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Abstract Light is a key environmental cue that fundamentally regulates all aspects of plant growth and devel-
opment, which is mediated by the multiple photoreceptors including the blue light photoreceptors
cryptochromes (CRYs). In Arabidopsis, there are two well-characterized homologous CRYs, CRY1 and
CRY2. Whereas CRYs are flavoproteins, they lack photolyase activity and are characterized by an N-
terminal photolyase-homologous region (PHR) domain and a C-terminal extension domain. It has been
established that the C-terminal extension domain of CRYs is involved in mediating light signaling
through direct interactions with the master negative regulator of photomorphogenesis, COP1. Recent
studies have revealed that the N-terminal PHR domain of CRYs is also involved in mediating light
signaling. In this review, we mainly summarize and discuss the recent advances in CRYs signaling
mediated by the N-terminal PHR domain, which involves the N-terminal PHR domain-mediated
dimerization/oligomerization of CRYs and physical interactions with the pivotal transcription regula-
tors in light and phytohormone signaling.
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INTRODUCTION

Cryptochromes (CRYs) are blue light photoreceptors
that were first discovered in Arabidopsis. They act to
regulate a broad spectrum of physiological processes,
including seedling photomorphogenesis, photoperiodic
flowering, circadian rhythm, and stomatal opening and
development in plants (Ahmad et al. 1993; Guo et al.
1998; Kang et al. 2009; Liu et al. 2008b; Mao et al. 2005;
Somers et al. 1998; Toth et al. 2001; Yang et al. 2000; Yu
et al. 2010). Cryptochromes not only exist in plants, but
in a variety of other organisms from bacterium to
human as well. In Drosophila melanogaster, cryp-
tochrome serves as the photoreceptor to entrain the
circadian clock, and in mammals, they act as integral
components of the circadian clock (Emery et al. 1998;

Kume et al. 1999). In migratory butterfly and birds,
cryptochrome is responsible for sensing the Earth’s
magnetic field and providing precise navigation during
their long-distance migration (Gegear et al. 2010). Ara-
bidopsis has two well-characterized homologous cryp-
tochromes, CRY1 and CRY2. They possess an N-terminal
photolyase-homologous region (PHR), also known as
CNT1 (N Terminus of CRY1) and CNT2 (N Terminus of
CRY2), and a C-terminal extension (CCE), also known as
CCT1 (C Terminus of CRY1) and CCT2 (C Terminus of
CRY2) (Yang et al. 2000; Yu et al. 2010). The signaling
mechanisms of CRYs concerning their regulation of
transcription or stability of photoresponsive proteins
and regulation of CRYs activity by photo-oligomerization
and phosphorylation have been well documented in
other recent reviews (Wang et al. 2018a,2020; Yang
et al. 2017). In this review, we first summarize the role
for the C-terminal domain of Arabidopsis CRYs in
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mediating light signaling, and then introduce the
involvement of the N-terminal PHR domain of CRYs in
mediating light signaling reported in recent years.

THE C-TERMINAL DOMAIN OF ARABIDOPSIS
CRYPTOCHROMES IN MEDIATING LIGHT SIGNALING

CRY1 is the first blue light photoreceptor identified in
plants in 1993 (Ahmad et al. 1993). The insight into the
signaling pathway of CRYs was obtained in 2000
through the demonstration that transgenic plants
expressing the C-terminal domain of either CRY1 (CCT1)
or CRY2 (CCT2) fused to b-glucuronidase (GUS) display
a constitutive photomorphogenic phenotype shown by
shortened hypocotyls, enhanced anthocyanin produc-
tion and chloroplast development in the dark, and an
early flowering phenotype in both long days and short
days (Yang et al. 2000). These phenotypes are similar to
the loss-of-function mutant of COP1, a RING-finger E3
ubiquitin ligase acting as the master negative regulator
of photomorphogenesis and flowering (Deng et al. 1991;
McNellis et al. 1994). COP1 interacts with its substrates
such as HY5, a bZIP transcription factor acting as a key
positive regulator of photomorphogenesis (Oyama et al.
1997), and CONSTANS (CO), a B-Box type Zn finger-
containing transcription regulator acting as a master
activator of photoperiodic flowering (Koornneef et al.
1991; Putterill et al. 1995), to ubiquitinate them and
promote their degradation through the 26S proteasome
(Fig. 1a, b) (Jang et al. 2008; Liu et al. 2008b; Osterlund
et al. 2000). These findings suggest that CRY1 and CRY2
signaling in response to blue light activation is mediated
through their C-terminal domain. Consistent with this
proposition, both CRY1 and CRY2 directly interact with
COP1 through CCT1 and CCT2 in blue light-independent
manner in heterologous systems (Wang et al. 2001;
Yang et al. 2001). Interestingly, Holtkotte et al. showed
that the interactions of CRY1 and CRY2 with COP1 are
blue light-dependent (Holtkotte et al. 2017), which may
require SPAs, as SPAs interact with COP1 (Saijo et al.
2003; Seo et al. 2003), and CRY1 and CRY2 interact with
SPAs in a blue light-dependent manner (see below)
(Lian et al. 2011; Liu et al. 2011; Zuo et al. 2011). The
outcome of the light activation of CRY1 and CRY2,
through their CCT1- and CCT2-mediated physical
interactions with COP1, is likely the disruption of the
negative regulation of COP1 exerted on its substrates
such as HY5 and CO. In this manner, HY5 and CO are
relieved from COP1-dependent proteolysis and are able
to perform their roles in photomorphogenesis and
photoperiodic flowering (Fig. 1a, b). Since the estab-
lishment of the direct interactions of CRYs with COP1, it

has been demonstrated that the red/far-red light pho-
toreceptors phyB/phyA and the UV-B light photorecep-
tor UVR8 also physically interact with COP1 to mediate
light signaling (Seo et al. 2004; Jang et al. 2010; Rizzini
et al. 2011).

SUPPRESSORS OF PHYA (SPAs, SPA1–4) share a
similar nuclear-localized WD repeats with COP1 that
mediates COP10s interactions with CRY1 and CRY2
(Wang et al. 2001; Yang et al. 2001), and the loss-of-
function mutants of SPAs show a constitutive photo-
morphogenic phenotype, similar to cop1 mutant
(Laubinger 2004). The COP1 activity is dependent on
SPAs, as SPAs interact with COP1 and act as enhancers
of the COP1 E3 ligase activity (Hoecker et al. 2001; Seo
et al. 2003). Two studies have shown that CRY1 inter-
acts with SPAs through its C terminus in a blue light-
dependent manner, to promote the dissociations of
COP1 from SPAs (Lian et al. 2011; Liu et al. 2011). These
studies suggest that, on one hand, CRY1 and CRY2
interact with COP1 to directly inhibit its activity, and on
the other hand, they also interact with SPAs in a blue
light-dependent manner, to indirectly attenuate COP1
activity by disrupting the COP1–SPAs core complex,
leading to efficient promotion of HY5 and CO stability
(Fig. 1a, b). Interestingly, CRY2 interacts with SPA1
through its N terminus but not its C terminus (Zuo et al.
2011). Recent studies have demonstrated that CRY2
inhibits the E3 ubiquitin ligase activity of COP1 on its
substrates by physically displacing the substrates from
COP1 (Ponnu et al. 2019; Lau et al. 2019) which sug-
gests that CRY1 may act in the same manner.

THE N-TERMINAL DOMAIN MEDIATES
OLIGOMERIZATION OF ARABIDOPSIS
CRYPTOCHROMES

Although plant and mammal CRYs share amino acid
sequence similarity to photolyases, mammal CRYs and
photolyases function in monomers (Brautigam et al.
2004; Czarna et al. 2013), whereas plant CRYs act in
dimers/oligomers (Ma et al. 2020a, b; Sang et al. 2005;
Shao et al. 2020; Yu et al. 2007). The insight into the
CNT1-mediated homodimerization of CRY1 was first
obtained in 2005 through the demonstration that
transgenic lines expressing CNT1 in the wild-type
background show a dominant-negative phenotype
under blue light, similar to cry1 mutant (Sang et al.
2005). In these lines, CNT1 physically interacts with the
endogenous CRY1 to interfere with its homodimeriza-
tion. CNT1-mediated homodimerization is essential for
CCT1 function, and the substitution of CNT1 with GUS
can activate CCT1 and lead to a constitutive light
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response (Sang et al. 2005; Yang et al. 2000). CNT1 and
GUS with mutations or deletions that compromise their
ability to dimerize or oligomerize fail to activate CCT1.

CRY2 N terminus also mediates homodimerization of
CRY2, which is required for CRY2 function (Yu et al.
2007). These studies therefore demonstrate that

Fig. 1 CRY1 and CRY2 C and
N termini-mediated
interactions with COP1 and
SPAs in light control of plant
development. Upon blue light
(BL) irradiation, the C
terminus of CRY1 and CRY2
(CCT1 and CCT2)-mediated
interactions with COP1 and
SPAs inhibit COP1 activity and
stabilize HY5 and CO proteins,
and promote
photomorphogenesis (a) and
photoperiodic flowering (b),
respectively. Moreover, CRY2
also interacts with CIBs
through its N terminus (CNT2)
and TOEs through both N and
C termini to regulate floral
initiation (b)
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Arabidopsis CRY1 and CRY2 homodimerize/ho-
mooligomerize through their N terminus, which is nec-
essary for their photoreceptor activity. These findings
are supported by the following recent exciting studies.
CRY2 undergoes blue light-dependent oligomerization,
which can be suppressed or inactivated by the interac-
tions of CRY2 with two closely related cryptochrome
inhibitory proteins, Blue-light inhibitor of Cryptochrome
1 and 2 (BIC1 and BIC2) (Wang et al. 2016a). BIC1 and
BIC2 repression of CRY2 oligomerization compromises
all the known photobiochemical and photophysiological
activities of CRY2, strongly demonstrating that the
oligomerization of CRY2 is crucial for their photore-
ceptor activities. Most recently, Ma et al. and Shao et al.
have successfully obtained the 3D structure of the blue
light-perceiving PHR domain of dimeric and tetrameric
bioactive Arabidopsis CRYs at high resolution using cryo-
EM and X-ray crystallography (Ma et al. 2020b; Shao
et al. 2020). The structural analysis indicates that two
molecules of the blue-light-activated PHR domain form
a head-to-head dimer, and two dimmers form a tetra-
mer, supporting the notion that photo-oligomerization is
necessary for CRYs’ function. Moreover, Ma et al. have
revealed that BIC2 displays a waist belt-like structure,
which interacts with photoexcited CRY2 and wraps
around the groove between the a/b- and a-domains of
PHR domain to prevent CRY2 oligomerization (Ma et al.
2020a). Comparison of the structures between the CRY2
tetramer and the BIC2-CRY2N demonstrates that the
interface 2 in the CRY2 tetramer clashes with BIC2 in
the BIC2–CRY2N complex, implying that BICs may
inhibit CRY2 oligomerization by occupying CRY2’s oli-
gomeric surface. Furthermore, they show that BIC2 not
only restrains electron and proton transfer during FAD
photoreduction, but also inhibits the blue light-depen-
dent oligomerization of CRY2 and prevents CRY2 from
interacting with its signaling partners, as well.

THE N-TERMINAL DOMAIN OF ARABIDOPSIS
CRYPTOCHROMES IS INVOLVED IN MEDIATING
LIGHT RESPONSE

It had been thought that the C terminus of CRYs is
responsible for mediating light signaling by interacting
with downstream proteins, while the N terminus is
responsible for absorbing light signal through the non-
covalently bound FAD and mediating dimerization of
CRYs (Lin et al. 1995; Sang et al. 2005; Wang et al. 2001;
Yang et al. 2001, 2000; Yu et al. 2007). However, several
studies suggest that PHR domain of CRYs is implicated
in regulating CRY’s activity. Many missense mutations
within CNT1 compromised CRY1 ability to mediate blue

light inhibition of hypocotyl elongation and undergo
light-dependent phosphorylation (Ahmad et al. 1995;
Bouly et al. 2003; Kanai et al. 1997; Shalitin et al.
2002, 2003). The direct evidence supporting the
involvement of CRY1 N terminus in mediating light
signaling was obtained in 2015 with the transgenic lines
expressing CNT1 fused to the nuclear localization signal
(NLS) in the cry1 mutant background that show
enhanced blue light inhibition of hypocotyl elongation
(He et al. 2015). These lines display a wild-type phe-
notype in red and far-red light, respectively. Impor-
tantly, expression of CNT1 with the missense mutations
(Ahmad et al. 1995) compromised its ability to promote
blue light responsiveness. These findings suggest that
CNT1 can mediate CRY1 signaling. This speculation is
supported by recent studies in which many CRYs
N-terminus-interacting proteins have been identified.
The first one is cryptochrome-interacting bHLH 1
(CIB1), with which CRY2 interacts through its N termi-
nus in a blue light-dependent manner (Liu et al. 2008a)
(Fig. 1b). The formation of CRY2–CIB1–CO complex in
response to blue light promotes the expression of the
florigen gene, FLOWERING LOCUST T (FT) at dusk, and
induces floral initiation (Liu et al. 2018). Du et al. car-
ried out yeast two-hybrid screening using CNT1 as a
bait, and identified an AP2-like transcriptional factor,
TOE1, as an interacting protein (Du et al. 2020), which
interacts with CO to inhibit its transcriptional activation
of FT to repress flowering (Zhai et al. 2015; Zhang et al.
2015). Both N and C termini of CRY2 are involved in
mediating the blue light-dependent interactions of CRY2
with TOE1 and TOE2 to regulate flowering under long
days (Fig. 1b).

The phytochrome-interacting factors (PIFs) act as the
key downstream proteins of phytochromes to negatively
regulate photomorphogenesis (Leivar et al. 2011; Ni
et al. 1998, 1999). Two independent studies have
demonstrated that CRY1 and CRY2 can also physically
interact with PIF4 or PIF5 via their N termini to regulate
hypocotyl elongation under high temperature and
canopy shade low blue light, respectively, to regulate
their transcription activity (Fig. 2a) (Ma et al. 2016;
Pedmale et al. 2016). It is shown that CRY1 physically
interacts with the G-protein b subunit, AGB1, in a blue
light-dependent manner, through its N terminus (Lian
et al. 2018) (Fig. 2a). AGB1 interacts directly with HY5
to inhibit its DNA-binding activity, and blue light-trig-
gered interaction of CRY1 with AGB1 inhibits the asso-
ciation of AGB1 with HY5, and promotes HY5 DNA-
binding activity and photomorphogenesis. This study
suggests that CRY1 utilizes its C terminus to stabilize
HY5 protein via interactions with COP1 and SPAs (Lian
et al. 2011; Liu et al. 2011), and its N terminus to
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promote HY5 DNA-binding activity via interaction with
AGB1 (Lian et al. 2018). CRY1 also interacts with CIB1-
related proteins HBI1 through its N terminus in a blue
light-dependent manner (Fig. 2a), to inhibit the DNA-
binding ability of HBI1 and hypocotyl elongation (Wang
et al. 2018b). Moreover, the N termini of CRYs mediate
the direct interactions of CRYs with the key transcrip-
tion regulators in the phytohormone signaling pathways
to regulate phytohormone signaling (see below).

The N-terminal domain mediates
the interactions of cryptochromes with the key
transcription regulators in phytohormone
signaling pathways

Phytohormones such as auxin (IAA) and brassinosteroid
(BR) act to regulate the same physiological processes
regulated by light, which include photomorphogenesis,
flowering time, and stomatal development (Kim et al.

Fig. 2 CRY1 and CRY2 C and
N termini-mediated
interactions with transcription
regulators in light control of
plant development. Upon blue
light irradiation, the N termini
of CRY1 and CRY2 (CNT1 and
CNT2)-mediated interactions
with PIF4/5 and HBI1 to
directly regulate their DNA-
binding activity, and with
AGB1 to indirectly regulate
HY5–DNA-binding activity, to
mediate light inhibition of
hypocotyl elongation (a).
CNT1 and CNT2 also mediate
the interactions of CRY1 and
CRY2 with Aux/IAA and ARF
proteins (Aux/IAAs and ARFs),
and BES1, to regulate Aux/
IAAs stability, and ARFs and
BES1 DNA-binding activity,
which leads to repression of
auxin and brassinosteroid
(BR) signaling, respectively,
and inhibition of hypocotyl
cell elongation (b)
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2012; Lincoln et al. 1990; Mockaitis et al. 2008; Vert
et al. 2005; Zhang et al. 2014; Zhu et al. 2013). The IAA
and BR biosynthesis-deficient mutants, as well as the
loss-of-function mutants of their receptors TIR1/AFBs
and BRI1 show a reduced hypocotyl elongation pheno-
type during early seedlings photomorphogenic devel-
opment (Chory 1991; Clouse et al. 1996; Dharmasiri
et al. 2005; Kim et al. 1996; Richards et al. 2001;
Szekeres et al. 1996; Ueguchi-Tanaka et al. 2005). It has
been established that auxin promotes the assembly of
its co-receptor complex comprising F-box proteins
TIR1/AFBs and transcription regulators’ Aux/IAA pro-
teins (Aux/IAAs), and subsequent ubiquitination and
degradation of Aux/IAAs, thus releasing the inhibitory
effects of AUX/IAAs on a family of transcription factors,
Auxin Response Factors (ARFs), to activate auxin-re-
sponsive gene expression (Calderon et al. 2012; Dhar-
masiri et al. 2005; Gray et al. 2001; Kepinski et al. 2005;
Kim et al. 1997). There are 29 AUX/IAAs and 23 ARFs in
Arabidopsis. Aux/IAAs are small short-lived proteins
with four domains (DI to DIV), of which DII mediates
the interactions of Aux/IAAs with TIR1/AFBs, and thus
is required for auxin-triggered degradation of Aux/IAAs
(Calderon et al. 2012; Kepinski et al. 2005). The DIII/IV-
containing C-terminal region of Aux/IAAs mediates
their own homodimerization and heterodimerization
with ARFs (Kim et al. 1997; Korasick et al. 2014; Nanao
et al. 2014; Ulmasov et al. 1997). Typical ARF proteins
have a conserved N-terminal DNA-binding domain, fol-
lowed by a non-conserved middle region, and a con-
served C-terminal dimerization domain (Liscum et al.
2002). The DNA-binding domain is responsible for ARFs
binding to the promoters of target genes (Ulmasov et al.
1999). Recently, it has been reported that on one hand,
CRY1 interacts with Aux/IAAs in a blue light-dependent
manner through its N terminus, to suppress the auxin-
induced TIR1-Aux/IAAs interactions and subsequent
degradation of Aux/IAAs (Fig. 2b) (Xu et al. 2018). On
the other hand, CRY1 physically interacts with ARF6 and
ARF8 in a blue light-dependent manner through its N
terminus (Mao et al. 2020) (Fig. 2b). The N-terminal
DNA-binding domain of ARF6 mediates the interaction
of ARF6 with CRY1, and the CRY1–ARF6 interaction
leads to the repression of the DNA-binding activity of
ARF6 and its target gene expression (Fig. 2b). Alto-
gether, these studies suggest that the direct repression
of auxin-responsive genes expression mediated by
CNT1-mediated interactions of CRY1 with Aux/IAAs and
ARFs constitutes two layers of the regulatory mecha-
nisms by which light inhibits auxin signaling and
hypocotyl elongation.

A genetic screen for Arabidopsis photomorphogenic
development mutants identified det2 (de-etiolated 2), a

BR biosynthesis-deficient mutant with a shortened
hypocotyl and expanded cotyledon phenotype in the
dark (Chory 1991; Li et al. 1996), indicating a link
between BR and light signaling. Extensive studies of the
BR signal transduction pathway have led to the dis-
covery of the key signaling components such as BES1
and BZR1, and bHLH transcription factors that activate
the transcription of BR-responsive genes (He et al.
2005; Yin et al. 2005). When BR level is high in plant
cells, BR signal is perceived by BR receptor BRI1, a
membrane-localized receptor kinase (Kim et al. 2011; Li
et al. 1997). This releases the inhibitor BKI1 (Jaillais
et al. 2011; Wang et al. 2011; Wang 2006), activates the
intracellular kinase domain of BRI1, and enables BRI1
to bind to its co-receptor BAK1 (Li et al. 2002; Nam
et al. 2002). Subsequently, the negative regulator BIN2
is dephosphorylated by BSU1 and inactivated through a
multistep cascade of phosphorylation events (Kim et al.
2011; Tang et al. 2008), and BES1 and BZR1 are even-
tually released from BIN2-induced phosphorylation or
dephosphorylated by PP2A (Tang et al. 2011; Wang
et al. 2002; Yin et al. 2002; Zhao et al. 2002). Dephos-
phorylated BES1 and BZR1 can then bind to their target
genes and regulate their expression, leading to BR
responses (Sun et al. 2010; Vert et al. 2006; Yin et al.
2005). When BR level is low, BIN2 is activated, and
BZR1 and BES1 are phosphorylated by BIN2 and thus
unable to bind to their target genes (Vert et al. 2006;
Zhao et al. 2002). Therefore, the BR signaling mecha-
nism involves BR-induced formation of the physiologi-
cally active, dephosphorylated forms of BES1 and BZR1.
By screening for CNT1-interacting proteins via yeast
two-hybrid system using CNT1 as a bait, Wang et al.
identified BES1-INTERACTING MYC-LIKE 1 (BIM1)
(Wang et al. 2018c), a bHLH protein that interacts with
BES1 to enhance its activity (Yin et al. 2005). Interest-
ingly, blue light-activated CRY1 interacts specifically
with the dephosphorylated BES1 through its N terminus
(Fig. 2b), leading to the inhibition of BES1’s DNA-bind-
ing activity and repression of its target gene expression.
This study suggests that blue light-dependent and BR-
induced interaction of CRY1 with BES1 may constitute a
strictly regulated mechanism by which plants optimize
photomorphogenesis according to the availability of
external light and internal BR signals (Fig. 2b) (Wang
et al. 2018c). Another study by He et al. has also
demonstrated that CRY1 interacts with BIN2 and BZR1
to enhance BIN2-dependent phosphorylation and cyto-
plasmic retention of BZR1 (He et al. 2019). Because
these BR signaling regulators interact with each other,
cryptochromes may form a dynamic complex with them
to directly modulate the BR-responsive transcriptional
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regulons in response to the dynamic changes in light
and BR signals.

CONCLUSIONS AND FUTURE PERSPECTIVES

To well get adapted to the environment and maintain an
optional status of growth and development, plants must
not only efficiently utilize the ambient light signals, but
also coordinate light and auxin/brassinosteroid signals
as well. We now understand that CRY1-mediated light
signaling integrates with auxin and BR signaling by its N
terminus-mediated interactions with Aux/IAAs, ARFs
and BES1, respectively. Like auxin and BR, gibberellin
(GA) is also an essential phytohormone promoting plant
growth and development. The GA biosynthesis-deficient
mutant and the loss-of-function mutant of GA receptor
GID1 also show a reduced hypocotyl elongation phe-
notype (Griffiths et al. 2006), and it is shown that both
the N and C termini of CRY1 are involved in mediating
CRY1 repression of GA-promoted hypocotyl elongation
through inhibition of GA-responsive genes expression in
blue light (Wang et al. 2016b). It will be interesting to
explore how CRY1’s N and C termini may mediate CRY1
regulation of GA signaling. To date, the studies on CRY1
function and signaling mechanism have primarily been
carried out during the early seedlings photomor-
phogenic development stage, whether and how CRY1
might regulate vegetative development are not well
understood, which will be worth investigating in future
studies. Moreover, great efforts should be made to
screen for more potential CRY1 N and C terminus-in-
teracting proteins, which may lead to the elucidation of
the new functions of CRY1 throughout the whole life
cycle of plants and the related signaling mechanisms.
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