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Abstract
In the most ungauged areas, lack of precipitation information limits the accuracy of water balance approaches. The ungauged 
Drâa river basin (DRB) in center eastern of Morocco is one of the ten driest basins worldwide with lack of adequate rainfall 
dataset for water resources management. This study assess five satellite precipitation datasets (P-datasets) with high spatial 
resolution (0.0375°–0.1°) and long period of record (> 40 years), namely CHIRPS V2.0, MSWEP V2.8, PERSIANN-CCS-
CDR, TAMSAT V3.1, and ERA5-Land with reference to ground rain observations, based on continuous, categorical, and 
volumetric indices, and at various elevations, rainfall intensities, and temporal scales (i.e., monthly, seasonal, and sub-
seasonal). Moreover, the ability to detect extreme precipitation event and the suitability of the conventional rain gauge to 
increase the magnitude of error was also quantified. ERA5-Land followed by MSWEP V2.8 have shown the best statistical 
scores at different times, intensity and elevation scales, while CHIRPS V2.0, PERSIANN-CCS-CDR and TAMSAT V3.1 
provide poor estimations of rainfall with high sensitivity to the complexity of terrains. CHIRPS V2.0 was more efficient in 
detecting wet months, but a large event detected were not confirmed by ground observation. The magnitude of error tends 
to decrease during summer and for precipitation within the range of 1–12.5 mm for all P-datasets. However, all the five 
products underestimate the frequency of dry months and overestimate high precipitation intensity. Our findings not only 
recommend ERA5-Land and MSWEP V2.8 datasets as alternative to rain gauge but also describe the limitation of CHIRPS 
V2.0, TAMSAT V3.1 and PERSIANN-CSS-CDR for such hydrological studies.
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1 Introduction

Nowadays, local water management depends strongly on 
the availability of precipitation databases. This importance 
increases mainly where water resources are facing unprec-
edented changes related to the precipitation distribution and 
triggered extremes (Abahous et al. 2021; Satgé et al. 2020; 
Toté et al. 2015). Generally, accurate temporal and spatial 
variability of precipitation information depends on the avail-
ability of high coverage of survey stations (WMO 2018). 
However, in underdeveloped and developing countries the 
number of meteorological stations is limited and sparsely 
distributed (Ayoub et al. 2020). In Morocco, the number of 
weather stations able to contribute to the World Meteorolog-
ical Organization (WMO) network is considered better com-
pared to other parts of Northern Africa (Born et al. 2008; 
Filahi et al. 2015). Unfortunately, most of the available sta-
tions are mainly located in the northern part of the country, 
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where agriculture activity is expected to be the major sec-
tor contributing to the gross domestic product (Zereini and 
Hötzl 2009). As a result, a large part of the southern Atlas 
Mountains and sub-Saharan basins lack sufficient weather 
stations to capture precipitation variability adequately.

The Drâa River basin (DRB) located in the south of 
Morocco is a typical unequipped Moroccan basin regard-
ing weather stations. The only available station included 
in SYNOP weather network (Surface Synoptic Observa-
tions) is the Ouarzazate station (30° 56′ N, 6° 53′ W with 
an Altitude of 1131 m). Conventionally, the in-situ hydro-
logic stations are used to measure total seasonal precipi-
tation, but not reported to the global network system such 
as WMO (Zereini and Hötzl 2008). Indeed, these manu-
ally operated stations well known as rain gauge stations 
combine monitoring discharges of rivers and climatic vari-
able measurements including liquid precipitation (rainfall) 
in many sparsely inhabited areas across DRB (ABHDON 
2018). Unfortunately, according to the World Meteorological 
Organization (WMO) standards, the Upper and the Middle 
Drâa basins need at least 44 and 52 additional rain gauge sta-
tions, respectively to answer the minimum required station 
for mountainous regions in temperate climate (Liang and 
Wang 2020). Furthermore, the precipitation amount meas-
ured by this in-situ station is only representative of several 
square kilometers surrounding the station which makes a 
large part of the DRB unobserved.

Over the past few decades, P-datasets with full spatial 
coverage have emerged as a crucial resource for various 
applications (An et al. 2020). These datasets, incorporat-
ing data from different secondary sources, have shown sig-
nificant advancements in earth system modeling and have 
enabled the provision of high-resolution data at both tempo-
ral and spatial scales (Yeditha et al. 2020). With their easy 
accessibility, these products have the potential to support a 
range of hydrological, hydrogeological, and weather fore-
casting applications, ultimately facilitating effective water 
sustainability management (Aghakouchak et al. 2011). In 
DRB, the number of research studies integrating different 
satellites products into various scientific applications (e.g., 
water resources, hydrologic modeling, climate change) has 
far outweighed those studying the accuracy, the uncertainty 
and hence the validation of these P-datasets. However, incor-
porating these P-datasets can be done only if the estimated 
rainfall matches closely the spatial and temporal variability 
observed through rain gauges (Bouizrou et al. 2023; Rivera 
et al. 2018). Moreover, the reliability of the indirect meas-
urement given by the P-dataset cannot be concluded from its 
performance in another region (Satgé et al. 2020).

Assessing P-datasets over DRB has become more man-
datory than in the past. This large area is considered as one 
of the ten driest basins in the world with quasi-absent of 
surface water (Hssaisoune et al. 2020; Ouysse et al. 2010; 

Revenga et al. 1998). The majority of the population are 
rural and highly dependent on dry land farming, dominat-
ing the whole Drâa basin territory (Abbaci and Bouchaou 
2021; Messouli 2014). However, the lack of historical meas-
urements of precipitation and the impracticality of making 
extensive rainfall measurements from available stations 
hampers long-term planning for minor and major dam needs 
considering that floods provide most of the water volume for 
many reservoirs across DRB (Schulz et al. 2008). Moreover, 
this typical arid and semi-arid region is ecologically fragile 
and highly sensitive to climate change and several studies 
expect decreasing annual precipitation and more frequent 
extreme weather events (Diekkrüger et al. 2012; Johannsen 
et al. 2016) making many economic activities vulnerable to 
precipitation variability (Johannsen et al. 2016; Messouli 
2014). Under the given conditions, the quantitative estima-
tion of precipitation is an important component to conduct 
water management.

This paper addresses one of the significant obstacles 
facing surface and groundwater management with lack of 
regional precipitation information in the Upper and the Mid-
dle Drâa basins. The assessment considers the performance 
of five P-dataset that incorporate different inputs, taking into 
account temporal, intensity, and elevation variations. The 
outcomes of this study will also provide an overview of the 
usability of similar P-datasets used in the surrounding basins 
(Bouizrou et al. 2023b; Milewski et al. 2015; Ouatiki et al. 
2017), with the first attempt to include a reanalysis product.

2  Materials and methods

2.1  Study area

The investigated research area covers the Upper and Mid-
dle Drâa basins, which are bonded between 29° N to 32°N 
and 5°W to 8° W. These units represent about a quarter of 
the whole Drâa basin (DRB), with surface area of 15,200 
 km2 and 14,000  km2, respectively. The landforms vary 
from the southern slope of the High Atlas Mountains 
where the summit of Jebel M’Goun reaches 4071 m to the 
Saharan lowlands in the south where the average elevation 
is around 500 m at Iriki Lake (Fig. 1). This elevation gra-
dient over the basin governs the distribution of vegetation, 
climate, the intermittent/permanent regime of the tributar-
ies and their flow rate (Busche 2008). The climate in the 
DRB shows a high variability depending on the elevation 
gradient and aridity which have a high impact on precipi-
tation quantity, duration and intensity (Cappy 2007). The 
High-Atlas Mountains acts as a NE–SW (uplifting) mois-
ture barrier and experiences a precipitation regime influ-
enced primarily by the Atlantic Oscillation and the inter-
actions between the tropical and extra-tropical systems 
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(Knippertz et al. 2003). The humid season starts from the 
late summer to spring with maximum precipitation event 
in spring and early fall, but the transition in climate from 
a humid to arid and hyper-arid conditions is evident (Born 
et al. 2008). Consequently, the seasonal cycle’s amplitude 
is short in such a way that 40% of the total annual precipi-
tation was recorded from September to November at Ouar-
zazate station in a single rainy period during late summer/
early autumn (Knippertz et al. 2003). The precipitation at 
the high Atlas peaks can reach 900 mm/year, giving rise 
to an exceptional permanent flow regime of the M'Goun 
and Dades Rivers contributing to the Mansour Eddahbi 
reservoir (MED) considered as the decisive hydrographic 
feature of the Upper Drâa basin. Moreover, the precipita-
tion decreases rapidly at the foothills of the High Atlas 
Mountains and becoming arid to hyper-arid downstream. 
The precipitation reaches only 107 mm/year in Ouarzazate 
and decreases to 61 mm/year in Zagora and 30 mm/year 
in Saharan forelands.

2.2  Used data

2.2.1  Ground‑based precipitation observation sites

The monthly rainfall data were delivered from the Drâa-
Oued Noun Hydraulic Basin Agency (ABHDON), IMPE-
TUS project and the National Moroccan Weather Service 
(Direction de la Météorologie Nationale). Starting in 1962, 
the ABHDON agency maintains more than 37 manually 
operated stations situated in open areas and close to the dis-
charge gauges. Consequently, a large number of rain gauge 
stations are regularly installed close to the rivers and tribu-
taries spread out from the highest altitude of the High Atlas 
Mountains in the north along a gradient of altitude and arid-
ity (Fig. 1). Due to technical problems, several individual 
rainfall records are marked by gaps or even have stopped 
recording. Consequently, only 19 rain gauges, mostly located 
in the Upper Drâa basin, were selected based on their more 
complete data record, where the temporal coverage varied 
from a short period (6 years) to a long period (53 years). To 

Fig. 1  Geographic presentation of DRB with the location of 20 rain gauge stations along the altitude gradient
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achieve the most representative data for the Middle Drâa 
basin considered as poorer regarding gauge station density, 
rainfall data from Tazarine station belonging to the Maider 
basin in the eastern part of the Anti-Atlas Mountains sharing 
the same climatic context was added to enhance rainfall data 
density (Fig. 1). Nonetheless, the density of rain gauges in 
the area is still restricted, and only the Upstream Drâa basin 
meets the minimum density standard recommended by the 
World Meteorological Organization for mountainous regions 
and challenging circumstances, which requires at least one 
gauge per 250–1000  km2 (Liang and Wang 2020). Moreover, 
only one available meteorological station belonging to the 
Upper Drâa basin and accredited by the World Meteorologi-
cal Organization (WMO) was included.

2.2.2  Satellite‑based precipitation product (P‑datasets) 
and selection criteria

Choosing the appropriate precipitation datasets may have a 
large impact on model output accuracy (Gebregiorgis and 
Hossain 2013). For instance, confident drought monitoring 
depends on the availability of historical data with at least 30 
years, whereas high-resolution satellite precipitation prod-
ucts enhance hydrological simulations and flood predictions 
(Peng et al. 2021; Yong et al. 2014). Due to the irregular 
distribution of rain gauge stations in DRB, using low spatial 
resolution satellite-based product increase the likelihood of 
capturing multiple stations within the same pixel. Indeed, 
different precipitation values recorded by nearby stations 
will be compared with a single pixel value of the P-datasets. 
In such a context where the elevation influences the precipi-
tation distribution, the variability at the smaller scale makes 
it difficult to define one station as representative for a given 
region. Additionally, it is necessary to ensure timely perfor-
mance in order to address the current mismatch between the 
times of gauge and satellite records, and thus to incorporate 
the maximum number of rain gauge stations. In this regard, 
choosing satellite-based products with high spatio-temporal 
resolution is the best approach to establish the direct usabil-
ity of the P-dataset.

Five gridded products with different data sources, spa-
tiotemporal resolution, latency, and estimation methods 

were evaluated (Table 1). Climate Hazards Group InfraRed 
Precipitation with Stations (CHIRPS) was established by 
the United States Geological Survey with collaboration 
with the University of California to support the Interna-
tional Development Famine Early Warning Systems Net-
work (FEWS NET). CHIRPS encompasses three diverse 
types of algorithms: global climatology, satellite informa-
tion and in situ observations to represent sparsely gauged 
locations. CHIRPS dataset involves the Tropical Rainfall 
Measuring Mission Multi-Satellite Precipitation Analysis 
version 7 (TMPA 3B42 v7)7 to calibrate global Cold Cloud 
Duration (CCD) and Global Precipitation Climatology Cen-
tre (GPCC) to perform the validation (Funk et al. 2015). 
Detailed information regarding the CHIRPS and the dataset 
of version 2.0 used in this study are available from the Portal 
platform (https:// www. Chc. ucsb. edu/ data/ chirps).

Multi-Source Weighted-Ensemble Precipitation 
(MSWEP) merges gauge, satellite, and estimates from 
atmospheric models to provide precipitation estimates with 
high spatio-temporal resolution worldwide. The MSWEP 
incorporates relative merits of satellite infrared and micro-
wave precipitation from five satellites product estimates with 
correction of systematic terrestrial biases using a strong 
network of rain gauges, rivers discharge observations and 
hydrological modeling (Beck et al. 2019a). The present 
study used the latest version of the dataset MSWEP V2.8; 
this product is available online at (https:// www. gloh2o. org).

Precipitation Estimation from Remotely Sensed Informa-
tion using Artificial Neural Networks-Cloud Classification 
System-Climate Data Record (PERSIANN-CCS-CDR) was 
generated by the Center for Hydrometeorology and Remote 
Sensing at the University of California for capturing extreme 
events at high temporal resolution. Compared to other PER-
SIANN version (CCS and CDR), PERSIANN-CCS-CDR 
designed to address the need for having a long-term dataset 
with fine spatio-temporal resolution (Sadeghi et al. 2021). 
To yield a primary dataset, PERSIANN model incorporates 
Gridded satellite infrared data (GridSat-B1) brightness–tem-
perature data from Geostationary Earth orbiting (GEO) sat-
ellites as an input data and the monthly Global Precipitation 
Climatology Project (GPCP) version 2.2 to correct the bias.

Table 1  Summary of the five P-datasets used with different input data. In input source column, S, R, G refer to satellite, reanalysis, and gauge 
information

Product Spatial resolution Period Input Source Spatial coverage References

CHIRPS V2.0 0.05° × 0.05° January 1981 to the present S, R and G Global Funk et al. (2015)
MSWEP V2.8 0.1° × 0.1° 1979 to the present S, R and G Global Beck et al. (2019a)
PERSIANN-CCS-CDR 0.04° × 0.04° 1983 to present S and G 60° Sadeghi et al. (2021)
TAMSAT V3.1 0.0375° × 0.0375° 1 January 1983 to the present S and G Africa Maidment et al. (2017)
ERA5-Land 0.1° × 0.1° 1981 to present R Global Muñoz-Sabater et al. (2021)

https://www.Chc.ucsb.edu/data/chirps
https://www.gloh2o.org
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The fifth generation European Centre for Medium-Range 
Weather Forecasts Reanalysis on global land surface (ERA5-
Land) is the latest reanalysis offering from the European 
Center for Medium-Range Weather Forecasts (ECMWF). 
ERA5-Land utilizes the Scheme for Surface Exchanges over 
Land incorporating land surface hydrology (H-TESSEL) to 
generate detailed information on surface and sub-subsurface 
processes at a highly localized level. (Muñoz-Sabater et al. 
2021). ERA5-Land contains a series of improvements com-
pared to ERA5 and the older ERA-Interim making it more 
accurate for all types of land applications and precipitation 
assimilation. The monthly averaged data are converted to 
total precipitation (mm/month) intervening the processing 
instructions given by the Copernicus hydrological table for 
accumulated variables made available online at (https:// cds. 
clima te. coper nicus. eu/ cdsapp# !/ home).

Tropical Applications of Meteorology using SATellite 
data and ground-based observations (TAMSAT) was pro-
duced by the Meteorology Department of the University 
of Reading (United Kingdom). TAMSAT V3.1 officially 
replaces v3.0 since the 1st of July 2020 with additional 
changes enabling users to handle the data with greater ease. 
TAMSAT rainfall data have been widely used for seasonal 
early warning of drought and assessments of long-term agri-
cultural risks over the African continent (Le Coz and Van De 
Giesen 2020). The rainfall estimates are based on Meteosat 
thermal infrared imagery, calibrated against ground-based 
rain gauge measurements (Maidment et al. 2017).

2.3  Used methods

2.3.1  Observations and P‑datasets comparison

Point to pixel comparison was adopted to compare the 
obtained value from station and different P-datasets. Indeed, 
the insufficient number of rain gauge stations, landform 
complexity and high spatial variability of precipitation lim-
its the accurate interpolation of rainfall into gridded data 
(Liu et al. 2020). Due to the non-availability of daily record 
for most rain gauge data and the limitation of monthly data 
in the past decades, a period of 81 months (≈ 7 years) com-
prising ideally the most recent period of records is the only 
way to include the maximum number of gauge stations. The 
selected period varies based on the availability of a recent 
continuous 7-year period without gaps. According to WMO 
(2018), a period of five years is considered adequate for 
conducting this kind of study. The small rain amounts not 
measured by the standard instrument are interpreted as dry 
months (< 1 mm) in the observation data (WMO 1983).

2.3.2  Accuracy of the P‑datasets

The accuracy of the satellite product was assessed quanti-
tatively in terms of monthly and seasonal temporal scales 
and at different elevations and grades using continuous sta-
tistical measurements, categorical metrics and volumetric 
indices (Liu et al. 2020). Finally, an extreme precipitation 
event was analyzed considering the spatial distribution of 
precipitation in the nearest rain gauges with the availabil-
ity of daily records. The continuous statistics included the 
Pearson Correlation Coefficient as a measure of the degree 
of agreement/disagreement between the observation and the 
gridded datasets. The tendency of the gridded product to 
over/underestimate the rain gauge observation was calcu-
lated using the bias and the root mean square error (RMSE) 
was used to quantify the average magnitude of error between 
both values. The categorical indices were used to express 
the capacity of the satellite product to detect the rain events 
above a given threshold (Wilks 2011). These indices are 
based on the contingency table and include the Probability 
of Detection (POD) referring to the fraction of precipitation 
events that were correctly detected (i.e., 1 implies that all 
rainfall events are detected by the gridded data, 0 means 
none of the event was correctly detected). False Alarm Ratio 
(FAR) represents events identified by the gridded data but 
not confirmed by the rain gauge observation (i.e., 0 per-
fect agreement of rainfall occurrences in both observation 
and gridded data, 1 means all the detected event are not 
confirmed by the gauges). The Critical Success Index (CSI) 
is the fraction of the rain event that was correctly detected 
by the gridded data including missed occurring rain events 
(i.e., 1 implies zero occurrences in both the false alarm and 
missed categories).

The volumetric difference that may exist between two 
variables detected correctly or incorrectly cannot be identi-
fied with categorical measurements (Aghakouchak and Meh-
ran 2013). Consequently, the precipitation volume fraction 
detected correctly/incorrectly is still unknown. This margin 
of biases (overestimate or underestimate) can be important 
in the context, where the precipitation is highly variable in 
terms of frequency, duration and intensity and DRB is a 
clear example, where a heavy storm can represent more than 
half of the average annual sum (Cappy 2007). Therefore, the 
categorical metrics have been extended to volumetric meas-
ures to quantify the error magnitude between the observed 
and estimated variable. The volumetric indices include 
the volumetric hit index (VHI) which defines the correct 
rainfall volume detected by the satellite product relative 
to the rainfall volume detected by the satellite and missed 
by observation. The volumetric false alarm ratio (VFAR) 
expresses the volume of false volume rainfall detected by 
the satellite product relative to the sum of rainfall detected 
by the same satellite product. The volumetric critical success 

https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
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index (VCSI) reflects the overall measure of volumetric per-
formance. All these statistics and indices with their perfect 
score are summarized in Table 2.

3  Results

3.1  Monthly assessment

Water balance analysis accuracy depends more on the avail-
ability of monthly precipitation datasets (Liu et al. 2020). 
The monthly precipitation during the 81 months was cal-
culated for each gauge station and the corresponding pixel 
for the five products. The basic statistics in Table 3, indicate 
that TAMSAT V3.1 yields the highest average monthly pre-
cipitation over DRB (with a mean of 27.42 mm), followed 
by CHIRPS V2.0 (with a mean of 25.21 mm), PERSIANN-
CCS-CDR (with a mean of 22. 57 mm), MSWEP V2.8 (with 
a mean of 16.86), and ERA5-Land (with a mean of 15.75 
mm). Concerning the range and deviation of the monthly 
precipitation, MSWEP V2.8 and ERA5-Land exhibit nar-
rowest range (about one-third over the maximum of gauge 
stations). ERA5-Land shows close values to the standard 
deviation of the observation (22.69 mm), and TAMSAT 
V3.1 attains the largest standard deviation (36.64 mm). A 
large disagreement between the observed and estimated 
precipitation values is evident for most P-datasets (low and 
moderate r), and thus all points do not fall on the 1:1 line 
(Fig. 2). The results of monthly assessment presented in 
Table 4, indicates that ERA5-Land followed by MSWEP 
V2.8 achieved considerably good performance in most 
continuous statistical measures (r, bias and RMSE) with an 
overestimation rate of 46% and 63%, respectively. On the 

other hand, TAMSAT V3.1, PERSIANN-CCS-CDR and 

CHIRPS V2.0 show low performance overestimating signifi-
cantly rain gauge observations (82%, 83% and 85% of total 
months were overestimated, respectively). This discrepancy 
with observation data is more observed with TAMSAT V3.1 
yielding high RMSE (38. 81 mm/ month). CHIRPS V2.0, 
PERSIANN-CCS-CDR and TAMSAT V3.1 show high FAR 
and VFAR score (Table 4). Indeed, the volume of precipi-
tation missed doesn’t exceed 3% of the percentage of the 
volume of precipitation detected above the given threshold 
for all P-datasets yielding high VHI and VFRA score.

3.2  Seasonal assessment

The seasonal assessments of the five P-datasets and rain 
gauge observations are shown in Fig. 2 and Table 4. All 
P-datasets overestimate precipitation during wet and dry 
seasons, but the intensity allows distinction between 
CHIRPS V2.0 and TAMSAT V3.1 yielding high bias and 
RMSE scores at all seasons and other products. ERA5-
Land and MSWEP V2.8 exhibit strong correlation dur-
ing wet and dry seasons, respectively, while PERSIANN-

CSS-CDR reveals a noticeable transition from wet to dry 

Table 2  Continuous, categorical 
and volumetric indices used to 
quantify the performance of the 
five P-datasets

Name Formula Perfect score

Pearson Correlation Coefficient (r) ∑n

i=1
(Si−S)(Gi−G)

√

∑N

i=1
(Si−S)

2
√
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i
)
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H+M
1
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0

Critical Success Index, (CSI) H
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1
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Table 3  Statistics of monthly precipitation of the gauge stations and 
five P-datasets across the DRB for 81 months (unit: mm)

Sources Min Median Mean Max Std

Gauge station 0 2.60 10.38 166.6 18.99
CHIRPS V2.0 0.41 15.44 25.21 460.73 34.21
MSWEP V2.8 0 7.06 16.86 262 27.06
PERS-CCS-CDR 0 11 22.57 437 34.97
ERA5-Land 0.02 6.72 15.17 241.43 22.69
TAMSAT V3.1 0 14.8 27.42 433.8 36.64
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Fig. 2  Scatter plot of rain gauge observations and versus the five P-datasets over the study area at different temporal scales (monthly, wet and dry season)



166 Mediterranean Geoscience Reviews (2023) 5:159–175

1 3

season compared to other P-datasets. The capacity to 
detect precipitation accurately in all seasons was shown 
by all P-datasets yielding high POD scores. Only one wet 
season was missed by PERSIANN-CCS-CDR during the 
wet season at 1 mm threshold. Consistent with categori-
cal indices, a comparison of the volumetric indices of 
seasonally with those of monthly assessment in Table 4, 
describe certain independence regarding seasonal varia-
tion recording the same optimal scores.

The seasonal precipitation data were stratified into 
winter (December to February), spring (March to May), 
summer (June to August) and autumn (September to 
November). All the five P-datasets exhibit a seasonal pat-
tern with low RMSE scores during the summer (Fig. 3c). 
High correlation, low bias and RMSE characterize ERA5-
Land and MSWEP V2.8 at all seasons. CHIRPS V2.0 
showed a good ability to detect occurred precipitation 
all the year, but a large precipitation event detected (44% 
of rainfall event) were not confirmed by gauge observa-
tions yielding high FAR rate (Fig. 3d, e). ERA5-Land, 
PERSIANN-CSS-CDR and TAMSAT V3.1 show almost 
the same seasonal cycle in POD and FAR with relatively 
optimal scores during winter. Indeed, FAR ratio increases 
from winter to autumn for most P-datasets except MSWEP 
V2.8. Otherwise, the maximum number of missed events 
was noticed for TAMSAT V3.1 with more than 88 missing 
events during spring (21% of occurred events). Achiev-
ing high POD, CSI, VHI, and VCSI values and low FAR 
and VFAR values was shown by ERA5-Land followed by 
PERSIANN-CCS-CDR during winter. However, MSWEP 
V2.8 performs well during other seasons compared to 
PERSIANN-CSS-CDR.

3.3  Assessment according to different intensities

Based on the previous results, it can be inferred that using 
lower thresholds yields better categorical and volumetric 
outcomes. This is because the number of correctly identi-
fied values surpasses the number of both false and missed 
events, even when using the given threshold of 1 mm. In 
this sense, higher thresholds can be introduced to evaluate 
solely the higher quantiles of simulations relative to obser-
vations (Aghakouchak and Mehran 2013). Two precipita-
tion grades including Q2 = 2.5 mm/month and Q3 = 12.5/
month (i.e., 50% and 75% quantiles of rain observations, 
respectively), were used as the corresponding thresholds. 
In this sense, precipitation range < 1 mm, 1 ≤ precipitation 
range < 2.5, 2.5 ≤ precipitation range < 12.5 and ≥ 12.5 mm 
are interpreted as dry months, months with moderate precip-
itations, months with noticeable precipitations and months 
with important precipitations, respectively. Assigning such 
interpretation to different precipitation levels depends on the 
climatic features of the study area and hence, the precipita-
tion amount recorded by rain gauge stations.

The occurrence percentage (frequency) according to 
precipitation intensity is shown in Fig. 4e. Dry months 
accounted for 42.96% of the total months recorded 
at 20 stations across the Upper and the Middle Drâa 
river basins. All five P-datasets show a clear difference 
throughout all rain intensity categories with a tendency 
to underestimate the frequency of dry months (< 1 mm). 
CHIRPS V2.0 appears to have reasonably estimated cor-
rectly the frequency for months with moderate precipita-
tion while it was underestimated slightly by TAMSAT 
V3.1. Meanwhile, MSWEP V2.8 followed by ERA5-Land 

Table 4  Performance 
assessment of the five P-datasets 
at various time scale

RMSE is presented at monthly scale as (mm/month), seasonaly scale as (mm/6 months)

Time scale P-dataset r Bias RMSE POD FAR CSI VHI VFAR VCSI

Monthly CHIRPS V2.0 0.32 1.47 36.42 0.99 0.42 0.57 0.99 0.29 0.70
MSWEP V2.8 0.68 0.63 20.72 0.94 0.33 0.64 0.98 0.13 0.85
PERS-CCS-CDR 0.5 1.20 32.79 0.97 0.39 0.59 0.98 0.19 0.79
TAMSAT V3.1 0.35 1.67 38.81 0.90 0.35 0.72 0.97 0.25 0.72
ERA5-Land 0.73 0.46 16.22 0.97 0.33 0.65 0.98 0.14 0.85

Wet season CHIRPS V2.0 0.21 1.60 187.75 1 0.02 0.97 1 0.01 0.98
MSWEP V2.8 0.73 0.57 69.41 0.99 0.03 0.95 0.99 0.01 0.98
PERS-CCS-CDR 0.47 1.16 121.78 0.99 0.15 0.97 0.99 0 0.99
TAMSAT V3.1 0.24 1.69 165.70 1 0.01 0.98 1 0 0.99
ERA5-Land 0.76 0.47 59.94 1 0 0.99 1 0 0.99

Dry season CHIRPS V2.0 0.19 1.33 111.28 1 0 0.99 1 0 0.99
MSWEP V2.8 0.77 0.70 69.64 1 0 0.99 1 0 0.99
PERS-CCS-CDR 0.62 1.2 99.06 1 0 0.99 1 0 0.99
TAMSAT V3.1 0.28 1.65 128.44 1 0 0.99 1 0 0.99
ERA5-Land 0.72 0.45 56.00 1 0.04 0.95 1 0 0.99
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and PERSIANN-CSS-CDR overestimate the same pre-
cipitation range. TAMSAT V3.1 underestimates the fre-
quency of months with noticeable precipitation, whereas 
all other P-datasets overestimate this frequency by more 
than 5%. Noticeably, all products tend to overestimate the 
frequency of months with important precipitation amount, 
where CHIRPS V2.0 followed TAMSAT V3.1 show the 
highest rate (more than 25%). In terms of continuous 
measurements, the magnitude of r and RMSE increases 
with precipitation greater than 1 mm for all P-datasets 
(Fig. 4a–c). Bias optimal values were recorded during 
months with moderate and noticeable rainfall months 
(Fig. 4b). PERSIANN-CSS-CDR overestimates precipi-
tations above 12.5 mm whereas CHIRPS V2.0 overes-
timates significantly at low precipitation threshold (< 1 
mm). Low capability to correctly detect months with 
moderate precipitation was noticed by all P-datasets 
(Fig.  4d). CHIRPS V2.0, PERSIANN-CCS-CDR and 
TAMSAT V3.1 are able to detect precipitation above the 
 Q3 threshold (months with important precipitation) com-
pared to ERA5-Land and MSWEP V2.8.

3.4  Evaluation at the different elevation levels

Based on the topographical setting of the DRB, the rain 
gauge stations are distributed across three principal domains, 
namely: (i) the mountain ranges of the High and Anti Atlas 
in the northern and central part following the WSW-ENE 
axis, (ii) the southern flank of Central High Atlas and Ouar-
zazate basin identifiable as large depression between the 
High Atlas and the Anti-Atlas ranges, and (iii) the low-lying 
terrains adjacent to the Saharan desert. The selected rain 
gauge stations span an elevation range of 656 to 2100 m 
above sea level (Fig. 5). To maintain the disparity of the 
above-mentioned domains, the classification was calculated 
below Oussikis station (2100 m) due to a limited number of 
stations in high-elevation areas. Table 5 depicts the assess-
ment statistics for the five P-datasets on monthly precipita-
tion scale at different elevations.

Good statistical scores were achieved by ERA5-Land 
and MSWEP V2.8 at all elevation ranges and share almost 
the same categorical and volumetric indices above 1100 
m (Table 5). These products show the lowest average bias, 

Fig. 3  Seasonal assessment indices of the five P-datasets with reference to: winter (December–February), spring (March–May), summer (June–
August) and autumn (September–November)
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Fig. 4  Evaluation indices and precipitation distribution of the five P-datasets at the different monthly precipitation grades

Fig. 5  Rain gauge stations repartition across DRB along a gradient of altitude from the highest stations to low altitude
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RMSE, FAR and VFAR values at low-lying terrains adja-
cent to the Saharan desert. ERA5-Land agrees with most 
gauge stations and the highest correlation (r = 0.87) was 
obtained for Tahrbilt gauge station at an elevation of 1184 m 
(Table 6). Indeed, this station shows high resemblance with 

estimated precipitation from all P-datasets. On the other 
hand, CHIRPS V2.0, PERSIANN-CSS-CDR, and TAMSAT 
V3.1 perform poorly in low-lying terrains adjacent to the 
Saharan desert, the Ouarzazate basin, and the High and Anti 
Atlas range, respectively. These products detect more dry 

Table 5  Performance assessment for the five P-datasets at monthly precipitation scale with respect to different elevation ranges

Elevation (m) P-dataset r Bias RMSE (mm/
month)

POD FAR CSI VHI VFAR VCSI

Low-lying terrains
600–900

CHIRPS V2.0 0.53 7.03 48.16 0.99 0.49 0.50 1 0.33 0.67
MSWEP V2.8 0.77 0.23 8.75 0.89 0.27 0.65 0.98 0.12 0.85
PERS CCS-CDR 0.61 1.48 14.38 0.96 0.43 0.54 0.99 0.27 0.72
TAMSAT V3.1 0.50 4.99 29.61 0.89 0.39 0.57 0.98 0.29 0.70
ERA5-Land 0.79 0.16 8.48 0.96 0.25 0.72 0.99 0.07 0.92

Ouarzazate basin
900–1200

CHIRPS V2.0 0.43 0.44 16.33 1 0.40 0.59 1 0.30 0.69
MSWEP V2.8 0.73 0.26 11.87 0.93 0.28 0.68 0.96 0.15 0.82
PERS CCS-CDR 0.36 1.37 24.53 0.93 0.37 0.60 0.97 0.33 0.65
TAMSAT V3.1 0.47 0.91 20.84 0.91 0.34 0.62 0.95 0.21 0.76
ERA5-Land 0.76 0.09 13.15 0.93 0.32 0.64 0.93 0.17 0.80

High and Anti Atlas ranges
1200–2100

CHIRPS V2.0 0.50 1.07 26.35 0.99 0.40 0.58 0.99 0.28 0.71
MSWEP V2.8 0.63 0.94 25.47 0.97 0.36 0.62 0.99 0.15 0.83
PERS CCS-CDR 0.53 0.97 22.52 0.96 0.38 0.60 0.99 0.25 0.74
TAMSAT V3.1 0.38 1.58 37.15 0.89 0.35 0.59 0.96 0.27 0.70
ERA5-Land 0.76 0.62 18.42 0.99 0.37 0.62 0.99 0.15 0.84

Table 6  Correlation coefficient for the five P-dataset at each rain gauge station over the DRB

Station name ID Latitude (°) Longitude (°) Elevation (M) CHIRPS V2.0 MSWEP V2.8 PERS-
CDR-
CSS

TAMSAT V3.1 ERA5-LAND

Oussikis S1 31.69 − 5.90 2098 0.45 0.69 0.68 0.27 0.78
M’semrir S2 31.69 − 5.81 1955 0.46 0.65 0.41 0.34 0.72
Ait mouted S3 31.41 − 5.99 1548 0.72 0.73 0.65 0.54 0.79
IFRE S4 31.33 − 6.17 1524 0.67 0.70 0.62 0.43 0.84
Imdghar N’izdar S5 30.61 − 7.33 1506 0.04 0.37 0 0.41 0.85
Tiflite S6 31.21 − 6.58 1445 0.56 0.25 0.58 0.42 0.76
Agouime S7 31.07 − 7.28 1407 0.56 0.78 0.67 0.41 0.76
Assaka S8 30.60 − 7.13 1371 0.40 0.49 0.61 0.34 0.53
Tiouine S9 30.93 − 7.23 1286 0.27 0.78 0.42 0.16 0.80
Tamdroust S10 30.95 − 7.20 1280 0.57 0.63 0.49 0.40 0.63
Agouilal S11 31.01 − 7.10 1243 0.77 0.60 0.72 0.44 0.85
Aman N’tini S12 30.95 − 7.04 1207 0.14 0.81 0.08 0.35 0.83
Tahrbilt S13 30.82 − 6.94 1184 0.79 0.84 0.69 0.73 0.87
Tinouar S14 31.00 − 6.60 1149 0.47 0.57 0.39 0.31 0.56
Ouarzazate S15 30.93 − 6.90 1138 0.15 0.68 0.06 0.45 0.13
M’eddahbi S16 30.90 − 6.76 1122 0.60 0.74 0.57 0.53 0.83
Tazarine S17 30.77 − 5.56 860 0.66 0.80 0.67 0.45 0.78
Zagora (Assrir) S18 30.35 − 5.841 733 0.56 0.72 0.43 0.41 0.67
Zagora (Centre) S19 30.32 − 5.84 731 0.43 0.78 0.56 0.69 0.84
Foum Zguid S20 30.07 − 6.68 657 0.66 0.76 0.76 0.45 0.85
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months as wet yielding high FAR and VFAR with less miss-
ing precipitation events (i.e., high POD and VHI). The mag-
nitude of RMSE increases with elevation for all P-datasets 
except CHIRPS V2.0 recording the highest average RMSE 
(48.16 mm/Month) at low elevation (Fig. 6c). Otherwise, a 
negative association was shown in terms of bias for CHIRPS 
V2.0, PERSIANN-CSS-CDR, and TAMSAT V3.1 (Fig. 6b). 
The slope of trend lines of POD and VHI for ERA5-Land 
and MSWEP V2.8 are higher compared to other products 
whereas, CHIRPS V2.0, PERSIANN-CSS-CDR and TAM-
SAT V3.1 show similar trends (Fig. 6d, e). FAR and VFAR 
had a negative association with elevation for all P-datasets 
except ERA5-Land (Fig. 6e, h). The performances of the five 
P-dataset on a monthly scale at each gauge station are shown 
in Table S1–S7 of the Supplementary materials. ERA5-Land 
and MSWEP V2.8 are the only products underestimating 
precipitation mainly in lower elevations.

3.5  P‑dataset ability to detect extreme rain event

During some very exceptional and important flood events, 
Drâa River crosses the lac Iriki and low Drâa basin in a 
continuing flow regime to reach the Atlantic Ocean in the 
southwestern part of the country (Karmaoui et al. 2014). 
Progressively, this situation has changed since several 
reservoirs have been put into service such as Oussikis 
(31°69'N and 5°90'W), Sultan Moulay Ali Cherif (30° 93' 
N and 7° 24′ W), Taghdout 30° 62′ N, 7° 29′ W, Mansour 
Eddahbi (30° 90′ N and 6° 75′ W) and recently Agdez (30° 

82′ N, 6° 56′ W) replacing the natural flooding system with 
a controlled flow regime to different oases, palm groves 
and valleys downstream (ABHDON 2018). The 31 March 
and 1 April 2002 rain event was suggested to be one of the 
most important extreme rain events for more than 25 years 
(Cappy 2007). The precipitation rate reaches 77 mm in 24 
h, causing an important flash flood and strong anomaly in 
several gauge stations monitoring discharges of rivers and 
tributaries over the basin. This event was recorded by six 
stations distributed across the upstream part of DRB with 
available daily records.

From daily precipitation series, the ability of the P-data-
set to detect extreme event varies according to stations. 
Both CHIRPS V2.0 and PERSIANN-CCS-CDR display a 
good agreement with all rain gauge stations (Table 7). The 
correlation values of these P-datasets are high but notice-
able distinction in term of other continuous statistics is 
evident. PERSIANN-CCS-CDR overestimates the extreme 
event episode at all rain gauge station with high RMSE 
score at Aman N’Tini station (Fig. 7d). The latest presents 
an exception in such a way that all the Five P-datasets 
overestimate the intensity of precipitation episode. Other-
wise, the high underestimation rate was recorded at Tahr-
bilt station for ERA5-Land, MSWEP V2.8 and TAMSAT 
V3.1 (Fig. 7c). Indeed, ERA5-Land and MSWEP V2.8 
indicate weakness in detecting the first and late extreme 
precipitation episode, respectively.

Fig. 6  Assessment of continuous, categorical and volumetric indices at the different elevation range across DRB



171Mediterranean Geoscience Reviews (2023) 5:159–175 

1 3

4  Discussion

The conducted study explores the reliability and the qual-
ity of five tested P-datasets with reference to 20 rain gauge 
stations distributed across the Upper and the Middle Drâa 
basins. Our findings indicate clearly that achieving favour-
able outcomes in continuous statistics lead generally to high 
performance in both categorical and volumetric statistics, 
while the reverse is not necessarily true. Furthermore, the 
fine spatial resolution of CHIRPS V2.0, PERSIANN-CCS-
CDR and TAMSAT V3.1 does not guarantee high perfor-
mance in capturing the correct precipitation amount. This 
vulnerability to errors could be increased under the complex-
ity of DRB, namely topography and precipitation variabil-
ity. However, the observed weakness of these products does 
not characterize a unique elevation range or season, which 
requires more confidence before attributing such limitation 
to input data, onboard sensors, algorithm, and interpolation 
techniques. For instance, the integration of PMW and IR 
sensors for the majority of P-datasets are expected to pre-
sent certain limitations in more complex terrains than open 
areas (Funk et al. 2015). Moreover, Milewski et al. (2015) 
found that overestimation of precipitation from the TRMM 
product, which merges data from PMW and IR satellites, 

is significant in many arid environments over Morocco. In 
this sense, the high bias found in the hyper-arid low-lying 
terrains may be related to the limitation of PMW during 
short term and slight precipitation events (Gebregiorgis and 
Hossain 2013). Nevertheless, the infrequent sampling chal-
lenge presented by the PMW sensor occurs mainly during 
short storms and hence not sufficient to explain the uncer-
tainty for TAMSAT V3.1 based only on IR data. Indeed, the 
revealed error for these product does not depend on miss-
precipitation bias since most P-datasets are able to detect 
approximately all occurred events. Therefore, the indirect 
nature of the IR to sense the precipitation are expected to 
explain their limitation (Kidd and Huffman 2011). The large 
uncertainties found with these products were reported in 
previous studies conducted over arid and complex basins. 
Consistent with the result of the low accuracy of CHIRPS 
V2.0 product under the complexity of DRB, Rivera et al. 
(2018) also found that CHIRPS product perform better out-
side the semi-arid regions and below 1000 m of elevation. 
In the same way, Rachdane et al. (2022) have attributed the 
high bias of PERSIANN-CSS-CDR found over Sub-Saharan 
Moroccan basins to topography effects. Indeed, the integra-
tion of cold-cloud duration (CCD) values derived from IR 
for CHIRPS V2.0 and TAMSAT V3.1 compared to artificial 

Table 7  Performance measures 
of the five P-datasets in affected 
rain-gauge stations during the 
extreme precipitation event of 
31 March and 1 April 2002

RMSE is presented on daily scale as (mm/day)

Station/ID CHIRPS V2. 0 MSWEP V2.8 PERS-CSS-CDR TAMSAT V3.1 ERA5-Land

M’Semrir (S2)
 r 0.97 0.75 0.88 0.84 0.54
 Bias − 0.15 − 0.32 0.43 − 0.03 − 0.38
 RMSE 3.42 8.34 11.08 6.31 10.38

Ait Mouted (S3)
 r 0.96 0.57 0.97 0.71 0.77
 Bias − 0.49 − 0.41 0.49 − 0.59 − 0.47
 RMSE 7.81 11.50 6.98 10.41 9.11

Iffre (S4)
 r 0.97 0.50 0.99 0.77 0.81
 Bias − 0.09 − 0.25 0.47 − 0.51 − 0.20
 RMSE 2.50 11.04 6.31 7.56 6.78

Aman N’Tini (S12)
 r 0.98 0.49 0.98 0.96 0.83
 Bias 1.55 0.90 3.83 0.54 1.20
 RMSE 5.45 9.18 17.34 2.16 9.17

Tahrbilt (S13)
 r 0.99 0.42 0.99 0.86 0.89
 Bias − 0.66 − 0.39 0.17 − 0.86 − 0.40
 RMSE 10.25 13.85 2.78 13.41 7.19

Ouarzazate (S15)
 r 0.99 0.45 0.99 0.95 0.87
 Bias − 0.76 − 0.37 0.47 − 0.56 − 0.38
 RMSE 10.15 12.05 6.91 8.70 6.33



172 Mediterranean Geoscience Reviews (2023) 5:159–175

1 3

neural networks method employed by PERSIANN-CSS-
CDR are expected to classify more clouds as cold clouds 
with precipitation activity, which may explain the high FAR 
ratio (Domenikiotis and Dalezios 2003). Besides, low-inten-
sity precipitation during winter may lead to the same uncer-
tainty considering the inability of PMW techniques during 
the cooler months. On the other hand, the optimist RMSE 
values recorded mainly by these three products during sum-
mer may be explained by the ability of IR sensor to detect 
thunderstorm which dominate this period of year (Knippertz 
et al. 2002).

The impressive performance achieved by ERA5-Land 
underscores its ability to accurately model large-scale pre-
cipitation systems. These results are consistent with ear-
lier studies by Beck et al. (2019b) and Kidd et al. (2012), 
which highlight the superiority of the ECMWF model in 
forecasting large-scale precipitation compared to regions 
dominated by convective precipitation. Thus, the limitation 
of short-lived storms affecting small geographic regions in 
late summer/early autumn explain the overall accuracy of 
ERA5-Land throughout the year. On the other hand, the inte-
gration of additional patterns for MSWEP V2.8 such as daily 
gauge observations and accounting for reporting times per-
formance compared to CHIRPS V2.0 which combine also 

gauge, satellite, and (re)analysis data. However, the uncer-
tainty of reanalysis model estimates are expected to grow 
as we go back in time compared to other products, which 
may explain their low ability to detect extreme events that 
occurred in 2001.

5  Rain gauge incertitude and approach 
limitations

Based on the prior findings, most P-datasets have shown 
positive bias and high RMSE scores, with a clear deficiency 
in underestimating the frequency of dry months and over-
estimating high-intensity precipitation (Table 4 and Fig. 4). 
However, the magnitude of errors could also be a result of 
rain gauge uncertainty. Employing various sizes and shapes 
of orifice and gauge heights not strictly comparable with 
WMO standards are expected to underestimate actual pre-
cipitation by 5% to 40%, with a bias of 9% on average (Gro-
isman and Legates 1994; Kidd and Huffman 2011). Further-
more, the majority of rain gauges in DRB are not equipped 
with windshields and evaporation losses are expected to 
influence instrument accuracy. In this sense, estimating 
the systematic gauge-measuring incertitude on the basis of 

Fig. 7  Daily rainfall for six rain gauge stations during March/April 2002 flood event
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weather information from synoptic stations may confirm the 
error proneness of a given P-dataset. National Direction of 
Meteorology maintains one station accredited by the World 
Meteorological Organization (WMO) delivering data with 
relatively high-quality standards and temporal complete-
ness (Filahi et al. 2016; Schulz et al. 2008). The Monthly 
precipitation data from Ouarzazate meteorological and 
gauge station for a period of 38 years from January 1983 to 
December 2020 was extracted. Measures of similarity were 
obtained using both Taylor Diagram and frequency histo-
gram (Fig. 8a, b). Based on the results, it can be inferred that 
the ground-observations share similar patterns with correla-
tion values greater than 0.90. A few outlier values showing 
substantial disagreement with weather measurements may 
be attributed to recording errors, but gauge station under-
estimate the precipitation recorded by the meteorological 
station of Ouarzazate by 10% (Fig. S1 and Table S8 in sup-
plementary materials).

As shown in Fig. 8b, ERA5-Land and MSWEP V2.8 have 
the highest correlation values (0.77 and 0.71), followed by 
CHIRPS V2.0 (0.65), while PERSIANN-CSS-CDR and 
TAMSAT V3.1 share the same correlation values (0.52). 
The high RMSE shown by PERSIANN-CSS-CDR confirms 
its low performance found in Ouarzazate basin. In terms of 
occurrence percentage, the performance of most P-datasets 
was considered better compared to the previous assessment 
based on the corresponding gauge data. However, underes-
timating no rain range (< 1 mm) still characterizes all five 
datasets (Fig. 8a). CHIRPS V2.0 has low performance with 
non-dry month during all the 38 years, but detect months 
with moderate precipitation intensity satisfactorily. On the 
other, hand MSWEP V2.8 is more adequate for precipitation 
below 12.5 mm and ERA5-Land during important precipita-
tion (> 12.5 mm).

Uneven distribution of rain gauge stations across DRB, 
particularly in the Middle Drâa and lower terrains, limits our 

understanding of precipitation patterns. Indeed, a large part 
of DRB with complex topography and precipitation variabil-
ity are still unobserved which make it difficult to accurately 
assess the limitations of a given P-dataset. On the other hand, 
this study evaluated P-datasets at monthly, seasonal, and sub-
seasonal scales. However, the lack of daily records, especially 
in the Middle Drâa basin where there are no daily precipita-
tion records, hampers our ability to assess the effectiveness 
of P-datasets in hydrological studies, such as rainfall–runoff 
modeling. Besides, further studies at the hourly scale are still 
necessary considering that rain events in DRB as many arid 
regions occur within a very short time, such as a few hours.

6  Conclusion

This study evaluates the performance of five P-datasets with 
high spatial and temporal resolution over DRB, namely 
CHIRPS V2.0, MSWEP V2.8, PERSIANN-CSS-CDR, 
TAMSAT V3.1 and ERA5-Land. Incorporating the maxi-
mum number of available precipitation data from 20 gauge 
station and on one meteorological rainfall data accredited 
by the WMO to evaluate the P-datasets accuracy, is unprec-
edented in the study area. The valuable information provided 
is considered helpful before using such P-datasets as alterna-
tives to rain gauges. The study's main findings are as follows:

 (i) Incorporating atmospheric reanalysis models as input 
are expected to reduce the sensitivity of the P-dataset 
to the complexity of topography and precipitation 
variability over DRB compared to those that combine 
information primarily from IR and PMW.

 (ii) ERA5-Land followed by MSWEP V2.8 perform bet-
ter at various times, intensities and elevation scale 
and show good agreement with most rain gauge sta-

Fig. 8  Taylor diagram and precipitation distribution for different intensity of the five P-datasets using the meteorological station of Ouarzazate as 
reference
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tions, but have a limited ability to detect completely 
extreme precipitation episodes.

 (iii) CHIRPS V2.0, PERSIANN-CSS-CDR and TAMSAT 
V3.1 detect dry months as wet and overestimate sig-
nificantly the precipitation amounts. Better perfor-
mance of these products during months with moder-
ate and noticeable precipitation intensity is evident. 
However, still not satisfactory to be recommended 
for drought monitoring investigation which require 
more ability during low-intensity precipitation.

 (iv) In situ rainfall measurements using unique and 
adopted designs by the WMO are expected to reduce 
the magnitude of bias and RMSE found. However, 
achieving the minimum density standard for con-
structing precipitation gauge networks in DRB is 
still mandatory to provide more information about 
the accuracy of input data, onboard sensors, algo-
rithm, and interpolation techniques.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42990- 023- 00108-0.
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