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Abstract
Morphogenesis is a process describing how the shapes of living tissues and bodies are created during development. Living 
and fossil organisms exhibit enormously diverse tissue architecture and body forms, although the functions of organs are 
evolutionally conserved. Current knowledge reveals that relatively conserved mechanisms are applied to control develop-
ment among different species. However, the regulations of morphogenesis are quite diverse in detail. Animals in the ocean 
display a wide range of diversity of morphology suitable for their seawater environment. Nevertheless, compared with the 
intensive studies on terrestrial animals, research on marine animal morphogenesis is still insufficient. The increasing genomic 
data and the recently available gene editing methods, together with the fast development of imaging techniques, quantitative 
analyses and biophysical models, provide us the opportunities to have a deeper understanding of the principles that drive 
the diverse morphogenetic processes in marine animals. In this review, we summarize the recent studies of morphogenesis 
and evolution at molecular, cellular and tissue levels, with a focus on three model marine animals, namely ascidians, sea 
urchins and sea anemones.
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Introduction

Morphogenesis is one of the most exciting phenomena in 
living organisms, and the mechanisms underlie the formation 
of diverse morphologies have fascinated biologists for over 
a century. At the cellular level, morphogenesis is achieved 
by cell division and death, cell shape change, cell migration 
and cell rearrangement. The cells get the instructions for what 
should be done from a signaling cascade starting from mor-
phogens. Morphogens are diffusible molecules that specify 

cell fates in a concentration-dependent manner, thereby set-
ting up the patterning of a given tissue (Lawrence 2001). 
The term “morphogen” was coined by Alan Turing in his 
seminal paper (Turing 1953). Decades later, genes encoding 
morphogens were identified by Christiane Nüsslein-Volhard 
and Eric Wieschaus in the famous “Heidelberg screen” 
(Nüsslein-Volhard and Wieschaus 1980), which was a large-
scale genetic screen for the genes essential for Drosophila 
embryogenesis. Further genetic cloning and molecular char-
acterizations revealed that most morphogens are secreted 
signaling proteins, such as Wnt, fibroblast growth factor 
(FGF) and Hedgehog (Lawrence 2001). The morphogens 
bind to specific receptors, thereby activating or deactivating 
certain genetic circuits in defined domains of the develop-
ing tissue. Those genetic circuits do not control cell shape 
directly. Rather, cell and tissue shape change is executed by 
cellular mechanical machinery (including actomyosin net-
works, adherens junctions, cell polarity complexes) in the cell 
cortex (“Box 1”). The genetic circuits activate or suppress the 
expression of proteins, such as guanine nucleotide exchange 
factors (RhoGEF) (Kölsch et al. 2007) and phosphatase and 
tensin (PTEN) (Bardet et al. 2013), which then modulate the 
activities or properties of the cellular machinery spatiotem-
porally, to determine exactly when, where and how a specific 
tissue shape forming will take place (Fig. 1a).
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Upon the arrival of instructions, the cells undergo 
remodeling of their cytoskeletons and junctions, leading to 
the coordination among the cells at tissue level by chemi-
cal–mechanical signals. As a result, the tissue achieves the 
designated shape. This indicates that morphogenesis can be 
analyzed at different levels: the molecular level, the cellular 
level and the tissue level (Fig. 1b). The collective behavior 
of the lower level in the hierarchy leads to the emergence of 
new properties. These emergent properties and their func-
tions, however, are not seen at the lower level.

Mechanical forces generated by the cellular machinery 
propagate through transmembrane receptors to neighboring 
cells and the extracellular matrix. The integration of these 

forces on tissue level drives morphogenetic events, such 
as tissue invagination, stratification and elongation. There 
is growing evidence that the information flow from mor-
phogen to tissue architecture is not unidirectional. Rather, 
a feedback loop exists between morphogens and the tissue 
shaping process. After forming a certain shape, the tissue 
in turn affects both the distribution of morphogens and cell 
fate (Averbukh et al. 2014; Shyer et al. 2015). However, the 
feedback mechanisms remain elusive.

Oceans provide 71% of the living space on our planet, and 
an estimated 243,000 accepted marine species in higher taxa 
are found in oceans (Costello and Chaudhary 2017), most 
of which are invertebrates. Marine invertebrates exhibit a 
wide range of developmental procedures and diverse forms 
of body plan, from the simple, soft sac-like animal Cnidaria 
to Urochordates (tunicates), the closest living invertebrate 
relative of the vertebrates. Marine invertebrates provide a 
great source of interesting morphogenic cases, for example, 
the remarkable morphological mollusk shells (McDougall 
and Degnan 2018) and the intricate polychaete germline 
morphogenesis (Brubacher and Huebner 2009). Different 
developmental modes are found in marine invertebrates: 
some animals undergo direct development without feeding 
larval stage in the life cycle, and other species contain a feed-
ing larval stage and instead undergo indirect development. 
The morphologies and the wide range of tissue remodeling 
(Johnson et al. 2019) during the metamorphosis are also 
of great interest. To develop a comprehensive understand-
ing of the mechanism underlying morphogenesis in marine 
invertebrates, it is important to focus on major marine model 
organisms, which are genetically and visually trackable 
in vivo. Recent advances in live imaging techniques, geneti-
cal perturbation, and quantitative analysis have facilitated a 
better understanding of marine invertebrate morphogenesis 
at molecular, cellular and tissue levels. In this review, we 
discuss these progresses, focusing on the recent discoveries 
and open questions in the areas of cellular dynamics during 
ascidian, sea urchin and sea anemone morphogenesis (see 
“Box 2”).

Molecular Cellular Tissue

different
morphogen
gradient

related
genetic 
circuits

common
cellular 
machinery

A

B

various
cellular
behaviors

morphogenesis at different levels

Collective behaviors from lower level lead to the 
emergence of the new features at higher level.

Fig. 1   Overview of morphogenesis. a Morphogen concentration 
determines the morphogenesis in certain regions of embryos via acti-
vating or inactivating related genetic circuits, which control the cel-
lular mechanical machinery at the cell cortex. Cell cortex functions 
as a hub, promoting cellular apical constriction, epithelia–mesenchy-
mal transition, or migration to sculpture the tissue, depending on the 
developmental contexts. b Morphogenesis occurs at different levels. 
The interactions of the elements at lower level lead to the emergence 
of new features at higher level

Box 1. The molecular machinery 
of morphogenesis

Beneath the plasma membrane is a thin network made of 
actin filaments, cross-linkers and motor protein nonmus-
cle myosin II. The motor activity generates the contractile 
force in the cortical network under the regulation of sev-
eral signals. The cortex is attached to the cell membrane by 
ERM proteins (Fehon et al. 2010); therefore, the structures 
and the properties of the cortex determine the cell shape. 
Cell polarity refers to spatial difference in cellular com-
ponents in one cell. Cell polarity plays an important role 
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during morphogenesis. Epithelial cells display apical–basal 
polarity. The establishment and maintenance of cell polarity 
involve positive and negative feedback between multiple 
polarity molecules, in which the Par-3/Par-6/aPKC com-
plex plays a fundamental role. Adherens junctions (AJs) 
mediate cell–cell junction via homophilic trans-interaction 
of cadherins molecules from neighboring cells. Inside the 
cell, AJs bind to actin filaments, therefore the actomyosin 
contraction can be transmitted via AJs across multiple cells.

sea anemones (Technau and Steele 2011) and ascidians 
(Lemaire 2011), have emerged as powerful model organ-
isms for research on evolutionary developmental genetics 
and morphogenesis. Sea anemones belong to the phylum 
Cnidaria, which have only two germ layers, the outer ecto-
derm and the inner endoderm or gastrodermis which lines 
the gut cavity. This prominent feature makes the starlet sea 
anemone, Nematostella vectensis, an ideal model for studies 
on the evolution of the mesoderm (Steinmetz et al. 2017) 
and bilaterians (He et al. 2018). Sea urchins belong to the 
phylum Echinodermata. Their embryos have been used as 
a model system to address many questions in developmen-
tal biology since the 1800s. Sea urchins can be maintained 
easily in laboratories. Their optical transparency makes sea 
urchins an attractive model for in vivo imaging. The launch 
of its genome sequence has made the sea urchin a popular 
model organism for the study of developmental biology (Sea 
Urchin Genome Sequencing Consortium et al. 2006). Ascid-
ians, known as sea squirts, are invertebrate chordates, which 
belong to the subphylum Urochordata/Tunicata. They have 
a notochord at the larval stage, but they lack vertebrae in 
their life cycle. Ascidian larvae are free-swimming tadpoles, 
whereas, after metamorphosis, the tail undergoes regression 
associated with notochord degeneration, and the animal set-
tles on a hard surface. The genome had been sequenced by 
2002 (Dehal et al. 2002). Research on ascidians has shed 
light on notochord evolution (Reeves et al. 2017) and the 
origin of important vertebrate tissues/organs, such as the 
neural crest (Abitua et al. 2015; Stolfi et al. 2015).

Box 2. Sea urchins, sea anemones 
and ascidians

Compared with their terrestrial and freshwater counter-
parts, the molecular and cellular biology of marine animals 
is poorly known, despite their large number of species and 
high diversity of morphology. Owing to the development 
of genome sequencing and the live imaging techniques, 
the marine animals, especially sea urchins (McClay 2011), 
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F‑actin‑based force generation at molecular 
level

Morphogenesis is a well-known self-organized process, 
driven by forces that are generated and integrated within tis-
sues (Gilmour et al. 2017; Heisenberg and Bellaïche 2013). 
These forces can be generated by motor activity on polymers, 
elongation of actin and microtubule filaments, osmotic pres-
sure and other mechanisms (Mammoto and Ingber 2010). 
Two different strategies are utilized for actin-based force 

generation: ① actin filament assembly beneath the plasma 
membrane and ② actomyosin network contraction (Fig. 2a, 
b). Although actin monomers can spontaneously polymer-
ize into filaments in vitro (Pollard and Cooper 2009), living 
cells control actin filament assembly tightly. Profilin binding 
to actin monomers hampers actin self-assembly (Theriot and 
Mitchison 1993), and the capping proteins bind to barbed 
ends of existing actin filaments to restrict filament growth 
(Borisy and Svitkina 2000). Only in the presence of actin 
nucleator and elongation factors such as Arp2/3, formin and 

Fig. 2   Actin-based force 
generation apparatus. a Actin 
polymerization leads to protru-
sive activity, i.e., lamellipodia 
and filopodia. b Actomyosin 
networks have the ability to 
contract via different mecha-
nisms (see main text). c The 
F-actin attaches to cell–cell or 
cell–ECM contacts
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Ena/VASP protein can actin filaments grow. At the cellular 
level, actin filament-based forces are wildly used for cell 
shape change, migration and division. The growth of actin 
filaments pushes the plasma membrane to form protrusive 
structures at the leading edges of cells, such as lamellipo-
dia and filopodia (Rottner and Schaks 2019). Lamellipodia 
are thin-layer protrusive structures at the front of spread-
ing and migrating cells, which contain two-dimensional 
actin networks. Lamellipodia are found in motile cells in 
various contexts, including wound healing in sea anemones 
(Kamran et al. 2017), archenteron elongation in sea urchins 
(Kominami and Takata 2004) and notochord morphogenesis 
in ascidians (Munro and Odell 2002). Filopodia are thin, 
tubular extensions of the plasma membrane with parallel 
actin bundles inside. Filopodia structures were observed in 
the second mesenchymal cells of sea urchins (Gustafson and 
Wolpert 1961; Miller et al. 1995), in the tunic of the ascid-
ian Botryllus schlosseri (Izzard 1974) and in the endoderm 
of sea anemones (Kraus and Technau 2006). Cytoneme is 
a type of filopodium that can deliver signaling proteins to 
target cells or receive signaling proteins from other cells 
(Kornberg and Roy 2014). It is highly likely that filopodia 
play a role as cytonemes in the developmental processes 
mentioned above. However, further molecular characteriza-
tion is required.

The second strategy is the usage of actomyosin networks. 
Nonmuscle myosin II (referred to hereafter as myosin) mol-
ecules assemble into bipolar minifilaments with two motor 
domains at the ends, embedded in actin networks that can 
be organized monoscopically in 2D networks (Chugh and 
Paluch 2018), rings (Abreu-Blanco et al. 2012) or linear 
bundles (Monier et al. 2010). The motor activity allows 
myosin to move on F-actin, thereby generating contractile 
forces. Actomyosin contractility plays an indispensable role 
in numerous biological processes, such as apical constric-
tion, body axis formation in Caenorhabditis elegans (Munro 
et al. 2004) and cell junction remodeling (Rauzi et al. 2010). 
Cross-linkers such as α-actinin (Laporte et al. 2012) and 
plastin (Ding et al. 2017) determine the material properties 
of actomyosin networks. Therefore, the activity, turnover 
rate and specificity of cross-linkers must be under precise 
regulation (Levayer and Lecuit 2012). Actomyosin networks 
are highly dynamic. F-actin severing and depolymerization 
are essential for the maintenance of actomyosin networks 
(Chugh and Paluch 2018). The contractility of actomyosin 
networks is achieved mainly by myosin motor activity, which 
is under the control of the Rho GTPase signaling pathway, 
including Rho, Rac and Cdc42 (Guilluy et al. 2011). In 
addition, F-actin turnover has been suggested to contract 
actomyosin networks in a myosin-independent manner. For 
example, in starfish oocytes the chromosomes are trans-
ported to the cortex of the egg by actomyosin networks, in 

which F-actin depolymerization and turnover are indispen-
sable (Bun et al. 2018).

The forces generated by actomyosin networks cannot 
work alone. To change cell shape and drive cell motion, the 
actomyosin networks have to anchor to the plasma mem-
brane via adapter molecules (Fig. 2c). For example, during 
cytokinesis, the actomyosin network is coupled to plasma 
membrane by ERM proteins and anillin, which is essen-
tial for cleavage furrow ingression (Hiruma et al. 2017). In 
the epithelium, cells are connected by cell–cell junctions, 
including adherens junctions (AJs). AJs are composed of the 
transmembrane protein cadherin and the cytosolic protein 
catenin. Cell–cell adhesion is mediated by Ca2+-dependent 
homophilic interactions of extracellular cadherin domains. 
The intracellular domain of cadherin binds to the catenin 
complex, thus linking to actin filaments. Vinculin binding 
to α-catenin proteins enhances the connection of the actin 
cytoskeleton to AJs. In this way, AJs transmit forces gener-
ated by actomyosin from one cell to another. AJs are not 
only passive force adopters, but also involved in coordinat-
ing cells actively (Rübsam et al. 2018). The actomyosin net-
works attach to integrins, and therefore the forces generated 
by actomyosin are exerted against the extracellular matrix 
(ECM), resulting in cell migration and cell shape change 
(Schwartz 2010). In some cases, the ECM undergoes remod-
eling owing to the forces being exerted on them (Haigo and 
Bilder 2011).

This raises two important questions: How are the AJs and 
cellular polarity established? How do actomyosin networks 
drive tissue morphogenesis?

Polarity establishment

Cells in developing blastula develop distinctly in the apical 
and the basolateral domains. In parallel, cellular junction 
complexes are assembled. Generally, the cell–cell contact 
region is in the basolateral domain, whereas cell contact-free 
region is in the apical domain (Fig. 3a). Extensive research 
on Drosophila, C. elegans and mammalian cultured cells has 
provided us a picture of the molecular regulation of polar-
ity formation and maintenance. Three groups of molecules 
are required in polarity formation. ① Par-3/Par-6/aPKC and 
② Crumbs complex, which localize at the apical domain, 
whereas ③ Scribble complex and Par-1 localize at the baso-
lateral domain. The Scribble complex and Par-1 inhibit the 
apical proteins from localizing at the basolateral domain. 
Likewise, Par-3/Par-6/aPKC and Crumbs complex restrict 
the basolateral localization of Scribble complex and Par-
1. Such mutually antagonistic interactions between apical 
and basolateral proteins lead to the formation of polar-
ity (Fig. 3b). The emergence of cell polarity during early 
embryogenesis in several species has been documented 
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(Nance 2014). The molecular mechanisms are conserved. 
However, the regulatory details may differ among species.

The sea anemone Nematostella vectensis displays a cha-
otic cleavage without a pattern (Fritzenwanker et al. 2007), 
implying that cell polarity is not yet established at this devel-
opmental stage (Salinas-Saavedra et al. 2015). Antibody 
immunostaining and mRNA injections indicate that different 
Par proteins show distinct localizations in the gastrula, but 
not in the cleavage stage (Salinas-Saavedra et al. 2015). Rag-
kousi et al. (2017) proposed that cell polarity was obtained 
by the four-cell stage and a primary epithelium was formed 
by the 16-cell stage based on the localization of Par proteins 
at the cell–cell contacts.

How is cellular polarity establishment embedded in 
the fast cleavage cycle in early embryogenesis? A recent 
study has shown that cell polarity undergoes a re-establish-
ment–de-establishment cycle along with the cell cleavage 
cycle in Nematostella (Ragkousi et al. 2017). Despite the 
high variability of cleavage patterns, a coeloblastula with a 
single layer of epithelial cells is formed after 11 rounds of 
cleavage. The prominent feature during Nematostella cleav-
age cycles is that the whole embryo shows interphasic com-
paction and mitotic decompaction cycles, and such cyclic 
behavior parallels the re-establishment and de-establishment 
of apical polarity marked by Par-3 and Par-6 (Ragkousi et al. 
2017) (Fig. 3c). These compaction–decompaction cycles are 
more pronounced later in the blastula, showing a pulsating 

behavior which occurs between the 128-cell stage and gas-
trulation. Blastoderms display a spherical shape when the 
cells are in interphase, whereas they become flattened when 
the cells are in mitosis. The invagination from a single pole 
leads to the blastula flattening. Upon the completion of cell 
cytokinesis, the spherical shape of blastoderms reforms. 
After several rounds of the spherical-flattened reshaping 
cycles, the blastula stops pulsating and remains as a spheri-
cal shape until the beginning of gastrulation (Fritzenwanker 
et al. 2007). Pharmacological inhibition of the cell cycle and 
of the cytoskeletal structure leads to loss of the re-establish-
ment–de-establishment cycle of apical polarity (Ragkousi 
et al. 2017) and stops the pulsating of the blastula in later 
stages (Fritzenwanker et al. 2007). It is reasonable to con-
sider that the cellular material properties, e.g., stiffness and 
tension (Kasza et al. 2007) differ between interphase and 
interphase, which leads to the blastula flattening. Alterna-
tively, cytokinesis releases the tension and thus the blastula 
flattens, like a balloon leaking air. Nevertheless, the molec-
ular details of how the cell cycle couples to tissue shape 
change need to be addressed in future. Another remaining 
question is how the invagination point is determined. The 
point of the invagination will be the position where gastru-
lating invagination takes place. This implies the existence 
of a genetic or physical constraint in this particular region.

The early embryogenesis of ascidians starts with a series 
of stereotypical cleavages, giving rise to a compact mon-
olayer ball of cells, which is polarized by expression and 
localization of Par proteins. In later stage, the AJs assemble 
and a mature epithelium is organized (Patalano et al. 2006). 
A striking feature of ascidians is the de novo formation of 
the apical domain during notochord morphogenesis (Fig. 5d) 
(Dong et al. 2009). When the notochord cells reach a cer-
tain volume, the center of contact between neighboring cells 
differentiates and acquires apical domain properties. This 
process is typical polarity establishment. Like in Drosophila 
embryos and cells in a Petri dish, Par-3/Par-6/aPKC com-
ponents in the ascidian notochord show polarized distribu-
tion, and Par-3 is the key molecule controlling the forma-
tion of polarity (Denker et al. 2013) (Fig. 3d). However, the 
upstream signal regulating RAP-3 is unknown.

Tissue invagination: apical constriction 
and beyond

The contraction of apical actomyosin networks, attached to 
AJs, drives the shrinking of the apical area of the cell, result-
ing in a cell shape change from columnar to wedge or bottle 
shape. Apical constriction is wildly used in different devel-
opmental contexts, especially in the initiation of gastrulation 
(Fig. 4). Tissue invagination mediated by apical constriction 
is a key step of transition from a flat 2-D cell sheet to 3-D 
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Fig. 3   Polarity establishment. a The apical and basolateral domain of 
cell in blastula. b Mutually antagonistic interactions between apical 
and basolateral protein complex leads to the polarity formation and 
maintenance. c The polarity undergoes “re-establishment”–“de-estab-
lishment” cycle along with the cell cleavage cycle in Nematostella. d 
The polarity emerges during lumen formation in ascidian notochord 
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structure, such as pits and tubes. Being a very widespread 
process, tissue invagination takes place in all developmental 
processes, from gastrulation, neurulation to eye cups and 
renal tubule formation (Martin and Goldstein 2014).

The molecular regulation of apical constriction has been 
extensively studied in ventral furrow formation during 
Drosophila melanogaster gastrulation (Coravos and Martin 
2016; Martin et al. 2009, 2010; Mason et al. 2013; Vasquez 
et al. 2014; Xie and Martin 2015). These studies provide a 
detailed understanding of how apical constriction is achieved 
and regulated spatially and temporally, and how apical con-
striction drives tissue to reshape on a multiple cellular level.

At the onset of gastrulation in the sea anemone Nema-
tostella, the animal pole of cells forms a pre-endodermal 
plate, which then invaginates into the blastocoel via typical 
apical constriction with the strong accumulation of F-actin 
at the apical regions of constricting cells (Magie et al. 2007; 
Tamulonis et al. 2011). Surprisingly, inhibition of myosin 
activity cannot completely eliminate apical constriction, 
which suggests the existence of additional mechanisms for 
this constriction (Pukhlyakova et al. 2018). Shortly after, 
the blastoporal cells, which surround the pre-endodermal 
plate, constrict on the basal side and promote further invagi-
nation of the pre-endodermal plate. The constriction from 
the blastoporal cells relies on myosin activity (Pukhlyakova 
et al. 2018); however, the molecular pathway of this process 
remains unclear.

During gastrulation of sea urchins, the skeletogenic 
mesenchyme cells, also called primary mesenchyme cells 
(PMCs), leave the vegetal region of the spherical blasto-
derm and ingress into the blastocoel under the control of 

transcriptional factor snail (Wu and McClay 2007). Dur-
ing the detachment, PMCs undergo apical constriction 
(Sepúlveda-Ramírez et al. 2018) and membrane remodeling 
via endocytosis (Wu and McClay 2007). The cells in the 
vegetal region thicken and flatten, resulting in the formation 
of the vegetal plate and the shape change of the blastoderm. 
The vegetal plate invaginates about 1/4 to 1/2 the way into 
the blastocoel via apical constriction, forming the arch-
enteron (Kimberly and Hardin 1998). After a short pause, 
the archenteron starts elongating, a process that involves dif-
ferent cellular mechanisms (see below).

Apical constriction is crucial for tissue bending. In 
addition, there are other mechanisms that contribute to 
this process. For example, cell mitotic rounding (Kondo 
and Hayashi 2013) and apoptosis (Monier et al. 2015) are 
actively involved in tissue invagination in certain develop-
mental contexts. Endoderm invagination in ascidians utilizes 
apical constriction as the first step. Interestingly, in the next 
step the apical–basal shortening mechanism drives the bona 
fide invagination process, as demonstrated both experimen-
tally and by numerical simulations (Sherrard et al. 2010). 
Surprisingly, the apical–basal shortening relies on Rho-
independent myosin contractility, although the molecular 
pathway is unknown.

Tissue elongation

Tissue elongation is another important event during embry-
ogenesis and organogenesis. Tissue elongation can be 
achieved in different ways such as stretching by external 
forces, cell intercalation and oriented cell division (Fig. 5a). 
The protrusive lamellipodia and filopodia in the leading cells 
(Malinda et al. 1995; Miller et al. 1995) and the migration of 
neighboring cells (Lye et al. 2015) are the commonly used 
external forces. Normally, tissue elongation by stretching 
as a result of external forces is transient (Kong et al. 2017). 
Subsequent cell rearrangement or cell-oriented division 
compensates for the tissue strain from the external forces 
(LeGoff and Lecuit 2015).

In the gastrulation stage of sea urchins, following arch-
enteron invagination, there is a pause prior to archenteron 
elongation. The dominant driving force of archenteron elon-
gation is cell intercalation, as the number of cells around 
the circumference of the archenteron decreases (Hardin 
1989, 1990) (Fig. 5b).The second contributing factor to 
archenteron elongation is cell shape change with the thick-
ened cells of the vegetal plate become thinner. However, 
the molecular regulation of this is not clear yet. The third 
contributing factor is the filopodia from secondary mesen-
chyme cells (SMCs) located at the tip of the archenteron. 
These filopodia extend through the blastocoel, searching the 
proper positions on the wall of the blastocoel by continually 

A
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C

Fig. 4   The apical constriction initiates the gastrulation. a Sea anem-
one. b Sea urchin. c Ascidian
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extending and retracting. As soon as the filopodia attach to 
the right region of the wall, they pull the archenteron inward 
(Malinda et al. 1995; Miller et al. 1995). A recent study sug-
gested that oriented cell division was also involved in this 
process (Martik and McClay 2017). These mechanisms work 
in coordination, driving the archenteron elongation.

The ascidian notochord is an ideal model to study the 
mechanisms of tissue elongation. Its morphogenesis is well 
documented (Jiang and Smith 2007; Lu et al. 2019; Smith 
2018). The notochord arises from two lineages, the anterior 
32 notochord cells derive from blastomeres A7.3, A7.7 and 
their bilateral partners, and the posterior eight cells derive 
from blastomere B8.6 and its bilateral partner. After two 
rounds of mitosis of the blastomeres, the notochord pre-
cursor forms a monolayer of 40 cells which will undergo a 
series of cell shape changes and rearrangements, giving rise 
to a swimming larva with an elongated tail (Smith 2018). 
The ascidian notochord elongates in three phases (Lu et al. 
2019): ① intercalation of cells drives the notochord to form 

a monolayer structure with only one row of cells; ② the cell 
shapes change leading to the elongation of notochord along 
the A–P axis; ③ tubulogenesis further lengthens the noto-
chord, resulting in a straight tube that is closed at both ends 
(Fig. 5c–f).

In the first phase, the notochord precursor cells invaginate 
into the midline of the embryo via an apical constriction 
(Munro and Odell 2002). The molecular dynamics in this 
process is yet to be studied in detail. Subsequently, cells 
undergo intercalation and deformation in the cylindrical rod, 
giving rise to an extended notochord along the A–P axis. The 
40 cells are disc shaped and aligned end to end with each 
other giving a “stack of coins” appearance (Fig. 5c). Actin-
based protrusions were observed during this process (Munro 
and Odell 2002). It was subsequently demonstrated that the 
protrusive activity relies on FGF3 signaling (Shi et al. 2009) 
and that the orientation of the protrusions depends on PCP 
signaling (Jiang et al. 2005; Keys et al. 2002).

Fig. 5   Tissue elongation. a 
Three mechanisms used in 
tissue elongation. b Sea urchin 
archenteron elongation involves 
cell intercalation, as shown in 
color-coded cells, as well as 
stretching from SMCs protru-
sion and oriented cell division. 
c The three phases of ascidian 
notochord elongation. Cell 
intercalation is involved in the 
first phase. In the second phase, 
the contractile actomyosin ring 
drives the notochord cell elon-
gating along the A–P axis. In 
the third phase, luminal pockets 
enlarge and the notochord cells 
migrate bi-directionally, leading 
to the fusion of the luminal 
pockets, resulting in a long, 
continuous, single lumen and an 
elongated notochord

A

C

streching

intercalation

oriented cell division

ascidian notochord

B sea urchin archenteron

Notochord elongation phase 1: 
cell intercalation

Notochord elongation phase 2: 
actomyosin-driven cell elongation

actomyosin ring

Notochord elongation phase 3: 
lumen formation and reverse intercalation
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In the second phase, the coin-shaped cells increase in 
length along the A–P axis forming a tambour-shaped struc-
ture (Fig. 5c). Experimental studies and physical models 
indicate that the process is driven by the actomyosin con-
tractile ring (Dong et al. 2011; Sehring et al. 2014). The 
actomyosin contractile ring is reminiscent of the cytokinetic 
ring in terms of its compositions and architecture. Neverthe-
less, the consequences of these two similar ring structures 
are completely different, with one driving cell elongation 
and the other separating the parent cell into two daughter 
cells. Nevertheless, several questions remain to be answered, 
for example: How does functional differentiation occur in 
different cellular contexts? Is Rho signaling regulated dif-
ferently in these two scenarios? Does the material properties 
of cell cortex matter?

Tubulogenesis takes place during the third phase. After 
the cells form tambour shape, a novel luminal domain (api-
cal domain) emerges at the center of contact between two 
adjacent notochord cells, which requires the Par-3/Par-6/
aPKC system (Denker et al. 2013). This process resembles 
lumen formation in hepatocytes and MDCK cells. The emer-
gence of the new apical domain requires interplay between 
RhoA and Rac1 activities in MDCK cells (Overeem et al. 
2015). Whether similar mechanisms are used in the ascidian 
notochord needs to be determined by further studies. The 
apical domain expands with the increase of the extracel-
lular lumen volume, leading to bi-concave notochord cells 
(Fig. 5e). After lumen growth, the cell surface increases 
1.5-fold (Dong et al. 2009). The molecular nature of how to 
fuel cell surface growth is unclear. Vesicle trafficking is one 
potential mechanism. Lumen inflation requires transmem-
brane transport of fluid into the lumen and the power for 
such transport is an osmotic gradient that originates from the 
high amount of glycosaminoglycans and ions in the lumen 
(Denker and Jiang 2012). Anion transporter Ci-Slc26aα is 
indispensable for lumen expansion, but is not involved in 
apical/luminal domain specification and biogenesis (Deng 
et al. 2013). At the onset of lumen pocket formation, cyto-
plasmic flow in the notochord cells is observed (Mizotani 
et al. 2018), which might be interpreted as transportation of 
material for apical membrane growth and lumen inflation. 
Such cytoplasmic flow requires the interaction of the scaf-
fold protein 14-3-3εa with ERM (ezrin/radixin/moesin) at 
the basal cortex of the cell. 14-3-3εa and ERM display pul-
satile accumulation at the basal cortex, in parallel with the 
translocation of these two proteins to the luminal domain. 
Chemical inhibition of 14-3-3εa leads to the disappearance 
of cytoplasmic flow, thereby hampering lumen formation. 
This phenotype can be copied by morpholino knock-down 
of ERM (Mizotani et al. 2018). However, the physical nature 
underlying the cytoplasmic flow is unknown.

When the lumen pockets reach a certain volume, a 
highly coordinated cellular rearrangement is triggered via 

an unknown mechanism, leading to the fusion of separate 
lumens. At the completion of apical domain expansion, the 
volume of the extracellular lumen increases resulting in bi-
concave notochord cells with a deep curvature. At this stage, 
notochord cells start changing shape dramatically. On one 
side the anterior and posterior edges retract and move close 
to each other, whereas on the opposite side the cell extends 
anteriorly and posteriorly. Neighboring cells undergo the 
opposite movement. As a result of this collective movement, 
the anterior and posterior edges meet and adjacent lumens 
coalesce. New cell–cell contacts are established during this 
process such that any given notochord cell has six cell–cell 
contacts instead of the initial two contacts. As a conse-
quence, the number of neighboring cells of a given noto-
chord cell increases from two to four. Due to the similarity 
with the conventional cell intercalation, this process is called 
reverse intercalation (Dong et al. 2009). Such coordinated 
and self-organized cellular behavior prompts the following 
questions: How do the cells coordinate with each other? Is 
mechano-transduction process involved? How is the reverse 
intercalation initiated? Does the reverse intercalation rely 
on the integrity of tissue? Answering those questions will 
help us to increase our understanding of tissue elongation 
and development.

Metamorphosis in ascidians

Morphogenesis can occur in the post-embryonic stage, for 
example during metamorphosis in insects, amphibians and 
fish. Metamorphosis, a process that transforms the larva 
into an adult, is widespread in the animal kingdom ranging 
from Porifera to Chordata (Werner 1988). This transforma-
tion involves complicated morphogenetic movements and 
physiological changes, which depend on the degree of dif-
ference between the two forms. For example, salamanders 
undergo only minor changes in body plan, whereas insects 
and tunicates experience more radical change. An intrigu-
ing question is how these cellular events, mechanical forces 
and regulatory gene networks are coordinated in space and 
time as the “old” organs are destroyed and “new” organs are 
established. Numerous studies based on several animal phyla 
have demonstrated that metamorphosis is reliant on con-
served endocrine hormone signaling (Laudet 2011), such as 
ecdysones in insects and thyroid hormones (THs) in cepha-
lochordates (Paris et al. 2008), urochordates (Patricolo et al. 
2001), teleost fishes (Schreiber and Specker 1998; Yamano 
and Miwa 1998) and amphibians (Yaoita 2019). Among 
these, the tail resorption of Xenopus tadpoles is the most 
spectacular and best-known example of a THs-dependent 
chordate metamorphic event. Localized morphogenetic and 
physiological changes in tadpole tissues, such as muscle cell 
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death and the growth of hindlimbs, are strongly related to 
their differential sensitivity to THs level.

Compared with terrestrial animals, less is known about 
metamorphosis in marine organisms. Many marine inver-
tebrates that undergo metamorphosis, including the corals 
(Grasso et al. 2011), sea urchins (Cameron and Hinegard-
ner 1978; Rahman et al. 2012) and sea squirts (Theriot 
and Mitchison 1993), possess a biphasic life history with a 
pelagic larval and benthic adult phase. Although metamor-
phosis in most marine invertebrates remains to be explored, 
tunicates have provided an excellent model. One of the best-
known metamorphotic events in this group is tail regres-
sion during the transition from larva to juvenile in ascadi-
ans (Borisy and Svitkina 2000). Tail regression of certain 
ascidian larvae can be completed within 15–20 min after 
the initiation of metamorphosis (Rottner and Schaks 2019). 
The morphogenetic mechanism underlying the remarkable 
speed of this process has fascinated biologists for years. 
For example, although the cellular events during the tail 
regression have been well described (Kamran et al. 2017), 
the mechanical force that drives the withdrawal of the tail 
into the trunk remains ambiguous. It has been proposed that 
the mechanical forces are provided by the contractile noto-
chord, epidermis or muscle tissue (Kominami and Takata 
2004). Programmed cell death is also involved in ascidian 
tail regression and contributes to tail shortening in some 
species (Munro and Odell 2002). To date, however, there 
is no direct evidence to show that such a mechanism is suf-
ficient to drive tail regression at the speed observed. By live 
imaging, genetic perturbations and biophysical modeling, 
it is becoming possible to elucidate the underlying cellular 
processes and mechanical basis. Ascidian tail regression is 
emerging as a new model to study the mechanism of mor-
phogenesis, which might provide new insights into how an 
organism couples mechano-chemical signals to achieve tis-
sue transformation.

Conclusion and perspectives

A handful of cellular mechanisms and biophysical con-
straints give rise to a broad developmental phenomenon, 
embedded in different developmental contexts. For example, 
cell apical constriction mediated by actomyosin contractility 
is involved in most tissue-bending processes, and cell inter-
calation occurs in most tissue elongation processes. This 
prompts an interesting question: How do these animals use 
similar toolboxes to generate such different forms of life? To 
answer this question, we need data not only on well-estab-
lished model organisms such as Drosophila and C. elegans, 
but also other, especially marine, animals which show a 
striking diversity of developmental morphologies. Signifi-
cant progress on marine animal developmental research in 

recent years has expanded our understanding. For example, 
a recent study found that the Hox gene is involved in axial 
identities in the developing embryo of sea anemones and 
proposed that the axial Hox code may have controlled body 
patterning before the evolution of the bilaterian A–P axis 
(He et al. 2018). The second example is the discovery of 
reverse intercalation in ascidian notochord morphogenesis as 
a novel strategy to form a tubular organ (Dong et al. 2009). 
Subsequently, this type of tubulogenesis is also observed in 
zebrafish vascular anastomosis (Herwig et al. 2011) and gut 
formation (Alvers et al. 2014), suggesting that this novel 
mechanism of morphogenesis found in marine animals is 
highly conserved. Many questions remain unanswered, for 
example, the mechanisms of cell coordination in ascidian 
notochord morphogenesis, and the molecular pathway to 
link tissue invagination and cell cycle in the sea anemone 
blastula. Knowledge and tools developed in Drosophila and 
other model organisms, together with the striking features of 
marine animals, will contribute much to our understanding 
of basic biological processes.
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