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Abstract
Quantifying and dealing with uncertainty are key aspects of ecological studies. Population parameter estimation from mark-
recapture analyses of photo-identification data hinges on correctly matching individuals from photographs and assumes that 
identifications are detected with certainty, marks are not lost over time, and that individuals are recognised when they are 
resighted. Matching photographs is an inherently subjective process. Traditionally, two photographs are not considered a 
“match” unless the photo reviewer is 100% certain. This decision may carry implications with respect to sample size and 
the bias and precision of the resultant parameter estimates. Here, we present results from a photo-identification experiment 
on Pacific white-sided dolphins to assign one of three levels of certainty that a pair of photographs represented a match. 
We then illustrate how estimates of abundance and survival varied as a function of the matching certainty threshold used. 
As expected, requiring 100% certainty of a match resulted in fewer matches, which in turn led to higher estimates of abun-
dance and lower estimates of survival than if a lower threshold were used to determine a match. The tradition to score two 
photographs as a match only when the photo reviewer is 100% certain stems from a desire to be conservative, but potential 
over-estimation of abundance means that there may be applications (e.g., assessing sustainability of bycatch) in which it is 
not precautionary. We recommend exploring the consequences of matching uncertainty and incorporating that uncertainty 
into the resulting estimates of abundance and survival.
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Introduction

A variety of methods are available for estimating the abun-
dance of marine mammals (and other species) including cor-
recting and extrapolating counts, transect sampling, spatial 

modelling, and mark-recapture approaches (Hammond et al. 
2021). The individual recognition data obtained by identify-
ing and following individual animals used in mark-recapture 
approaches to estimate abundance can also be used to esti-
mate survival rates (e.g., Lebreton et al. 1992; Ramp et al. 
2014; Arso Civil et al. 2019) and reproductive rates (e.g., 
Barlow and Clapham 1997; Arso Civil et al. 2017; Coxon 
et al. 2022), which are essential parameters when modelling 
the dynamics and assessing the conservation status of animal 
populations.

Photo-identification has become widely used to follow 
marine mammals since researchers first noticed that some 
individuals possessed naturally occurring, identifiable, and 
persistent features. The unique markings of bottlenose dol-
phins (Tursiops truncatus) were recorded and tracked as 
early as the 1950s (Caldwell 1955). Photo-identification of 
killer whales in the northeastern Pacific Ocean began in the 
1970s (Bigg 1982), and the resulting demographic records 
now span decades. Other examples of photo-identification 
studies that have generated long-term datasets include 
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bottlenose dolphins in Sarasota Bay, Florida (Wells and 
Scott 1990), North Atlantic right whales (Eubalaena gla-
cialis; Pace et al. 2017), North Atlantic humpback whales 
(Megaptera novaeangliae; Stevick et al. 2003), blue (Balae-
noptera musculus) and fin (B. physalus) whales in the Gulf 
of St Lawrence (Ramp et al. 2006, 2014); and southern right 
whales off Argentina (Eubalaena australis; Agrelo et al. 
2021).

Data used in mark-recapture analysis must meet a num-
ber of assumptions if reliable parameter estimates are to be 
made: (1) marks are unique; (2) marks cannot be lost or 
missed; (3) all marks are correctly recorded and reported 
(Hammond 2018). The purpose of this study is to explore the 
variability inherent in correctly matching individuals among 
sampling occasions.

Errors in individual identification are known to occur 
(Payne et al. 1983; Langtimm et al. 2004), and the few stud-
ies that have explored effects of misidentification have found 
that, even at small rates, errors in identification can bias 
parameter estimates (Stevick et al. 2001; Lukacs and Burn-
ham 2005; Yoshizaki et al. 2009). Misidentification involves 
many factors, but a recurring theme involves the importance 
of choosing the right features to use as a natural mark in 
order to satisfy assumption 2, above. Anatomical features 
should be chosen so that the natural markings used in a 
mark-recapture experiment will last longer than the experi-
ment and should not change in such a way that might affect 
the ability to recognize it in future (Wilson et al. 1999). 
For killer whales, the shape of the dorsal fin and patterns 
in the saddle patch are most often used as natural marks 
(Bigg 1982; Kuningas et al. 2014). For humpback whales, 
pigmentation patterns on the underside of the flukes, as well 
as the edge of the flukes themselves, are used to identify 
individuals (Stevick et al. 2001, 2003). In this study, natu-
rally occurring nicks and notches in a Pacific white-sided 
dolphin’s (Lagenorhynchus obliquidens; Fig. A1) dorsal fin 
were used as natural marks, such that it could be recognized 
from both left- and right-side photographs.

Observers tend to conflate photo-quality with animal dis-
tinctiveness because a well-marked individual is more easily 
recognized than a subtly marked individual in a poor-quality 
photograph (Urian et al. 2015). As a result, previous ceta-
cean studies have relied on strict protocols when gauging 
whether two photographs are a match (Wilson et al. 1999; 
Read et al. 2003). However, the final dataset used to esti-
mate population parameters is still subject to human error, 
because it is dependent on a somewhat subjective decision 
about whether a human observer is convinced that a pair of 
photographs represent two encounters of the same individual 
or two different individuals. Little attention has been paid to 
the process by which researchers reach a final decision about 
whether two photographs constitute a match, but a survey 
has shown that researchers vary widely in their approach 

to defining a match (Urian et al. 2015). Historically, ceta-
cean studies use “conservative” protocols and, after seek-
ing advice from experienced colleagues in the case of any 
ambiguity, only score two photographs as a match if there is 
consensus among observers (Friday et al. 2000; Stevick et al. 
2001; Urian et al. 2015). Most protocols reviewed by Urian 
et al. (2015) are inherently averse to false positives; the cor-
ollary to this is that false negatives will arise as a result 
(Stevick et al. 2001). Not all researchers use protocols that 
are averse to false positives. Urian and colleagues reported 
“an unsettling degree of variation among researchers in the 
evaluation of image quality, distinctiveness, images selected 
and matches. Participants from the same institution gener-
ally had similar results, suggesting that most variation was 
due to the different methods used by each laboratory.” Many 
researchers may be trained to quantify their level of cer-
tainty that two photographs do or do not represent a match, 
but there is little guidance from statisticians about how to 
incorporate that uncertainty into the binary framework of 
conventional mark-recapture models.

Erring on the side of false negatives is not always a pre-
cautionary approach. Deciding always to call ambiguous 
matches a non-match will cause recapture rates to be biased 
low, which will cause estimates of abundance to be posi-
tively biased and estimates of survival rates to be negatively 
biased (Hammond 1986; Hammond et al. 1990; Friday et al. 
2008). For management procedures that set allowable harm 
limits based on abundance (e.g., Wade 1998; Winship et al. 
2006; Genu et al. 2021) a positively biased abundance esti-
mate could lead to overexploitation. The extent to which this 
is a problem for real-world conservation and management 
decisions is case-specific, but few studies have estimated 
the magnitude of bias in abundance and survival estimates 
depending on matching uncertainty.

There are two primary reasons for misidentification 
errors: (1) errors in identification due to changes in the natu-
ral markings; and (2) misidentification as a result of varia-
tion at the level of the matching process. The first can occur 
if individuals acquire new marks such as scars or damage 
due to predation or intra-specific interactions (Gordon 1987; 
Steiger et al. 2008), or if marks such as scratches or pig-
mentation patterns heal and subsequently disappear (Dufault 
and Whitehead 1995). Dufault and Whitehead (1995) found 
that mark acquisition occurred at a higher rate than mark 
loss. Mark acquisition is presumed less likely to cause misi-
dentification, especially in small populations (Urian et al. 
2015), but it is easy to imagine a scenario in which mark 
acquisition may lead to changes that are substantial enough 
for false negative errors to occur. For larger, wide-ranging 
populations, it is recommended that mark acquisition rates 
are estimated and that strict animal distinctiveness criteria 
that rely on markings that are unlikely to change over time 
are used (Urian et al. 2015).
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The second misidentification process, errors that occur 
at the level of the matching process, has received compara-
tively little attention. Previous analyses have shown that 
conflating photo-quality with individual distinctiveness 
biases the matching process and, subsequently, the param-
eter estimates from mark-recapture analyses (Arnbom 1987; 
Friday et al. 2000, 2008). False rejections of true matches, 
and field protocols that photograph individuals using non-
symmetrical markings on left and right sides, can result in a 
dataset containing multiple encounter histories for an indi-
vidual (Hiby et al. 2012). In addition, many animals may 
simply have similar markings. As the number of individu-
als in a population increases, so too does the difficulty in 
distinguishing individuals with similar natural markings. 
The extent to which matching uncertainty biases resulting 
estimates of population parameters requires investigation 
for each study. Differences in protocols among individu-
als and laboratories will likely result in different biases in 
parameter estimates, as long as protocols require investiga-
tors to force an inherently subjective matching process into 
a binary (match/not-a-match) outcome (Urian et al. 2015). 
This issue has become increasingly important as long-term 
cetacean studies have switched from film to digital photog-
raphy, which may introduce heterogeneity in matches (Urian 
et al. 2015). Ideally, the level of uncertainty associated with 
any given match should be quantified and incorporated into 
resulting population parameter estimates (Urian et al. 2015).

Acknowledging explicitly the uncertainty in the photo 
matching process, the aim of this study was to use 6 years 
of photographic data on Pacific white-sided dolphins to 
quantify the extent to which matching uncertainty affects 
the bias and precision of abundance and survival estimates. 
The study also explores the challenges inherent in datasets 
with relatively low rates of recapture and the effect of match-
ing uncertainty in these cases.

Methods

Study area

The study took place in the waters between northeastern 
Vancouver Island, British Columbia (BC), Canada and the 
Broughton Archipelago and Knight Inlet on BC’s mainland 
coast. The study area is characterized by a complex geogra-
phy of numerous islands, narrow inlets, and fjords (Fig. 1).

Data collection

To ensure consistency in data collection with an exist-
ing, long-term catalogue and to maximise the number of 
long-term resightings, field protocols in the current study 

followed those of a previous study as closely as possible 
(Morton 2000). Photo-identification surveys for Pacific 
white-sided dolphins in the Broughton Archipelago were 
conducted from 2008 to 2013. Photo-ID effort was dis-
tributed throughout the year but was restricted by weather 
conditions. Groups of dolphins were found using a com-
bination of boat-based searches and from radio reports 
and communication from local mariners. Reports from a 
stationary hydrophone network (OrcaLab) monitored 24 h/
day (Morton and Symonds 2002; Deecke et al. 2010), were 
used to direct dolphin searches. Searches and photographic 
encounters were limited to sea conditions of a maximum 
Beaufort scale = 2 for reasons of safety and sightability.

For each encounter, a GPS position and an estimate of 
group size was made in the field and recorded. Total group 
size was estimated by tallying the number of individuals in 
smaller subgroups (typically 2–8 individuals) at intervals 
throughout the encounter (Morton 2000). A group was 
defined as all of the dolphins encountered in a discrete 
location in a day. Finer scale information (e.g., groups 
defined using a 15 m ‘chain rule’; Smolker et al. 1992) 
on group composition was collected from 2011 onwards 
to inform studies of sociality. Encounters with dolphins 
lasted a minimum of 20 min during which the following 
data were recorded: an estimate of group size (minimum, 
maximum, and best estimate); location; predominant 
group activity state (although scan-sample data were col-
lected at 5-min intervals during longer encounters), and 
number of calves in the group (minimum, maximum, and 
best estimate). Photographs were collected with digital 
SLR cameras.

Groups of dolphins were approached slowly in an effort to 
reduce the probability of bow-riding behaviour, which brings 
some individuals, especially juveniles, very close to the boat 
and makes other individuals less available for photographic 
capture. Large groups were generally traversed in two passes 
to try to obtain photographs from both sides. In the first pass, 
individuals were photographed in sub-groups as each sub-
group came into photographing range until the far edge of 
the group was reached. In the second pass, the group was tra-
versed in the opposite direction and at the same angle as the 
first pass and individuals were photographed in sub-groups 
in the same manner as the first pass. Dolphins were photo-
graphed almost exclusively while engaged in slow, milling 
(non-directional) behaviour in tight groups (behaviour typi-
cally observed following medium to high speed travel). The 
non-directional/milling behaviour facilitated photographing 
both right and left sides of the dorsal fin.

Photo-ID efforts ended when dolphins engaged in activity 
states (e.g., high-speed travel) that resulted in water splash-
ing around the dorsal fin, which results in poor quality photo-
graphs. An encounter ended when all of the members of the 
group had been approached, if weather conditions changed 
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or when the time limit of the research permit (30 min per 
sub-group) was reached.

Photo‑processing methods

All photographs of a dorsal fin were graded for quality of 
the image and distinctiveness of the markings in two inde-
pendent stages (Urian et al. 2015). Information on quality, 
distinctiveness and other attributes were entered into Photo 
Mechanic 5 (Camera Bits) photo-processing software.1 First, 
photographs were graded for photographic quality using 
a standardized set of photographic quality criteria rang-
ing from 1 (poor quality) to 3 (high quality) following the 
image quality scoring criteria used in studies of bottlenose 
dolphins in Scotland (Wilson et al. 1999). Dorsal fins of 
Pacific white-sided dolphins varied among individuals from 
extremely well marked with nicks and scars, to completely 
clean, unmarked fins. Thus, not all dolphins were distinc-
tive enough to be included in mark-recapture analyses. A 
separate photo reviewer scored each quality 3 photograph 

to grade the distinctiveness of each individual. The distinc-
tiveness score ranged from D1 (Highly distinctive) to D4 
(Unmarked). A distinctiveness score of D2 (Moderately 
distinctive) included fins with intermediate features such as 
a small nick, or many small nicks that are detectable from 
both sides and D3 (Somewhat distinctive) included fins with 
subtle features such as such as black scratches or other long-
lasting distinguishing marks that are only identifiable from 
one side. The D3 score category does not include nicks and 
notches on the trailing edge of the dorsal fin. A separate set 
of photo reviewers conducted the matching step (see below).

Photo‑matching

A team of six photo reviewers (including EA) conducted 
the photographic matching of the current study’s cata-
logue in Photo Mechanic 5. The pattern of nicks on the 
trailing edge of the dorsal fin was the primary mode of 
identification. Fin shape provided a secondary indicator. 
Dorsal notches had to match in size, angle of tear and 
other details. The definition of a match allowed for acqui-
sition of marks over time, but no loss of nicks; that is, if 
there was an additional notch on the more recent photo, 

Fig. 1  Map of the study area. The blue polygon represents the study area of the Broughton Archipelago, British Columbia, Canada and adjacent 
waters

1 https:// store. camer abits. com/ produ cts/ photo- mecha nic- versi on-5.

https://store.camerabits.com/products/photo-mechanic-version-5
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but the original nick or notch was present in both photo-
graphs, then this was scored as a potential match. Nicks, 
notches and tears in the fin, along with the shape of the 
fin itself, are detectible from both sides, so the decision 
to include these features in the distinctiveness scoring and 
thresholds meant that both left- and/or right-side photo-
graphs could be used to identify individuals.

Only photographs of quality 3 and with a distinctive-
ness score of D1 or D2 (i.e., symmetrical markings that 
would be recognized from both sides) were included in 
the analysis. This protocol was chosen to reduce misiden-
tification errors, while allowing both left- and right-side 
photographs to be included in the analysis. Photographs 
of individuals believed to be calves (i.e., small, ruffled 
dorsal fin, orange colouration, foetal fold marks on the 
body, photographed alongside mother) were excluded 
from the analysis. The high-quality subset of photographs 
was then matched within each photographic encounter, 
and each individual was assigned a preliminary identifi-
cation code. Identified individuals within an encounter 
were matched and a certainty score of “Certain” (100% 
confident), “Likely” (< 100% but ≥ 90% confident), or 
“Possible” (< 90% but ≥ 50% confident) was assigned to 
putative matches between pairs of photographs based on 
the degree of confidence in each match.

An encounter history of 1 s and 0 s, corresponding to 
whether a putative individual was or was not detected 
(i.e., captured) during each sampling encounter, respec-
tively, was created for each individual for each matching 
certainty level for analysis.

Available data

The number of sampling occasions and the months in 
which sampling took place each year varied widely 
throughout this study. Between 2008 and 2013, a total of 
34 photographic encounters with dolphins occurred. Of 
these, 32 encounters contained photographs of sufficient 
quality and distinctiveness to enter the analysis for the 
“Certain” and “Likely” certainty levels, whereas all 34 
encounters contained photographs that were of sufficient 
quality to create encounter histories at the “Possible” cer-
tainty level. The frequency of capture of individuals for 
the three certainty levels is shown in Fig. 2. The single 
encounter from 2008 was not included in the analysis due 
to low sample size (only 2 individuals were identified).

Estimation of abundance

The encounter histories for each of the three certainty 
levels were analysed to produce three estimates of abun-
dance. Chapman’s modification to the Lincoln–Petersen 

two-sample estimator to account for small sample bias was 
used to estimate abundance (Hammond 1986; Seber 2002).

where N̂ is the abundance estimate; estimate of population 
size, n1 is the number of individuals captured during the first 
sampling occasion, n2 is the number of individuals captured 
during the second sampling occasion, m2 is the number of 
individuals recaptured. That is, the number of animals cap-
tured during the first sampling occasion that were also cap-
tured during the second sampling occasion.

For this analysis, each year was treated as a sampling 
occasion, and recaptures were restricted to individuals 
seen in adjacent pairs of years. Given the low number of 
recaptures in adjacent pairs of years and the compara-
tively large number of photographs taken in 2010, a sep-
arate within-year analysis was conducted for 2010 (see 
“Results”).

Variance was estimated as:

Log-normal 95% confidence intervals were calculated 
(Borchers et al. 2002) as N̂  /d to N̂*d, where

N̂ =
(n1 + 1)(n2 + 1)

(m2 + 1)
− 1,
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Fig. 2  Number of times an individual was seen, tallied for each cer-
tainty level



786 E. Ashe, P. S. Hammond 

1 3

and 

.
The simple two-sample estimator used makes a number of 

assumptions regarding population closure and capture prob-
abilities (Hammond 2018), violation of which can introduce 
bias in abundance estimates. However, the objective of this 
exercise was to assess the relative importance of matching 
uncertainty on the resulting abundance estimates, not to 
generate a robust abundance estimate for use in decision-
making. Any such violations should affect estimates in a 
comparable way and therefore are unlikely to compromise 
these results.

Estimating adult annual survival rate

Annual encounter histories from 2008 to 2013 were cre-
ated for each certainty level to estimate annual apparent 
survival rate using a Cormack-Jolly-Seber model (Cormack 
1964; Jolly 1965; Seber 1965; Amstrup et al. 2005). Models 
were explored that allowed survival and recapture probabil-
ity to vary over time or to be constant, and the model with 
the lowest value of Akaike’s Information Criterion (AIC) 
was selected as that which had the most support from the 
data. Analysis was carried out in software MARK (White 
and Burnham 1999) version 6.1. No goodness of fit tests 
were conducted to test for lack of fit. However, similar to 

z0.025 = 1.96 for a 95% CI.

var

[

ln

(

N̂

)]

= ln

(

1 +
var(N̂)

N̂2

)

estimating abundance, the objective of this exercise was to 
assess the relative importance of matching uncertainty on 
the resulting estimates of survival, rather than generating the 
best estimates for wider use, and any assumption violations 
are unlikely to compromise these results.

Results

The number of individual dolphins photographed and recap-
tured in each sampling period and at each matching certainty 
level is shown in Table 1. Including less certain matches 
resulted in fewer individual dolphin identifications overall, 
because a more permissive matching threshold will decrease 
the number of putative individuals in n1 and n2, and increase 
the number of matches in m2. Sampling effort was great-
est during 2010 and high in 2011, resulting in the great-
est number of recaptures between these years. The lack of 
recaptures in pairs of years not including 2010 preclude esti-
mation of abundance. Consequently, data from 2012 to 2013 
were pooled to boost the number of recaptures with 2011 
(Table 1). Compared to other years, 2010 had a substantially 
higher number of within-year recaptures, so data were also 
analysed using two sampling occasions within 2010 (2010a: 
April–June; 2010b: July–November; Table 1).

Two-sample estimates at each matching certainty level 
produced abundance estimates of individually identifiable 
dolphins in the population for 2009–2010, 2010–2011, 
2011–2012 + 2013 (data pooled for 2012 and 2013), and for 
time periods within 2010 (Table 2). Abundance of marked 
dolphins at the “Certain” matching level, ranged from a low 
of 985 (CV = 0.55) in the “2011–2012 + 2013” sample, to 
a high of 2005 (CV = 0.31) in 2010 (Table 2). As expected, 
the “Certain” matching level produced abundance estimates 

Table 1  Number of individual dolphins photographed in the two sampling periods (n1, n2), and the number of matches between these (m2), for 
each of three matching certainty levels

Data are summarised for consecutive years in the period 2008–2013, and additionally for 2011 and 2012–2013, and for two time periods within 
2010 (2010a: April–June; 2010b: July–November)

Matching cer-
tainty level

2008–2009 2009–2010 2010–2011 2011–2012 2012–2013 2011–
2012 + 2013

2010a–2010b

Certain
 n1 1 37 247 33 2 33 106
 n2 37 247 33 2 55 57 149
 m2 0 4 5 0 0 1 7

Certain + Likely
 n1 1 37 245 33 2 33 140
 n2 37 245 33 2 55 51 244
 m2 0 4 5 0 0 2 18

Certain + Likely + Possible
 n1 1 37 239 33 2 33 137
 n2 37 239 33 2 55 57 241
 m2 0 5 6 0 0 2 24
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that were greater than the estimates at the “Certain + Likely” 
or “Certain + Likely + Possible” levels in the same pairs of 
samples (Table 2). In 2010–2011, for example, abundance 
was estimated as 1404 (CV = 0.34) at the highest level of 
certainty (“Certain”) and at 1159 (CV = 0.31) at the “Cer-
tain + Likely + Possible” matching level. The greater the 
matching certainty level, the lower the precision of the abun-
dance estimates (Table 2).

Estimates of annual survival rate

Annual apparent survival rate for well-marked adult dol-
phins was estimated using a CJS model at each matching 
certainty level for the period 2008–2013. The model for con-
stant survival and time-varying recapture probability had 
the best support from the data at all certainty levels. Annual 
survival for the “Certain” matching level was estimated as 
0.458 (SE = 0.288) rising slightly to 0.468 (SE = 0.276) for 
the “Certain + Likely + Possible” matching level (Table 3). 
Thus, as less certain matches were included in the analyses, 

the apparent survival estimates increased slightly and the 
precision of the estimates also increased slightly. The very 
low estimates of apparent survival are likely a result of emi-
gration out of the study area over the period of the study.

Discussion

The study demonstrates that matching uncertainty has the 
potential to introduce substantial degrees of both bias and 
uncertainty in a real-world photo-identification study of a 
dolphin species with a low capture probability. The extent to 
which this translates into conservation or management risk 
hinges on the extent to which the less-than-certain matches 
are actually true matches rather than false positives. If all 
the less-than-certain matches are false positives, then using 
the highest certainty level as a threshold to define a match 
will give the least biased abundance estimate. But if all 
or some of the less-than-certain matches are actually true 
matches, then using the highest certainty level as the thresh-
old to define a match means that the abundance estimates 
are positively biased.

This pattern shows up in our abundance estimates 
(Table 2) and, with a smaller effect, in our survival esti-
mates (Table 3). Abundance estimates were found to vary 
among years and matching certainty levels. Because of 
inter-annual variation in effort and the low rate of recapture 
in 2009 and 2011–2013, it is most informative to focus on 
a comparison of within-year estimates from 2010. Within 
2010, the abundance estimates ranged from 2005 (95% 
CI 1103–3645) for “Certain” matches to 1335 (95% CI 
962–1852) for “Certain + Likely + Possible” matches. The 
“Possible” and “Likely” categories may contain false posi-
tive matches, which will cause negative bias in abundance 
estimates (Yoshizaki et al. 2009). However, false positive 
errors typically arise from inclusion of poor-quality pho-
tographs (Stevick et al. 2001; Friday et al. 2008; Barlow 
et al. 2011) and only the highest quality photographs were 
included in this analysis.

Notably, there is still much variation in abundance 
estimates depending on matching certainty level, despite 
restricting our analyses to photographs of the highest quality. 
While restricting analysis to the best quality photographs of 
marked individuals, there may still be substantial false posi-
tive errors in species in which individuals may share simi-
lar marks. As the number of individuals in the population 
increases, so too will the probability of seeing two dolphins 
with very similar markings on their dorsal fins. As more ten-
uous matches were categorised as recaptures in the analyses, 
the abundance estimates decreased (i.e., assumed to become 
negatively biased if the lower certainty level matches were 
not true matches) and the apparent precision increased. But 
if some of these less than certain matches actually were 

Table 2  Two-sample estimates of abundance ( ̂N ) for pairs of years 
from 2009 to 2011, within 2010 (2010a: April–June; 2010b: July–
November), and for 2011 with pooled data for 2012 and 2013

Matching certainty level N̂ 95% CI CV

2009–2010
 Certain 1884 (922, 3848) 0.38
 Certain + Likely 1869 (915, 3816) 0.38
 Certain + Likely + Possible 1513 (787, 2907) 0.34

2010–2011
 Certain 1404 (736, 2680) 0.34
 Certain + Likely 1393 (730, 2659) 0.34
 Certain + Likely + Possible 1159 (640, 2103) 0.31

2010a–2010b
 Certain 2005 (1103, 3645) 0.31
 Certain + Likely 1817 (1233, 2678) 0.20
 Certain + Likely + Possible 1335 (962, 1852) 0.17

2011–2012 + 2013
 Certain 985 (359, 2701) 0.55
 Certain + Likely 656 (276, 1564) 0.47
 Certain + Likely + Possible 656 (275, 1564) 0.47

Table 3  Apparent survival rate estimates derived from three different 
levels of certainty in photographic matching from 2008 to 2013

Matching certainty level Survival SE 95% CI

Certain 0.458 0.288 (0.183, 1.000)
Certain + Likely 0.460 0.287 (0.184, 1.000)
Certain + Likely + Possible 0.468 0.276 (0.191, 1.000)
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matches, the estimates from the “Certain + Likely” and 
“Certain + Likely + Possible” scenarios are less biased than 
the “Certain” scenarios, and the abundance estimate from 
the “Certain” scenarios were biased high. Although the 
number of recaptures in this study is low, this effect was 
most obvious in the within-2010 analysis, when effort was 
highest and there were a substantial number of matches. In 
terms of survival, estimates of survival rate and their preci-
sion increased only slightly as less certain matches were 
categorized as a match (Table 3).

Although the direction of these trends can be predicted 
from first principles, the magnitude of the effect found in 
our study was unexpectedly high, at least for abundance. 
The “Certain” abundance estimates were ~ 50% higher 
than estimates derived from “Certain + Likely + Possible” 
matches in the “Within 2010” and the “2011–2012 + 2013” 
scenarios (Table 2). The “Certain” abundance estimates 
were 25 and 21% higher than estimates derived from “Cer-
tain + Likely + Possible” matches in the “2009–2010” and 
“2010–2011” scenarios, respectively (Table 2). While reli-
ance on absolute certainty is often described as a “conserva-
tive” and “recommended” feature of any photo matching 
protocol (e.g., Friday et al. 2008), our results suggest that use 
of an overly conservative threshold to define a match could 
result in substantial bias (20–50%) in abundance estimates.

The trade-off illustrated in this study exemplifies the 
need for researchers to decide whether it is better to include 
uncertain matches to increase sample size to get a more pre-
cise (but potentially biased) estimate, or to prioritise accu-
racy over precision. This decision is inherently case-specific. 
If monitoring for overall trends in abundance (Wilson et al. 
1999; Gerrodette and Forcada 2005), precision may be para-
mount and bias less of a concern, as long as the bias remains 
consistent over the period of interest (Taylor and Gerrodette 
1993; Taylor et al. 2007; Williams et al. 2016a).

Pacific white-sided dolphins are known to be caught in 
salmon gillnet fisheries in British Columbia, and our ability 
to assess the sustainability of that bycatch hinges on improv-
ing the accuracy and precision of both the estimates of dol-
phin abundance and bycatch rate (Williams et al. 2008). A 
new trade rule requires countries wishing to export sea-
food to US markets to demonstrate that their management 
schemes are comparable in effectiveness to those under the 
US Marine Mammal Protection Act (Williams et al. 2016b). 
We anticipate investments in filling data gaps in many under-
studied species and regions to facilitate compliance with this 
new rule (Ashe et al. 2021a,b; Hammond et al. 2021; Punt 
et al. 2021). Given the potential positive bias in abundance 
estimates using overly strict matching criteria, assuming that 
some likely or possible matches were actually true matches 
(Table 2), it will be useful to investigate the potential for 
matching uncertainty to bias abundance estimates in new 
studies, because positively biased abundance estimates could 

lead to overestimates of allowable harm limit for assessing 
sustainability of bycatch (Wade 1998; Punt et al. 2020).

When the trade-off makes the difference between hav-
ing a biased estimate versus no estimate at all, then it is 
better to report an estimate, as long as the sources of bias 
are acknowledged. One could potentially quantify that bias 
using an approach such as the one presented here. Selecting 
an acceptable trade-off between bias and precision may be 
more challenging to consider with small sample sizes.

It is a well-known problem that traditional mark-recapture 
methods are sensitive to misidentification of animals that 
are recognised from natural markings (Link et al. 2010). 
Previous studies have considered effects of photo-quality and 
animal distinctiveness on bias and precision in abundance 
and survivorship estimates (Friday et al. 2000; Stevick et al. 
2001). Although matching certainty is clearly confounded 
with photographic quality and animal distinctiveness, the 
current study examined matching uncertainty with a data-
set of high-quality photographs of well-marked individual 
dolphins. The aim was to evaluate the effect on estimates 
of population parameters caused by uncertainty in individ-
ual identification. Results showed that while this issue had 
relatively modest impact on estimates of apparent survival, 
abundance estimates could vary by 20–50% as a result of 
this source of uncertainty (Table 2). It is difficult to evaluate 
the effect of matching uncertainty on precision of estimates, 
however, due to low number of recaptures in our study. Nev-
ertheless, it is worth noting that in the within-2010 abun-
dance estimates, which had the largest number of recaptures, 
there is a big difference in CV among certainty levels. The 
next problem, of course, is how to resolve this.

This study has looked at misidentification by examining 
the impact on abundance and survival estimates that arises 
at the processing level. Conventionally, photo reviewers 
processing ID photographs are instructed to assert that two 
photographs are or are not a match. Depending on the pro-
tocols used by a given research team, most researchers will 
be averse to false positives and will default to a non-match in 
the case of < 100% certainty, whereas others may be equally 
averse to false negatives (Urian et al. 2015). Nonetheless, 
the conventional mark-recapture models require a binary 
decision to be made. The current study shows that there is 
value to having a number of photo reviewers, matchers, and 
experienced researchers record their level of certainty that 
two photographs represent a match, because there is useful 
information contained in that matching certainty level (Urian 
et al. 2015). The size of effect due to matching uncertainty 
found here, as high as a third on abundance, may not be 
typical, but the approach could easily be incorporated in 
other photo-ID studies (Urian et al. 2015). In many cases, 
the effect on estimates of abundance or survival of match-
ing uncertainty may be negligible, but it will be impossible 
to know this unless matching protocols instruct matchers 
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to record their level of confidence in a match so that this 
information can be used at the analysis stage.

Our study confirms much what has been said in other 
studies of misidentification in mark-recapture arising from 
issues of data quality, and the advice for coping with the 
source of misidentification. Mark misidentification can arise 
when the sampling (e.g., photo-ID) introduces heterogeneity 
in the observer’s ability to recognise marks. One study that 
identified a minimum quality level when including photo-
graphic data in a mark-recapture analysis using two kinds 
of tags (i.e., photo-ID and genetics) placed bounds on the 
uncertainty and incorporated that uncertainty in a bootstrap 
estimate of the variance around the abundance estimate 
(Stevick et al. 2001). Conceptually, the recommendation of 
Stevick et al. (2001) could apply here as well: encounter 
histories corresponding to the three matching certainty lev-
els could be resampled via a bootstrap, to incorporate this 
source of uncertainty in estimates of abundance, survival 
and their variances. This will be more pragmatic in the short 
term than the suggestion to use genetic double-tagging to 
minimise or avoid misidentification in the first place (Lukacs 
and Burnham 2005; Link et al. 2010). For some cetacean 
species, it may be possible to use natural markings on two 
morphological features as another way to investigate misi-
dentification, e.g., northern bottlenose whales (Hyperoodon 
ampullatus, Gowans and Whitehead 2001) and bottlenose 
dolphins (Tursiops truncatus, Genov et al. 2018).

Misidentification can also arise when marks change 
through time. With a sufficiently large number of individuals 
followed through time, it may be possible to build mecha-
nistic models to understand how marks evolve. Quantifying 
this effect could then allow to account for misidentification 
in the resulting demographic parameters. Simulation studies 
suggest that these mechanistic models will only work when 
capture probability is higher than that observed during this 
study (i.e., > 0.2) and when the absolute number of resight-
ings is sufficiently large to have enough data to estimate 
demographic parameters and changes in marks simultane-
ously (Yoshizaki et al. 2009).

Statistically, the process of misidentification that this 
study discusses is quite challenging to address using tra-
ditional likelihood methods, but could be handled in a 
straightforward way using Bayesian methods (Link et al. 
2010). Bayesian mark-recapture methods have been an 
active research area for some time (Schofield et al. 2009). 
As Bayesian survival estimators become more commonly 
used and associated code made accessible to population 
ecologists (Gimenez et al. 2009), addressing misidentifica-
tion in a Bayesian framework may be the next logical step. 
By integrating all known sources of uncertainty into a single 
analytical framework, Bayesian methods offer the potential 
to assess whether misidentification (or any other source of 
uncertainty) has the potential to affect what is perhaps the 

most important question of all—does any of this uncertainty 
affect the ultimate category of risk to which we assign a spe-
cies (Brooks et al. 2008)?
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Broughton Archipelago, British Columbia, Canada. (Photo: E. Ashe, 
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