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Abstract Cereal crops including maize, rice, wheat, sorghum, barley, millet, oats and rye are the major calorie
sources in our daily life and also important bioenergy sources of the world. The rapidly advancing and
state-of-the-art genome-editing tools such as zinc finger nucleases, TAL effector nucleases, and clus-
tered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (CRISPR-
Cas9-, CRISPR-Cas12a- and CRISPR/Cas-derived base editors) have accelerated the functional genomics
and have promising potential for precision breeding of grass crops. With the availability of annotated
genomes of the major cereal crops, application of these established genome-editing toolkits to grass
plants holds promise to increase the nutritional value and productivity. Furthermore, these easy-to-use
and robust genome-editing toolkits have advanced the reverse genetics for discovery of novel gene
functions in crop plants. In this review, we document some of important progress in development and
utilization of genome-editing tool sets in grass plants. We also highlight present and future uses of
genome-editing toolkits that can sustain and improve the quality of cereal grain for food consumption.
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INTRODUCTION

The basis of genome-editing technologies is to use
programmable endonucleases to introduce site-specific
double-stranded DNA breaks (DSBs) in vivo and exploit
the intrinsic DSB repair mechanisms for desired DNA
alterations within the genomes of interest. Several types
of engineered nucleases (e.g., ZFNs, zinc finger nucle-
ases; TALENs, transcription activator-like effector
nucleases; CRISPR/Cas, clustered regularly interspaced
short palindromic repeats and associated proteins) have
been applied to introduce DSBs in eukaryotic cells.
Subsequently, non-homologous end joining (NHEJ) and
homology directed repair (HDR), as two major cellular
DNA repair mechanisms, seal the DNA breakages. Ran-
dom insertions and deletions (INDELs) occurring at the
DNA cleavage sites are the outcomes of the error-prone

NHEJ repair pathway. HDR, on the other hand, can lead
to the desired and precise gene replacement if the
homologous exogenous template/donor DNA with
desired changes is present. Prevalent genome-editing
technologies make use of NHEJ repair mechanism to
create random mutations at the site-specific genomic
loci that eventually lead to frameshift changes in the
targeted gene, so-called targeted mutagenesis for gene
inactivation. Several breakthroughs in genome editing
by developing and applying customized endonucleases
in eukaryotes have been made in the last two decades,
particularly in the past 8 years (Fig. 1). This review will
recapitulate the development and utilization of some of
the readily developed genome-editing tools in grass
plants (Table 1) and intend to have a comprehensive
overview of the fast-paced and new frontiers in agri-
cultural advancement.
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EARLY DISCOVERY OF ZFNS FOR GENOME EDITING

Zinc finger nuclease is the early and prominent tool for
genome editing. ZFN comprises of a DNA binding
domain of tandem zinc finger repeats fused with a DNA
cleavage domain from the type II restriction endonu-
clease, FokI, as illustrated in Fig. 2A. Each zinc finger can
bind to a triplet of DNA sequences (Carroll 2011). An
array of three–six individual zinc finger repeats can
recognize nine to eighteen base pairs of preselected
DNA target (Carroll 2011). The zinc finger repeats can

be custom-engineered and assembled to recognize the
intended DNA sequences.

In general, three–six zinc fingers are selected from a
premade library and assembled together as DNA-
binding domain to recognize specific DNA sequences
(Davies et al. 2017). Furthermore, a pair of assembled
zinc finger DNA-binding domains is fused with FokI
nuclease domains to target the preselected DNA
sequences. Next, FokI nuclease domains dimerize to
make the double-stranded DNA breaks at the target
sites precisely.

Fig. 1 Milestone and timeline
of targeted mutagenesis
methods
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ZFNs have been shown to be an efficient tool for
targeted mutagenesis in maize and rice (Jung et al.
2018; Shukla et al. 2009) (Table 2). For example, two
paralogues of ZmIPK1 gene that were implied in
phytate biosynthesis pathway in maize seeds were
chosen for targeted mutagenesis (Shukla et al. 2009).
In rice, SSIVa locus, participating in starch biosyn-
thesis process, was edited using zinc finger nucle-
ases, and the mutagenized plants displayed the low
starch, no grain filling and dwarf phenotype (Jung
et al. 2018). Unfortunately, ZFNs have some disad-
vantages in recognizing specific DNA sequence accu-
rately and generating off target DSBs, in addition to
technical challenge to engineering. One improvement
such as engineering heterodimer FokI nuclease
domains was made to minimize off-target effects and
increase the specificity of ZFNs (Miller et al. 2007).
Unlike the CRISPR/Cas (see below) that requires
PAM sequence at the target sites, ZFNs do not need
this requirement, which has become one advantage
of this technology.

USE OF TALENS FOR TARGETED MUTAGENESIS

TALENs are another genetic tool for targeted mutagen-
esis just after ZFNs. TAL effectors (TALEs) originate
from the plant pathogens of Xanthomonas and Ralstonia.
They are a group of virulence factors from the Gram-
negative bacterial pathogens entering into host plant
cells via a type III secretion system (Boch and Bonas
2010). After translocated into the host cells, TALEs
recognize and transcriptionally activate host target
genes to condition disease susceptibility or trigger host
resistance response based on the nature of target genes
in plants (Boch and Bonas 2010). TALEs have a con-
served central repetitive DNA binding domain consist-
ing of multiple repeats of 33–35 amino acids (Boch and
Bonas 2010). Two variable amino acids at positions
twelve and thirteen of each repeat are known as repeat
variable di-residues (RVDs). Four predominant RVDs
such as NI, NG, NN and HD recognize the nucleotides
adenine (A), thiamine (T), guanine (G), and cytosine (C),
respectively (Boch et al. 2009; Moscou and Bogdanove
2009). At the N-terminus of TALE, it contains a type III
translocation signal. At the C-terminus, TALE has acidic

Fig. 2 Currently established programmable nucleases including ZFNs, TALENs, CRISPR/Cas9-, Cas12a- and CRISPR-derived base editors
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transcription activation domain (AD) and nuclear
localization signals (NLS) (Zhu et al. 1998).

TALEs have been harnessed into biotechnology for
accurate and site-specific mutagenesis in a plethora of
grass plants (Table 2). Similar to ZFN, TALEN also is
fusion protein derived from the programmable TALE
DNA-binding domain and the nuclease domain of FokI.
The DNA-binding domain is formed with tandem
repeats of 34 amino acids; each repeat binds to a single
base of the targeted DNA according to the TALE DNA
recognition code. TALENs function as dimer and are
apart by 16-bp to 20-bp of spacer (Christian et al. 2010;
Li et al. 2011). DNA target site for TALENs is more
specific due to the lengthy DNA sequences (32–48 bp)
bound by the paired TALENs. Dimerized FokI nuclease
domains induce a double-stranded DNA break within
the spacer region after recognizing two subsites of the
targeted region as simplified in Fig. 2B (Bogdanove and
Voytas 2011). A variety of TALEN modular assembly
methods including Golden Gate modular assembly and
PCR-based methods have been well set up to engineer
TALENs over the years (Akmammedov et al. 2016; Li
et al. 2014; Zhang et al. 2013).

TALENs earned the Nature’s ‘‘Method of the Year’’
laurel in 2011 and were listed as the ‘‘breakthrough of
201200 in Science. It holds a great promise to alleviate
the devastating plant diseases including rice bacterial
blight caused by Xanthomonas oryzae pv. oryzae (Xoo)
(Li et al. 2012). The disruption of TAL effector (AvrXa7
and PthXo3) binding sites in the promoter region of
OsSWEET14 has made the rice plants become strongly
resistant to the blight disease (Li et al. 2012). In addi-
tion, TALENs together with CRISPR systems were uti-
lized to edit the key enzymes (ZmPDS, ZmIPK1A, ZmIPK

and ZmMRP4) engaged in phytic acid biosynthetic
pathway in maize protoplasts (Liang et al. 2014).
TALENs were also demonstrated to be an efficient tar-
geted mutagenesis tool in Hi-II maize, targeting the
endogenous Glossy2 gene with about 10% editing effi-
ciency (Char et al. 2015). TALENs were also deployed to
edit three homeologous alleles of MILDEW-RESISTANCE
LOCUS (MLO) genes in hexaploid bread wheat that
conferred resistance to the powdery mildew (Wang
et al. 2014). Furthermore, TALENs were employed for
gene modification in Brachypodium, including BdABA1
(Bradi5g11750), BdCKX2 (Bradi2g06030), BdSMC6
(Bradi4g08527), BdSPL (Bradi2g03740), BdSBP (Bra-
di4g33770), BdCOI1 (Bradi2g23730), BdRHT (Bra-
di1g11090), and BdHTA1 (Bradi1g25390) (Shan et al.
2013b). Last but not least, TALENs were tested to
induce mutations in the specific genomic locus in barley
(Wendt et al. 2013). In summary, TALEN technology has
become a great tool in solving the problematic and
pathogenic challenges that reduce the agricultural pro-
duction. Also, the TALEN technology can advance the
functional analysis of different genes in crops plants
that feed the world. However, it is worthy to note that
the process of TALEN vector construction involving
several tedious steps that are time-consuming, cum-
bersome and labor-intensive has become a hurdle for
many users.

USE OF ENGINEERED CRISPR/CAS9 FOR GENOME
EDITING

The function of CRISPR/Cas9 system as an acquired
immunity to ward off intruding virus and foreign DNA

Table 1 Examples of published genome editing methods in grass plants

Grain crops Meganuclease ZFNs TALENs CRISPR/Cas9 CRISPR/
Cas12a

xCas9/Cas9-
NG

Base editors
(ABE/CBE)

Barley 4 (Wendt
et al. 2013)

4 (Lawrenson
et al. 2015)

Brachypodium 4 (Shan et al.
2013a)

Maize 4 (Gao et al.
2010)

4 (Shukla
et al. 2009)

4 (Liang et al.
2014)

4 (Lee et al.
2019)

4 (Zong et al.
2017)

Rice 4 (Jung et al.
2018)

4 (Li et al.
2012)

4 (Jiang et al.
2013)

4 (Xu et al.
2017)

4 (Wang et al.
2019)

4 (Zong et al.
2017)

Sorghum 4 (Jiang et al.
2013)

Wheat 4 (Wang et al.
2014)

4 (Wang et al.
2014)

4 (Zong et al.
2017)

� Agricultural Information Institute, Chinese Academy of Agricultural Sciences 2019

44 aBIOTECH (2020) 1:41–57



Table 2 Grass plants with established genome editing and application

Speciesa Targeted
mutagenesis
toolkits

Target gene(s) Traits/phenotypes Delivery
methods

Editing
efficiency

Reference

Rice ZFNs SSIVa Low starch and dwarf Agrobacterium Jung et al.
(2018)

TALEN OsSWEET11 &14 Resistance to bacterial blight Agrobacterium T1: 48–63% Li et al.
(2012)

Cas9/sgRNA OsBADH2

OsMPK2

OsPDS

Albino and dwarf phenotype Biolistic 7.1%; 9.4% Shan et al.
(2013b)

Cas9/sgRNA OsSWEET11 &14 Resistance to bacterial blight Rice
protoplasts

Jiang et al.
(2013)

Cas9/sgRNA OsCAO1

OsLAZY1

Pale green leaf phenotype; tiller-
spreading phenotype

Agrobacterium T1: 83.3–91.6% Miao et al.
(2013)

Cas9/sgRNA OsROC5

OsSPP

OsYSA

YSA target showing albino leaf
phenotype

Agrobacterium T1: 26%

84%

5%

Feng et al.
(2013)

Cas9/sgRNA OsMPK5 Rice
protoplasts

3–8% Xie and
Yang
(2013)

Cas9/sgRNA OsMYB1 Agrobacterium 50% Mao et al.
(2013)

Cas9/sgRNA OsSWEET1a

OsSWEET1b

OsSWEET11
OsSWEET13

Agrobacterium 87–100% Zhou et al.
(2014)

Cas9/sgRNA OsDMC1A OsDMC1B

OsCDK

Agrobacterium Mikami
et al.
(2016)

Cas9/sgRNA OsNAL1

OsLPA1

OsLG1

OsGL1-1

Narrow leave, increased tiller angle,
loss of specialized organs (laminar
joint, auricle and ligule) and
disrupted formation of leaf cuticular
wax

Agrobacterium 2.1–23.4% Hu et al.
(2016)

Cas9/sgRNA OsDL

OsCYP72A33

OsCYP72A32

OsVIP1

OsVIP1-like

Drooping leaves Agrobacterium Kaya et al.
(2016)

Cas12a OsPDS, OsBEL Albino phenotype Agrobacterium T0:
13.6–21.4%;
20–41.2%

Xu et al.
(2017)

Cas12a OsNAL1, OsLG1 Agrobacterium 5–12.1% Hu et al.
(2017)

Cas12a OsPDS

OsDEP1

OsROC5

Albino phenotype; curly leaves Agrobacterium 93.8–100% Tang et al.
(2017)

xCas9 MONOCULM1
(MOC1), DWARF14
(D14) and
PHYTOENE
DESATURASE
(PDS)

Agrobacterium 2.08–29.17% Wang
et al.
(2019)
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Table 2 continued

Speciesa Targeted
mutagenesis
toolkits

Target gene(s) Traits/phenotypes Delivery
methods

Editing
efficiency

Reference

xCas9 OsGS3

OsDEP1

Agrobacterium 6.7–21.1% Zhong et al.
(2019)

Cas9-NG OsDEP1

OsPDS

Agrobacterium 3.5–56.3% Zhong et al.
(2019)

Brachypodium TALENs BdABA1, BdCKX2,
BdSMC6,
BdSPL,

BdSBP, BdCOI1,
BdRHT, BdHTA1

Agrobacterium Shan et al.
(2013a)

Maize I-CREI homing
endonuclease

LIGULELESS1
(LG1)

Agrobacterium 3% Gao et al.
(2010)

ZFNs IPK1 Plasmid DNA
delivery

Shukla
et al.
(2009)

TALENs Gl2 Agrobacterium 10% Char et al.
(2015)

TALEN &

Cas9/sgRNA

ZmPDS, ZmIPK1A,
ZmIPK,
ZmMRP4

Enzyme in the phytic acid
biosynthetic pathway

Agrobacterium 13.3–39.1%
in plants

Liang et al.
(2014)

Cas9/sgRNA ZmHKT1 Agrobacterium 100% Xing et al.
(2014)

Cas9/sgRNA LIG,

ALS2,

MS26,

MS45

ALS2: resistance to chlorsulfuron,
MS45: male sterile

Biolistic 2.4–9.7% Svitashev
et al.
(2016)

Cas9/sgRNA Zmzb7 Albino, leave chlorosis Agrobacterium 19–31%. Feng et al.
(2016)

Cas9/sgRNA phytoene
synthase gene
(PSY1)

Albino phenotype Agrobacterium 65.80%–
86.87%

Zhu et al.
(2016)

Cas9/sgRNA ZmAgo18A,
ZmAgo18B

A1, A4

Agrobacterium 70% Char et al.
(2017)

Cas9/sgRNA LIGULELESS1
(LG1)

Smaller leaf angles Agrobacterium 51.5%–
91.2%

Li et al.
(2017a)

Cas9/sgRNA ARGOS8 Improved grain yield under
drought conditions

Biolistic Shi et al.
(2017)

Cas9/sgRNA &

Cas12a

Gl2 Glossy leave Agrobacterium 90–100% in
the Cas9

0–60% in
Cas12a

Lee et al.
(2019)

Cas9/sgRNA MS8 Male sterile Agrobacterium Chen et al.
(2018)

Cas9/sgRNA Zmzb7 Albino, chlorosis Agrobacterium 66% Feng et al.
(2018)

Wheat TALENs TaMLO Resistance to powdery mildew Biolistic 3.4–6.0% Wang et al.
(2014)

Cas9/sgRNA TaMLO Resistance to powdery mildew Biolistic 5.6% Wang et al.
(2014)

Cas9/sgRNA TaGASR7

TaGW2

TaDEP1

TaGASR7: control grain length and
weight; TaDEP1: dwarf
phenotype

TECCDNA

IVTs

1–9.5% Zhang et al.
(2016)

� Agricultural Information Institute, Chinese Academy of Agricultural Sciences 2019

46 aBIOTECH (2020) 1:41–57



materials is an important mechanism to protect archaea
and bacteria (Barrangou 2013). The main components
of CRISPR/Cas9 system for genome editing include the
DNA cutting enzyme, Cas9, and the single chimeric
guide RNA (sgRNA) derived from the combination of
trans-activating crRNA (tracrRNA) and CRISPR RNA
(crRNA) (Jinek et al. 2012) (Fig. 2C). Cas9 protein from
S. pyogenes is the widely used nuclease for genome
editing (Tsai and Joung 2016). Cas9 proteins from
Streptococcus thermophilus, Staphylococcus aureus and
Neisseria meningitidis have also been applied in the field
of genome editing (Penewit et al. 2018; Muller et al.
2016). This class II type II Cas protein comprises of
NHN domain and RuvC domain. NHN domain cleaves
the complementary strand; whereas RuvC domain
cleaves the non-complementary strand of the gRNA

guide region (Nishimasu et al. 2014). Cas9 scans the
target genome and searches first for the 3–8-nt-long
protospacer-adjacent motif (PAM) sequence (50-NGG-30

for SpCas9; 50-NNGRRT-30 for SaCas9; 50-NNNNGATT-30

for NmCas9; 50-NNAGAAW-30 or 50-NGGNG-30 for
StCas9), then uses the gRNA guide sequence (20-nt) for
target recognition and generates site-specific DSBs at
the target sequence three nucleotides upstream of the
PAM (Jinek et al. 2012; Muller et al. 2016; Penewit et al.
2018). NHEJ DNA repair mechanism seals the broken
DNA with the results of INDELs at the site of DSBs.

Easy assembly of CRISPR/Cas9 constructs and high
efficiency of genome editing have made this system
surpass ZFNs and TALENs just in a few years. Moreover,
several creative and distinct CRISPR designs using
CRISPR/Cas9 technology have made this system an even

Table 2 continued

Speciesa Targeted
mutagenesis
toolkits

Target gene(s) Traits/phenotypes Delivery
methods

Editing
efficiency

Reference

Cas9/sgRNA a-Gliadin Low-gluten Biolistic 62.3–75.1% Sanchez-
Leon et al.
(2018)

Cas9/sgRNA phytoene desaturase (PDS) Chimeric
photobleaching
phenotype

Agrobacterium 11–17% Howells
et al.
(2018)

Cas9/sgRNA TaGW2, TaLpx-1, and TaMLO TaGW2: increase in
seed size and grain
weight

Particle
bombardment

Wang et al.
(2018)

Cas9/sgRNA TaGASR7 Particle
bombardment

5.2% Hamada
et al.
(2018)

Cas9/sgRNA TaCKX2-1, TaGLW7, TaGW2, and
TaGW8,

Increased grain
number per spikelet

Agrobacterium 10% Zhang et al.
(2019b)

Sorghum Cas9/sgRNA Reporter gene encoding for red
fluorescence

Agrobacterium Jiang et al.
(2013)

Cas9/sgRNA SbCENH3 Potential lethality Agrobacterium Che et al.
(2018)

Cas9/sgRNA klC Increases in
digestibility and
protein quality

Agrobacterium 96% Li et al.
(2018a)

Cas9/sgRNA cinnamyl alcohol
dehydrogenase(CAD) &
phytoene desaturase(PDS)

Biolistic Liu et al.
(2019)

Barley TALENs HvPAPhy_a Agrobacterium Wendt et al.
(2013)

Cas9/sgRNA HvPM19 Agrobacterium 10%–23% Lawrenson
et al.
(2015)

Switchgrass Cas9/sgRNA tb1a, tb1b, PGM tb1a: tb1b: increased
tiller production

Agrobacterium 95.5%

11%

13.7%

Liu et al.
(2018)

aOnly selected publications were listed
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more appealing tool to many users. For instances,
CRISPR/Cas9 system was shown to be effective in cre-
ating large chromosomal deletion in rice plants (Zhou
et al. 2014). Also, multiplex genome editing using
CRISPR/Cas9 is developed to target a gene family
(OsMAPK) simultaneously using an endogenous tRNA
processing system (Xie et al. 2015), and a single tran-
script unit CRISPR/Cas9 (STU CRISPR/Cas9) expression
system is driven by a single Pol II promoter to express
the two components of the reagents (Tang et al. 2019).
These convenient tool kits in plants have the users make
their desired CRISPR reagents much easier.

CRISPR-associated protein 9 (CRISPR/Cas9) has been
extensively harnessed for site-specific mutagenesis in a
plethora of grass plant species including rice, sorghum,
maize, wheat, switch grass, and many other important
grass plants (Jiang et al. 2013; Liang et al. 2014; Shan
et al. 2014; Liu et al. 2018; Wang et al. 2014; Svitashev
et al. 2015) (Table 2). Results from whole genome
sequencing (WGS) in Japonica rice reveals that off-target
mutations created by Cas9 is relatively low and carefully
design intended sgRNA can reduce off-targeting effects
(Tang et al. 2018). Tissue culture involving Agrobac-
terium transformation, on the other hand, generated
high level of spontaneous mutations in different plants
species (Tang et al. 2018). Similarly, off target effects of
Cas9 in maize were evaluated using CIRCLE-seq and off-
target mutations were barely found in edited lines when
examined (Lee et al. 2019). Efforts have also been made
to reduce the off-target effect of CRISPR systems. For
example, altered versions of Cas9 [SpCas9-HF1 and
eSpCas9 (1.1)] could reduce cleavage activity of Cas9 on
substrate having mismatched and greatly reduced the
off-target effects resulted from the CRISPR/Cas9 system
(Chen et al. 2017). Design and use of shortened guide
sequences of gRNA (e.g., 17–18 nt) could significantly
reduce the off-target mutation without compromising
on-target efficiency (Fu et al. 2014).

Moreover, some derivatives from CRISPR systems
have been repurposed and adapted in the areas of epi-
genetic engineering (e.g., methylation, demethylation,
acetylation, deacetylation), transcriptional regulation
(activation and repression) and cell imaging in mam-
malian cells, but have not yet been fully materialized in
plants (Kwon et al. 2017; Hilton et al. 2015; Gilbert et al.
2013; Chen et al. 2013; Knight et al. 2018; Vojta et al.
2016). In plants, some initial and pioneer work in
development of transcriptional activation using VP64
and transcriptional repression using SRDX were estab-
lished and applied in the monocots and dicots (Lowder
et al. 2015). Followed by that, an improved version of
CRISPR Act2.0 and mTALE-Act also has been made and
used in multiplex genes activation (Lowder et al. 2018).

Besides that, a newly developed dCas9-TAD that was
named as dcas9-TV was shown to have stronger acti-
vation activity in plant and mammalian cells (Li et al.
2017c). In addition, live cell imaging in plants using
CRISPR-Cas9 system to track the movements of telom-
ere has been reported (Dreissig et al. 2017). These
elegant methods made the sgRNAs, when fused with the
dead Cas9 or nickase Cas9 system, a mini gadget with
multi-functions and multi-tasks in basic scientific
research. Evidently, CRISPR/Cas9 technology was nom-
inated as the ‘‘breakthrough of the year’’ in 2015 by
Science magazine. It has become much versatile in basic
biology.

CRISPR/CAS12A, AN ALTERNATIVE SYSTEM,
FOR GENOME EDITING

Furthermore, newly emerged Cas12a (formerly named
as Cpf1) is a promising nuclease that has an efficient
genome-editing frequency that only contains a single
RuvC domain (Zetsche et al. 2015). Cas12a recognizes
TTTV PAM (V could be A, C or G nucleotide) that
expands the targetable regions in the grass plant gen-
omes and provides broader choices for users when
choosing the target sites within the gene of interest
(Table 2). Various forms of Cas12a system include
FnCas12a (Francisella novicida U112), AsCas12a (Aci-
daminococcus sp. BV3L6), LbCas12a (Lachnospiraceae
bacterium ND2006), and many other Cas12a nucleases
were demonstrated to function for genome editing in
mammalian cells and has been successfully applied in
rice and maize (Zetsche et al. 2015; Xu et al. 2017; Wang
et al. 2017; Tang et al. 2017; Lee et al. 2019).

This system is extremely useful when targeting T-rich
genomic region with a PAM sequence of 50-TTTV-30

(Zetsche et al. 2015). One distinct feature of Cas12a sys-
tem is that the trans-activating crRNA (tracrRNA) is not
part of guiding RNA, only the CRISPR RNA (crRNA) is
needed for Cas12a (Zetsche et al. 2015)(Fig. 2D). Another
difference of the CRISPR/Cas12a system is Cas12a
nuclease creates staggered cut instead of blunt end cut of
DNA target by CRISPR/Cas9 system (Zetsche et al. 2015).
Staggered cut will be created distally from the PAM
sequence, at the eighteenth nucleotide on the non-tar-
geted strand and the twenty-third nucleotide on the tar-
geted strand at the DNA cleavage site. These five-
nucleotide overhangs at the 50 ends are believed to
increase efficiency of HDR mediated gene replacement in
eukaryotic systems (Moreno-Mateos et al. 2017; Bege-
mann et al. 2017a). Another advantage of the Cas12a
system is less off-target effects as reported (Kim et al.
2016). This was further confirmed using whole genome
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sequencing in Cas12a edited ricewith the results of no off-
targeting mutations (Tang et al. 2018). Hence, unwanted
off-target effects could be reduced using Cas12a nuclease.
Also, this class II type V endonuclease itself can process
pre-crRNA, so this system can be easily utilized as a mul-
tiplexing approach (Zetsche et al. 2017). Users may be
optimistic and more favorable to use Cas12a system in
engineering their crop plants of interest.

Another feature of Cas12a is the nuclease is ther-
mosensitive. The activity of Cas12a decreases signifi-
cantly below the temperature of 28 �C as first
demonstrated in zebrafish embryos, while Cas12a has
high cleavage activity at 37 �C (Moreno-Mateos et al.
2017). Similarly, Cas12a was also shown to be temper-
ature sensitive in plant systems. AsCas12a was proved
to have increased activity at high-temperature regime
(above 28 �C) in rice; the editing efficiency could reach
up to 93% in T0 plants (Malzahn et al. 2019). In maize
and Arabidopsis, they were found to have the frequency
of 100% edited mutants at 28 �C in T1 generation using
LbCas12a (Malzahn et al. 2019). Therefore, using dif-
ferent temperature to modulate Cas12a activity will be
an excellent approach in altering the genome-editing
activity of Cas12a temporally and conditionally. It is
known that different grass species prefer to have their
favorable growing conditions at various temperatures.
Moreover, transcriptional repression using CRISPR-
Cas12a system has also been manifested in Arabidopsis
that result in transcriptional reduction of miRNA gene
specifically the miR195b (Tang et al. 2017).

BASE EDITORS INDUCE GENOMIC MUTATIONS
WITHOUT DOUBLE-STRANDED BREAKS
AND IN THE ABSENCE OF TEMPLATE DNA

Cytosine base editor (CBE) and adenine base editor
(ABE) are two novel breakthrough technologies for
targeted base editing. CBE and ABE enable single
nucleotide conversion without DSBs or requiring donor
template (Kang et al. 2018). The concept for CBE is to
utilize mutant Cas9 (enzymatically dead Cas9 or Cas9
nickase in a later version) fused with cytosine deami-
nase that catalyzes cytosine deamination (Fig. 2E).
Cytosine deaminase converses cytidine (C) to thymine
(T) within certain ranges or windows of nucleotides
that are located upstream of the PAM sequence (Komor
et al. 2016). Cytosine deaminase has the ability to cat-
alyze the conversion of cytosine into uracil (Komor et al.
2016). DNA repair mechanism then incorporates a T
into the DNA during DNA replication (Fig. 2E). On the
other hand, adenine base editor (ABE) utilizes the
adenosine deaminase to convert A–G (Komor et al.

2016) (Fig. 2F). Adenosine is deaminated into inosine, G
will be incorporated during DNA repair and replication
processes as illustrated in Fig. 2F.

Different base editors have been well established in
the past few years. The first generation of Base Editor
was named as BE1, using the rat cytidine deaminase,
APOBEC1, to convert the C–T within a window of
approximately five nucleotides that are located 13-bp
upstream from the PAM sequences (Komor et al. 2016).
The subsequent generation of base editor was called
BE2. It was improved with the fusion of uracil glyco-
sylase inhibitor (UGI) that could inhibit the base exci-
sion repair mechanism and avoid unintended deletion
(Komor et al. 2016). In the third generation of base
editor (BE3), the dcas9 was substituted by Cas9 D10A
nickase, leading to the efficiency of base editing with
two- to sixfold increase relative to BE2 (Komor et al.
2016). Besides using defective Cas9 from S. pyogenes,
Cas9 homolog from S. aureus (Sa) with the NNGRRT
PAM also was used in base editing (SaBE3) (Kim et al.
2017). The conversion frequencies range from 50 to
75% (Kim et al. 2017). Lastly, the latest version of BE4
was appended with two UGIs at the C-terminus. Not
surprisingly, BE4 is 1.5-fold more efficient than BE3
(Komor et al. 2017). To reduce INDEL frequency in base
editing, GAM protein from bacteriophage Mu was uti-
lized to fuse at the N-terminal regions of SpBE3, SaBE3,
SpBE4, and SaBE4 (Komor et al. 2017). At the current
stage, SaBE4-GAM combined all the desired improve-
ments with reduced INDELs frequencies, increasing
product purity and base editing efficiency (Komor et al.
2017).

On the other hand, to introduce conversion from A to
G, the TadA: TadA* heterodimer was deployed to act as
the adenosine deaminase to turn the base of A–G and T–
C (Gaudelli et al. 2017). The current versions of adenine
base editor include version ABE 0.1 to version ABE 7.10.
Each of them has the slightly varied activity window
upstream from the PAM sequences and editing effi-
ciencies. Version ABE7.10 has the highest editing effi-
ciency with an average of 53% and has the activity
window of 4-bp to 7-bp upstream from the PAM
sequence (Gaudelli et al. 2017). Base editing technology
was first proved to work in human cells; it was then
developed, modified and applied in rice plants (Ren
et al. 2018; Li et al. 2017b). Recently, rBE14 with the
transfer RNA adenosine deaminase was developed to
facilitate the conversion of A into G and T into C in rice
with the editing efficiency of 17.64% (Yan et al. 2018a).
The human AID (hAID) has been rice codon optimized
to increase the base editing efficiency of high GC con-
tent; it is also applicable to AC-, TC- and CC-rich region
as well (Ren et al. 2018). Cas9 fusion with activation-
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induced cytidine deaminase (Target-AID) was demon-
strated to induce point mutation in herbicide resistance
gene (Shimatani et al. 2017). Furthermore, fusion pro-
tein of Cas9 nickase together with plant codons opti-
mized APOBEC3A (A3A-PBE) that can expand the base
editing window to 17-nt have been shown to convert C
into T in wheat, rice and potato (Zong et al. 2018).

More lately, the performance of base editor efficiency
was optimized by adopting bipartite nuclear localization
signals (bpNLS)-Anc689 APOBEC-32 aa Linker and
bpNLS-adenine deaminase of ABE7.10-32 aa Linker,
respectively, in rice, improving the efficiency of C to T
replacement up to 72.4% (Wang et al. 2019). Using base
editor toolkit is a good strategy to introduce point
mutations in different plant species including wheat and
maize (Zong et al. 2017). Most recently, transgene-free
herbicide resistance wheat was generated by base
editing the acetolactate synthase (ALS) and acetyl-
coenzyme A carboxylase genes (Zhang et al. 2019a).
Apart from this, expanding the CRISPR/Cas9 base edit-
ing to CRISPR/Cas12a base editing would increase the
scope of PAM sequences when choosing the target
regions of the gene of interest (Li et al. 2018b).

Nonetheless, some drawbacks of base editors include
low editing efficiency, and high off-target effects by base
editors, especially CBE (cytosine base editor) (Jin et al.
2019), calling for improvement in specificity in future.
In particular, the activity window of the base editors is
the key point to determine whether the conversions of
the specific and intended nucleotides perform accu-
rately in the purpose of targeted mutagenesis.

ENGINEERED CAS NUCLEASE VARIANTS
WITH ALTERED PAM REQUIREMENT

Modified versions of Cas9 or Cas12a nucleases can
expand and tolerate a variety of PAM sequences. The
naturally occurring S. pyogene Cas9 and L. bacterium
ND2006 Cas12a can only recognize NGG and TTTV PAM
(N could be A, C and G) sequences, respectively, which
restricts choice of target sites when used for targeting
the region of interest. Engineered Cas9 and Cas12a
variants can provide more options of PAMs when
choosing the intended target sites. For instance, NAG,
NG, NGA and NGCG PAM sequence were shown to
function for Cas9 variants (Hu et al. 2016). On the other
hand, AsCas12a variants with TYTC and TATV PAMs and
LbCas12a variants recognizing TATG PAM broaden the
range of targeted sites substantially (Gao et al. 2017;
Zhong et al. 2018). More recently, an engineered version
of Cas12a (enAsCas12a) was demonstrated to have an
improved genome-editing activity in human cells

(Kleinstiver et al. 2019). This Cas12a variant was shown
to work in specific gene targeting, epigenetics and base
editing (Kleinstiver et al. 2019) and thus can be
potentially applied in grass plants.

xCas9 and Cas9-NG are the most recently developed
Cas9 variants that can increase flexibility of PAMs while
maintaining relatively high efficiency in genome editing
(Hu et al. 2018; Nishimasu et al. 2018). Broad range of
PAMs including NG, GAA, and GAT were displayed to
work in mammalian cells. Very recently, xCas9 was
proved to function in rice with low efficiency (Wang
et al. 2019). Further efforts in optimization including
conditions of genome editing are needed to have better
performance in this system (Wang et al. 2019). Engi-
neered version of SpCas9 named as SpCas9-NGv1 was
demonstrated to efficiently edit the target genes using
the NG PAMs in rice and Arabidopsis (Endo et al. 2019).
SpCas9-NGv1 nickase can also be fused with cytidine
deaminase to convert C into T in rice acetolactate syn-
thase (ALS) and drooping leaf (DL) genes. In another
study, SpCas9-NGv1 can be used in the adenine base
editor in rice (Negishi et al. 2019). Similar reports
showed that xCas9 and Cas9-NG can be utilized to
expand the scope of base editing in rice (Ren et al. 2019;
Hua et al. 2019; Zhong et al. 2019). Indeed, this is the
next generation of genome-editing tool that expands the
range of genome editing in plants since it can tolerate
more variety and different PAMs.

HIGH-THROUGHPUT GENOME EDITING AND LOW-
COST GENOTYPING/MUTANT SCREENING

One of the ultimate goals in genome editing is to
develop high-throughput and robotic platforms for
vector construction and plant mutant screening. This
novel and robust technology requires labor-intensive
works to deliver the CRISPR constructs into the living
organisms and select for different types of mutations.
Therefore, robotic automation is ideal and necessary to
reduce technical error caused by humankind. Owing to
the high mutation frequencies created using CRISPR/
Cas9 and other alternative nucleases, large-scale muta-
tions by multiplexing can be a readily obtained
nowadays.

On the other hand, a variety of simple and rapid
mutant screening methods have been developed to
identify the mutants induced by CRISPR system. Tradi-
tionally, T7 endonuclease 1 (T7E1) assay, polyacry-
lamide gel electrophoresis (PAGE)-based analysis,
restriction enzyme (RE)-based assay, high resolution
melting (HRM) analysis, Sanger sequencing, next-gen-
eration sequencing (NGS) were used to detect
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mutations. More recently, single-strand conformational
polymorphism (SSCP), annealing at critical temperature
PCR (ACT-PCR), PCR followed by RNP digestion method
and Mutation Sites-Based Specific Primers Polymerase
Chain Reaction (MSBSP-PCR) were demonstrated in
genotyping the genome-edited mutants (Zheng et al.
2016; Hua et al. 2017; Guo et al. 2018; Liang et al.
2018). Each of them has different characteristics. For
example, SSCP is a great genotyping method for identi-
fying small indels including 1-bp indels that is com-
monly resulted from CRISPR/Cas9 editing system
(Zheng et al. 2016). ACT-PCR on the other hand utilizes
the traditional annealing at critical temperature PCR to
screen the CRISPR-induced mutants (Hua et al. 2017).
PCR/RNP mutation detection methods can be used in
polyploidy plants (Liang et al. 2018). MSBSP-PCR is also
a simple and easy method to detect the biallelic
mutants/homozygous mutants induced by CRISPR/
Cas9 (Guo et al. 2018).

Users can make use of all the established genome-
editing and mutant screening platforms to advance the
exploration of functional genomics. Genome-wide tar-
geted mutagenesis methods using CRISPR/Cas9 have
been extensively explored in rice breeding program (Lu
et al. 2017). Characterization of numerous genes that
engaged in different biological processes will be a low-
hanging fruit in near future.

TRANSGENE-FREE DELIVERY METHODS

Agrobacterium tumefaciens-mediated DNA delivery,
biolistic particle bombardment and viral vector delivery
are the three common ways to introduce the CRISPR/
Cas9 reagents into the plant cells. However, developing
transgene-free CRISPR-edited crops is a crucial topic
and critical issue particularly in European countries. To
mitigate this concern, ribonucleoprotein (RNP) complex
is a good choice to introduce Cas9 and sgRNA into
plants cells such as protoplasts through somatic
embryogenesis for DNA-free genome editing. The Cas9
and sgRNA reagents can easily be degraded in a short
time after delivered into plant cells without leaving any
footprints in plant genome. This technique has been
successfully applied in a few grass species including rice
and wheat (Liang et al. 2017; Woo et al. 2015). On the
other hand, the use of mRNA in vitro transcription has
also been utilized to deliver CRISPR reagents into the
plant tissue (Zhang et al. 2016, 2019b). This non-
transgenic approach can potentially escape the regula-
tion set-up by the USDA APHIS. Collectively, this trans-
gene-free genome-editing method is more favorable to
the public consumers to commercialize and disseminate

the improved-quality crop plants. Nevertheless, the
labor-intensive and time-consuming tissue culture
works to regenerate plants from protoplasts are a bot-
tleneck and required to invest more efforts.

REGULATORY STATUS FOR GENOME-EDITING CROPS

TALENs and the CRISPR-derived systems are powerful
and robust tools for precise genome editing. They can be
deployed for improving specific and important agro-
nomical traits. However, the regulatory status of gen-
ome-edited crops is a hot topic to debate among
scientific community and the regulators. In maize,
CRISPR/Cas9-mediated waxy gene (Wx1)-edited corn
with starch enrichment developed by Dupont Pioneer
has been exempted from GMO regulations (Firko 2016).
Another example is the TALEN-based SWEET gene-edi-
ted Xoo resistance rice that also received a similar rul-
ing from the USDA (Firko 2015). In short, TALENs and
CRISPR technologies hold a great promise to edit
desirable traits and these novel plant-breeding approa-
ches provide an additional way to improve the eco-
nomically important crops. Thus, regulatory status of
genome-editing crops is essential for dissemination of
these breakthrough technologies and their derived plant
products throughout the world.

FUTURE PERSPECTIVES

Plant genome-editing database (PGED)

Recently, one publication from Boyce Thompson
Institute for Plant Research called for the submission
of the CRISPR-edited mutants to the online resource
(Zheng et al. 2019). This platform or repository pro-
vides researchers a pool of the genome-editing
mutants’ information including the gene IDs, trans-
formation information, mutant phenotypes, types of
mutations, gRNA sequences, seeds availability and
other detailed information in the online database
(Zheng et al. 2019). Indeed, it will benefit the plant
science community to share different mutants for the
purpose of individual research. This idea is quite
similar with the Arabidopsis Information Resource
(TAIR) with the differences of having a molecular
biology database in other plant species and different
targeted mutagenesis methods. This is a good idea
and may be extremely useful for the researchers to
access the data, information of the mutant plants, and
plant materials (e.g., mutant seeds) created through
CRISPR technology.
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Cas12a-mediated base editors in plants

Cas12a base editor was shown to work in human cells
(Li et al. 2018b); this work can be extended into plants
system by converting C–T in TTT-rich genomic region. It
is known that CRISPR/Cas9-derived base editor has the
limitation of G-rich targeted region, CRISPR/Cas12a
base editor can overcome such constrains of Cas9 base
editor and further elaborates the scope of gene editing
within the T-rich genomic region in crop plants.

Combination of different nucleases

FokI endonuclease was shown to work with guide RNA-
based Cas9 to have much higher specificity and high
efficiency of genome editing in human cells (Tsai et al.
2014). This was carried out to reduce the undesired off-
target mutations in line with the highly accurate gen-
ome editing (Tsai et al. 2014). On the other hand,
combining nuclease Cas9 protein and Cas12a protein for
genome engineering will be another possible experi-
mental approach in grass plants. This will provide users
with broader choice of the PAM sequence selection
when designing the desired guide RNA and crRNA. One
recent study has reported the fusion guide RNA (fgRNA)
that combines nuclease Cas9 and Cas12a work in
human cells and yet to be demonstrated in plants
(Kweon et al. 2017).

Base editing of RNA

Most recently, RNA base editors just started burgeoning
using the dCas13b (* 1100aa) and ADAR (adenosine
deaminase acting on RNA) enzymes to catalyze the
hydrolysis of adenosine to inosine using RNA as tem-
plates in mammalian cells (Cox et al. 2017; Chaudhary
2018). This system was named as RNA Editing for
Programmable A to I Replacement (REPAIR) with no
restricted PAM at the editing site (Cox et al. 2017). This
newly developed system is able to correct two human
disease-related mutations including X-linked nephro-
genic diabetes insipidus and Fanconi Anemia with 35%
and 23% of the editing efficiency (Cox et al. 2017).
Indeed, RNA base editor provides a new approach in the
field of genome engineering and can be extrapolated in
the plants system in near future.

CONCLUDING REMARKS

A suite of genome-editing tool sets including meganu-
cleases, ZFNs, TALENs, CRISPR-Cas9-, -Cas12a-, -Cas12e-
, -Cas13a-, -Cas13b-, -Cas13d-, -Cas14- and CRISPR/Cas-

derived base editors have been well developed and
overwhelmed the scientific journals of high impact fac-
tors in the last decade (Silva et al. 2011; Bedell et al.
2012; Doudna and Charpentier 2014; Urnov et al. 2010;
Smargon et al. 2017; Harrington et al. 2018; Abudayyeh
et al. 2017; Yan et al. 2018b; Gaudelli et al. 2017;
Zetsche et al. 2015; Begemann et al. 2017b). All of these
tools have their distinguishable pros and cons. There-
fore, further improvements and optimization are needed
to make the custom-designed constructs suitable for
different grass plants. In short, genome-editing tech-
nologies are robust and formidable genetic and biotech
tools to study functional genomics in grass plants
(Table 2). Furthermore, crop improvements can be
achieved through gene/trait discovery and ingression
with readily genome-editing platforms in grass crops.
With the genome-editing tools becoming popular and
widely used, the fundamental biology and application in
crop plants will advance in a pace that is unimaginable
ten years ago.
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