (Sigma, USA). The reaction mixture was again 
incubated after adding 0.5  ml of Nessler’s reagent at 
37˚C for 10 min and absorbance was read at 405 nm on 
double beam UV–Vis spectrophotometer (SYSTRONIC 
MAKE, MODEL 101). One unit of urease was defined as 
the amount of enzyme required to release one micromole 
of ammonia as determined from an ammonium chloride 
standard curve (Kayastha et al. 1995).

Statistical optimization and model validation

For enhancing the urease activity, the optimization of cul-
ture conditions was carried out based on the Box-Behnken 
design, using the Design Expert 9.0 software. The response 
surface methodology (RSM) helped develop the mathemati-
cal models for understanding the enzyme activity on inde-
pendent variables (Cui and Zhao 2012). The factors that 
varied during optimization were incubation period, pH, 
inoculation percentage and incubation temperature. Each 
factor was studied at two different levels (− 1 low and + 1 
high) (Box and Behnken 1960). Forty-three experiments 
were carried out in triplicate in 250 ml Erlenmeyer flasks. 
Bacterial inocula were prepared with 0.5 OD McFarland 
Standards and added according to the inoculum percentage 
(3–10%). The response experimental values were derived 
from the mean ± S.D of three independent experiments. 
The Box-Behnken design (BBD) is based on a second-order 
polynomial equation (Eq. 2). The statistical model obtained 
from the experiments was validated using the optimized fer-
mentation conditions. The enzyme assay was performed and 
urease activity was calculated.

where Y represents the response urease activity in U/ml; 
A, B, and C-coded independent variables; β1, β2, and β3 
-linear coefficients; β0—intercept term; β1β1, β2β2, and 
β3β3–quadratic coefficients; β1β2, β1β3, and β2β3–interactive 
coefficients.

(2)

Y = �0 + �1A + �2B + �3C + �1�1A
2
+ �2�2B

2

+ �3�3C
2
+ �1�2AB + �1�3AC + �2�3BC,

Purification and characterization of urease

For the purification process, crude enzyme was obtained after 
centrifugation of the bacterial culture at 10,000 r/min at 4 °C. 
80% ammonium sulphate was added to the enzyme and the 
pellet was dialyzed against 250 mmol/L Tris HCl buffer, pH 8.3 
at 4 °C for 48 h. The lysate was purified using affinity column 
chromatography (Sepharose®4B-L-tyrosine-p-aminobenzene 
sulfonamide). The purified enzyme fraction was dried in a vac-
uum desiccator, resuspended in 10 mmol/L phosphate buffer 
(pH 7.2), which was stored at 4 °C for further experiments. 
The specific activity and yield (%) of urease were calculated. 
The enzyme–substrate interaction was further studied using the 
Line weaver Burk (LB) plot. Km and Vmax values were derived 
from the LB plot. The optimum pH and temperature for the 
maximum urease activity was also evaluated.

Calcite precipitation experiment

The ability of the bacterial isolate to sequester atmospheric CO2 
was demonstrated using the calcium precipitation assay. For 
this, nutrient broth was fortified with NaHCO3 (25.2 mmol/L) 
and CaCl2 (25.2 mmol/L). The relation of UA with free Ca2+ 
reduction was evaluated over a time period of 48 h. The bacte-
rial isolate was inoculated to the medium and incubated under 
static conditions at (35 ± 2) °C. The samples were retrieved at 
12 h interval, were subjected to free Ca2+ analysis using an 
atomic absorption spectrophotometer (AAS) (Elico, India) 
after centrifuging the broth at 10,000 r/min for 5 min to obtain 
the supernatant. Free calcium reduction (%) was expressed as 
mean ± S.D from the triplicate experiments performed.
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