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Abstract
Rensch’s rule entails that male-biased sexual size dimorphism scales allometrically with body size and is assumed to generally 
apply to polygynous taxa. However, so far only few mammalian groups have been shown to conform to it. Toothed whales 
(Odontoceti) not only span a substantial range of body sizes, but are commonly presumed to be predominantly polygynous, 
thus representing a promising candidate group to test for Rensch’s rule. Here we compiled a dataset of sex-specific body 
lengths in 57 species of toothed whales and demonstrate that sexual size dimorphism in this group does indeed follow 
Rensch’s rule. When focusing on selected subgroups of toothed whales, conformity to the rule was prominent among line-
ages of the speciose superfamily Delphinoidea, while it was not found in the beaked whales of the family Ziphiidae. These 
results support the assumption that polygynous and polygynandrous mating systems and marked precopulatory intrasexual 
competition between males are common among toothed whales. However, female-biased sexual size dimorphism as well 
as monomorphism occur at notable frequencies as well, suggesting that reproductive strategies are nevertheless variable 
among these marine mammals.
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Rensch’s rule proposes that among closely related species, 
sexual size dimorphism (SSD) scales allometrically with 
body size (Abouheif and Fairbairn 1997). It assumes that 
relative SSD increases with body size when males are the 
larger sex (male-biased SSD; Rensch 1950) and vice versa 
when the opposite is the case (female-biased SSD; Rensch 
1960, but see Webb and Freckleton 2007). One important 
evolutionary driver behind this pattern is assumed to be 
sexual selection, particularly due to intrasexual competition 
between males (reviewed in Lindenfors et al. 2007; see also 
Dale et al. 2007). In line with this, Rensch’s rule appears 
restricted to polygynandrous and polygynous taxa among 
vertebrates and is not found in monogamous ones or among 
polyandrous species (Dale et al. 2007, but see Caspar et al. 

2021). Indeed, the rule has been found to be sex-reversed in 
some polyandrous groups (Dale et al. 2007).

In mammals polygyny and polygynandry are the predomi-
nant mating systems (Mesnick and Ralls 2008). However, 
although Rensch’s rule appears to hold for mammals as a 
group (Lindenfors et al. 2007), few studies so far found SSD 
scaling in compliance with it on lower taxonomic levels such 
as orders or families (Lindenfors et al. 2007; Martinez et al. 
2014; Wu et al. 2018). Hence, the rule’s general applicabil-
ity to mammalian taxa, even those that are strongly polygy-
nous, remains uncertain and requires further investigation. 
Toothed whales (Odontoceti) and particularly their most spe-
ciose taxon, the Delphinoidea (oceanic dolphins, porpoises, 
narwhals, and beluga whales), represent an interesting model 
group to study the phenomenon because they encompass a 
substantial range of body sizes while likely exhibiting polyg-
ynous or polygynandrous mating systems throughout, which 
are typically characterized by high intrasexual competition 
between males (Mesnick and Ralls 2008). This condition 
is expected to favor the evolution of male-biased SSD and 
conformity to Rensch’s rule (Dale et al. 2007; Lindenfors 
et al. 2007). However, so far, such mating systems have 
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only been effectively confirmed in just a few model species 
(Dines et al. 2015).

In most toothed whales, sexually dimorphic body size 
is indeed apparent and male-biased, while females are usu-
ally the larger sex in baleen whales (see Ralls and Mesnick 
2009 for discussion of underlying factors). Female-biased 
SSD has mostly been reported for the smallest toothed 
whales, including river dolphins (Kasuya 1972; Anli and 
Kayia 1992; except Inia—Martin and Da Silva 2006) and the 
diminutive oceanic dolphins of the genus Cephalorhynchus 
(Heimlich-Boran 1993), but it also occurs in beaked whales 
(Omura et al. 1955). Besides often being significantly larger 
than the opposite sex, males in diverse odontocete spe-
cies also display various sexual ornaments. These include 
enlarged and/or conspicuously formed fins and flippers as 
well as post-anal humps in dolphins and porpoises (Ralls 
and Mesnick 2009), modified dentition in beaked whales and 
the narwhal (Silverman and Dunbar 1980; Heyning 1984; 
Dines et al. 2015), and dimorphic skull size and shape in 
sperm whales and beaked whales (Nakamura et al. 2013; 
Gol'din 2014). Males in more dimorphic species tend to 
exhibit smaller testes relative to their body size, which indi-
cates that their reproductive success is strongly dependent 
on precopulatory measures, including physical competition 
(Dines et al. 2015; but see MacLeod 2010). In line with 
this, male odontocetes typically show higher levels of intra-
sexual aggression than females, which can result in extensive 
sex-specific scarring (Silverman and Dunbar 1980; Heyning 
1984; MacLeod 1998; Martin and Da Silva 2006; Lee et al. 
2019). Apart from killer whales (Orcinus orca) and several 
globicephaline dolphins, associations between adult male 
and female odontocetes are weak and largely restricted to the 
context of mating (May-Collado et al. 2007; Möller 2012).

Earlier studies have shown that larger-bodied species 
of oceanic dolphins (Delphinidae) tend to show markedly 
greater sexual dimorphism than smaller ones (Heimlich-
Boran 1993; Möller 2012) but previous analyses did not 
address the phylogenetic interdependence of species data 
and it has never been tested whether these differences fol-
low an allometric scaling compliant with Rensch’s rule. A 
study on body mass SSD in ten non-identified cetacean spe-
cies recovered no compliance to the rule, (Lindenfors et al. 
2007) but the small size and undisclosed composition of the 
sample calls for further investigation.

We assembled a dataset of adult sex-specific body lengths 
in 57 odontocete species from all extant families to approxi-
mate the expression and scaling of SSD in these aquatic 
mammals. All collected data with notes on sample sizes and 
geographic provenance of sampled populations are included 
in Table S1. We chose body length rather than body mass 
as a size proxy, since both are highly correlated (Heimlich-
Boran 1993) but little data is available on the latter for many 
odontocetes. Mean body lengths for males and females were 

used to calculate SSD ratios (see Table S1), following the 
method of Smith (1999), which were rounded to the second 
decimal [m/f if SSD is male biased, SSD values > 1; 2-(f/m) 
if it is female biased, SSD values < 1; an SSD value of 1 
indicates monomorphism]. For a species to be included, data 
for at least three adult individuals of each sex were required. 
If no other datasets were available, the mean body length for 
each sex was derived from studies presenting sex-specific 
growth models of the species in question (e.g., Plön 2004). 
The asymptotic values for body length were then assumed to 
represent the mean body length of the respective sex (anno-
tated in Table S1). When we encountered markedly different 
SSD values in distinct populations of a species (e.g., North-
ern vs. Southern hemisphere populations, killer whale types, 
etc.), we adopted the most extreme one.

To test whether Rensch’s rule applies to toothed whales 
as a whole as well as to their three most speciose sub-
groups (Delphinidae, Monodontidae + Phocoenidae clade, 
Ziphiidae) we employed phylogenetic reduced major axis 
(pRMA) regression, which is a well-established method 
to investigate SSD scaling (Abouheif and Fairbairn 1997; 
Caspar et al. 2021). The phylogenetic relationships between 
the taxa analyzed need to be statistically addressed because 
shared ancestry results in non-independence of species-
specific data points. We performed pRMA regressions of 
 log10 (male body length) on  log10 (female body length) by 
aid of the phytools package in R (phyl.RMA function; Revell 
2012). In taxa where male-biased SSD is predominant, such 
as odontocetes, Rensch’s rule is considered to hold when 
the regression coefficient β is significantly greater than 1, 
indicating hyperallometric scaling (Abouheif and Fairbairn 
1997). SSD scaling conforming to β = 1 (isometry) or β < 1 
(hypoallometry) would refute it. Deviation of β from an iso-
metric scaling pattern was assessed with Clarke’s T statistic 
with adjusted degrees of freedom. Pagel’s λ was employed 
to measure the phylogenetic signal in the data.

Our nomenclature follows the Society of Marine Mam-
malogy’s committee on taxonomy (2021) (except for the 
application of the revised nomenclature for dolphins for-
merly grouped under Lagenorhynchus by Vollmer et al. 
2019). We adopted the phylogeny and branch lengths for 
the analyses from McGowen et al. (2009). One species, the 
Australian snub-fin dolphin (Orcaella heinsohni) was not 
included in that study and was instead manually added to our 
tree using the divergence dating from Vilstrup et al. (2011). 
Note that molecular studies recovered a number of com-
monly recognized delphinid genera (and also Phocoena) to 
be non-monophyletic, explaining their scrambled appearance 
in the tree (Perrin et al. 2013).

We found that the majority of odontocetes (60%, 
nspecies = 34) display male-biased SSD (Fig. 1, Table S1). 
The most extreme male-biased SSD is expressed in the 
sperm whale (Physeter macrocephalus; SSD ratio: 1.52), 
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short-finned pilot whale (Globicephala macrorhynchus; 1.3), 
Northern right whale dolphin (Lissodelphis borealis; 1.26), 
and beluga whale (Delphinapterus leucas; 1.25). Female-
biased SSD (26%, nspecies = 15) was frequent among beaked 
whales, small-bodied delphinoids and the two clades of river 
dolphins. The Ganges river dolphin (Platanista gangetica) 
was the most dimorphic species with female-biased SSD 
(0.72), followed by the franciscana (Pontoporia blainvillei; 
0.83) and the baiji (Lipotes vexillifer; 0.87). Sexually mono-
morphic species were rare (14%, nspecies = 8) but found across 
major groups. Examples include the Atlantic spotted dolphin 
(Stenella frontalis), Indus River dolphin (Platanista minor), 
and Arnoux’ beaked whale (Berardius arnuxii).

The pRMA regression models revealed Rensch’s rule to 
hold for toothed whales as a whole, as indicated by sig-
nificant hyperallometric SSD scaling (Fig. 2a; β = 1.175, 
p < 0.0001). It was also evident among the Delphinidae 
(Fig. 2b; β = 1.172, p = 0.002) and the clade formed by 
the families Monodontidae and Phocoenidae (Fig.  2c; 
β = 1.273, p = 0.005). In beaked whales, Rensch’s rule was 
not recovered and SSD scaling followed an isometric trajec-
tory (Fig. 2d; β = 1.045, p = 0.551). SSD entailed a strong 
phylogenetic signal (Pagel’s λ ≥ 0.9) in all groups analyzed 

(Fig. 2). However, this estimate can only be considered 
robust for odontocetes as a whole and for delphinids, given 
that the species samples for the remaining two clades were 
small (Freckleton et al. 2002).

Our results demonstrate the validity of Rensch’s rule in 
odontocetes, which is consistent with the assumption of 
widespread polygyny and polygynandry combined with sig-
nificant physical male–male competition (Dale et al. 2007) 
in this group (Mesnick and Ralls 2008). Still, female-biased 
SSD as well as monomorphism were recovered surprisingly 
often occurring in 40% of the studied species. Conforming 
to Rensch’s rule, female-biased SSD and monomorphism 
was mostly found in small-bodied species (the ziphiids 
represent an exception to this trend and will be discussed 
below), while species with body lengths exceeding 2.5 m 
typically displayed varying degrees of male-biased SSD. 
The latter pattern could in parts relate to female reproductive 
demands. While small cetaceans experience natural selec-
tion pressures restricting their body size (Galatius 2010), 
females will benefit from maintaining a certain body mass 
to successfully deliver and nurse calves (Ralls 1976; Slooten 
1991). Indeed, relative to their body size, small odontocetes 
give birth to the largest neonates among cetaceans (a pattern 

Fig. 1  Phylogenetic distribution of sexual body length dimorphism 
in odontocetes. The color-coding of the tree corresponds to spe-
cies’ female body length and denotes maximum-likelihood esti-
mates for ancestral female body size at each node [plotted with the 
contMap() function of the phytools package]. The bar plot visual-

izes sexual size dimorphism: < 1 = female-biased, 1 = monomorphic 
(no bar), > 1 = male-biased. Clades are color-coded in the bar plot: 
1 Physeteroidea, 2 Platanistidae, 3 Ziphiidae, 4 Inoidea, 5 Mono-
dontidae & Phocoenidae, 6 Delphinidae. Line art by Chris Huh (CC 
BY-SA 3.0), not to scale
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also observed in other mammalian orders, see Martin and 
MacLarnon 1985), providing a particular challenge to the 
mother (Ohsumi 1966). At the same time, males in such 
small-bodied species tend to show adaptations to sperm 
competition instead of physical combat (Van Waerebeek 
and Read 1994; Fontaine and Barette 1997). Different from 
many monomorphic terrestrial mammals, there is no evi-
dence for monogamous mating strategies in monomorphic 
or weakly dimorphic cetaceans. The only species, for which 
there is notable data in support of a monogamous mating 
system is the franciscana (Wells et al. 2013), in which SSD 
is strongly female-biased (Fig. 1).

In species with male-biased SSD, which are mostly repre-
sented by medium to large-sized delphinoids and the sperm 
whale, it can be expected that sexual conflicts are more likely 
to be decided through precopulatory measures than in ones 
with different SSD patterns. Such measures might include 
ritualized but potentially violent confrontations in which 
greater body size would be advantageous. However, reports 
on aggressive intrasexual competition are rare in wild ceta-
ceans (Parsons et al. 2003). Due to the limitations of surface 
observations, such events are often simply inferred from bite 

and rake marks (Heimlich-Boran 1993), the visibility and 
persistence of which varies considerably between species 
(MacLeod 1998). However, raking is a comparatively mild 
agonistic action that not only occurs in aggressive but also 
in play contexts (Grimes et al. 2022). During more intense 
fights, several odontocete species engage in ramming and 
tail slapping. These behaviors can severely damage inner 
organs but do not leave visible cutaneous lesions (Gowans 
and Rendell 1999; Parsons et al. 2003; Oremland et al. 2010; 
Robeck et al. 2019). The frequency and threat imposed by 
such behaviors might therefore easily be underestimated, 
complicating assessments of their effects in a given species 
(Robeck et al. 2019). Hence, the extent to which aggres-
sive behaviors are employed in intrasexual competition in 
odontocetes remains unclear but their significance could 
be substantial. In any case, the conformity to Rensch’s rule 
as well as other available evidence is consistent with the 
idea that such conflicts play a role in male reproductive 
behavior across several major odontocete lineages (Ralls 
and Mesnick 2009). Interestingly, pronounced male-biased 
SSD is found in several philopatric delphinid species that 
form modular multi-male/multi-female groups organized 

Fig. 2  Scaling of sexual size dimorphism in toothed whales (Odon-
toceti) as recovered by phylogenetic major reduced axis models. Bro-
ken lines indicate a size ratio of 1.0 between the sexes, equating to 
isometric scaling. Orange lines correspond to the regression coeffi-
cient β, which indicates the actual trajectory of scaling. Rensch’s rule 
is indicated here by a significant deviation of β > 1 (β = 1 corresponds 
to sexual monomorphism), which is realized in odontocetes in gen-

eral (a; n = 57), Delphinidae (b; n = 32), and the Monodontidae-Phoc-
oenidae clade (c; n = 8), but not in the Ziphiidae (d; n = 9). Pagel’s λ: 
phylogenetic signal [can vary from 0 (absent) to 1 (very strong)], R2: 
coefficient of determination, α: intercept, β: regression coefficient. p 
values indicate the probability of β = 1. Line art by Chris Huh (CC 
BY-SA 3.0), not to scale
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around matrilines, such as pilot whales and killer whales 
(see Heimlich-Boran 1993). At least for the latter, it was sug-
gested that male reproductive success correlates positively 
with body size (eastern North Pacific residents—Ford et al. 
2011). How different social systems interplay with body size 
to determine SSD in toothed whales remains a multifaceted 
issue to unravel.

Despite their comparatively large size, beaked whales 
appear to consistently display female-biased SSD or sexual 
monomorphism. The only exception to this pattern that we 
found is the Northern bottlenose whale (Hyperoodon ampul-
latus), but note that several beaked whales, particularly the 
genera Indopacetus and Tasmacetus, were not sampled here 
due to the extreme scarcity of available biometric data. 
Beaked whales represent the only one of the three speciose 
subgroups of odontocetes studied herein that does not fol-
low Rensch’s rule. The absence of male-biased SSD among 
these cetaceans has long been noted (Omura et al. 1955) but 
is surprising because males in many species display notably 
small testes and elaborate sex-specific weapons that are evi-
dently used against same-sex conspecifics (Heyning, 1984; 
Dines et al. 2015; but see MacLeod 2010 on the potential 
importance for sperm competition in some beaked whales). 
More research on these understudied marine mammals is 
required to explain this counterintuitive trait combination. In 
any case, the contrasting patterns of SSD expression suggest 
that reproductive competition in beaked whales differs mark-
edly from that in most delphinoid cetaceans. The same might 
well be true for some of the river dolphins (compare Wells 
et al. 2013; but note that intense male–male aggression and 
male-biased SSD is characteristic for Inia—Martin and Da 
Silva 2006) and the dwarf sperm whale (Kogia sima) that 
also lack male-biased SSD patterns and that all appear to 
live either solitarily or in small, non-cohesive groups (May-
Collado et al. 2007). Unfortunately, the reproductive biology 
of many of these species is only poorly understood.

Finally, an important limitation of this study needs to be 
pointed out: our dataset provides only an incomplete picture 
of SSD patterns among the toothed whales because it does 
not consider intraspecific variation. Indeed, regional differ-
ences in SSD and reproductive strategies within single spe-
cies can be pronounced (Perrin and Mesnick 2003; Ferguson 
et al. 2021) and understanding their causes could help to 
make sense of general SSD variation within and between 
odontocete groups. Future research might focus on whether 
Rensch’s rule also holds when intraspecific SSD patterns 
in toothed whales are considered and should address how 
reproductive strategies differ between taxa that conform to 
it, such as oceanic dolphins, compared to those that do not, 
like the beaked whales.
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