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Abstract The tyrosine metabolism pathway serves as a starting point for the production of a variety of struc-
turally diverse natural compounds in plants, such as tocopherols, plastoquinone, ubiquinone, betalains,
salidroside, benzylisoquinoline alkaloids, and so on. Among these, tyrosine-derived metabolites, toco-
pherols, plastoquinone, and ubiquinone are essential to plant survival. In addition, this pathway pro-
vides us essential micronutrients (e.g., vitamin E and ubiquinone) and medicine (e.g., morphine,
salidroside, and salvianolic acid B). However, our knowledge of the plant tyrosine metabolism pathway
remains rudimentary, and genes encoding the pathway enzymes have not been fully defined. In this
review, we summarize and discuss recent advances in the tyrosine metabolism pathway, key enzymes,
and important tyrosine-derived metabolites in plants.
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INTRODUCTION

In plants, tyrosine is synthesized de novo via the
shikimate pathway, which also gives rise to the other
two aromatic amino acids, phenylalanine and trypto-
phan (Maeda and Dudareva 2012). Besides proteino-
genic, tyrosine is a biosynthetic precursor of
tocopherols, plastoquinone, and ubiquinone that are
essential to plant itself. Furthermore, tyrosine is used as
a substrate to synthesize numerous specialized
metabolites in different groups of plants, such as ros-
marinic acid (RA) and its derivatives in the families of
Lamiaceae and Boraginaceae (Petersen and Simmonds

2003), dhurrin in Sorghum, salidroside in Rhodiola,
betalains in the Caryophyllales order, benzylisoquino-
line alkaloids in the Ranunculales order (Liscombe et al.
2005), amaryllidaceae alkaloids in the family of
Amaryllidaceae (Kilgore and Kutchan 2016), emetine
alkaloids in the families of Alangiaceae, Icacinaceae, and
Rubiaceae (Wiegrebe et al. 1984), phenylethylamines
like mescaline in cactus species (Cassels and Saez-Bri-
ones 2018), phenethylisoquinoline alkaloids like col-
chicine in Colchicum (Rinner and Waser 2016), and
catecholamines in a long list of plant species (Kulma and
Szopa 2007). The importance of tyrosine-derived plant
metabolites for both plant survival and human health
has attracted great interests in elucidation of their
biosynthetic pathways.
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In plants, tyrosine can be modified by different
enzymes to yield specific types of the tyrosine-derived
metabolites, of which the distributions, functions, and
practical uses have been recently reviewed (Schenck
and Maeda 2018). In this short review, we focus on the
biosynthetic pathways of tyrosine-derived metabolites
in plants. We propose a concept of the general tyrosine
metabolism pathway, which is common in plants. We
also discuss key enzymes of tyrosine metabolism, which
catalyze committed steps in the biosynthesis of tyr-
osine-derived specialized metabolites.

THE GENERAL TYROSINE METABOLISM PATHWAY

The amino acid tyrosine provides the core cyclic scaffold
to tocopherols, plastoquinone, and ubiquinone, which
are synthesized in all plants (Fig. 1). Tocopherols,
together with tocotrienols, form a group of lipid soluble
antioxidants termed tocochromanols, which play a
number of physiological roles in plants beyond antiox-
idation (Munné-Bosch and Alegre 2002; Falk and
Munne-Bosch 2010). Tocochromanols are commonly
known as vitamin E and are essential components of
our nutrition. Unlike tocopherols, the tocotrienols are
not as widespread as tocopherols (Horvath et al. 2006),
and contain three double bonds in the isoprenoid side
chain. Plastoquinone is found in all green lineages,
ranging from cyanobacteria and algae to land plants,
and acts as electron transporter in photophosphoryla-
tion, thus is indispensable to plant growth. Ubiquinone,
also known as Coenzyme Q (CoQ), is an isoprenoid
quinone produced in almost all living organisms and
functions as electron transporter in the respiratory
chain. Ubiquinone, which is now widely used as a food
supplement, is often termed vitamin Q (Shukla and
Dubey 2018; Pravst et al. 2010). The benzene quinone
ring of ubiquinone is thought to be derived from 4-hy-
droxybenzoic acid (4-HB), whereas the ring precursor
for tocopherols and plastoquinone is homogentisic acid
(HGA). The remaining steps for the biosynthesis of
tocopherols, plastoquinone, and ubiquinone have been
reviewed elsewhere (Liu and Lu 2016; Mene-Saffrane
2017; Fritsche et al. 2017); this section will summarize
metabolic origins of the HGA and 4-HB, which are key
intermediates of the general tyrosine metabolism
pathway.

Tyrosine aminotransferase (TAT; EC 2.6.1.5) catalyzes
the reversible transamination from tyrosine to form
4-hydroxyphenylpyruvic acid (pHPP), an initial step of
the tyrosine conversion. The aminotransferase activity
depends on pyridoxal-50-phosphate. TAT homologs are
likely widely distributed in plants (Fig. 2A). In most

plant species, TAT catalyzes the removal of the amino
group of tyrosine (Wang et al. 2016, 2019; Wang and
Maeda 2018). An exception is that in legumes, which
have a non-plastidic prephenate dehydrogenase (PDH,
EC 1.3.1.13) that converts prephenate into pHPP, TAT is
assumed to catalyze the transamination of pHPP to
synthesize tyrosine (Schenck et al. 2015). However, the
in planta role of TAT in tyrosine biosynthesis has not
been clearly demonstrated (Maeda and Dudareva 2012).
In Arabidopsis thaliana, there are at least two genes
encoding TAT (Table 1), tat1 mutants have decreased
tocopherol levels (Riewe et al. 2012), and a tat1 tat2
double mutant accumulates less tocopherols than the
tat1 mutant under high-light stress (Wang et al. 2019),
indicating that both TAT1 and TAT2 contribute to the
biosynthesis of tocopherols. TAT is also involved in the
biosynthesis of many other tyrosine-derived metabo-
lites. For instance, an opium poppy (Papaver som-
niferum) TAT was shown to participate in the
production of benzylisoquinoline alkaloids, including
morphine and codeine (Lee and Facchini 2011). In
Prunella vulgaris, a Traditional Chinese Medicinal (TCM)
plant in the family of Lamiaceae, TAT is involved in the
biosynthesis of RA (Ru et al. 2017).

Following the formation by TAT, pHPP can be con-
verted to HGA by 4-hydroxyphenylpyruvate dioxyge-
nase (HPPD, EC 1.13.11.27), a member of the large
family of non-heme iron a-ketoglutarate-dependent
dioxygenases. This complex reaction involves decar-
boxylation, aromatic hydroxylation, and substituent
migration in a single catalytic cycle (Fig. 1). This
transformation seems unique in nearly all aerobic
organisms (Moran 2005), and HPPD homologs were
found in a wide range of plant species (Fig. 2B). In
animals, HPPD is required to modulate blood tyrosine
levels, while in plants, it plays a key role in production
of the aromatic precursor of tocopherols and plasto-
quinone. As plastoquinone is essential to photosynthetic
organisms (Munné-Bosch and Alegre 2002; Norris et al.
1995; Amesz 1973), HPPD is a target for the develop-
ment of herbicides (Beaudegnies et al. 2009; Ndikur-
yayo et al. 2017). In Arabidopsis, the loss-of-function
mutation of HPPD led to tocopherol and plastoquinone
deficiency (Norris et al. 1995, 1998). The availability of
HGA limits tocochromanol production at least in some
plant species and organs. For example, de-regulated
HGA accumulation by co-overexpression of Arabidopsis
HPPD and microbial enzymes such as Escherichia coli
bifunctional chorismate mutase/prephenate dehydro-
genase (TyrA) or Saccharomyces cerevisiae prephenate
dehydrogenase (TYR1) in tobacco and Arabidopsis
resulted in high levels of tocochromanol accumulation
(Rippert et al. 2004; Zhang et al. 2013). In soybean, the
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Fig. 1 Tyrosine metabolism in plants. The general tyrosine metabolism pathway is given in orange. Arrows with dashed lines designate
multiple enzymes steps. TAT tyrosine aminotransferase, HPPD hydroxyphenylpyruvate dioxygenase, HPPR hydroxyphenylpyruvate
reductase, TAL tyrosine ammonia-lyase, TYDC L-tyrosine decarboxylase, 4HPAAS 4-hydroxyphenylacetaldehyde synthase, PPO polyphenol
oxidase, L-DOPA L-3,4-dihydroxyphenylalanine, pHPP 4-hydroxyphenylpyruvic acid, pHPL 4-hydroxyphenyllactic acid, 4-HB 4-hydroxy-
benzoic acid, 4-HPAA 4-hydroxyphenylacetaldehyde, HGA homogentisic acid
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mutant of HGO1, which encodes a homogentisate
dioxygenase that breaks down HGA, overaccumulated
HGA and tocochromanol (Stacey et al. 2016).

The 1,4-benzoquinone ring precursor for ubiquinone
4-HB is derived from tyrosine and phenylalanine in
plants (Block et al. 2014). Significant progresses have
been made recently in characterization of the biosyn-
thesis of 4-HB from phenylalanine (Block et al. 2014;
Soubeyrand et al. 2018); by contrast, much less is
known about the generation of 4-HB from tyrosine. In S.
cerevisiae, the first and last reactions of this pathway,
namely the deamination of tyrosine to pHPP and the
oxidation of 4-hydroxybenzaldehyde to 4-HB, have been
characterized recently (Payet et al. 2016; Stefely et al.
2016); however, the evidence that TAT is involved in
4-HB formation is still lacking in plants. The endoge-
nous levels of 4-HB may limit the ubiquinone produc-
tion, since elevation in its pool has reported to have a
positive effect on ubiquinone biosynthesis in Arabidop-
sis and tomato (Block et al. 2014; Soubeyrand et al.
2018). Further investigation of the tyrosine-derived
metabolites and their connection to the

phenylpropanoid pathway would provide new insights
into the ubiquinone biosynthesis and help to improve
nutritional value of crop products.

BIOSYNTHESIS OF TYROSINE-DERIVED SPECIALIZED
METABOLITES

Hydroxyphenylpyruvate reductase (HPPR, EC 1.1.1.237)
catalyzes the reduction of pHPP to 4-hydroxyphenyl-
lactic acid (pHPL), the precursor to rosmarinic acid (RA)
(Petersen and Alfermann 1988; Häusler et al. 1991),
which is frequently found in plants of the families
Lamiaceae and Boraginaceae, with random reports of its
presence in other families (Petersen and Simmonds
2003; Petersen 2013; Petersen et al. 2009). Chemically,
RA is an ester of caffeic acid and 3,4-dihydroxyphenyl-
lactic acid. More complex derivatives of RA have been
identified, e.g., salvianolic acid B and other salvianolic
acids from Salvia (Wu et al. 2012), and rabdosiin from
Rabdosia japonica. The HPPR enzyme was first isolated
and characterized in Coleus blumei (Plectranthus

Fig. 2 Phylogenetic analysis of plant tyrosine aminotransferase (A) and 4-hydroxyphenylpyruvate dioxygenase (B). Amino acid
sequences were aligned by ClustalX (Thompson et al. 1997) and the trees were generated in PhyML (Guindon et al. 2010) using
maximum-likelihood method (1000 bootstrap replication). Bootstrap values less than 500 are not shown. The sequences of Homo sapiens
and Mus musculus were used as outgroups. (A) The TAT sequences of Homo sapiens, Mus musculus, and Selaginella moellendorffii were
obtained from NCBI, the protein sequences of Picea abies were from the PLAZA project (Van Bel et al. 2018), and the others were obtained
via Phytozome v12 (Goodstein et al. 2012). (B) The HPPD sequences of Homo sapiens and Mus musculus were obtained from NCBI, the
protein sequences of Picea abies were from the PLAZA project, and the others were obtained via Phytozome v12
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scutellarioides) (Petersen and Alfermann 1988; Häusler
et al. 1991). Recently, HPPRs from Arabidopsis were
characterized (Xu et al. 2018), although RA is unde-
tectable in this species (Petersen et al. 2009). Since
HPPR is widely distributed in land plants rather than
specific to RA-accumulating plants, pHPL could be
converted into different types of natural products
depending on the plant taxa, which deserves further
investigation.

A subset of the phenylalanine ammonia-lyase (PAL,
EC 4.3.1.24) enzymes in monocots also possess tyrosine
ammonia-lyase (TAL, EC 4.3.1.23) activity, leading to the
non-oxidative deamination of tyrosine to yield 4-cou-
maric acid. The TAL activity was found thus far partic-
ularly in monocots (Rosler et al. 1997; Barros et al.
2016; Jun et al. 2018; Cass et al. 2015; Beaudoin-Eagan
and Thorpe 1985). In Brachypodium distachyon, a single
bifunctional phenylalanine/tyrosine ammonia-lyase
(PTAL) displays both PAL and TAL activities, the latter
leading to the conversion of tyrosine to 4-coumaric acid,
which is ultimately integrated into the phenyl-
propanoid-derived compounds such as lignin and fla-
vonoids (Barros et al. 2016). The discovery of TAL

provides an alternative approach to optimize the pro-
duction of phenylpropanoid compounds and tyrosine-
derived metabolites. Enzymes that demonstrate speci-
ficity for tyrosine are referred to as TAL, which has been
found in a number of microorganisms, such as
Rhodobacter capsulatus (Kyndt et al. 2002), Rhodobacter
sphaeroides (Watts et al. 2006), and Saccharothrix
espanaensis (Berner et al. 2006). Replacing the active
site residue His 89 with Phe can transform the
Rhodobacter sphaeroides TAL into a highly active PAL
and vice versa (Watts et al. 2006; Louie et al. 2006). The
corresponding His residue is also critical for TAL activity
in plants (Jun et al. 2018).

CYP79A1 catalyzes the multistep conversion of tyr-
osine into (E)-p-hydroxyphenylacetaldoxime (Koch et al.
1995; Sibbesen et al. 1995; Clausen et al. 2015), which
is subsequently modified by CYP71E1 and a UDP (uri-
dine diphosphate)-glucosyltransferase (UGT85B1) to
produce dhurrin (Bak et al. 1998; Kahn et al. 1997;
Jones et al. 1999; Laursen et al. 2016). Dhurrin, a
defense cyanogenic glycoside mainly found in sorghum,
has a strong insecticidal activity (Tattersall et al. 2001).
Notably, enzymes of the dhurrin biosynthetic pathway

Table 1 Genes involved in tyrosine metabolism pathways in plants

Gene Function Organism References

AtTAT1 Tyrosine aminotransferase Arabidopsis thaliana Wang et al. (2016, 2019), Riewe et al. (2012)

AtTAT2 Tyrosine aminotransferase Arabidopsis thaliana Wang et al. (2016, 2019)

PsTAT Tyrosine aminotransferase Papaver somniferum Lee and Facchini (2011)

PvTAT Tyrosine aminotransferase Prunella vulgaris Ru et al. (2017)

AtHPPD 4-Hydroxyphenylpyruvate
dioxygenase

Arabidopsis thaliana Norris et al. (1995, 1998)

AtHPPR2 Hydroxyphenylpyruvate reductase Arabidopsis thaliana Xu et al. (2018)

AtHPPR3 Hydroxyphenylpyruvate reductase Arabidopsis thaliana Xu et al. (2018)

CbHPPR Hydroxyphenylpyruvate reductase Coleus blumei Petersen and Alfermann (1988), Häusler et al. (1991)

BdPTAL Phenylalanine/tyrosine ammonia-
lyase

Brachypodium
distachyon

Barros et al. (2016)

CYP79A1 Tyrosine N-monooxygenase Sorghum bicolor Koch et al. (1995), Sibbesen et al. (1995), Clausen et al.
(2015)

JrPPO Polyphenol oxidase Juglans regia Araji et al. (2014)

CYP76AD1 Tyrosine hydroxylase Beta vulgaris Hatlestad et al. (2012)

CYP76AD5 Tyrosine hydroxylase Beta vulgaris Sunnadeniya et al. (2016)

CYP76AD6 Tyrosine hydroxylase Beta vulgaris Polturak et al. (2016)

PsTYDC1 L-Tyrosine decarboxylase Papaver somniferum Facchini and De Luca (1995)

PsTYDC2 L-Tyrosine decarboxylase Papaver somniferum Facchini and De Luca (1995)

AtTYDC L-Tyrosine decarboxylase Arabidopsis thaliana Lehmann and Pollmann (2009)

OsTYDC L-Tyrosine decarboxylase Oryza sativa Kang et al. (2007)

Rr4HPAAS 4-Hydroxyphenylacetaldehyde
synthase

Rhodiola rosea Torrens-Spence et al. (2018)

Pc4HPAAS 4-Hydroxyphenylacetaldehyde
synthase

Petroselinum crispum Torrens-Spence et al. (2012)
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are assembled in a metabolon (Laursen et al. 2016;
Nielsen et al. 2008).

Hydroxylation of tyrosine at 3-position leads to the
formation of 3,4-dihydroxy-L-phenylalanine (L-DOPA).
This reaction can be catalyzed by the tyrosinase (EC
1.14.18.1) activity of polyphenol oxidases (PPOs), which
are widely distributed in microorganisms, animals, and
plants. Interestingly, PPOs are absent from the genus of
Arabidopsis (Tran et al. 2012). In walnut (Juglans regia),
the PPO-silenced transgenic plant displayed a decrease
in L-DOPA-derived metabolites and an increases in
tyramine, demonstrating that the walnut PPO catalyzes
the 3-hydroxylation of tyrosine (Araji et al. 2014).
L-DOPA is also a precursor for the biosynthesis of
betalains, however, whether PPO is involved in betalain
biosynthesis remains an open question. It seems more
likely that in betalain-producing plants, the 3-hydroxy-
lation of tyrosine is catalyzed by a P450 monooxyge-
nase, CYP76AD1, CYP76AD5, or CYP76AD6
(Sunnadeniya et al. 2016; Polturak et al. 2016; Hatlestad
et al. 2012). The biosynthesis of betalain pigments has
been recently reviewed (Polturak and Aharoni 2018).

L-Tyrosine decarboxylase (TYDC, EC 4.1.1.25) cat-
alyzes the pyridoxal-50-phosphate dependent decar-
boxylation of tyrosine and L-DOPA to yield tyramine and
dopamine, respectively (Facchini and De Luca
1994, 1995). TYDC has been characterized from a
variety of plant species (Facchini and De Luca
1994, 1995; Lehmann and Pollmann 2009; Torrens-
Spence et al. 2013; Kang et al. 2007) and is assumed to
be nearly ubiquitous among plants (Lehmann and
Pollmann 2009). Notably, tyramine exhibits toxicity
toward plants (Negrel et al. 1993; Christou and Barton
1989). For example, overexpression of TYDC in rice led
to tyramine accumulation and stunted growth (Kang
et al. 2007). Similarly, treatment of walnut leaves with
exogenous tyramine induced the development of
necrotic lesions (Araji et al. 2014). Tyramine is a pre-
cursor for the biosynthesis of hydroxycinnamic acid
amides (e.g., feruloyltyramine) (Facchini et al. 2002)
and amaryllidaceae alkaloids (e.g., lycorine) (Kilgore
and Kutchan 2016).

Dopamine is an important neurotransmitter in the
brain, and in plants, it is a precursor of numerous spe-
cialized metabolites, including phenethylisoquinoline
alkaloids (e.g., colchicine) (Polturak and Aharoni 2018;
Ehrenworth and Peralta-Yahya 2017), emetine alkaloids
(e.g., emetine) (Nomura and Kutchan 2010), benzyliso-
quinoline alkaloids (e.g., morphine) (Schlager and Dra-
ger 2016; Liu et al. 2017), catecholamines (e.g.,
epinephrine), and phenylethylamines (e.g., mescaline)
(Rinner and Waser 2016). Dopamine can be synthesized
via 3-hydroxylation of tyramine or decarboxylation of

L-DOPA, but enzymes responsible for the 3-hydroxyla-
tion of tyrosine or tyramine are still unclear in plants. In
walnut, PPO is involved in the biosynthesis of dopamine
(Araji et al. 2014); however, whether PPO plays a similar
role in other plants awaits investigation. The predomi-
nant biosynthetic pathway of dopamine has not been
identified, since TYDC has been shown to accept both
tyrosine and L-DOPA as substrates. In human hydroxy-
lation precedes decarboxylation in the major biosyn-
thetic pathway of dopamine (Meiser et al. 2013).

Tyrosine is also converted to 4-hydroxyphenylac-
etaldehyde (4-HPAA) through decarboxylation–oxida-
tive deamination, which is catalyzed by
4-hydroxyphenylacetaldehyde synthase (4HPAAS, EC
4.1.1.108) (Torrens-Spence et al. 2012, 2018a). 4-HPAA
is a key intermediate in the biosynthesis of benzyliso-
quinoline alkaloids (e.g., morphine in Opium poppy) and
tyrosol-derived specialized metabolites (e.g., salidroside
in Rhodiola). In the biosynthesis of benzylisoquinoline
alkaloids, 4-HPAA is proposed to be generated from
tyrosine via TAT and an unidentified 4-hydrox-
yphenylpyruvate decarboxylase, respectively (Lee and
Facchini 2011). Whether 4HPAAS, which directly con-
verts tyrosine to 4-HPAA in Rhodiola, functions similarly
in the benzylisoquinoline alkaloid metabolism is
unclear. 4HPAAS belongs to the plant aromatic amino
acid decarboxylase (AAAD) family (Facchini et al. 2000),
of which other members include TYDC, tryptophan
decarboxylase (TDC), and phenylacetaldehyde synthase
(PAAS) (Torrens-Spence et al. 2018b). A single amino
acid substitution of plant AAADs is capable of impacting
substrate selectivity or altering catalytic reactions
(Torrens-Spence et al. 2013, 2014, 2018b).

CONCLUSION AND PERSPECTIVES

Tyrosine serves as a biosynthetic precursor of a wide
range of metabolites, many of which are of great
nutritional, pharmacologic, and economic importance.
Tocopherols and ubiquinone are vitamins essential to
nearly all domains of life. Many benzylisoquinoline
alkaloids possess potent pharmacological activities,
including morphine and codeine (narcotic analgesics),
noscapine (antitussive drug), papaverine (antispas-
modic drug), and so on. RA and its derivatives have
health-promoting properties, such as cardioprotection,
antioxidant, antibacterial, and antiinflammatory activi-
ties (Bulgakov et al. 2012).

Considering the great diversity of tyrosine-related
natural products in plants, the recent significant
achievements in the biosynthetic pathways of the tyr-
osine-originated metabolites are just new beginnings of
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further investigation. Many questions and knowledge
gaps remain. For one example, none of the enzymes
responsible for 4-HB production from tyrosine has been
identified in the plant general tyrosine metabolism
pathway. Definitely, better understanding of the tyrosine
metabolism pathways will facilitate the breeding of high
nutritional crop varieties and improving the production
of valuable natural metabolites in plants.
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